Dr DAH-Unet: A modified UNet for Semantic Segmentation of MRI images for brain tumour detection
Abstract
Using sophisticated image processing techniques on brain MR images for medical image segmentation significantly improves the ability to detect tumors. It takes a lot of time and requires a doctor's training and experience to manually segment a brain tumor. To address this issue, we proposed a modification in Unet architecture called DAH-Unet that combines residual blocks, a rebuilt atrous spatial pyramid pooling (ASPP), and depth-wise convolutions. Also, a hybrid loss function which is explicitly aware of the boundaries is another thing we suggested. Experiments were conducted on two publicly available dataset and proved better in some metrics as compare to existing semantic segmentation models.
Keywords
Semantic segmentation, UNet architecture, DAH-Unet, Brain tumour Detection, high-grade gliomaReferences
Louizos, C., & Welling, M. (2016, June). Structured and efficient variational deep learning with matrix gaussian posteriors. In International Conference on Machine Learning (pp. 1708-1716). PMLR.
Menze, B. H., Van Leemput, K., Lashkari, D., Weber, M. A., Ayache, N., & Golland, P. (2010, September). A generative model for brain tumor segmentation in multi-modal images. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 151-159). Springer, Berlin, Heidelberg.
Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., ... & Eaton-Rosen, Z. (2018). Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629.
Wang, G., Zhang, S., Xie, H., Metaxas, D. N., & Gu, L. (2015). A homotopy-based sparse representation for fast and accurate shape prior modeling in liver surgical planning. Medical image analysis, 19(1), 176-186.
Grosgeorge, D., Petitjean, C., Dacher, J. N., & Ruan, S. (2013). Graph cut segmentation with a statistical shape model in cardiac MRI. Computer Vision and Image Understanding, 117(9), 1027-1035.
Karri, C., & Jena, U. (2016). Fast vector quantization using a Bat algorithm for image compression. Engineering Science and Technology, an International Journal, 19(2), 769-781.
Kotowski, K., Adamski, S., Malara, W., Machura, B., Zarudzki, L., & Nalepa, J. (2020, October). Segmenting Brain Tumors from MRI Using Cascaded 3D U-Nets. In International MICCAI Brainlesion Workshop (pp. 265-277). Springer, Cham.
Joseph, N., Murugan, D., & Thomas, B. J. (2020). Patient Specific Brain Tumor Segmentation using Context Sensitive Feature Extraction in MR Images. International Journal of Computing and Digital Systems, 9(6), 1091-1097.
Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., ... & Larochelle, H. (2017). Brain tumor segmentation with deep neural networks. Medical image analysis, 35, 18-31.
Karri, C., & Naidu, M. S. R. (2020, December). Deep Learning Algorithms for Secure Robot Face Recognition in Cloud Environments. In 2020 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom) (pp. 1021-1028). IEEE.
Geng, Y., Ren, Y., Hou, R., Han, S., Rubin, G. D., & Lo, J. Y. (2019, March). 2.5 D CNN model for detecting lung disease using weak supervision. In Medical Imaging 2019: Computer-Aided Diagnosis (Vol. 10950, p. 109503O). International Society for Optics and Photonics.
Roth, H. R., Lu, L., Seff, A., Cherry, K. M., Hoffman, J., Wang, S., ... & Summers, R. M. (2014, September). A new 2.5 D representation for lymph node detection using random sets of deep convolutional neural network observations. In International conference on medical image computing and computer-assisted intervention (pp. 520-527). Springer, Cham.
Karri, C., Cheikhrouhou, O., Harbaoui, A., Zaguia, A., & Hamam, H. (2021). Privacy Preserving Face Recognition in Cloud Robotics: A Comparative Study. Applied Sciences, 11(14), 6522.
Karri, C. (2021). Secure robot face recognition in cloud environments. Multimedia Tools and Applications, 80(12), 18611-18626.
Huang G., Liu Z., Van Der Maaten L., Weinberger K.Q. Densely connected convolutional networks; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; Honolulu, HI, USA. 21–26 July 2017; pp. 4700–4708.
Abbas Z., Tayara H., Chong K.T. SpineNet-6mA: A Novel Deep Learning Tool for Predicting DNA N6-Methyladenine Sites in Genomes. IEEE Access. 2020;8:201450–201457.
Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin PM, Larochelle HMed Image Anal. 2017 Jan; 35():18-31.
Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2014). Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv preprint arXiv:1412.7062.
Gashi, D., Pereira, M., & Vterkovska, V. (2017). Multi-scale context aggregation by dilated convolutions machine learning-project.
Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene parsing network. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2881-2890).
Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2017). Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4), 834-848.
Hu, Y., Chen, Z., & Lin, W. (2018, July). RGB-D semantic segmentation: a review. In 2018 IEEE International Conference on Multimedia & Expo Workshops (ICMEW) (pp. 1-6). IEEE.
Lateef, F., & Ruichek, Y. (2019). Survey on semantic segmentation using deep learning techniques. Neurocomputing, 338, 321-348.
Goceri, E., & Goceri, N. (2017). Deep learning in medical image analysis: recent advances and future trends.
Hesamian, M. H., Jia, W., He, X., & Kennedy, P. (2019). Deep learning techniques for medical image segmentation: achievements and challenges. Journal of digital imaging, 32(4), 582-596.
Karimi, D., Dou, H., Warfield, S. K., & Gholipour, A. (2020). Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis. Medical Image Analysis, 65, 101759.
Zhou, T., Ruan, S., & Canu, S. (2019). A review: Deep learning for medical image segmentation using multi-modality fusion. Array, 3, 100004.
Baheti, B., Innani, S., Gajre, S., & Talbar, S. (2020). Eff-unet: A novel architecture for semantic segmentation in unstructured environment. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (pp. 358-359).
Zhang, P., Zhong, Y., Deng, Y., Tang, X., & Li, X. (2019). A survey on deep learning of small sample in biomedical image analysis. arXiv preprint arXiv:1908.00473.
Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J. N., Wu, Z., & Ding, X. (2020). Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation. Medical Image Analysis, 63, 101693.
Liu, C., Chen, L. C., Schroff, F., Adam, H., Hua, W., Yuille, A. L., & Fei-Fei, L. (2019). Auto-deeplab: Hierarchical neural architecture search for semantic image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 82-92).
Chen, L., Wu, Y., DSouza, A. M., Abidin, A. Z., Wismüller, A., & Xu, C. (2018, March). MRI tumour segmentation with densely connected 3D CNN. In Medical Imaging 2018: Image Processing (Vol. 10574, p. 105741F). International Society for Optics and Photonics.
Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N., & Liang, J. (2018). Unet++: A nested u-net architecture for medical image segmentation. In Deep learning in medical image analysis and multimodal learning for clinical decision support (pp. 3-11). Springer, Cham.
Hu, P., Li, X., Tian, Y., Tang, T., Zhou, T., Bai, X., ... & Li, J. (2020). Automatic pancreas segmentation in CT images with distance-based saliency-aware DenseASPP network. IEEE journal of biomedical and health informatics, 25(5), 1601-1611.
Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2017). Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4), 834-848.
Huang, H., Lin, L., Tong, R., Hu, H., Zhang, Q., Iwamoto, Y., ... & Wu, J. (2020, May). Unet 3+: A full-scale connected unet for medical image segmentation. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1055-1059). IEEE.
Roth, H., Oda, M., Shimizu, N., Oda, H., Hayashi, Y., Kitasaka, T., ... & Mori, K. (2018, March). Towards dense volumetric pancreas segmentation in CT using 3D fully convolutional networks. In Medical Imaging 2018: Image Processing (Vol. 10574, pp. 59-64). SPIE.
Alhichri, H., Alswayed, A. S., Bazi, Y., Ammour, N., & Alajlan, N. A. (2021). Classification of remote sensing images using EfficientNet-B3 CNN model with attention. IEEE access, 9, 14078-14094.
Roth, H. R., Lu, L., Farag, A., Shin, H. C., Liu, J., Turkbey, E. B., & Summers, R. M. (2015, October). Deeporgan: Multi-level deep convolutional networks for automated pancreas segmentation. In International conference on medical image computing and computer-assisted intervention (pp. 556-564). Springer, Cham.
Cai, J., Lu, L., Xie, Y., Xing, F., & Yang, L. (2017, September). Pancreas segmentation in MRI using graph-based decision fusion on convolutional neural networks. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 674-682). Springer, Cham.
Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision (pp. 2980-2988).
Tian, J., Mithun, N. C., Seymour, Z., Chiu, H. P., & Kira, Z. (2020). Recall Loss for Imbalanced Image Classification and Semantic Segmentation.
Published
Downloads
Copyright (c) 2024 Mohankrishna Potnuru, B. Suribabu Naick
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.