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Abstract

Video segmentation is the first task in almostvédleo analysis applications. It consists in idemti§ the
boundaries of the meaningful video units (shotsith@dt a doubt, cuts are the most common amongugtazh
effects that characterize the shot boundarieshilwgaper we propose an algorithm for cut deteatigploiting
an innovative, robust frame difference measure. ifeasure is based on a combination of differenialis
features. To improve the precision of the cut désacalgorithm, a temporal pattern analysis modeld a
flashes removal are also proposed. Experimentallteeto prove the effectiveness of the proposedsomea
coupled with the temporal pattern analysis modelvery heterogeneous and complex sets of videos are
critically reported.

Key Words:Video Segmentation, Cut Detection, Visual Featbrgraction, Frame Difference Measure,
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1 Introduction

The increase in computing power and electronicagi®rcapacity has greatly expanded the potential of
video libraries. As the size of video collectionseunts to thousands of hours, there is a growingatehfior
automatic video analysis tools to help manage aweéss video contents effectively and efficientlydao
segmentation is one of such tools and is an es$éask of almost all video-contents analysis ajgpions,
as well as video browsing and retrieval. It invavdetecting temporal boundaries, and identifying
meaningful segments of video (shots) [1][2]. Thded boundaries are identified by production effecish
as cuts, fades, dissolves, and wipes. Any erragodoced by the video segmentation phase will make
subsequent tasks more difficult or even impossilbi¢his paper, we focus our attention on the deipof
cuts that, with fades and dissolves, are the masinwon editing effects [3]. A cut is defined as &muat
change in the visual flow that separates two fragtpiences. Since cuts are visual discontinuitigsifively
they can be detected by computing frame differebetseen consecutive frames and then searchintdor
highest differences in the computed values.

Following the taxonomy in [4], we can broadly cifsshe cut detection algorithms into several
categories based on the underlying strategy addptextract information from the frames. The sinsple
algorithms directly use the information of the pixalues. These are the pixel-based algorithmscaredof
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the first cut detection methods is described in (&G]ts are detected by simple pixel difference ic®tThe
authors evaluate different metrics computed on gragl images and color images. Cuts are identifi¢ie
difference value is above a threshold. In [6] @xef two successive frames are compared using &8wo
formulation. Each pair of pixels is compared andhié difference is above a threshold, the corrediogn
Boolean value is set to one. If the overall amafrdifferent pixels is above a given threshold tlaecut is
determined. The most relevant drawback of a pixelell approach is that it is sensitive to smallai@ms in

the pixel values and thus the frame differenceseiy noisy and, as in the case of low quality valeo
difference thresholds cannot be reliably set. Toitlthis problem, a more compact representatiothef
frame content must be used. One way is to compbistagram on the whole frame to capture some image
characteristic. Gargi et al. [7] analyzed the peniances of eight different color spaces coupledh iour
histogram-based frame difference measures. Therdif€e measures investigated are: bin to bin diffas,

chi square test histogram, histogram intersectioth @olor average. Global and local thresholds &se a
investigated. A similar analysis, made on intenkistograms and statistical tests, can be foun@]imnd

[9]. In Hanjalic et al. [10] histograms computed the YUV color space are used to compute the frame
differences. Cuts are detected by analyzing thfergices within a sliding window using a Gaussiareh

If a difference exceeds a locally computed thrasdhioén a cut is identified. Similar approaches also be
found in [11], and [12]. The majority of the histagn-based algorithms exploit only the color infotima of

the images thus the problem is to find a suitablercspace in which compute the color histogrameseh
algorithms perform well if the cuts separate twatshwith very different color content. Moreovergth
histograms are also computed on the whole frametlaungl spatial arrangement of the colors. The block-
based algorithms try to overcome this problem batiafly subdividing the frame into regions and the
comparison between two frames is performed on melgy region basis. Lee and Ip [13] developed a
block-based algorithm using a selective HSV histagcomparison. For each block, pixels are classHie
gray pixels or color pixels depending on the HSVhponents. Two histograms are computed for the two
classes, and a difference measure that combingéwohieistograms is used to detect the cuts. In f&édional
color histograms are used: eight element histogramsalculated for the Y,gGand G color components
over nine image’s sub-blocks. The distance betweenframes (not necessarily contiguous) is the aredi
of the Ly distances computed on the nine sub-blocks. A ¢libivashold is used to identify possible cuts. A
cut is definitely detected if the computed distaiscgreater than the 16 distances before and tlutsifnces
after.

The previous algorithms mostly use very basic aggnes based on color information. As described in
[4], within the feature-based algorithms, we camdfiall those algorithms that extract more sophastic
pictorial features than, for example, color histogs. In [15] an entropy-based approach is descriDee
cross-entropy measure computed on the intensitydrams is used as frame difference measure. The
difference is then compared with a fixed threshdldsimilar approach is used in [16] where the mutua
information between two successive frames is catedlon each of the RGB components. A small value i
the mutual information identifies a possible cuih &daptive threshold, computed within a temporaldeiv,
is used to select the cuts. A more recent appr¢Beh) proposed by the same authors, is based on the
information theory principles. The mutual infornmatibetween two consecutive frames is computed en th
grey levels values of the frames and is used adetector index. The measure is sensible to fadeshras
another index, the Joint Entropy is used to distisiy between the two. Li and Wei [18] based their ¢
detection algorithm on the computation of jointlpability images between frames. These images doofsis
the frequencies of the co-occurrences of intengityes. A frame difference measure is defined enjant
probability images considering only values near di@gonal of each image. In [19] the Haar wavelet
transform is used to compute a wavelet signatuna feach frame. The signature is constructed comsgle
the most significant wavelet coefficients. A scasecomputed from the signatures by weighting the
differences between the coefficients. A cut is clei@ if the score exceeds a global threshold. itEat al.
[20] edges extracted from the frame are used toacherize the frame contents. Edges are extracted f
two successive frames, and the entering edgesi§thtae edges that appear in the second framegatidg
edges (the edges that disappear from the firstdyare used to compute the edge change ratio. Aipab
change is determined when a peak in the sequenite gétios is identified. In [21] the tracking fefature
points (e.g. corner points) using Kalman filteraigged. The rate of feature points that are logtitated is
used as a criterion for shot boundary detectiorccBmone et al. [22] presented an approach abiietect
cuts in the compressed domain. Different featureseatracted such as the normalized bit-rate diffee,
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the number of intra-coded macro-blocks, and thebmarmof motion vectors referring a specified frafike
algorithm uses different thresholds and analyzeR §nd B frames in cascade: if analyzing the featur
extracted from | frames a cut is suspected, thieifes extracted from the P frames are taken intowat for
further analysis. If a clear cut cannot be ideedifithe features extracted from the B frames avallyi
analyzed. In Han et al. [23] probability distrilarti functions are estimated for each transition .type
decide if a shot boundary is present or not, a Bayeformulation is defined based on both the prdita
density functions and the pattern of the trans#tioRecently, Fu and Zeng [24] propose a video shot
boundary detection algorithm based on the compmutati local color features around interest poiiitse
frames are processed in order to identify pointsigfrest using the Harris corner detection, arah t color
histogram is computed on the regions around eastt pbinterest. In this way, only significant ageare
considered in the computation of the visual featiwes making it more robust. Another recent apgroac
[25], determine the cut s by using a Gabor filtgrapproach. Each frame is filtered by six Gabaerfd that
differ for orientation. The feature vector is themmposed by six filtered frames. Cuts are deterchimg
analyzing the sum of absolute differences betwagnfeature vectors of consecutive frames. In [26}s
and dissolves detection is carried out using a @ippector machine classifier trained both to lecshot
boundaries and characterize transition types. &hrife vector is composed of sequences of RGBgnéto
dissimilarities computed between frames at diffetistancesOther shot boundary detection algorithms can
also be found in the surveys [4], [17], [27], [28]d in the TRECVid shot boundary detection rep@%$.

From this analysis emerges that the definition oblaust frame difference measure is the most drucia
issue. Most of the methods employ only one viseatudre (usually histogram-based) to describe theavi
content of the frames and require the measure tasedmpute the visual discontinuities to be rekabahd
robust to cope with the variability that can berfdun a video sequence. However, single featurasata
capture enough information to model different di¢as. For example, only the color histogram isdjsa
highly dynamic sequence (e.g. one containing fasting or panning effects) with frames of the samieic
contents would result in a series of similar fradikerence values and the motion effects would d. |
Similarly, frames with the same color contents different from the point of view of other visuatrébutes,
are considered similar. We argue that a more ratutsiietection approach can be obtained if we egeral
visual descriptors and, consequently, a compositad difference measure.

In this paper we propose an algorithm for cut daacexploiting an innovative and robust frame
difference measure. The measure is based on a watidni of different visual features. Our cut detatt
approach is compared against several algorithmthénstate of the art representative of different cu
detection strategies. The algorithms are tested cather heterogeneous set of videos. First we shibw
that the new measure, based on a combination fefelift visual features, exhibits better performanghile
obtaining higher precision detection compared tes# other methods present in the literature exsing a
very simple approach based on a single decisiashiold. Next we present a new cut detection algorit
based on this measure. Two common video conteatsgtieatly reduce the cut detection precision laee t
presence of high dynamic scenes and of cameraeBadboth these contents may generate high frame
difference values than can mislead the detectigariéhm to identify cuts where there are none. rideo to
improve the precision of our cut detection algarmihwve have equipped it with a novel temporal patter
analysis algorithm which incorporates a flashesaet. The algorithm has been tested on two very
heterogeneous and complex video sets.

2 TheCut Detection Algorithm

The frame difference measure that we proposedh®rctt detection employs a composition of three
simple visual features: a color histogram, an edigection histogram and wavelet statistics. Thesgures
have been chosen among the others used in thentdraged image retrieval system in [30] and [3Teyl
are efficient to compute and effectively describe frame content from different perspectives. Ajdarset
of features can also be used, but as a tradeoffeleet feature extraction speed and descriptive power
have limited out choice to one feature in the catnucture, and texture pictorial categories.

In [31] the color histogram is composed of 64 lrtermined by manual sampling groups of meaningful
colors in the HSV color space. The edge directigtogram is composed of 72 bins corresponding to
intervals of 2.5 degrees. Two Sobel filters [32 applied to obtain the gradient of the horizoatad the
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vertical edges of the luminance frame image. Thvedges are used to compute the gradient of eaa# pix
and those pixels that exhibit a gradient above etlgfined threshold are considered in computing the
gradient angle and then the histogram. Multiresmfutvavelet analysis provides representations @fgien
data in which both spatial and frequency informai®present. In multiresolution wavelet analyses vave
four bands for each level of resolution resultingi the application of two filters, a low-passdiltand a
high-pass filter. For an efficient representatiotheee-step Daubechies (16 coefficients) multingsoh
wavelet decomposition is used. A frame is firstateposed into four sub-bands LL1, LH1, HL1, and HH1
(total of 4 sub-bands). The LL1 sub-band is sulnstit with its decomposition into the four sub-bahtg,
LH2, HL2, and HH2 (total of 4-1+4= 7 sub-bands)eTame procedure is then applied to LL2 obtairtieg t
four sub-bands LL3, HL3, LH3 and HH3 (total of 7410 sub-bands). To represent the energy distabuti
of the transformation coefficients, the mean aaddard deviation are computed for each of the bebsund
obtained [33], resulting in a 20-valued descriptgigh order moments can also be used but we chimose
limit the feature dimensionality. To compare a feaat timet with one at time-1, a new difference measure
is used to evaluate their color histograms, wavsiatistics and edge histograms visual descripibns.
difference between color histograms is computedguiie histogram intersection introduce by Swaid an
Ballard [34], while the difference between edgeediion histograms is computed using the Euclidean
distance as in the case of the wavelet statisditp We denote the three distancesgs,t-1), d(t,t-1), and
dw(t,t-1) respectively:

dy (6t =1 = > min(H, (), H,(1)) (1)
d (6= =27, 00 (1) ~Wea (1)) @
do (=1 =¥, (D,(1) = Dus())° ©

whereH;, W, andD; represent the color histogram, wavelet statistias edge direction histogram feature
vectors computed on frane

The use of multiple features poses the problem heir tcombination. The choice of the optimal
aggregation operator is very difficult and greatlgpends on the application task, consequentlyén th
literature no conclusive solution can be founddiooosing it. For example, in [35] is concluded ttiet sum
aggregation operator is best suited in combinimgaiitput of different classifiers in an identityrifieation
task, but this choice is contradicted in the framewof a content based image retrieval task [36] aAother
example, in [35] it is also stated that due to dtsiservative nature, the product aggregation operat
produces the worst results. Since the detectiathefframe differences is related to the problenmnage
retrieval, for the choice of our aggregation oparatve started with the operators used in the immagesval
systems (e.g. [29]) where the features are uswealtybined by weighing them with suitable factorsjchh
are usually task-dependent. Here we propose aelitf@pproach: the explicit selection of weighttdas is
removed by weighing each difference against theroffio achieve this, the three difference valuediastly
mapped into the range [0, 1] and then combinedotenfthe final frame difference measure (denoted
dhwo(t,t-1) ) as follow:

dott-D =d, (tt-Dd, ¢,t-1)+d, ¢ t-d, t,t-D+d, (tt-Did, Lt-1) (4

By weighting each frame difference against eacterptthe measure penalizes low frame difference
values while emphasizing the higher ones. Ty (t,t-1) measure produces values toward the higher range
when most of the frame differences have high val@¢kerwise the resulting value is squeezed towdrels
lower range. Figure 1 shows tdgwp(t,t-1) values computed on a video sequence named “nuilt{lsee
Table 4): the highest isolated peaks corresporalltthe cuts in the sequence. By comparing thetgesa
with a suitable threshol@ we can identify the cut positions. However, thigsimot guarantee that all the
candidate cuts identified are true cuts: strongezanmotion, high dynamic scenes and flashes cafupeo
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high difference values. Strong camera motion agt diynamic scenes can be easily identified aswiky
correspond to several, consecutive high frame rdiffee values. To discriminate between true cuts and
flashes (they both correspond to isolated high geand to discard camera motion and high dynaogne
effects we have designed a temporal pattern asa(y§$?A) algorithm to be applied to the sequence of
dhwo(t,t-1) values.

Frame Difference

L { b

A T e e TR e e P o A e R iy
0924 4566 67 112142172 202 232 262 292 322 352 381 411 441 471 501 531 561 591 621 651 681 711 741
Frame

Fig. 1. Example of how tha,w, measure emphasize the locations of the cuts. ifle® wequence is the
“multilng” sequence (see Table 4 for details).

Temporal Pattern Analysis (TPA)
Given a sequence of frame descriptors, the cuestien algorithm can be summarized as follows.
Input: N, the length of the sequence,

T andT,, decision thresholds withl,< T

w, the size of the temporal analysis window

Algorithm:
1. t=1,
2: while t<N do
3 if duwo(t, t-1)>T then
4: if duwo(7, -1)<T, for all rin {t-w, t-w+1, ..., t-1, t+1, ..., t+w-1, t+w} then
5: if dywo(t+1, t-1)<T then a flash is detected.
6 else output that a cut has been detected at podition
end if
end if
7 t=t+1
end while

In line 1 the current position is initialized. Lifkeprocesses all the frames in the sequence. én3liwe
check if the current frame distance is above tHereace threshold and if so, the current positorai
candidate cut. To discard camera motion and higtaehyc scene, the candidate cut must be an isqgbetakl
and this is checked in line 4 by verifying that therent distance is higher than the neighbor dista. If the
current distance passes this test, it remainstifyudat it is not an isolated peak caused byaalil This is
done by considering the frame distance computeddsst the previous and next frames. In the case of a
flash (that usually influences only a single frantbjs distance is low (line 5), while in the cade true cut,
this distance is high (line 6). Figure 2 synthesiee underlying idea of the simple flash idenifion
approach used in the TPA algorithm. Upward (dowvarrows indicate differences above (below) the
thresholdT. Top arrows represent the differences computeddsst consecutive frames. Bottom arrows
represent differences computed on frames whichvargositions apart. In line 7 the current frameer is
incremented in order to process the following frame
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The TPA can be performed on-the fly implementinda#a buffer of sizen=2w+1 with FIFO policy.
Every time a new frame difference is computedait be inserted in the buffer and then the valudésinvit
analyzed.

“##fﬁ#“dﬁma,z—l)
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Fig. 2. Underlying idea of the flash detector. Bnews indicate whether the frame difference measur
(indicated to the right) is above or below the $hi@dT at that position

3  Experimental results

To evaluate the proposed cut detection algorithm, have performed two experiments. In the first
experiment we evaluated the effectiveness ofithg measure to reliably detect cuts on a complex skita
Thus the behavior of thé,wp measure is evaluated by using the precision acalreurves created by
varying the detection threshold. Several other drtection algorithms found in the literature wetsoa
evaluated for comparison purpose. In the secon@rerpnt, after identifying the optimal thresholdhe
used the detection of candidate cuts, our cut tetealgorithm was tested on a different data Betails of
the two experiments are reported in the next tvetices.

3.1. Testing the HWD Measure

The aim of the experiment is to evaluate the effeness of the new frame difference measure inraocde
identify a robust global threshold which clearlypamtes cut and non-cut differences. To quanti®y th
performance of the detection algorithms we usellreral precision scores. The cut detection resalés
classified as true positive (TP, a cut is corretilyated), false positive (FP, a cut is declared imon-cut
location) and false negative (FN, a non cut is @aed in a cut location). Recall is defined as thtor
between the number of cuts correctly classified taltotal number of actual cuts (TP/(TP+FN)), whil
precision is defined as the ratio between the nurabeuts correctly classified and the total numbkcuts
found by the detection algorithm (TP/(TP+FP)).

Availability of data sets to be used for cut detectis scarce, since very few of the video useth&
evaluation processes have been made public. Thkesndne comparison between different algorithms
difficult. In recent years the NIST Institute triéaol create standard data sets with the TRECVIDectiin
[37]. However, even these collections have sometdiions. For example, the 2003 test collection is
composed of 13 videos only, mostly of newscast dodumentaries. More recent collections are made
available to researchers only under certain casti while older ones are difficult to retrieven& the
definition of a video data set is crucial for areat evaluation of a cut detection algorithm, thame we
have thus chosen to create our video data set lwasasgveral properties. The set has been creatbd to
statistically representative of the kinds of vidélwst a general-purpose video segmentation algorithould
expect to process. This means taking into accownynvideo genres such as cartoons documentaries,
movies, trailers, sport videos, music clips, noofpssional videos, etc.... Next, the video sourceh a5
Internet, digital camera, and analog conversionehasen considered. Video properties such as thepvid
format, frame resolution, frame rate, were als@malkito account. The video chosen present a wiadgeraf
situations where the detection of cuts is probléahtin particular, trailers and cartoon video iexis short
shots with strong camera motions, many visual &ffsach as explosions, and high (unreal) dynamitise
events depicted. Many other effects can be founcbmmercial sequences and in news videos due to the
appearance of captions or texts on the frame. \didb@racterized by low fps may present relativaegyh h
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frame differences within the shots. Finally, difet video compressors may introduce artifactsittilatence
the cut detection. The data set used in this exmet is listed in Table 1. The video are not very lowg,
favored the complexity and variability of video ¢ents instead of having very long (and not very plax)
videos.

Video Name Format-WxH@FPS Frames mm:ss Cuts
4videos AVI-240x180@15 1,575 01:45 18
Basketball MOV-320x240@15 448 00:30 0
Bugsbunny MEPG-35%240@29.97 13,492 07:30 74
EEopen MPEG-35%240@29.97 1,289 00:42 22
Football MEPG-17X116@29.97 6,697 03:43 29
ForTheBirds AVI-320x168@25 4,898 03:15 46
LVEB MPEG4-326240@12 1,518 02:06 41
News MPEG-176&112@29.97 4,757 02:39 11
Nwanw1 MPEG-176&112@29.97 6,556 03:39 32
Restauri MPEG-32x240@29.97 5,393 02:59 6
Voyager MPEG-35%240@29.97 5,346 02:58 98
Weezer MPEG-35%240@29.97 7,333 04:04 79
Total 59,302 33:50 456

Table 1. List of the videos used in the experiment.

“4videos” is a collection of four documentary videof different subjects merged together. “Baskétbal
is a short sequence of a basketball game showingraeflashes and very strong camera motion.
“Bugsbunny” is another cartoon sequence that etshibgh motion and many editing effects. “Eeopenai
TV series title sequence with many captions appgafiootball’, “News” and “Nwnawl” are three video
sequences captured from the TV. “ForTheBirds” BDacartoon sequence taken from DVD. “LVEB” is a
movie trailer that exhibits many effects by usingry short shots. “Restauri” is a documentary video
presenting long shots without showing particulatifficult situations. In “Voyager” a science fictioTV
series is presented. Scenes showing a speakergakeé mixed with excerpts of the main fiction peog.
“Weezer” is a music video sequence containing nmetiting effects and very similar shots. A grounatr
was created from the data set considered as a whole

Several reference cut detection strategies arefosedmparison (see Table 2). The algorithms dedcia
cut if the frame difference measure is above argieeshold. They were chosen considering the fleatu
extracted from the frames and the measures usédeiromputation of the frame differences. The first
algorithm (C1) refers to théywp measure. The other algorithms can be broadly casgl into four groups:
pixel-based (C2 to C6), histogram-based (C7 to Clilgck-based (C14 to C16), and feature-based (€17
C20). The last group refers to strategies thatdeseriptors which are more sophisticated than ¢iiatos.
The table also reports the computational compkitif the algorithms: P represents the numben@iiN
the number of pixel levels and B the number of ienbfpcks. Complexities of the algorithms C2-C19 are
taken and adapted from [4]. The complexities of@eand C20 algorithms have been computed following
the same procedure. Note that the C1 complexitgstakto account also the operations required ftorco
space transforms. Most of the operations requise@b are due to the wavelet transform (about 3/thef
overall computation cost). The complexity can beatly reduced by using wavelet decomposition wétlv f
coefficients.

The results are graphically displayed in Figurde 3 using the precision-recall curves obtained/inar
the threshold in the algorithms. In each Figuregbgformance of the proposed measure (C1, top fisve
reported for direct comparison. The low precisieaahed by all the cut detection methods is dubdwery

* The annotated video used in the experiments caacested, for research purposes, by contactinguthors.
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difficult video data set devised. The combinatidrit® three features in thdywpo measure exhibits better
performances while obtaining higher precision valuempared to the other methods. Even at highatirec
values, the drop in precision is mitigated. Theeptbxased algorithms exhibit a similar behavior; tbe
initial precision remains approximately the same rfecall values below 0.93, then the precision drop
quickly for higher recall values. Also in Figuretide histogram-based algorithms exhibit similar lvedra
(with the exception of the 2-bits RGB histogram efhshows very poor performance). These algorithms
maintain a nearly constant precision level for naighe recall values. The improvement in precisibour
algorithm is clearly visible. As for the featuresled and block-based algorithms in Figure 5, itlwarseen
that dywp shows better performance that the other methodsonyy the tested methods, only the C18
algorithm has comparable results to thgp measure for recalls below 0.90. At higher recallues the
dwwo curve is well above the C18 curve (from 7% to @&5gher).

Name Measure / Description Complexity (as per [4Ref.
C1 diwwp Measure (proposed measurg)  O(71P+6N) Eqg. 1
C2 Interframe Difference o(P) [5]
C3 L1 Gray Pixel Difference O(3P) [5]
Cc4 L1 Color Pixel Difference O(6P) [5]
C5 Boolean Difference O(4P) [6]
C6 Normalized difference energy O(5P) [8]
C7 2-bits RGB histogram O(3N) [5]
Cc8 256 bins RGB histogram O(9N) [14]
C9 Weighted RGB histogram O(9N) [27]
C10 Kolmogorov-Smirnov statistic O(3N) [8]
Cc11 X’ test on intensity histogram O(P+5N) [27]
C12 Cross-entropy O(P+4N) [15]
C13 Bhattacharya distance O(P+3N) [8]
C14 Block-based Freund statistic O(3P+11B) [8]
C15 Block-based 2-bits RGB histogram O(4NB+2B) [5]
Ci16 Block-based HSV histogram O(6NB+2B+4P) [13]
C17 Invariant moments 0O(23P) [39]
ci18 Edges Change Ratio 0O(26P) [20]
C19 Joint Probability Images O(2P#HN) [18]
C20 Information Theory O(3P+12N [17]

Table 2. Cut detection algorithms tested and #@nputational complexity.

We also tested the C1 algorithm against the proglodtsum combination rules:
deyut,t-)=d, tt-)+d,tt-D+d,tt-1) 5)
dopep(t,t—-1) =d,, (t,t -1 xd,, (t,t -1 xd, (t,t-1 (6)

The results are shown in Figure 6. It can be seanwith respect to C1, the product rule showsgigy
better while the sum rule is slightly worse. Thessults are expected since the product rule tentle more
precision-oriented than the sum rule, while dhgp measure can be considered as a trade off betlesn t
At very high recall values, the precisiondpfyp drops faster than the other two but the overatision, for
the tested dataset, is meaningless in all the ttases.
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C1 vs Pixel-Based Methods
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Fig. 3. Recall-Precision graphs for the pixel-bastedtegies by varying the detection threshold.

C1 vs Histogram-Based Methods
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Fig. 4. Recall-Precision graphs for the block-bastegategies by varying the detection threshold.

C1 vs Block-Based and Feature-Based Methods
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Fig. 5. The Recall-Precision graphs for the bloekdd and feature-based algorithms by varying the
detection threshold.
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C1 vs Prod and Sum measure combinations
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Fig. 6. The Recall-Precision graphs for thgpmeasure (C1Guwo (Sum) andderop(Prod) measures by
varying the detection threshold.

3.2. Testing the Temporal Pattern Analysis (TPA)

Ideally, a good cut detection algorithm should hiaigh recall and high precision. As it can be skeem
Figures 3 tb, as recall increases, precision decreases. Thushtice of the optimal thresholdto be used
with the TPA algorithm can be made by analyzing @1e precision/recall curve, and selecting the point
where precision starts to drop significantly. Basedthe results of the first experiment, with aedé&bn
threshold of 0.018, this point is located at theahevalue of 97%, corresponding to a precisiorugabf
about 44%. By using the TPA algorithm, recall ipested to decrease while precision is expected to
increase. After experimenting several parametersbaaation for the buffer size and the threshold,, they
have been set to 9 elements, and 20%*ofespectively. The lower threshold is thus dynathicadapted
based on thd* value. Table 3 shows the results of the cut detectigorithm exploiting thel,wp measure
on the test set using the optimal threshold and B (i.e. ghwp+TPA).

dywo + TPA dum + TPA Grop+ TPA
Video Name | Recall (FNIPrecision (FFRecall (FN]Precision (FRRecall (FN)Precision (FP)
4videos 0.94 (1) 1.00 (0) 0.89 (2) 1.00 (0) |0,94 (1) 1.00 (0)
Basketball 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0) {1.00 (O 1.00 (O
Bugsbunny  |0.87 (10) | 0.83 (13) 0.88 (9) 0.95(4) (0,99 (1 0,91 (7
Eeopen 1.00 (0) 1.00 (0) 0.91 (2) 1.00 (0) |1.00 (0) 1.00 (0)
Football 0.90 (3) 1.00 (0) 0.90 (3) 1.00 (0) (0,93 (2) 1.00 (0)
Forthebirds 0.96 (2) 0.96 (2) 0.80 (9) 0.97 (2) (0,98 (1) 0,94 (3)
LVEB 0.95 (2) 0.98 (1) 0.78 (9) 1.00 (0) ]0,98 (1 0,93 (3
News 0.91 (1) 1.00 (0) 0.91 (1) 1.00 (0) [0,91(1 0,91 (1.
Nwanw1 0.94 (2) 1.00 (0) 0.81 (6) 1.00 (0) |1.00 (0) 0,94 (2)
Restauri 1.00 (0) 1.00 (0) 0.83 (1) 1.00 (0) |1.00 (0) 1.00 (0)
Voyager 0.83(17)| 0.94 (5) 0.69 (30) 0.98 ( 0,89 (11) | 0,94 (6)
Weezer 1.00 (0) 1.00 (0) 0.90 (8) 1.00 (0) |1.00 (O 1.00 (O
Average (Total)0.94 (38) | 0.98 (21) 0.86 (80)| 0.99 (9) 0.97 (229.96 (18)
Variance 0.0031 0.0025 0.0062 0.0005 [0.0016 0.0017
Std. Deviation | 0.0559 0.0500 0.0789 0.0231 0.0398| .0389

Table 3. Precision and Recall results of the diffiérdetection strategies on the first set of vid@osas
set to 0.018 for thél,wp measure, 0.4 for thdsyy measure and 0.0008 for thezop Measure. The TPA

parameters were set to=9 and T =0.2xd*. FN and FP indicate the false negatives and fpisitives
respectively.
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As expected, the use of the TPA algorithm drambyicacreases the precision. The average recaler
dwwo+TPA algorithm is 94% (+5.6%) from the previous 9780d the precision is about 98% (+5%) from
the previous 44%. Table 3 shows also the resultthefcut detection algorithm exploiting the sum and
product combination rules {gy+TPA and @rostTPA respectively). Following the same rationaldagshe
dhwo Measure, the thresholdfor these two strategies has been set to 0.4 &8 respectively, while the
TPA parameters remained the same as in tfig#PA. It can be seen that the sum combination mieasu
shows the worst average recall with a value of §&%9%) while at the same time it exhibits the best
precision with a value of 99% (+2.3%). This is doethe fact that the sum rule is more sensitivéhi
motion within the frame sequences: the isolateck pereeck in the TPA algorithm (controlled by the
threshold and the window analysis) often fails @imas most of the true cuts surrounded by motion are
discarded. The recall can be increased by redubied, threshold: experimentally we have observed that
with T, =0.5, the recall increase to 97% but the precisiaps to 92%. At lower values, the precision drops
rapidly. With 97% (+4%) recall and 96% (+3.9) p@on, the behavior of the product measure can be
considered on the overall comparable to dhgp measure. To validate the choices of the cut detect
parameters, we have tested the algorithms on aletehpdifferent set of videos. Table 4 lists thdeos of
this second set.

Video Name | Format-WxH@FPS Frames hh:mm:ss| Cuts
3bears MPEG-35%240@29.97 |12,862 07:09 6
Bugslife MPEG4-326174@12 1,792 02:29 87
Daffyduck MPEG-35X240@29.97 | 12,686 07:03 43
DonaldDuck | MPEG-35X%240@29.97 |11,064 06:09 107
Ds9end MPEG-35X%240@29.97 |3,672 02:02 50
Generation | AVI-640x320@24 1,242 00:51 5
Ggame MPEG-35%288@25 6,358 04:14 86
Groove MPEG4-326:240@12 1,861 02:35 115
Making MOV-600x240@15 1,247 01:23 40
Menace MPEG4-48216@12 1,784 02:28 85
MTVWhitney | MPEG4-24%176@14.96 |4,339 04:49 113
Multiing AVI-320x240@14.98 760 00:50 5
Paddle AVI-240x180@14.87 203 00:13 3
RaymanTV | AVI-320x240@12,50 1,419 01:53 38
RoadRunner | MPEG-35X%240@29.97 |12,578 05:59 60
Soxmas MPEG-24x160@30 9,374 05:12 79
Shrekaraoke | MPEG-72x480@29.97 |5,086 02:49 41
Stgen AVI-640x320@24 5,365 03:43 27
Tweety MPEG-35X%240@29.97 12,149 06:45 87
Total - 105,841 01:08:06 | 1076

Table 4. List of videos used to validate the preplosut detection algorithm.

The rationale that inspired the choice of the videothe first data set also inspired the choiceéhef
videos in this second data set. “3bears” is a sbartoon containing few editing effects. The video
characterized by being almost a single, uninteediequence with many panning effects. “Bugslige&i
movie trailer showing very short shots and a faated montage. “DaffyDuck”, “RoadRunner” and
“Tweety” belonging to the same production houseasheimilar behavior. “DonaldDuck” is an excerpteaof
cartoon captured from a TV show. Several subtdlgsear along the sequence. “DS9End” is a preview of
science fiction television episode. The video pneseery dark scenes with many explosions and itians
effects. “Generation” is an excerpt of a movie tak®m a video game CD, showing dark scenes ang ver
long shots. “GGame” and “Shrekaraoke” are two 3Romm sequences taken from DVDs. These videos do
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not present particular effects or dynamics. “Grdagea cartoon trailer characterized by very sksirots
with many effects such as lightning, explosions] atrong actions. “Making” is another movie excsrpt
used in a video game. It shows very dark locatians, scenes with very low definition. The movidléra
“Menace”, contains many production effects as wadl explosions and very highly dynamic scenes.
“MTVWhitney” is a music video-clip acquired fromlé&wision which exhibits very evident compression
artifacts. “Multilng” is a documentary video presieg long shots without showing particularly diffit
situations. “Paddle” is a very shot sequence shgwwome heavy chromatic changes, due to errorsein th
video coding. “RaymantTV” is a TV show previewsliows a fast paced montage, with short shots, eamer
zoom, and matte effects. “Soxmas” is an episodéefSouth Park” cartoon series. The main charestier

of this video is that due to the particular styfehe cartoon, the frames exhibit very few detailth large
uniformly colored areas. “Stgen” is a trailer of@ence fiction movie. Like many movies of this geg) it
shows very dark scenes, explosions, and fast cametian. Table 5 reports the detailed cut deteatésults

on these videos for theygp+TPA, dsumtTPA and dropt TPA algorithms.

dywo + TPA tum + TPA Ghrop+ TPA
Video Name | Recall (FNPrecision (FHRecall (FNJPrecision (FHRecall (FN)Precision (FP)
3bears 1.00 (0) (0.88 (1) 0.67 (2) 1.00 (0) 1.00 (0) 0.86 (1)
bugslife 0.83 (15) |0.99 (1) 0.68 (28) | 0.98 (1) 0.86 (13) | 0.96 (3)

Daffyduck 0.95(2) [0.84 (8) 0.88(5) |0.86(6) [1.00(0) |0.84(8)
DonalDuck | 0.93 (8) [0.98 (2) 0.80 (21) |0.99(1) [0.95(5) |[0.94 (6)

Ds9end 0.68(16) |0.77 (10)  |0.52(24) | 0.87(4)  [0.72 (14) |0.73 (13)
Generation | 1.00 (0) |1.00 (0) 1.00(0) |1.00(0) [1.00(0) |1.00(0)
GGame 0.99 (1) |1.00 (0) 0.87(11) |1.00(0) [0.91(8) [0.99 (1)
Groove 0.72 (32) |0.97 (3) 0.56 (51) | 1.00(0)  [0.77(26) |0.96 (4)
Making 0.90 (4) |1.00 (0) 0.83(7) |1.00(00) [0.93(3) |1.00(0)
Menace 0.79 (18)|0.99 (1) 0.55(38) |1.00(0) [0.82(15) [0.97 (2)
MTVWhitney [0.82 (20) |0.96 (4) 0.71(33) |0.99(1) [0.86(16) |0.96(4)
Multilng 1.00 (0) |1.00 (0) 0.80(1) |1.00(0) [1.00(0) |1.00(0)
Padule 1.00 (0) |1.00 (0) 1.00(0) |1.00(0) [1.00(0) |1.00(0)

RaymanTV | 0.92(3) [1.00 (0) 0.53(18) |1.00(0) [0.89(4) [0.92(3)
RoadRunner | 0.92(5) [0.98 (1) 0.88(7) |1.0000) [0.92(5) |[1.00(0)

Soxmas 0.96 (3) 0.92 (7) 092(6) [095@) [099(1) |[0.94(5)
Shrekaraoke | 0.88 (5) [0.97 (1) 0.79(9) |1.000) [0.90(4) |[1.00(0)
Stgen 0.96 (1) |0.87 (4) 0.67 (0) | 1.00(0) 1.00 (0) |0.82(6)
Tweety 0.97 (3) |0.90 (9) 0.81(16) |0.92(6) [0.98(2) |0.88(12)

Average (Total)0.91 (136) |0.95 (52) 0.76 (286) | 0.98 (23) [0.92 (116) | 0.94 (68)
Variance 0.0093 0.0044 0.0231 0.0020 0.0070 0.0058
Std. Deviation | 0.0967 0.0667 0.1519 0.0445 ]0.0839 0.0759

Table 5. Precision and Recall results of the pregatetection algorithm on the first set of videbsvas
set to 0.018 for thél,wpo measure, 0.4 for thds,y measure and 0.0008 for thezop Measure. The TPA
parameters were set =9 and T =0.2xd*. FN and FP indicate the false negatives and fptssstives
respectively.

On this set of videos, the@b+TPA algorithm is able to detect 91% (+9.7%) of thies with precision at
95% (£6.7%). Only three videos show recall resbhélow 80% (“Groove”, “Menace” and “Ds9end”). These
videos contain many repetitive lightning and exjoseffects near the actual cuts that make it diffito
detect them. The flash removal algorithm is unébleemove these effects since they are not isqlatgdare
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repeated several times and very quickly. This aasden also from the results of the other two @lyos.

In 14 out of the 19 videos the precision of thggtTPA algorithm is well above 95%, four of the remiag
video have precision above 80% and only one hasvarlprecision (“Ds9end”). The behaviour of theesth
two algorithms is also confirmed on this datasedaif, the dyn+TPA algorithmshows the worst recall
result (76%) with the highest precision value (98%jh T.=0.5, the recall increase to 90% but the precision
drops to 92% and several videos have very low pi@tior recall (e.g. about 70% for the “ds9end”
sequence). The results of thezgbt TPA algorithmare comparable to those of thg.,g+TPA algorithm
(92% against 91% for the recall and 94% against 85%he precision)This seems to suggest that tthewp
measure and the product measure are similarlyteféem discriminating the frame differences. Howev
the product combination rule is very sensitivertmis [38]: if one of the three frame differenceaseres is
unable to distinguish two frames belonging to twiiedent shots, the overall measure is wrong. Oa th
contrary, thedywp measure is less sensitive to errors on a singtife since it requires that at least two
differences to be wrong (i.e. the majority of theasures are wrong).

4  Conclusions

In this paper we have presented a new algorithntidibrdetection, exploiting an innovative and robust
frame difference measure. First of all, we havewshthat the new measure, based on a combination of
different visual features, exhibits better perfonzes while obtaining higher precision detection parad to
several other methods present in the literature eigéeng a very simple approach based on a singlside
threshold. This demonstrates that the combinatfoseweral visual clues is best compared to the oaksth
that use only one single visual clue. Next we hpwesented the new cut detection algorithm, which
implements a temporal pattern analysis and flagleesoval. The algorithm has been tested on two
heterogeneous and complex video sets. Results gtaavthe ¢gywpo+TPA algorithm is able to detect most of
the cuts with a very high average precision (98% @5% respectively) and high average recall (94% an
91% respectively). Instead of performing multi-miodat detection with both video and audio data,yonl
visual content is considered due to the synchrdinizgproblem that audio data pose. Usually, audid a
visual changes will not occur exactly at the saime t but the audio of a given sequence continues e
next one by a few seconds [40]. Moreover, it waso gbundaram et al. [41] who observed that video
sequences exhibit audio changes (variations nategtlto shot boundaries) within a video shot mditeno
than visual changes (21% against 10%). Also a sambunt of video sequences exhibit both visual and
audio changes within a shot (4%). Nonetheless,firtiae research we plan to extend our algorithrdeal
with multimodal video data.
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