A Deep Learning-based Lung Cancer Classification of CT Images using Augmented Convolutional Neural Networks
Abstract
Lung cancer is worldwide the second death cancer, both in prevalence and lethality, both for women and men. The applicability of machine learning and pattern classification in lung cancer detection and classification is proposed. Pattern classification algorithms can classify the input data into different classes underlying the characteristic features in the input. Early identification of lung cancer using pattern recognition can save lives by analyzing the significant number of Computed Tomography images. Convolutional Neural Networks recently achieved remarkable results in various applications including Lung cancer detection in Deep Learning. The deployment of augmentation to improve the accuracy of a Convolutional Neural Network has been proposed. Data augmentation is utilized to find suitable training samples from existing training sets by employing various transformations such as scaling, rotation, and contrast modification. The LIDC-IDRI database is utilized to assess the networks. The proposed work showed an overall accuracy of 95%. Precision, recall, and F1 score for benign test data are 0.93, 0.96, and 0.95, respectively, and 0.96, 0.93, and 0.95 for malignant test data. The proposed system has impressive results when compared to other state-of-the-art approaches.
Keywords
Lung Cancer Detection, Deep Learning, Convolutional Neural Networks, Computed Tomography, Data AugmentationReferences
R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal, “Cancer Statistics, 2021,” CA. Cancer J. Clin., vol. 71, no. 1, pp. 7–33, 2021, doi: 10.3322/caac.21654.
W. D. Travis et al., “International Association for the Study of Lung Cancer/ American Thoracic Society/European Respiratory Society: International multidisciplinary classification of lung adenocarcinoma - An executive summary,” Proc. Am. Thorac. Soc., vol. 8, no. 5, pp. 381–385, 2011, doi: 10.1513/pats.201107-042ST.
D. E. Midthun, “Early detection of lung cancer,” F1000Research, vol. 5, pp. 3–12, 2016, doi: 10.12688/f1000research.7313.1.
L. Fass, “Imaging and cancer: A review,” Mol. Oncol., vol. 2, no. 2, pp. 115–152, 2008, doi: 10.1016/j.molonc.2008.04.001.
K. Doi, “Computer-aided diagnosis in medical imaging: Historical review, current status and future potential,” Comput. Med. Imaging Graph., vol. 31, no. 4–5, pp. 198–211, 2007, doi: 10.1016/j.compmedimag.2007.02.002.
A. El-Baz et al., “Computer-aided diagnosis systems for lung cancer: Challenges and methodologies,” Int. J. Biomed. Imaging, vol. 2013, 2013, doi: 10.1155/2013/942353.
R. Afroze, M. Atikur, and M. Karam, “Detection of Lung Nodules using Image Processing Techniques,” Int. J. Comput. Appl., vol. 177, no. 19, pp. 31–37, 2019, doi: 10.5120/ijca2019919638.
F. Han et al., “Texture Feature Analysis for Computer-Aided Diagnosis on Pulmonary Nodules,” J. Digit. Imaging, vol. 28, no. 1, pp. 99–115, 2015, doi: 10.1007/s10278-014-9718-8.
W. J. Choi and T. S. Choi, “Automated pulmonary nodule detection based on three-dimensional shape-based feature descriptor,” Comput. Methods Programs Biomed., vol. 113, no. 1, pp. 37–54, 2014, doi: 10.1016/j.cmpb.2013.08.015.
A. Tartar, N. Kilic, and A. Akan, “Classification of pulmonary nodules by using hybrid features,” Comput. Math. Methods Med., vol. 2013, 2013, doi: 10.1155/2013/148363.
S. R. A. Ahmed, I. Al-Barazanchi, A. Mhana, and H. R. Abdulshaheed, “Lung cancer classification using data mining and supervised learning algorithms on multi-dimensional data set,” Period. Eng. Nat. Sci., vol. 7, no. 2, pp. 438–447, 2019, doi: 10.21533/pen.v7i2.483.
S. H. Hawkins et al., “Predicting outcomes of nonsmall cell lung cancer using CT image features,” IEEE Access, vol. 2, no. March 2015, pp. 1418–1426, 2014, doi: 10.1109/ACCESS.2014.2373335.
N. Camarlinghi et al., “Combination of computer-aided detection algorithms for automatic lung nodule identification,” Int. J. Comput. Assist. Radiol. Surg., vol. 7, no. 3, pp. 455–464, 2012, doi: 10.1007/s11548-011-0637-6.
E. E. Nithila and S. S. Kumar, “Automatic detection of solitary pulmonary nodules using swarm intelligence optimized neural networks on CT images,” Eng. Sci. Technol. an Int. J., vol. 20, no. 3, pp. 1192–1202, 2017, doi: 10.1016/j.jestch.2016.12.006.
E. E. Nithila and S. S. Kumar, “Segmentation of lung nodule in CT data using active contour model and Fuzzy C-mean clustering,” Alexandria Eng. J., vol. 55, no. 3, pp. 2583–2588, 2016, doi: 10.1016/j.aej.2016.06.002.
E. E. Nithila and S. S. Kumar, “Segmentation of lung from CT using various active contour models,” Biomed. Signal Process. Control, vol. 47, pp. 57–62, 2019, doi: 10.1016/j.bspc.2018.08.008.
S. Kamal, S. K. Mohammed, P. R. S. Pillai, and M. H. Supriya, “Deep learning architectures for underwater target recognition,” in International Symposium on Ocean Electronics, SYMPOL, 2013, pp. 48–54, doi: 10.1109/sympol.2013.6701911.
Q. Z. Song, L. Zhao, X. K. Luo, and X. C. Dou, “Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images,” J. Healthc. Eng., vol. 2017, 2017, doi: 10.1155/2017/8314740.
G. E. Krizhevsky, A.; Sutskever, I.; Hinton, “ImageNet Classification with Deep Convolutional Neural Networks.,” Adv. Neural Inf. Process. Syst. 25 (NIPS 2012),Lake Tahoe, NV, USA, pp. 3–6, 2012, doi: 10.1201/9781420010749.
M. Toğaçar, B. Ergen, and Z. Cömert, “Detection of lung cancer on chest CT images using minimum redundancy maximum relevance feature selection method with convolutional neural networks,” Biocybern. Biomed. Eng., vol. 40, no. 1, pp. 23–39, 2020, doi: 10.1016/j.bbe.2019.11.004.
C. Szegedy et al., “Going deeper with convolutions,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 07-12-June, pp. 1–9, 2015, doi: 10.1109/CVPR.2015.7298594.
K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9908 LNCS, pp. 630–645, 2016, doi: 10.1007/978-3-319-46493-0_38.
G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 2261–2269, 2017, doi: 10.1109/CVPR.2017.243.
S. Bhatia, Y. Sinha, and L. Goel, “Lung cancer detection: A deep learning approach,” Adv. Intell. Syst. Comput., vol. 817, pp. 699–705, 2019, doi: 10.1007/978-981-13-1595-4_55.
M. Kriegsmann et al., “Deep learning for the classification of small-cell and non-small-cell lung cancer,” Cancers (Basel)., vol. 12, no. 6, pp. 1–15, 2020, doi: 10.3390/cancers12061604.
Q. Dou, H. Chen, L. Yu, J. Qin, and P. A. Heng, “Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection,” IEEE Trans. Biomed. Eng., vol. 64, no. 7, pp. 1558–1567, 2017, doi: 10.1109/TBME.2016.2613502.
N. Coudray et al., “Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning,” Nat. Med., vol. 24, no. 10, pp. 1559–1567, 2018, doi: 10.1038/s41591-018-0177-5.
W. J. Sori, J. Feng, A. W. Godana, S. Liu, and D. J. Gelmecha, “DFD-Net: lung cancer detection from denoised CT scan image using deep learning,” Front. Comput. Sci., vol. 15, no. 2, 2021, doi: 10.1007/s11704-020-9050-z.
P. M. Shakeel, M. A. Burhanuddin, and M. I. Desa, “Lung cancer detection from CT image using improved profuse clustering and deep learning instantaneously trained neural networks,” Meas. J. Int. Meas. Confed., vol. 145, pp. 702–712, 2019, doi: 10.1016/j.measurement.2019.05.027.
E. S. Neal Joshua, D. Bhattacharyya, M. Chakkravarthy, and Y. C. Byun, “3D CNN with Visual Insights for Early Detection of Lung Cancer Using Gradient-Weighted Class Activation,” J. Healthc. Eng., vol. 2021, 2021, doi: 10.1155/2021/6695518.
M. A. Heuvelmans et al., “Lung cancer prediction by Deep Learning to identify benign lung nodules,” Lung Cancer, vol. 154, no. January, pp. 1–4, 2021, doi: 10.1016/j.lungcan.2021.01.027.
M. Masud, N. Sikder, A. Al Nahid, A. K. Bairagi, and M. A. Alzain, “A machine learning approach to diagnosing lung and colon cancer using a deep learning‐based classification framework,” Sensors (Switzerland), vol. 21, no. 3, pp. 1–21, 2021, doi: 10.3390/s21030748.
T. L. Chaunzwa et al., “Deep learning classification of lung cancer histology using CT images,” Sci. Rep., vol. 11, no. 1, pp. 1–12, 2021, doi: 10.1038/s41598-021-84630-x.
O. Ozdemir, R. L. Russell, and A. A. Berlin, “A 3D Probabilistic Deep Learning System for Detection and Diagnosis of Lung Cancer Using Low-Dose CT Scans,” IEEE Trans. Med. Imaging, vol. 39, no. 5, pp. 1419–1429, 2020, doi: 10.1109/TMI.2019.2947595.
S. G. Armato et al., “The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans,” Med. Phys., vol. 38, no. 2, pp. 915–931, 2011, doi: 10.1118/1.3528204.
S. Khan, H. Rahmani, S. A. A. Shah, and M. Bennamoun, “A Guide to Convolutional Neural Networks for Computer Vision,” Synth. Lect. Comput. Vis., vol. 8, no. 1, pp. 1–207, 2018, doi: 10.2200/s00822ed1v01y201712cov015.
W. Alakwaa, M. Nassef, and A. Badr, “Lung cancer detection and classification with 3D convolutional neural network (3D-CNN),” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 8, pp. 409–417, 2017, doi: 10.14569/ijacsa.2017.080853.
A. Chon, “Deep Convolutional Neural Networks for Lung Cancer Detection,” no. November, pp. 1–9, 2009.
A. Patil and M. Rane, “Convolutional Neural Networks: An Overview and Its Applications in Pattern Recognition,” Smart Innov. Syst. Technol., vol. 195, pp. 21–30, 2021, doi: 10.1007/978-981-15-7078-0_3.
X. Kang, B. Song, and F. Sun, “A deep similarity metric method based on incomplete data for traffic anomaly detection in IoT,” Appl. Sci., vol. 9, no. 1, 2019, doi: 10.3390/app9010135.
A. Baratloo, M. Hosseini, A. Negida, and G. El Ashal, “Part 1: Simple Definition and Calculation of Accuracy, Sensitivity and Specificity.,” Emerg. (Tehran, Iran), vol. 3, no. 2, pp. 48–9, 2015, doi: 10.22037/emergency.v3i2.8154.
W. Zhu, N. Zeng, and N. Wang, “Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS® implementations.,” Northeast SAS Users Gr. 2010 Heal. Care Life Sci., pp. 1–9, 2010.
S. R. Jena and S. T. George, “Morphological feature extraction and KNG-CNN classification of CT images for early lung cancer detection,” Int. J. Imaging Syst. Technol., vol. 30, no. 4, pp. 1324–1336, 2020, doi: 10.1002/ima.22445.
Published
Downloads
Copyright (c) 2022 BUSHARA AR
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.