DAE-MLP Based Feature Extraction for Hyperspectral Image Classification of Saint Clair River

Authors

  • Youcef Attallah Electronics

Abstract

Hyperspectral remote sensing has emerged as a powerful tool for vegetation classification due to its ability to capture detailed spectral information. This study introduces a novel methodology for vegetation classification using exclusively hyperspectral imagery. The proposed approach comprises atmospheric correction using the FLAASH algorithm, followed by dimensionality reduction
using PCA and segmentation through the ROI selection and the Spectral Angle Mapper (SAM) module. Subsequently, a deep autoencoder is employed for feature extraction, paving the way for classification using the Multi-Layer Perceptron (MLP) algorithm. The effectiveness of this methodology is evaluated using a hyperspectral image of the Saint Clair River, successfully classifying the image into six main classes: water 1, water 2, grass, tree, reed, corn, and an 'unclassified' category encompassing concrete, roads, bricks, wood, and more. Our findings demonstrate the efficacy of this approach in accurately classifying and mapping vegetation in river ecosystems, offering a promising solution in the face of limited hyperspectral datasets.

Keywords

Hyperspectral remote sensing, FLAASH, PCA, SAM, Multi-Layer Perceptron (MLP), Saint Clair River

References

G. Ortac et G. Ozcan, « Comparative study of hyperspectral image classification by

multidimensional Convolutional Neural Network approaches to improve

accuracy », Expert Systems with Applications, vol. 182, p. 115280, nov. 2021, doi:

https://doi.org/10.1016/j.eswa.2021.115280.

M. Zhao, J. Chen, et Z. He, « A Laboratory-Created Dataset With Ground Truth for

Hyperspectral Unmixing Evaluation », IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, vol. 12, no 7, p. 2170‑2183, juill. 2019,

doi: 10.1109/JSTARS.2019.2905099.

F. Kruse, « Comparison of AVIRIS and Hyperion for hyperspectral mineral

mapping », janv. 2002.

B. Rasti, P. Scheunders, P. Ghamisi, G. Licciardi, et J. Chanussot, « Noise

Reduction in Hyperspectral Imagery: Overview and Application », Remote Sensing,

vol. 10, no 3, Art. no 3, mars 2018, doi: 10.3390/rs10030482.

M. M. Baustian et al., « A one hundred year review of the socioeconomic and

ecological systems of Lake St. Clair, North America », Journal of Great Lakes

Research, vol. 40, no 1, p. 15‑26, mars 2014, doi: 10.1016/j.jglr.2013.11.006.

W. Zhao et S. Du, « Spectral–Spatial Feature Extraction for Hyperspectral Image

Classification: A Dimension Reduction and Deep Learning Approach », IEEE

Transactions on Geoscience and Remote Sensing, vol. 54, no 8, p. 4544‑4554, août

, doi: 10.1109/TGRS.2016.2543748.

X. Ma, H. Wang, et J. Geng, « Spectral–Spatial Classification of Hyperspectral

Image Based on Deep Auto-Encoder », IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, vol. 9, no 9, p. 4073‑4085, sept. 2016, doi:

1109/JSTARS.2016.2517204.

S. Li, X. Zhu, Y. Liu, et J. Bao, « Adaptive Spatial-Spectral Feature Learning for

Hyperspectral Image Classification », IEEE Access, vol. 7, p. 61534‑61547, 2019,

doi: 10.1109/ACCESS.2019.2916095.

J. Li, J. M. Bioucas-Dias, et A. Plaza, « Semisupervised Hyperspectral Image

Segmentation Using Multinomial Logistic Regression With Active Learning »,

IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no 11, p. 4085‑4098,

nov. 2010, doi: 10.1109/TGRS.2010.2060550.

L. Breiman, « Random Forests », Machine Learning, vol. 45, no 1, p. 5‑32, oct. 2001,

doi: 10.1023/A:1010933404324.

C. Bo, H. Lu, et D. Wang, « Spectral-spatial K-Nearest Neighbor approach for

hyperspectral image classification », Multimed Tools Appl, vol. 77, no 9, p.

‑10436, mai 2018, doi: https://doi.org/10.1007/s11042-017-4403-9.

Z. He, D. Lin, T. Lau, et M. Wu, « Gradient Boosting Machine: A Survey ». arXiv,

août 2019. doi: 10.48550/arXiv.1908.06951.

P. Mahesh et F. Giles M, « Feature Selection for Classification of Hyperspectral

Data by SVM », IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no

, p. 2297‑2307, févr. 2010, doi: 10.1109/TGRS.2009.2039484.

K. Deng, H. Zhao, N. Li, et W. Wei, « Identification of minerals in hyperspectral

imagery based on the attenuation spectral absorption index vector using a multilayer

perceptron », Remote Sensing Letters, vol. 12, no 5, p. 449‑458, mai 2021, doi:

1080/2150704X.2021.1903612.

Z. Lin, Y. Chen, X. Zhao, et G. Wang, « Spectral-spatial classification of

hyperspectral image using autoencoders », in 2013 9th International Conference on

Information, Communications & Signal Processing, déc. 2013, p. 1‑5. doi:

1109/ICICS.2013.6782778.

J. Zabalza et al., « Novel segmented stacked autoencoder for effective

dimensionality reduction and feature extraction in hyperspectral imaging »,

Neurocomputing, vol. 185, p. 1‑10, avr. 2016, doi:

https://doi.org/10.1016/j.neucom.2015.11.044.

M. K. Tripathi et H. Govil, « Evaluation of AVIRIS-NG hyperspectral images for

mineral identification and mapping », Heliyon, vol. 5, no 11, p. e02931, nov. 2019,

doi: 10.1016/j.heliyon.2019.e02931.

R. F. Kokaly, et al., « USGS digital spectral library splib06a: U.S. Geological

Survey Data Series 231. », Data Series, 2007.

G. W. Felde et al., « Analysis of Hyperion data with the FLAASH atmospheric

correction algorithm », in IGARSS 2003. 2003 IEEE International Geoscience and

Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), juill. 2003,

p. 90‑92 vol.1. doi: 10.1109/IGARSS.2003.1293688.

S. L. Chattoraj, R. U. Sharma, C. Kumar, P. K. Champati ray, et V. Sengar,

« Identification and characterization of hydrothermally altered minerals using

surface and space-based reflectance spectroscopy, in parts of south-eastern

Rajasthan, India », SN Appl. Sci., vol. 2, no 4, p. 531, mars 2020, doi:

1007/s42452-020-2225-2.

R. Nisha, R. M. Venkata, et S. Tejpal, « Evaluation of atmospheric corrections on

hyperspectral data with special reference to mineral mapping », Geoscience

Frontiers, vol. 8, no 4, p. 797‑808, juill. 2017, doi: 10.1016/j.gsf.2016.06.004.

H. Li, J. Cui, X. Zhang, Y. Han, et L. Cao, « Dimensionality Reduction and

Classification of Hyperspectral Remote Sensing Image Feature Extraction »,

Remote Sensing, vol. 14, no 18, Art. no 18, janv. 2022, doi: 10.3390/rs14184579.

C. Rodarmel et J. Shan, « Principal Component Analysis for Hyperspectral Image

Classification », Surv Land inf Syst, vol. 62, janv. 2002.

F. A. Kruse et al., « The spectral image processing system (SIPS)—interactive

visualization and analysis of imaging spectrometer data », Remote Sensing of

Environment, vol. 44, no 2, p. 145‑163, mai 1993, doi: https://doi.org/10.1016/0034-

(93)90013-N.

S. Roland, « Athlete Identification and Personel Profile Creation based on

Movement Sensor Data », Master Thesis, Friedrich-Alexander-Universität,

Erlangen, Allemagne, 2023.

Y. Bengio, P. Lamblin, D. Popovici, et H. Larochelle, « Greedy Layer-Wise

Training of Deep Networks », in Advances in Neural Information Processing

Systems, MIT Press, 2006.

joseph, « Pytorch CNN Autoencoder for Image Compression - reason.town ». [En

ligne]. Disponible sur: https://reason.town/pytorch-cnn-autoencoder/

D. Bank, N. Koenigstein, et R. Giryes, « Autoencoders ». arXiv, 3 avril 2021. doi:

48550/arXiv.2003.05991.

A. Das, D. K. S. A. Viji, et L. Sebastian, « A Survey on Image and Video Super

Resolution with Deep Learning Models », International Journal of Engineering

Research & Technology, vol. 9, no 13, août 2021, doi:

17577/IJERTCONV9IS13007.

P. M. Atkinson et A. R. L. Tatnall, « Introduction Neural networks in remote

sensing », International Journal of Remote Sensing, vol. 18, p. 699‑709, mars 1997,

doi: 10.1080/014311697218700.

F. Pacifici, F. Del Frate, C. Solimini, et W. J. Emery, « Neural Networks for Land

Cover Applications », in Computational Intelligence for Remote Sensing, M. Graña

et R. J. Duro, Éd., in Studies in Computational Intelligence. , Berlin, Heidelberg:

Springer, 2008, p. 267‑293. doi: 10.1007/978-3-540-79353-3_11.

A. J. Alberg, J. W. Park, B. W. Hager, M. V. Brock, et M. Diener-West, « The Use

of “Overall Accuracy” to Evaluate the Validity of Screening or Diagnostic Tests »,

Journal of General Internal Medicine, vol. 19, no 5p1, p. 460‑465, 2004, doi:

1111/j.1525-1497.2004.30091.x.

J. C. Leszek, K. Ryszard, O. Arkadiusz, W. Konrad, M. B. Alfred, et P. Nicolai,

Computer Vision and Graphics, ICCVG 2018. in International Conference, ICCVG.

Warsaw, Poland: Springer International Publishing, 2018.

C. Zhang et al., « A hybrid MLP-CNN classifier for very fine resolution remotely

sensed image classification », ISPRS Journal of Photogrammetry and Remote

Sensing, vol. 140, p. 133‑144, juin 2018, doi: 10.1016/j.isprsjprs.2017.07.014.

C. Xing, L. Ma, et X. Yang, « Stacked Denoise Autoencoder Based Feature

Extraction and Classification for Hyperspectral Images », Journal of Sensors, vol.

, p. e3632943, nov. 2015, doi: 10.1155/2016/3632943.

Published

2025-10-18

How to Cite

(1)
Attallah, Y. DAE-MLP Based Feature Extraction for Hyperspectral Image Classification of Saint Clair River. ELCVIA 2025, 24, 28-48.

Downloads

Download data is not yet available.