State-of-the-art DNN techniques for lung cancer diagnosis using chest CT scans

A review

Authors

Abstract

This paper reviews state-of-the-art literature on the early diagnosis of lung cancer with deep neural network techniques and chest CT scans. First, a brief introduction to the significance of lung cancer and the need for this review is stated. The architectures of the deep neural networks, evaluation methods, and the comprehensive review of recent progress in lung cancer diagnosis based on deep neural network techniques are provided. Further, the comparative analysis of the literature is presented. A critical discussion on the existing datasets, various methodologies, and challenges in the diagnosis are presented. The performances of deep neural network-based techniques for segmentation, nodule detection, and nodule classification are also discussed. This review covers the malignancy classification along with the nodule detection tasks. Thus, this may provide necessary information to all the researchers to prepare a robust methodology for early detection of lung cancer and hence proper diagnosis.

Keywords

Convolution neural network, pulmonary nodule, nodule detection, nodule classification, 2D, 3D

References

[1] Cui, L., H. Li, W. Hui, S. Chen, L. Yang, Y. Kang, Q. Bo, J. Feng, "A deep learning-based framework for lung cancer survival analysis with biomarker interpretation", BMC bioinformatics 21(1), 1, 2020. https://doi.org/10.1186/s12859-020-3431-z https://doi.org/10.1186/s12859-020-3431-z

[2] "Lung Cancer", http://cancerindia.org.in/lung-cancer/, 2020 (Accessed: 2020-09- 10)

[3] Jitendra, A. http://www.univarta.com.html, (Accessed: 2020-09-10).

[4] Chen Y, Wang Y, Hu F, Wang D. "A lung dense deep convolution neural net- work for robust lung parenchyma segmentation", IEEE Access, 8:93527-47, 2020. https://doi.org/10.1109/access.2020.2993953 https://doi.org/10.1109/ACCESS.2020.2993953

[5] Khan, M.A., S. Rubab, A. Kashif, M.I. Sharif, N. Muhammad, J.H. Shah et al., "Lungs cancer classi- fication from ct images: An integrated design of contrast based classical features fusion and selection", Pattern Recognition Letters 129 (77), 2020. https://doi.org/10.1016/j.patrec.2019.11.014 https://doi.org/10.1016/j.patrec.2019.11.014

[6] Dey, S.. https://timesofindia.indiatimes.com/india/ Cancer-cases-in-India-likely-to-soar-25-by-2020-ICMR/articleshow/ 52334632.cms.

[7] Chen, S. and S. Wu, "Identifying lung cancer risk factors in the elderly using deep neural networks: Quantitative analysis of web-based survey data", Journal of Medical Internet Research 22(e17695), 2020. https://doi.org/10.2196/17695 https://doi.org/10.2196/17695

[8] Selvanambi, R., J. Natarajan, M. Karuppiah, S.H. Islam, M.M. Hassan and G. Fortino, "Lung cancer prediction using higher-order recurrent neural network based on glowworm swarm optimization", Neural Computing and Applications 32(4373), 2020. https://doi.org/10.1007/s00521-018-3824-3 https://doi.org/10.1007/s00521-018-3824-3

[9] Moitra, D. and R.K. Mandal, "Classification of non-small cell lung cancer using one- dimensional convolutional neural network", Expert Systems with Applications, 113564, 2020. https://doi.org/10.1016/j.eswa.2020.113564 https://doi.org/10.1016/j.eswa.2020.113564

[10] Lai, Y. H., W.-N. Chen, T.-C. Hsu, C. Lin, Y. Tsao and S. Wu, "Overall survival prediction of non-small cell lung cancer by integrating microarray and clinical data with deep learning", Scientific reports 10 (1), 2020. https://doi.org/10.1038/s41598-020-61588-wSakshiwala and M P Singh / Electronic Letters on Computer Vision and Image Analysis 24(2):1-27, 2025 21 https://doi.org/10.1038/s41598-020-61588-w

[11] Lee, B., S.H. Chun, J.H. Hong, I.S. Woo, S. Kim, J.W. Jeong et al., "DeepBts: prediction of recurrence- free survival of non-small cell lung cancer using a time-binned deep neural network", Scientific reports 10(1), 2020. https://doi.org/10.1038/s41598-020-58722-z https://doi.org/10.1038/s41598-020-58722-z

[12] Armato, S., A. Starkey, H. MacMahon, G. McLennan, D. Yankelevitz, M. McNitt-Gray et al., "Toward a definition of lung nodule: a visual nodule library resource", Radiology 233(708), 2004. https: //dctd.cancer.gov/programs/cip

[13] Sim, Y., M.J. Chung, E. Kotter, S. Yune, M. Kim, S. Do et al., "Deep convolutional neural network-based software improves radiologist detection of malignant lung nodules on chest radiographs", Radiology 294(199), 2020. https://doi.org/10.1148/radiol.2019182465 https://doi.org/10.1148/radiol.2019182465

[14] Shaffer, K., "Deep learning and lung cancer: Ai to extract information hidden in routine ct scans", 2020. https://doi.org/10.1148/radiol.2020201366 https://doi.org/10.1148/radiol.2020201366

[15] Bhandary, A., G.A. Prabhu, V. Rajinikanth, K.P. Thanaraj, S.C. Satapathy, D.E. Robbins et al., "Deep- learning framework to detect lung abnormality-a study with chest x-ray and lung ct scan images", Pattern Recognition Letters 129 (271), 2020. https://doi.org/10.1016/j.patrec.2019.11.013 https://doi.org/10.1016/j.patrec.2019.11.013

[16] Zhang, G., S. Jiang, Z. Yang, L. Gong, X. Ma, Z. Zhou et al., "Automatic nodule detection for lung cancer in ct images: A review", Computers in biology and medicine 103 (287), 2018. https://doi.org/10.1016/j.compbiomed.2018.10.033 https://doi.org/10.1016/j.compbiomed.2018.10.033

[17] Ather, S., T. Kadir and F. Gleeson, "Artificial intelligence and radiomics in pulmonary nod- ule management: current status and future applications", Clinical radiology 75 (13), 2020. https://doi.org/10.1016/j.crad.2019.04.017 https://doi.org/10.1016/j.crad.2019.04.017

[18] Cao, H., H. Liu, E. Song, G. Ma, R. Jin, X. Xu et al., "A two-stage convolutional neural net- works for lung nodule detection", IEEE Journal of Biomedical and Health Informatics P1, 2020. https://doi.org/10.1109/jbhi.2019.2963720 https://doi.org/10.1109/JBHI.2019.2963720

[19] Lessmann, N., B. van Ginneken, M. Zreik, P.A. de Jong, B.D. de Vos, M.A. Viergever et al., "Auto- matic calcium scoring in low-dose chest ct using deep neural networks with dilated convolutions", IEEE transactions on medical imaging 37(615), 2017. https://doi.org/10.1109/tmi.2017.2769839 https://doi.org/10.1109/TMI.2017.2769839

[20] Kim, B. C., Y.S. Sung and H.-I. Suk, "Deep feature learning for pulmonary nodule classification in a lung ct", in 2016 4th International Winter Conference on Brain-Computer Interface (BCI), pp. 1-3, IEEE, 2016. https://doi.org/10.1109/iww-bci.2016.7457462 https://doi.org/10.1109/IWW-BCI.2016.7457462

[21] Venugopal, V.K., K. Vaidhya, M. Murugavel, A. Chunduru, V. Mahajan, S. Vaidya et al., "Unboxing ai- radiological insights into a deep neural network for lung nodule characterization", Academic Radiology 27 (88), 2020. https://doi.org/10.1016/j.acra.2019.09.015 https://doi.org/10.1016/j.acra.2019.09.015

[22] Zhang, C., X. Sun, K. Dang, K. Li, X. Guo, J. Chang et al., "Toward an expert level of lung cancer detection and classification using a deep convolutional neural network", The Oncologist 24(1159), 2019. https://doi.org/10.1634/theoncologist.2018-0908 https://doi.org/10.1634/theoncologist.2018-0908

[23] Zhang J, Xia Y, Cui H, Zhang Y. "Pulmonary nodule detection in medical images: A survey", Biomedical Signal Processing and Control, 43:138-47, 2018. https://doi.org/10.1016/j.bspc.2018.01.011 https://doi.org/10.1016/j.bspc.2018.01.011

[24] Chaturvedi P, Jhamb A, Vanani M, Nemade V. "Prediction and classification of lung cancer us- ing machine learning techniques", In IOP Conference Series: Materials Science and Engineering, 1099(1),012059, 2021. https://doi.org/10.1088/1757-899x/1099/1/01205922 Sakshiwala and M P Singh / Electronic Letters on Computer Vision and Image Analysis 24(2):1-27, 2025 https://doi.org/10.1088/1757-899X/1099/1/012059

[25] Abdullah DM, Ahmed NS. "A review of most recent lung cancer detection techniques us- ing machine learning", International Journal of Science and Business, 5(3):159-73, 2021. https://ideas.repec.org/a/aif/journl/v5y2021i3p159-173.html

[26] Binczyk F, Prazuch W, Bozek P, Polanska J. "Radiomics and artificial intelligence in lung cancer screen- ing", Translational lung cancer research, 10(2):1186, 2021. https://doi.org/10.21037/tlcr-20-708 https://doi.org/10.21037/tlcr-20-708

[27] Monkam, P., S. Qi, H. Ma, W. Gao, Y. Yao and W. Qian, "Detection and classification of pul- monary nodules using convolutional neural networks: A survey", IEEE Access 7 (78075), 2019. https://doi.org/10.1109/access.2019.2920980 https://doi.org/10.1109/ACCESS.2019.2920980

[28] Sathyakumar K, Munoz M, Singh J, Hussain N, Babu BA. "Automated lung cancer detection using artificial intelligence (AI) deep convolutional neural networks: A narrative literature review", Cureus, 12(8), 2020. https://doi.org/10.7759/cureus.10017 https://doi.org/10.7759/cureus.10017

[29] Zhang, G., S. Jiang, Z. Yang, L. Gong, X. Ma, Z. Zhou et al., "Automatic nodule detection for lung cancer in ct images: A review", Computers in biology and medicine 103 (2018): 287-300. 12, 2018. https://doi.org/10.1016/j.compbiomed.2018.10.033 https://doi.org/10.1016/j.compbiomed.2018.10.033

[30] Ma, J., Y. Song, X. Tian, Y. Hua, R. Zhang and J. Wu, "Survey on deep learning for pulmonary medical imaging", Frontiers of Medicine 1, 2019. https://doi.org/10.1007/s11684-019-0726-4 https://doi.org/10.1007/s11684-019-0726-4

[31] Liu X, Li KW, Yang R, Geng LS. "Review of deep learning based automatic segmentation for lung cancer radiotherapy", Frontiers in Oncology, 11:2599, 2021. https://doi.org/10.3389/fonc.2021.717039 https://doi.org/10.3389/fonc.2021.717039

[32] Riquelme D, Akhloufi MA. "Deep learning for lung cancer nodules detection and classification in CT scans", AI 1(1):28-67, 2020. https://doi.org/10.3390/ai1010003 https://doi.org/10.3390/ai1010003

[33] Ahmed T, Parvin MS, Haque MR, Uddin MS. "Lung cancer detection using CT image based on 3D convolutional neural network", Journal of Computer and Communications 2020 Mar 5;8(03):35. https://doi.org/10.4236/jcc.2020.83004 https://doi.org/10.4236/jcc.2020.83004

[34] "Types of Lung Cancer", https://webmd.com/, 2020 (Accessed: 2020-09-10).

[35] Gerard, S.E., J. Herrmann, D.W. Kaczka, G. Musch, A. Fernandez-bustamante and J.M. Reinhardt, "Multi-resolution convolutional neural networks for fully automated segmentation of acutely injured lungs in multiple species", Medical Image Analysis 60(101592), 2020. https://doi.org/10.1016/j.media.2019.101592 https://doi.org/10.1016/j.media.2019.101592

[36] Nafti, N. and M. Othmani, "A novel approach of lung tumor detection using deep neural network", in 2019 International Conference on Internet of Things, Embedded Systems and Communications (IINTEC) pp. 198-202, IEEE, 2019. https://doi.org/10.1109/iintec48298.2019.9112100 https://doi.org/10.1109/IINTEC48298.2019.9112100

[37] Orobinskyi, P., D. Petrenko and V. Lyashenko, "Novel approach to computer-aided detection of lung nod- ules of difficult location with use of multifactorial models and deep neural networks", in 2019 IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM), pp. 1-5, IEEE, 2019. https://doi.org/10.1109/cadsm.2019.8779340 https://doi.org/10.1109/CADSM.2019.8779340

[38] Huang, X., J. Shan and V. Vaidya, "Lung nodule detection in ct using 3d convolutional neural networks", in 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 379-383, IEEE, 2017. https://doi.org/10.1109/isbi.2017.7950542 https://doi.org/10.1109/ISBI.2017.7950542

[39] Essaf, F., Y. Li, S. Sakho and P.K. Gadosey, "Improved convolutional neural network for lung cancer detection", in Proceedings of the 2020 International Conference on Computing, Networks and Internet of Things, pp. 48-54, 2020. https://doi.org/10.1145/3398329.3398337Sakshiwala and M P Singh / Electronic Letters on Computer Vision and Image Analysis 24(2):1-27, 2025 23 https://doi.org/10.1145/3398329.3398337

[40] Hussein, S., R. Gillies, K. Cao, Q. Song and U. Bagci, "Tumornet: Lung nodule charac- terization using multi-view convolutional neural network with gaussian process", in 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 1007-1010, IEEE, 2017. https://doi.org/10.1109/isbi.2017.7950686 https://doi.org/10.1109/ISBI.2017.7950686

[41] Bonavita, I., X. Rafael-Palou, M. Ceresa, G. Piella, V. Ribas and M.A.G. Ballester, "Integra- tion of convolutional neural networks for pulmonary nodule malignancy assessment in a lung can- cer classification pipeline", Computer Methods and Programs in Biomedicine 185(105172), 2020. https://doi.org/10.1016/j.cmpb.2019.105172 https://doi.org/10.1016/j.cmpb.2019.105172

[42] Wang, J., X. Chen, H. Lu, L. Zhang, J. Pan, Y. Bao et al., "Feature-shared adaptive-boost deep learning for invasiveness classification of pulmonary subsolid nodules in CT images", Medical Physics 47(1738), 2020. https://doi.org/10.1002/mp.14068 https://doi.org/10.1002/mp.14068

[43] Huang, X., W. Sun, T.-L.B. Tseng, C. Li and W. Qian, "Fast and fully-automated detection and segmenta- tion of pulmonary nodules in thoracic ct scans using deep convolutional neural networks", Computerized Medical Imaging and Graphics 74(25), 2019. https://doi.org/10.1016/j.compmedimag.2019.02.003 https://doi.org/10.1016/j.compmedimag.2019.02.003

[44] Omigbodun, A.O., F. Noo, M. McNitt-Gray, W. Hsu and S.S. Hsieh, "The effects of physics-based data augmentation on the generalizability of deep neural networks: Demonstration on nodule false-positive reduction", Medical Physics 46(4563), 2019. https://doi.org/10.1002/mp.13755 https://doi.org/10.1002/mp.13755

[45] Zhang, G., Z. Yang, L. Gong, S. Jiang and L. Wang, "Classification of benign and malignant lung nodules from ct images based on hybrid features", Physics in Medicine & Biology 64(125011), 2019. https://doi.org/10.1088/1361-6560/ab2544 https://doi.org/10.1088/1361-6560/ab2544

[46] Naqi, S.M., M. Sharif and A. Jaffar, "Lung nodule detection and classification based on geomet- ric fit in parametric form and deep learning", Neural Computing and Applications 32(4629), 2020. https://doi.org/10.1007/s00521-018-3773-x https://doi.org/10.1007/s00521-018-3773-x

[47] Kuang, Y., T. Lan, X. Peng, G.E. Selasi, Q. Liu and J. Zhang, "Unsupervised multi-discriminator gen- erative adversarial network for lung nodule malignancy classification", IEEE Access 8(77725), 2020. https://doi.org/10.1109/access.2020.2987961 https://doi.org/10.1109/ACCESS.2020.2987961

[48] Zhang, S., F. Han, Z. Liang, J. Tan, W. Cao, Y. Gao et al., "An investigation of cnn models for differenti- ating malignant from benign lesions using small pathologically proven datasets", Computerized Medical Imaging and Graphics 77, 2019. https://doi.org/10.1016/j.compmedimag.2019.101645 https://doi.org/10.1016/j.compmedimag.2019.101645

[49] Liu, L, Q. Dou, H. Chen, J. Qin and P.A. Heng, "Multi-task deep model with margin rank- ing loss for lung nodule analysis", IEEE Transactions on Medical Imaging 39 (718), 2020. https://doi.org/10.1109/tmi.2019.2934577 https://doi.org/10.1109/TMI.2019.2934577

[50] Choe, J., S.M. Lee, K.-H. Do, G. Lee, J.-G. Lee, S.M. Lee et al., "Deep learning-based image conversion of CT reconstruction kernels improves radiomics reproducibility for pulmonary nodules or masses", Radiology 292(365), 2019. https://doi.org/10.1148/radiol.2019181960 https://doi.org/10.1148/radiol.2019181960

[51] Souza, J.C., J.O.B. Diniz, J.L. Ferreira, G.L.F. da Silva, A.C. Silva and A.C. de Paiva, "An automatic method for lung segmentation and reconstruction in chest x-ray using deep neural networks", Computer methods and programs in biomedicine 177(285), 2019. https://doi.org/10.1016/j.cmpb.2019.06.005 https://doi.org/10.1016/j.cmpb.2019.06.005

[52] Kumar, D., A. Wong and D.A. Clausi, "Lung nodule classification using deep features in CT images", in 2015 12th Conference on Computer and Robot Vision, pp. 133-138, IEEE, 2015. https://doi.org/10.1109/crv.2015.2524 Sakshiwala and M P Singh / Electronic Letters on Computer Vision and Image Analysis 24(2):1-27, 2025 https://doi.org/10.1109/CRV.2015.25

[53] Shen, S., S.X. Han, D.R. Aberle, A.A. Bui and W. Hsu, "An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification", Expert systems with applica- tions 128 (84), 2019. https://doi.org/10.1016/j.eswa.2019.01.048 https://doi.org/10.1016/j.eswa.2019.01.048

[54] Suresh, S. and S. Mohan, "ROI-based feature learning for efficient true positive prediction using convolutional neural network for lung cancer diagnosis", Neural Computing and Applications, 2020. https://doi.org/10.1007/s00521-020-04787-w https://doi.org/10.1007/s00521-020-04787-w

[55] Liao, F., M. Liang, Z. Li, X. Hu and S. Song, "Evaluate the malignancy of pulmonary nodules using the 3-D deep leaky noisy-or network", IEEE Transactions on Neural Networks and Learning Systems 30 (3484), 2019. https://doi.org/10.1109/tnnls.2019.2892409 https://doi.org/10.1109/TNNLS.2019.2892409

[56] Jiang, H., H. Ma, W. Qian, M. Gao and Y. Li, "An automatic detection system of lung nodule based on multigroup patch-based deep learning network", IEEE Journal of Biomedical and Health Informatics 22 (1227), 2018. https://doi.org/10.1109/jbhi.2017.2725903 https://doi.org/10.1109/JBHI.2017.2725903

[57] Masood, A., P. Yang, B. Sheng, H. Li, P. Li, J. Qin et al., "Cloud-based automated clinical decision support system for detection and diagnosis of lung cancer in chest CT", IEEE Journal of Translational Engineering in Health and Medicine 8, 2020. https://doi.org/10.1109/jtehm.2019.2955458 https://doi.org/10.1109/JTEHM.2019.2955458

[58] Shakeel, P.M., M. Burhanuddin and M.I. Desa, "Automatic lung cancer detection from CT image using improved deep neural network and ensemble classifier", Neural Computing and Applications 1, 2020. https://doi.org/10.1007/s00521-020-04842-6 https://doi.org/10.1007/s00521-020-04842-6

[59] Yu, H., Z. Zhou and Q. Wang, "Deep learning assisted predict of lung cancer on computed tomography images using the adaptive hierarchical heuristic mathematical model", IEEE Access 8 (86400), 2020. https://doi.org/10.1109/access.2020.2992645 https://doi.org/10.1109/ACCESS.2020.2992645

[60] Hu, Q., L.F. Lu ́ıs, G.B. Holanda, S.S. Alves, F.H. Francisco, T. Han et al., "An effective approach for CT lung segmentation using mask region-based convolutional neural networks", Artificial Intelligence in Medicine 103, 2020. https://doi.org/10.1016/j.artmed.2020.101792 https://doi.org/10.1016/j.artmed.2020.101792

[61] Cao, H., H. Liu, E. Song, C.C. Hung, G. Ma, X. Xu et al., "Dual-branch residual network for lung nodule segmentation", Applied Soft Computing Journal 86, 2020. https://doi.org/10.1016/j.asoc.2019.105934 https://doi.org/10.1016/j.asoc.2019.105934

[62] Kasinathan, G., S. Jayakumar, A.H. Gandomi, M. Ramachandran, S.J. Fong and R. Patan, "Automated 3- d lung tumor detection and classification by an active contour model and cnn classifier", Expert Systems with Applications 134 (112), 2019. https://doi.org/10.1016/j.eswa.2019.05.041 https://doi.org/10.1016/j.eswa.2019.05.041

[63] Dai, Y., S. Yan, B. Zheng and C. Song, "Incorporating automatically learned pulmonary nodule attributes into a convolutional neural network to improve accuracy of benign-malignant nodule classification", Physics in Medicine and Biology 63, 2018. https://doi.org/10.1088/1361-6560/aaf09f https://doi.org/10.1088/1361-6560/aaf09f

[64] Xie, Y., J. Zhang and Y. Xia, "Semi-supervised adversarial model for benign-malignant lung nodule classification on chest CT", Medical Image Analysis 57 (237), 2019. https://doi.org/10.1016/j.media.2019.07.004 https://doi.org/10.1016/j.media.2019.07.004

[65] Gu, Y., X. Lu, L. Yang, B. Zhang, D. Yu, Y. Zhao et al., "Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs", Computers in biology and medicine 103 (220), 2018. https://doi.org/10.1016/j.compbiomed.2018.10.011 https://doi.org/10.1016/j.compbiomed.2018.10.011

[66] El-Regaily, S.A., M.A.M. Salem, M.H.A. Aziz and M.I. Roushdy, "Multi-view convolutional neural network for lung nodule false positive reduction", Expert systems with applications 113017, 2019. https://doi.org/10.1016/j.eswa.2019.113017Sakshiwala and M P Singh / Electronic Letters on Computer Vision and Image Analysis 24(2):1-27, 2025 25 https://doi.org/10.1016/j.eswa.2019.113017

[67] Xie, H., D. Yang, N. Sun, Z. Chen and Y. Zhang, "Automated pulmonary nodule detection in CT images using deep convolutional neural networks", Pattern Recognition 85 (109), 2019. https://doi.org/10.1016/j.patcog.2018.07.031 https://doi.org/10.1016/j.patcog.2018.07.031

[68] Li, G., W. Zhou, W. Chen, F. Sun, Y. Fu, F. Gong et al., "Study on the detection of pulmonary nodules in CT images based on deep learning", IEEE Access 8 (67300), 2020. https://doi.org/10.1109/access.2020.2984381 https://doi.org/10.1109/ACCESS.2020.2984381

[69] Zheng, S., J. Guo, X. Cui, R.N.J. Veldhuis, M. Oudkerk and P.M.A. van Ooijen, "Automatic pulmonary nodule detection in ct scans using convolutional neural networks based on maximum intensity projec- tion", IEEE Transactions on Medical Imaging 39 (797), 2020. https://doi.org/10.1109/tmi.2019.2935553 https://doi.org/10.1109/TMI.2019.2935553

[70] Ozdemir, O., R.L. Russell and A.A. Berlin, "A 3d probabilistic deep learning system for detection and diagnosis of lung cancer using low-dose CT scans", IEEE Transactions on Medical Imaging 39 (1419), 2020. https://doi.org/10.1109/tmi.2019.2947595 https://doi.org/10.1109/TMI.2019.2947595

[71] Huang, W., Y. Xue and Y. Wu, "A CAD system for pulmonary nodule prediction based on deep three- dimensional convolutional neural networks and ensemble learning", Plos one 14(e0219369), 2019. https://doi.org/10.1371/journal.pone.0219369 https://doi.org/10.1371/journal.pone.0219369

[72] Pezeshk, A., S. Hamidian, N. Petrick and B. Sahiner, "3-d convolutional neural networks for auto- matic detection of pulmonary nodules in chest CT", IEEE Journal of Biomedical and Health Informatics 23(2080), 2019. https://doi.org/10.1109/jbhi.2018.2879449 https://doi.org/10.1109/JBHI.2018.2879449

[73] Silva, G.L. da, O.P. da Silva Neto, A.C. Silva, A.C. de Paiva and M. Gattass, "Lung nodules diagnosis based on evolutionary convolutional neural network", Multimedia Tools and Applications 76 (19039), 2017. https://doi.org/10.1007/s11042-017-4480-9 https://doi.org/10.1007/s11042-017-4480-9

[74] Silva, G.L.F. da, T.L.A. Valente, A.C. Silva, A.C. de Paiva and M. Gattass, "Convolutional neural network-based pso for lung nodule false positive reduction on CT images", Computer Methods and Programs in Biomedicine 162 (109), 2018. https://doi.org/10.1016/j.cmpb.2018.05.006 https://doi.org/10.1016/j.cmpb.2018.05.006

[75] Srivastava, V. and R.K. Purwar, "Classification of CT scan images of lungs using deep convolu- tional neural network with external shape-based features", Journal of digital imaging 33 (252), 2020. https://doi.org/10.1007/s10278-019-00245-9 https://doi.org/10.1007/s10278-019-00245-9

[76] Zhang, B., S. Qi, P. Monkam, C. Li, F. Yang, Y.-D. Yao et al., "Ensemble learners of multiple deep cnns for pulmonary nodules classification using ct images", IEEE Access 7(110358), 2019. https://doi.org/10.1109/access.2019.2933670 https://doi.org/10.1109/ACCESS.2019.2933670

[77] Lakshmanaprabu, S., S.N. Mohanty, K. Shankar, N. Arunkumar and G. Ramirez, "Optimal deep learning model for classification of lung cancer on CT images", Future Generation Computer Systems 92(374), 2019. https://doi.org/10.1016/j.future.2018.10.009 https://doi.org/10.1016/j.future.2018.10.009

[78] Xie, Y., Y. Xia, J. Zhang, Y. Song, D. Feng, M. Fulham et al., "Knowledge-based collaborative deep learning for benign-malignant lung nodule classification on chest CT", IEEE transactions on medical imaging 38(991), 2018. https://doi.org/10.1109/tmi.2018.2876510 https://doi.org/10.1109/TMI.2018.2876510

[79] Xie, Y., J. Zhang, Y. Xia, M. Fulham and Y. Zhang, "Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT", Information Fusion 42(102), 2018. https://doi.org/10.1016/j.inffus.2017.10.005 https://doi.org/10.1016/j.inffus.2017.10.005

[80] Zhao, X., L. Liu, S. Qi, Y. Teng, J. Li and W. Qian, "Agile convolutional neural network for pulmonary nodule classification using ct images", International journal of computer assisted radiology and surgery 13(585), 2018. https://doi.org/10.1007/s11548-017-1696-026 Sakshiwala and M P Singh / Electronic Letters on Computer Vision and Image Analysis 24(2):1-27, 2025 https://doi.org/10.1007/s11548-017-1696-0

[81] Nishio, M., O. Sugiyama, M. Yakami, S. Ueno, T. Kubo, T. Kuroda et al., "Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning", PloS one 13 (e0200721), 2018. https://doi.org/10.1371/journal.pone.0200721 https://doi.org/10.1371/journal.pone.0200721

[82] Mukherjee, P., M. Zhou, E. Lee, A. Schicht, Y. Balagurunathan, S. Napel et al., "A shallow convolutional neural network predicts prognosis of lung cancer patients in multi-institutional computed tomography image datasets", Nature Machine Intelligence 2 (274), 2020. https://doi.org/10.1038/s42256-020-0173-6 https://doi.org/10.1038/s42256-020-0173-6

[83] Ren, Y., M.-Y. Tsai, L. Chen, J. Wang, S. Li, Y. Liu et al., "A manifold learning regularization approach to enhance 3d ct image-based lung nodule classification", International Journal of Computer Assisted Radiology and Surgery 15(287), 2020. https://doi.org/10.1007/s11548-019-02097-8 https://doi.org/10.1007/s11548-019-02097-8

[84] Zhao, J., C. Zhang, D. Li and J. Niu, "Combining multi-scale feature fusion with multi-attribute grading, a cnn model for benign and malignant classification of pulmonary nodules", Journal of Digital Imaging 2020. https://doi.org/10.1007/s10278-020-00333-1 https://doi.org/10.1007/s10278-020-00333-1

[85] Lei, Y., Y. Tian, H. Shan, J. Zhang, G. Wang and M.K. Kalra, "Shape and margin-aware lung nodule classification in low-dose CT images via soft activation mapping", Medical Image Analysis 60, 2020. https://doi.org/10.1016/j.media.2019.101628 https://doi.org/10.1016/j.media.2019.101628

[86] Li, X., B. Hu, H. Li and B. You, "Application of artificial intelligence in the diagnosis of multiple primary lung cancer", Thoracic Cancer 10 (2168), 2019. https://doi.org/10.1111/1759-7714.13185 https://doi.org/10.1111/1759-7714.13185

[87] Jiang, H., F. Gao, X. Xu, F. Huang and S. Zhu, "Attentive and ensemble 3d dual path networks for pul- monary nodules classification", Neurocomputing 2019. https://doi.org/10.1016/j.neucom.2019.03.103 https://doi.org/10.1016/j.neucom.2019.03.103

[88] Hussein, S., P. Kandel, C.W. Bolan, M.B. Wallace and U. Bagci, "Lung and pancreatic tumor char- acterization in the deep learning era: novel supervised and unsupervised learning approaches", IEEE transactions on medical imaging 38,1777, 2019. https://doi.org/10.1109/tmi.2019.2894349 https://doi.org/10.1109/TMI.2019.2894349

[89] Causey, J.L., J. Zhang, S. Ma, B. Jiang, J.A. Qualls, D.G. Politte et al., "Highly accurate model for prediction of lung nodule malignancy with ct scans", Scientific reports 8(1), 2018. https://doi.org/10.1038/s41598-018-27569-w https://doi.org/10.1038/s41598-018-27569-w

[90] Han Y, Ma Y, Wu Z, Zhang F, Zheng D, Liu X, Tao L, Liang Z, Yang Z, Li X, Huang J. "Histologic subtype classification of non-small cell lung cancer using PET/CT images", European journal of nuclear medicine and molecular imaging 48(2):350-60, 2021. https://doi.org/10.1007/s00259-020-04771-5 https://doi.org/10.1007/s00259-020-04771-5

[91] Liu H, Jiao Z, Han W, Jing B. "Identifying the histologic subtypes of non-small cell lung can- cer with computed tomography imaging: A comparative study of capsule net, convolutional neu- ral network, and radiomics", Quantitative Imaging in Medicine and Surgery ;11(6):2756, 2021. https://doi.org/10.21037/qims-20-734 https://doi.org/10.21037/qims-20-734

[92] Wang X, Zhang L, Yang X, Tang L, Zhao J, Chen G, Li X, Yan S, Li S, Yang Y, Kang Y. "Deep learning combined with radiomics may optimize the prediction in differentiating high-grade lung adenocarcino- mas in ground glass opacity lesions on CT scans", European journal of radiology, 129:109150, 2020. https://doi.org/10.1016/j.ejrad.2020.109150 https://doi.org/10.1016/j.ejrad.2020.109150

[93] Moitra D, Mandal RK. "Prediction of non-small cell lung cancer histology by a deep ensemble of con- volutional and bidirectional recurrent neural network", Journal of Digital Imaging 2020 Aug;33(4):895- 902. https://doi.org/10.1007/s10278-020-00337-xSakshiwala and M P Singh / Electronic Letters on Computer Vision and Image Analysis 24(2):1-27, 2025 27 https://doi.org/10.1007/s10278-020-00337-x

[94] Chae, K.J., G.Y. Jin, S.B. Ko, Y. Wang, H. Zhang, E.J. Choi et al., "Deep learning for the classification of small (2 cm) pulmonary nodules on ct imaging: A preliminary study", Academic Radiology 27, 2020. https://doi.org/10.1016/j.acra.2019.05.018 https://doi.org/10.1016/j.acra.2019.05.018

[95] Hosny, A., C. Parmar, T.P. Coroller, P. Grossmann, R. Zeleznik, A. Kumar et al., "Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study", PLoS medicine 15, 2018 e1002711. https://doi.org/10.1371/journal.pmed.1002711 https://doi.org/10.1371/journal.pmed.1002711

[96] Li, D., B.M. Vilmun, J.F. Carlsen, E. Albrecht-Beste, C.A. Lauridsen, M.B. Nielsen et al., "The perfor- mance of deep learning algorithms on automatic pulmonary nodule detection and classification tested on different datasets that are not derived from lidc-idri: A systematic review", Diagnostics 12, 2019. https://doi.org/10.3390/diagnostics9040207 https://doi.org/10.3390/diagnostics9040207

Published

2025-10-18

How to Cite

(1)
Sakshiwala; Singh, M. P. State-of-the-Art DNN Techniques for Lung Cancer Diagnosis Using Chest CT Scans: A Review. ELCVIA 2025, 24, 1-27.

Downloads

Download data is not yet available.