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Abstract

Local features have repeatedly shown their effectiveness for object recognition during the last years,
and they have consequently become the preferred descriptor for this type of problems. The solution of the
correspondence problem is traditionally approached with exact or approximate techniques. In this paper we
are interested in methods that solve the correspondence problem via the definition of a kernel function that
makes it possible to use local features as input to a support vector machine. We single out the match kernel,
an exact approach, and the pyramid match kernel, that uses instead an approximate strategy. We present a
thorough experimental evaluation of the two methods on three different databases. Results show that the
exact method performs consistently better than the approximate one, especially for the object identification
task, when training on a decreasing number of images. Based on these findings and on the computational
cost of each approach, we suggest some criteria for choosing between the two kernels given the application
at hand.
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1 Introduction

Since the seminal work of Lowe [17], local descriptors have become the feature of choice for recognition of
visual patterns from still images. The basic idea is to represent an image with an unordered set of features,
computed as follows: first, an interest point detector selects points in the image that are likely to have a high
informative content (like corners, borders, etc). Then, a small patch is selected around each detected point, and
a feature descriptor is computed on it. Thanks to a substantial research effort by the community, today several
interest point detectors and descriptors are available [26, 12, 11]. They showed to have very good performance
in many different applications, such as object recognition and categorization [7] [8], texture recognition [14],
image and video retrieval [28] [22], robot localization and place recognition [27]. The power of these represen-
tations is that they are distinctive, robust to occlusion, invariant to transform, and do not require segmentation.
These local descriptors could be represented as feature vector of high dimensionality for each interest regions,
and the number of features depends on the image contents as well the choice of different parameters of detec-
tion.
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Another very strong research trend in visual recognition during the last decade has been the use of sophis-
ticated statistical learning methods, like Support Vector Machines (SVM) for object recognition and catego-
rization [1, 3, 13, 15]. A key component of these classification algorithms is the need to compute similarity
measures on a Hilbert space with the so called kernel function [29]. This condition, that implies the definition
of a metric in such space, has kept separated these two research lines for several years.

Recently, a stream of works has proposed different kernel functions able to compute similarities between
unordered set of features. The use of these functions within SVM-based algorithms makes it possible to exploit
fully the potential of both methods, leading to state of the art results on several applications [13, 15]. Between
the family of kernels for local features, we can single out two, that are the most representative of the mainstream
approaches: the match kernel [30] that mimics an exact matching procedure, and the pyramid match kernel
[10] that instead opts for an approximate matching procedure. In spite of some partial results reported in the
literature [10], it is still missing a comprehensive evaluation of these two approaches for the visual recognition
problem.

This paper presents a thorough experimental comparison between the match kernel and the pyramid match
kernel for the problems of object identification and categorization. We performed experiments on 3 different
databases, and we compared results also with two other exact and approximate matching approaches. Our
experiments clearly show that the exact approaches in general, and the match kernel approach in particular,
consistently achieve a better performance compared to the approximate methods. This is particularly true for
the object identification scenario, when training is performed on a small amount of data. In this setting our
experiments show quite clearly that the approximate approach suffers in terms of performance. Armed with the
results of our experimental evaluation and with the knowledge of the computational cost of each method, we
derive some suggestions for choosing the most suitable kernel for a given application. We are not aware of any
previous extensive experimental study of these methods for the object recognition problem. We believe that
these results will be a useful resource for the community.

The rest of the paper is organized as follows: section 2 describes the match kernel and discusses its properties.
Section 3 reviews the pyramid match kernel. Section 4 describes in details the experimental evaluation done
on the two methods, reports results and discusses their implications. The paper concludes with an overall
discussion.

2 Exact recognition with local features: the match kernel

The first method to explicitly address the problem of solving the correspondence problem within the SVM
framework was the match kernel [30]. The authors proposed to build a similarity measure that mimic a greedy
matching procedure. Denote by I = {Ii}mi=1 a set of images and L = {Li}mi=1 the corresponding set of local
features, with Li = {lj(Ii)}ni

j=1, i = 1, . . .m. For all (Lh,Lk) ∈ L, the match kernel is defined as

KL(Lh,Lk) =
1
2

[
K̂(Lh,Lk) + K̂(Lk,Lh)

]
(1)

with

K̂(Lh,Lk) =
1
nh

nh∑
i=1

max
j=1,...nk

{Kl(li(Lh), lj(Lk))} ,

and Kl(li, lj) a Mercer kernel. The choice of Kl depends on the local descriptor, and it is usually set by the
user according to some prior knowledge [30]. The algorithm complexity for computing each entry of the kernel
matrix is O(dm2), with d equals to the feature dimension and m equals to the maximum number of interest
points.

In spite of the claim in [30] the match kernel does not satisfy the Mercer condition, thus it is not positive
definite. To prove this point, it is sufficient to present a counter example. Consider the matrices G1, G2 and
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their max G3 = max(G1, G2) with eigenvalues λ1, λ2, λ3 as follows:

G1 = [+3− 1− 2;−1 + 3 + 3;−2 + 4 + 8];λ1 = [+10.45 + 2.31 + 1.24],

G2 = [+8 + 4− 2; +4 + 4− 1;−2 + 1 + 1];λ2 = [+10.74 + 0.40 + 1.86],

G3 = [+8 + 4− 2; +4 + 4 + 3;−2 + 4 + 8];λ3 = [−0.39 + 10.39 + 10.00].

We see that G1 and G2 are two positive definite Gram matrices but their max G3 is not. This shows that in
general the match kernel is not a Mercer kernel. In spite of this drawback, this kernel has been extensively used
for visual recognition, and has shown remarkable performances for object categorization [3], action classifica-
tion [13] and indoor place recognition [18]. Besides performance, the real issue of non-Mercer kernels is that
they do not guarantee that the SVM optimization problem is convex, thus the solution might not converge to
the absolute minimum.

Boughorbel et al [2] introduced a new definition of kernel positiveness based on a statistical approach. Their
definition is such that includes most of Mercer kernels, and it shows that matching kernels are statistically
positive definite. The basic idea is to bound the probability that the Gram matrix of a given kernel violates the
Mercer condition. A sufficient condition for the Gram matrix to be positive definite is to be diagonal dominant,
namely

|Gii| ≥
∑
i 6=j
|Gij |,∀i

Starting from the McDiarmid inequality [19], Boughorbel et al introduced a modified version of the inequality
that permits to enforce the kernel positiveness with high probability by tuning the kernel parameters, provided
that the considered kernel satisfies the following conditions:

• the kernel is constant on the diagonal:
Kσ(xi, xi) = K;

• the kernel is positive and bounded:
0 ≤ Kσ ≤ c;

• the kernel vanishes when the parameters go to zero:

Kσ(x, y)→ 0, σ → 0, for x 6= y

We now show experimentally that the match kernel satisfies these conditions, namely that there always
exists a range of the kernel parameters where the corresponding Gram matrix is diagonally dominant. Our
experimental evaluation is similar to that reported in [2], also showing that the match kernel satisfies the three
conditions above.

We therefore run a set of experiments. We used the ETH-80 database [16], containing about 3280 images,
and from each image we extracted on average 45 SIFT features. We sampled randomly 100 images from the
database, we computed the Gram matrix of the match kernel on the corresponding features, and we computed
its minimum eigenvalue. We considered a varying number of interest points per image (N = 1, 2, 3, 4, 5),
randomly sampled. We considered also a varying dimension of the features (M = 1, 5, 10, 20, 50, 128) by
truncating the 128 SIFT feature vector and taking the first M values. For each possible combination of N and
M , we repeated the experiments 100,000 times, for a total of 3,000,000 evaluations. Results are reported in
Figure 1. We see that all the minimum eigenvalues computed are greater or equal to zero. The zero values
are approached for values of M below 5, and for values of N smaller or equal to 2. Both these values are
well below the typical values in visual applications. These experiments thus confirm the theoretical analysis of
Boughorbel et al, showing that the match kernel can be safely used in visual recognition applications.
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Figure 1: Average values of the min-
imum eigenvalue of the match kernel
Gram matrix, for varying values of
(M,N). Results were computed by an
extensive simulation. The mean value
is always greater of zero, and it ap-
proaches zero for values of (M,N) far
below the typical values used in visual
applications.

3 Approximate recognition with local features: the pyramid match kernel

An alternative approximate method was proposed by Grauman and Darrel [10]. Following the kernel-based
approach, they introduced a kernel function that approximates the similarity measured by the optimal corre-
spondence between feature sets of different dimension. This is achieved by mapping each feature to a multi-
resolution histogram, preserving the individual feature’s characteristic at the finest resolution level. The his-
tograms are then compared using a linear combination of intersection kernels [10]. The resulting kernel is
computationally very efficient, as it basically trades the exactness in matching features for a low algorithm
complexity. In the rest of the section we will give the kernel definition, a sketch of the demonstration of its
positive definitiveness, and its algorithmic complexity. For a more thorough discussion on the kernel we refer
the reader to [10].

Let us consider a feature space F of d- dimensional vectors, and an input space S, containing sets of features
drawn from F :

S = {X|X = {x1,xm}}

with xi ∈ F..., and m = |X|. The point dimension d is fixed for all features in F , but m can vary across
instances in S. Let us also assume that the values of elements in vectors in F have a maximal range D. In
order to approximate efficiently the optimal partial matching, Grauman and Darrel map each feature set to a
multi-resolution histogram:

Ψ(X) = [H0(X), . . . ,HL−1(X))]

where X ∈ S,L = [log2D] + 1, Hi(X) is a histogram vector formed over points in X using a d-dimensional
bins of side length 2i, and Hi(X) has dimension ri = (D/2i)d. The pyramid match P∆ measures similarity
between point sets based on implicit correspondences found within the multi-resolution histogram space:

P∆(Ψ(Y ),Ψ(Z)) =
L−1∑
i=0

wiNi (2)

i.e. the similarity between two input sets Y and Z is defined as the weighted sum of the number of feature
matchings found at each level of the pyramid formed by Ψ. Ni is computed using the histogram intersection
function I:

I(A,B) =
r∑
j=1

min(Aj ,Bj)

with A,B histograms with r bins, and Aj denoting the count of the jth bin of A. Ni is given by

Ni = I(Hi(Y ), Hi(Z))− I(Hi−1(Y ), Hi−1(Z))

i.e. it is the difference between successive histogram levels’ intersection, withHi referring to the ith component
histogram generated by Ψ. The weighting wi is given by wi = 1

2i·d . This choice implies that similarity at a
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finest resolution is rewarded more than similarity at a coarser level. Therefore, the kernel P∆ can be written as

P∆(Ψ(Y ),Ψ(Z)) = wL−1I(HL−1(Y ), HL−1(Z)) +
L−2∑
i=0

(wi − wi+1)I(Hi(Y ), Hi(Z)). (3)

P∆ is a Mercer kernel. Indeed, the histogram intersection has been shown to be a Mercer kernel [1], and it is
well known that a linear combination of Mercer kernels with positive coefficients is still a Mercer kernel [29].
Therefore, eq (3) is a Mercer kernel for any weighting scheme where wi ≥ wi+1. Using the weights wi = 1

2i·d
ensures this property, thus ensuring also that P∆ is a Mercer kernel.

An important property of this kernel is its lower algorithm complexity compared to the exact matching
procedure. The time necessary to compute the L-level histogram pyramid Ψ(X) for an input set with x = |X|
d-dimensional features is O(dzL), with z = max(m, k) and k is the maximum histogram index value in a
single dimension. The computational complexity of P∆ is O(dmL), as computing the intersection values for
histograms that have been sorted by bin index requires a linear time in the number of non-zero entries. Finally,
generating multiple pyramid matches with randomly shifted grid scales the complexity by T , the constant
number of shifts (typically use 1 ≤ T ≤ 3 ). Overall, the computational complexity of computing both the
pyramids and the kernel is O(TdmL). The L parameter can not be set to an arbitrary small value, usually
L equals dlog2De + 1, where D is the value of the maximal feature range [10]. For example, for SIFT [17],
D ≈ 250, which yield L = 9. Therefore, the computational complexity is lower than the matching kernel when
m is large.

The pyramid match kernel suffers from distortion factors that increase linearly with the dimension of the
features [9]. To overcome this problem, Grauman and Darrell proposed a variant of the kernel that derives a
hierarchical, data-dependent decomposition of the feature space that can be used to encode feature sets as multi-
resolution histograms with non-uniformly shaped bins [9]. As for this kernel histogram pyramids are defined
by the vocabulary, the authors call it the Vocabulary Guided- Pyramid Match Kernel (VG-PMK). The improved
method is more accurate than old uniform bins methods. However, the computational cost also increased
significantly. To generate the structure of the VG-pyramid, the algorithms have to perform hierarchical k-means
clustering on some example feature vectors. The computational cost for generating this structure is O(ILkdn),
where I is the number of k-means iteration, L is the number of levels in the tree and n is the number of example
feature vectors (typically it is required that n � m in order to obtain a reasonable representation). This
construction of the VG-pyramid structure is computationally very costly. Once the algorithm has constructed a
VG-pyramid, the time necessary to embed an input set into the pyramid is O(kdmL), and the time required to
compute a matching between two computed pyramids is O(mL). We will use this version of the kernel in our
object identification experiments when low dimensional features (e.g. PCA-SIFT) produce bad results.

4 Experiments

The previous sections described the exact and approximate match kernels, and showed that the approximate ap-
proach of Grauman and Darrell has a lower algorithm complexity than the exact match kernel. This is achieved
by using an approximation when matching the local features. In this section we present experiments that test
if using the approximate approach might lead to a decrease in performance, compared to the exact method, on
object recognition problems. We focus specifically on the tasks of object identification and object categoriza-
tion, running experiments on three publicly available databases. To provide a more comprehensive evaluation,
we also benchmark against two non-SVM based methods (one exact and one approximate) well known in the
literature. For all the experiments, we used our extended version of the libsvm library [4] with a one-vs-all
multi-class extension. SVM and kernel parameters were determined during training via cross validation. In the
following we first describe the experimental settings (section 4.1). Section 4.2 reports the results obtained for
the object identification task, and section 4.3 reports our findings for the object categorization task.
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4.1 Experimental Setup

In this section we first describe the databases used (section 4.1.1), then the feature representations (section
4.1.2) and finally we describe the two other baseline methods used in our experimental evaluation (section
4.1.3).

4.1.1 Databases

The ETH-80 database [16] consists of 80 objects from 8 different categories (apple, tomato, pear, toy-cows,
toy-horses, toy-dogs, toy-cars and cups). Each object is represented by 41 images from viewpoints spaced
equally over the upper viewing hemisphere, at distances of 22.5◦ – 26◦. Objects are shown on a blue back-
ground without rescaling. Figure 2 presents one sample image per each object. We used this database for the
object identification and object categorization experiments (section 4.2 and 4.3 respectively). For the object
identification experiments, we considered separately all 80 objects: the training set consisted of five views per
object, equally spaced on the viewing hemisphere. All the remaining images were used for testing. For the
object categorization experiments, we considered 8 classes, one for each category: the training set consisted
of five views per object, equally spaced, for 79 objects. The test set therefore contains all five images of one
object, and the prediction performance is averaged over all 80 possible combinations of training and test set.
This setup has been used first in [5] for object categorization experiments on the ETH-80 database. It is of
interest for us here because it allows us to study the behavior of the two approaches when learning from small
samples.

Figure 2: Example images from the ETH-80 objects database. For each category, we show images of five
objects.

The Caltech-101 database [6] is a very popular benchmark for object categorization. It is a challenging
database consisting of 101 object categories. There are 8677 images in the dataset, variously distributed across
the different categories (from a minimum of 31 to a maximum of 800 images per category). Sample images
for some of the categories are shown in Figure 3. The database was collected using the Google Image Search
engine. As a consequence, many of the images contain a significant amount of intra-class variability. Note that
most of the images in the database contain little or no clutter, and objects tend to lie in the center of the image.
Furthermore, categories such as motorbike, airplane, cannon, etc. were manually flipped, so that all instances
face the same direction. Categories with a predominantly vertical structure were rotated to an arbitrary angle,
thus have a partially black background.

The KTH-IDOL2 database [18] is a place recognition database containing 24 image sequences acquired
by a perspective camera, mounted on two mobile robot platforms. The acquisition was performed within an
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accordion (100.0%) beaver (16.1%) chair (8.5%)

dolphin (40.0%) electric guitar (36.7%) faces (70.2%)

garfield (84.2%) headphone (37.0%) ibis (20.0%)

kangaroo (25.4%) laptop (75.8%) watch (63.8%)

Figure 3: Example images from the Caltech-101 database. Three images are shown for 12 of the 101 categories;
we also report the classification rate obtained by the match kernel.

indoor environment consisting of five rooms with different functionality (one-person office, two-person office,
corridor, kitchen and printer area) under various illumination conditions (cloudy weather, sunny weather, and
night) across a span of six months. The robots were manually driven through an indoor laboratory environment
and images were acquired at a rate of 5-fps. Each image sequence consists of 800 – 1100 frames automatically
labeled with one of five different classes. Therefore, the data captures the natural variability that occurs in real-
world environments introduced by both illumination and human activity (people appear in the rooms, furniture
and objects change location etc.) Figure 4 shows some sample images from the database. As the focus of our
work is not to study how to cope with long time variations and illumination differences, we used only the first
part of the database for evaluations, and recognition experiments (train and test) are performed only on pairs
of sequences acquired under stable illumination conditions and using the same robot. Note that, although the
illumination conditions for both training and test images are very similar, the algorithm still has to tackle other
kinds of variability such as viewpoint changes and presence/absence of people.

One-person Office Corridor Two-person Office Kitchen Print Area

Figure 4: Example images taken from the KTH-IDOL2 database showing the five rooms.

4.1.2 Feature representation

It has been shown that local affine- or scale- invariant feature descriptors extracted from a sparse set of interest
points of an image have good performance in recognition tasks [17, 20]. Their success is mainly due to their
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distinctive representation, and their robustness to occlusion and affine transformations. Local feature extraction
consists of two steps: first, an interest point detector finds interest points in the image; second, a local descriptor
computes a feature vector from the image region localized at the interest points.

In all our experiments, we use the Harris-Laplace detector [21] and SIFT descriptor [17]. The Harris-
Laplace detector responds to corner-like structures, and is invariant to rotation and scale transformations.
The points are detected by the scale-adapted Harris function and selected in scale-space by the Laplacian-
of-Gaussian operator. The number of detected points can be adjusted by a threshold parameter. The SIFT
descriptor represents the features of local patches characterized by coordinates in the scale-space in the form
of histograms of gradient direction. The descriptor vector is of dimension 128. SIFTs are invariant to image
scaling, translation, rotation and are partially invariant to changing viewpoints and changes in illumination.

4.1.3 Baseline comparison approaches

Keypoint match[17] is performed by first matching each keypoint independently to the database of keypoints
extracted from training images. The best candidate match for each keypoint is found by identifying its near-
est neighbor in the database of keypoints from training images. Here, the nearest neighbor is defined as the
keypoint with the minimum Euclidean distance to the matching one. However, due to ambiguous features or
features arising from background clutter, there will be mismatches, as well as missing matches. To discard the
ambiguous features, Lowe proposed an effective measure by comparing the distance of the closest neighbor to
that of the second-closest neighbor. Plus, the second-closest neighbor is defined as the closest neighbor that
comes from a different object than the first match. This measure is based on the assumption that correct matches
need to have the closest neighbor significantly closer than the closest incorrect match to achieve reliable match-
ing. In the original literature, the keypoint match implementation rejects all matches in which the distance
ratio of the first and second neighbor is greater than 0.8. This value eliminates 90% of the false matches while
discarding less than 5% of the correct matches. In our experiments, we adopt the same ratio value.

Bag-of-words first, a large number of SIFT features, computed from the sampled patches using a keypoint
detector, are extracted from the image dataset. To build the “codebook” and classify the image, we use a
similar implementation as the method presented in [22]. All the descriptors are hierarchically quantized in a
vocabulary tree, which defines a hierarchical quantization that is built by hierarchical k-means clustering. A
hierarchical scoring scheme is applied to recognition images from the training data set. As indicated in [22],
better performance quality could be obtained with a larger vocabulary. Here, we build a vocabulary tree with
ten branch factor and four levels, which results in 10,000 leaf nodes in total. This setup has been shown to give
good performance in preliminary experiments.

4.2 Evaluation results: object identification task

Evaluation on ETH-80. We report here a comparative evaluation between the match kernel, the keypoint match,
the VG-PMK, and the bag-of-words methods on object identification using the ETH-80 database. We conducted
two series of experiments. In the first, the task consisted of identifying an object between a group of 10 objects,
all belonging to the same category (10 apples, 10 cars, etc). In the second, the task consisted of identifying an
object between a group of 80 objects, i.e. the whole ETH database. Figure 5 shows the identification results on
each object category as well as the whole database.

We see that the match kernel approach outperforms the other three methods on both series of experiments;
the second best performance is achieved by the keypoint match method. Note that both are exact methods.
The VG-PMK and bag-of-words methods achieve lower performances on this object identification task. This is
probably due to their approximate matching approach, which may result in many incorrect matches on objects
of high similarity. As the number of total classes grows (multi-categories case), the generalization advantage
of SVM-based methods becomes more significant: the classification performance of the two kernel methods
maintains the same level, while the performance of the other two decreases significantly. Note that chance
performance would be just 1.25%.
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Figure 5: Comparison of different methods for objects identification on ETH-80 database.

Evaluation on KTH-IDOL2. As a second set of experiments on the object identification task, we evaluated
the four approaches on a place recognition database. As the KTH-IDOL2 database contains six pairs of image
sequences acquired by the same robot platforms under similar illumination and within close acquisition time,
each classifier is trained on one sequence, and tested on the pair sequence. In total, twelve run of experiments
were conducted; we report the average results with standard deviations (Table 4.2).

We see that overall the four methods achieve very high accuracy. The keypoint match method obtained the
best result, closely followed by the match kernel approach. Both methods perform better than the bag-of-words
and VG-PMK methods. It is worth noting that although the best result is obtained using the keypoint matching
method, the searching is computationally expensive. To query each frame from a database containing 120,000
keypoints descriptors (which amounts to about 1,000 images) takes about 3 seconds on a 2.8GHZ Pentium IV
machine with 2GB memory, which is not suitable for a robot localization task. This should be compared with
the recognition time for the match kernel approach, that achieves the second best result, amounting to less than
300ms per frame in the same conditions. We can therefore conclude that the match kernel is the most effective
recognition approach for the object identification task.

Keypoint Match Match Kernel + SVM VG-PMK + SVM Bag-of-words
Classification rate 97.44 ± 0.97 97.19 ± 1.61 94.53 ± 1.38 94.92 ± 1.57

Table 1: Classification rate for the place recognition task (KTH-IDOL database), for all methods.

4.3 Evaluation results: object categorization task

Evaluation on ETH-80. We report here the comparative evaluation between the match kernel, the VG-PMK
and the bag of words methods on object categorization using the ETH80 database. We did not use for these
experiments the keypoint match approach, because it is not suitable for this task. The experimental setup
considered 8 object categories, and training and testing set were defined as described in section 4.1. Table 2
shows the obtained results for all methods. We see that the match kernel achieves the same performance as
the bag-of-words approach. However, it is worth noting that the match kernel works on less than 10 percent of
the features used by the bag-of-words approach ∗. It has been shown by many authors that recognition rates

∗When extracting the features, we fixed the threshold of the Harris-Laplace detector so to produce an average of 45 interest points
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always benefit from having larger numbers of features per images. In addition, when extracting an average of
256 features per set using uniformly sampling, the exact matching approach yields a recognition rate close to
90%, as reported in [10].

Evaluation on Caltech-101. For the Caltech-101 dataset, we followed the standard setup adopted in the
literature, i.e. we randomly selected a certain number (15 in our experiment) of training images per class and
test on the remaining images reporting the average accuracy. The recognition rates were normalized according
to the number of test images per class. We repeated the random selection 10 times and report the average
classification accuracy with standard deviations. The features were extracted using Harris-Laplace interest
operator, and each image had on average 356 features. To built the bag-of-words representation we used the
random sampling strategy suggest in [23], and found that 5,000 feature (“words”) per image could obtain good
performance. Table 3 shows the average classification results for all methods.

The best performance achieved with the bag-of-words approach on the Caltech-101 is of 39.36%, which is
significantly lower than the 51% obtained by the match kernel. This result is slightly higher than the result
obtained by the VG-PMK method (50%). We can also compare the result obtained by the match kernel with
those reported in the literature for some other kernel approaches. For instance, the local kernel proposed by
Zhang et al [31] obtains an accuracy of 53.9%, while the PMK built on sets of spatial features achieves an
accuracy of 56.4% [15]. However, these results are built on more complicated or powerful representations, e.g.,
the PMK result is obtained by using features sampled uniformly on a grid which had on average 1140 features
per images. This explains their slightly higher performance compared to the match kernel.

On the basis of these results, and of all the results reported in this paper, we can conclude that (a) exact
matching is the strategy that yields the best results for the object recognition task, as it performs well for both
object identification and object categorization; (b) the match kernel is the most effective exact approach, as it
combines the power of SVM with the exact matching strategy. The gain in performance of the match kernel
comes at a computational cost higher than that of VG-PMK. These points seem to suggest that whenever the
computational cost during training is very relevant and when tackling the object categorization problem, one
should opt for the approximate matching kernel. In all other cases, the exact matching kernel seems the best
available option.

Match Kernel + SVM Bag-of-words PMK[10]
Classification rate 75.5 75.5 73.0

Table 2: Comparison on object categorization on ETH-80 database.

Match Kernel + SVM Bag-of-words PMK[10]
Classification rate 51.05 39.36 50

Table 3: Comparison on object categorization on Caltech-101 database.

5 Conclusions

This paper presents a benchmark evaluation between the match kernel and the pyramid match kernel, respec-
tively an exact and an approximate approach for solving the correspondence problem between sets of unordered
features. Our results show that the exact method is consistently better than the proximate one. A big selling
point of approximate technique is, traditionally, their lower algorithm complexity compared to the exact meth-
ods. This should of course be considered when opting for a method or the other. Therefore, as the main

per image. As opposed to this, for sampling the patches from the images to build the codebook of the bag-of-words representation, we
used the Lowe’s keypoint detector, resulting in an average of 649 visual words per image.
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contribution of this paper, we provide an experimentally grounded suggestion for when to favor the match
kernel and when the VG-PMK.

While this paper aims at comparing two existing and popular kernels for local descriptors, it would be
interesting to design new match kernels, based on matching heuristics that are commonly used for stereo image
matching, such as [25, 24, 32]. The results shown in this paper should also be validated further, repeating the
benckmark evaluation for several feature types, including space-time interest point detectors and descriptors
[13].
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