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An Attention Module for Object Detection in Cluttered Images
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Abstract

In this paper, we propose a visual attention module that automatically detects the regions of an input
previously unseen image, which aremore likelyoccupied by a known object. The module can be integrated
in many object recognition systems for reducing the image space in which to search the object, and the
computational costs. The strategy has been tested on two public real-world image databases showing good
performances. Moreover, we measured the usefulness of thisselective visual attention by comparing the
performances of the SIFT recognition algorithm with and without the proposed attention module.

1 Introduction

The recognition of the objects of a given database in an unknown image consists in finding a correspondence
between features describing the objects and the image. In the last years many approaches have been developed,
e.g. [17], [20], [18], [19], [22], [30], but a completely automatic efficient system for object recognition is
not yet available. One of the main difficulties in automatic object recognition is thelack of information about
the presence, the position and the number of occurrences of the objects inthe image. This results in the
necessity of extending the object search to the whole image and consequently in a long time for the feature
extraction and matching. Pruning strategies - typically relating to geometric and appearance-based constraints
- are particularly necessary when the algorithm complexity depends on the number of image pixels or regions
to be analyzed [1], [17], [19], [18], [20].
In the human visual system, avisual attentionmechanism allows to rapidly detect the location of the most
interesting components of the seen scene [5], [14], [28]. Human visualattention consists of two complementary
processes, which generally work in parallel. In the first one, namedbottom-upattention, human attention is
involuntarily attracted by some visuallysalient features, like contrasts, luminance, brilliant colors, direction
and speed of the motion. Asalient mapencoding these conspicuous stimuli is automatically computed in less
than 50ms in the early visual cortex area. In the second process, calledtop-downattention, the human visual
system focuses on specific locations or objects in the scene, depending on the task at hand, like for instance
to establish the presence and the position of a certain object in a room or to recognize a person. The top-
down attention is controlled by a complex brain network, that connects the cognitive areas to the early visual
cortex, and differently from the bottom-up attention it requires voluntary efforts and more time (about 200 ms
per scene). Understanding how the visual attention mechanism works is anattractive still unsolved challenge
not only in Neuroscience but also in Computer Vision, where tasks such assurveillance, object recognition or
semantic image annotation, could take advantages by simulating this human capability[2], [7], [27]. Therefore,
many computational models of visual attention have been developed [11], and many works show that simulating
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visual attention improves the accuracy and the efficiency of the software tools for object recognition in images
[3], [9], [24].

In this work, we present a novel simple top-down attention module, that can be easily integrated in any
system for the detection and recognition of objects in color images with clutteredbackground. The module
selects the image portions where to find the objects is more probable. Even if theproblem has been addressed
by other methods, as far as we know, the exact approach we present here has never published previously. We
represent each objectO to be detected by a multi-view model, i.e. by many color pictures portraying it from
different points of view. For each of these pictures, the set of pixels corresponding to the object (i.e. the view)
is specified by a binary mask. We describe each object view and the input (previously unseen) imageI by
parts, calledcovers, and we compute acorrespondence map, that assigns to each cover ofI a confidenceto be
occupied by a cover ofO. The confidence is expressed in terms of visual similarity between the considered
covers. More precisely, each view and image cover is described by a vector of low-level features encoding
information about color, texture and edge distributions. The correspondence map associates each coverC of I

to the object coverCO that is visually the most similar toC. The visual similarity between the covers is defined
as theL1 distance between their descriptor vectors. A thresholdτ on the visual similarity is then used to find
out the regions (if any) ofI whereO is more likely positioned.

Three are the novelties of our method: firstly, we represent the objects and the image by partstopologically
defined and we describe each part byglobal low-level descriptors; secondly, we define an object-imagecorre-
spondence map, that specifies for each object aconfidence levelto occupy a given image part; finally, in order
to reduce the user interaction, we propose anautomatic estimateof the main parameters used in our approach.

The description of an object or image by parts is not new: many popular methods, e. g. [8], [19], [22], [23]
represent the objects and the image by sets of pixels, termedinterestor key points. These are characterized by
salientfeatures that allow a good recognition of the object which they belong to, likepixel brightness, color,
high curvature, gradient orientation. In some cases [6], [8], [13], [15], [22], groups of adjacent interest points
(interest regions) are considered. The detection of the key points simulates a bottom-up mechanism tailored to
object recognition, but this method is strongly dependent on the choice of the salient features, that are not easy
to be determined. Often supervised learning strategies are namely employed for their selection [16], [26].
Unlike the saliency-based methods, our approach does not implement any bottom up attention strategy, as it
avoids the definition and the extraction of the features that are the most relevant for the recognition task. In fact,
the covers are not defined by their visual properties, but by the following topologicalcondition: a cover of an
object view (or of an image) is the intersection set between a circle and the view (or of the image). Changing
the radius and the center coordinates of the circles, we can define many different sets of covers. Although the
radius and the center as well as the thresholdτ can be entered by the user, we developed and implemented a
technique to estimate them automatically. Therefore, the task to direct the procedure to efficiently recognize
the objects is not completely left to the user, that often does not have a precise idea about the optimal values of
the system parameters. The correspondence map we compute makes the recognition process more efficient: it
allows to circumscribe the detection process to some image areas, and establishes a priority on the order of the
image portions where the objects have to searched, and of the objects to be detected (from the most to the less
probable). The experiments carried out on two public real-world datasetsshows that on average our approach
restricts the search for an object to the 50 % of the area of the input image. This finally results in a reduction of
the computational time for the recognition.

In order to demonstrate the effectiveness of our visual attention module, we have integrated it into the well
known algorithm SIFT [19]. This achieves object recognition by selectingand matching scale-, illuminant- and
noise- invariant key points extracted from the objects as well as from the input image. Our selection of the
image regions with high confidence to contain an object reduces of the 47% the number of key points of the
image to be matched with the key points of the object, without affecting the SIFT performances.

Synopsis - Section 2 explains how to compute and to describe the object and image covers, while Section 3
defines the correspondence map. Section 4 illustrates the automatic estimates ofthe parameters for the cover
computation. Section 5 presents the performance evaluation experiments. Section 6 proposes some applications
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Figure 1: An object (here a pear) is represented by many 2D images depicting it from different viewpoints. For
each image, the part actually correspondent to the object is defined by a binary image: the black pixels belong
to the object and form the support of the view, while the white pixels belong to the background.

of our approach in object recognition. Section 7 presents a comparison of our approach with one saliency-based
method. Finally, Section 8 contains our concluding remarks and outlines our future work.

2 Computation and Description of Object and Image Covers

Let D be the database of the objects to be searched for. Each objectO in D is modeled through a set of 2D
color pictures portraying it from different points of view. The object view depicted in one of these pictures
is the portion of the picture that actually corresponds to the object, while the rest of the picture is regarded as
transparent. In practice, to each picture is associated a binary image, where the black pixels refer to the object
view and the white pixels to the background. Figure 1 shows such a model ofan object.
Hereafter we refer to the set of coordinates of a certain portionP of an imageI as thesupportof P . There-
fore, the support of a viewv, here denoted by supp(v), is the set of coordinates of the black region in the
correspondent binary image, while the support of an imageI is the set of coordinates of the pixels ofI.

A cover of an object view (or of an image) is defined as the portion of the view (or of the image) whose
support is the intersection set between a circle and the support of the view(or of the image). A circle intersecting
a support of a view is considered in the cover generation only if (R1) the circle does not contain the whole view
support and (R2) the ratio between the overlapped area and the cover area is greater than a thresholdµ. These
conditions constrain the length of the radius and the position of the center of the cover. In particular, rule (R1)
forbids the generation of a trivial cover whose support coincides with the whole view support, while rule (R2)
controls the percentage of area of the view support that is covered by the circle and then avoids the creation of
too small covers. The radiusR of the circle is input by the user or estimated automatically by the procedure
detailed in Section 4 and it is the same for each database view. Since an objectcan appear in an image with
a size different from that of the model in the database, covers with different radii λjR, j = 1, . . . , m, are
generated, whereλj is a scale factor.
A cover of an image is similarly defined by the rules (R1) and (R2). In this case, rule (R1) states that the circle
must not contain the whole image support. The radius of the image covers isR.
We note that the covers of an object view or of an image are general not disjoint, i.e. they do not form a partition
of the view or of the image.
Each view and image cover is described by a vector of low-level descriptors, so that the visual similarity
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between a cover of a view and a cover of an image is expressed by theL1 distance between their feature
vectors. The more probable positions of an object in an image are determinedby comparing each image cover
with the multi-scale covers of the object to be searched for.

Subsections 2.1 and 2.2 contain the formal definitions of object and image covers, while Subsection 2.3
explains how the covers are described.

2.1 Object Covers

Let O be an object ofD, and letv be a reference view ofO. A cover of v is the intersection set between
a circle and supp(v). More precisely, the cover ofv with centerpk and radiusR is the portion ofv whose
pixels belong to the setB(pk, R) ∩ supp(v) whereB(pk, R) is the circle with centerpk and radiusR and
B(pk, R)∩ supp(v) 6= ∅. Moreover, by rule (R1), supp(v) is not properly included inB(pk, R), i.e. supp(v) 6⊂
B(pk, R) .

The computation of a setC(v) of covers for each object viewv is implemented as follows:

1. Compute the minimum bounding rectangle MBR(supp(v)) of supp(v), i.e. the rectangle including
supp(v) and having the smallest area;

2. Fix a regular gridG(v) = {pk ∈ MBR(supp(v))}k∈K on MBR(supp(v)), with K a set of indices;

3. DefineC(v) = {portion ofv with supportB(pk, R) ∩ supp(v) : pk ∈ G(v), µk ≥ µ}k∈K , where

µk :=
A(B(pk, R) ∩ supp(v))

A(B(pk, R))
=

1

πR2
A(B(pk, R) ∩ supp(v)), (1)

A(·) denotes the area of the region specified within the brackets andµ is a real number in (0,1].

(a) (b) (c)

Figure 2: Steps for the computation of the cover of the reference view (a): a grid is fixed on the MBR of the
view support and superimposed to the view (b); the circular regions extracted are shown in (c).

An example of covers for an object view is shown in Figure 2.
The cover set of a viewv depends on the values ofµ andR and on the grid superimposed on MBR(supp(v)).
These parameters are user inputs and determine the existence of a cover set forv. For instance, large values of
R make the conditionµk ≥ µ false for each node on the grid, so that no covers can be generated. For µ = 1.0,
only circles completely included in supp(v) are taken as covers.
Hereafter we assume that the objects in the database have similar aspect ratios. Otherwise, choosing a unique
radiusR for the covers of all the database objects is not recommendable, becausethin objects can be covered
only by covers with circles with diameter equal to the object thickness. By using the radius of these circles for
covering bigger objects, we would obtain a lot of covers, and the features describing the most of them could
not allow a good object detection. To overcome this problem, when a database contains objects with different
aspect ratios, we cluster the items by the aspect ratio and we consider eachcluster as a database of objects with
an uniform aspect ratio. Given an input image, we compute a correspondence map for each of these databases.
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However, in this work, we focus on databases with homogeneous aspectratio.
The valueµk defines the rule (R2). It measures the percentage of area ofv covered by the circleB(pk, R). If
µk is zero, the circleB(pk, R) does not intersect supp(v); a small value ofµk indicates thatB(pk, R) covers
only a small part of supp(v), like in the case of circles intersecting parts of supp(v) near to its boundary. The
thresholdµ is an user input, and it is used to exclude the covers with a small intersection area with the view.
These covers are in fact not relevant for the detection task. A typical variability range ofµ is [0.7, 1.0]. In this
work, we setµ = 0.75.
In principle, the user could choose any non zero positive value forR, but, as discussed above, the existence of a
database cover set is not guaranteed for each value ofR. In this work we propose two formulas for computing
R in order to generate non empty cover set for the objects. The formulas arerelating to the geometric properties
of the objects in the database.
For databases whose objects have an aspect ratioρ close to 1.0 (in this work,ρ ≥ 0.6), the value of the cover
radiusR is computed by the following formula:

R =
1

N
min
O∈D

{

√

A(supp(v))

π
, v view of O

}

(2)

whereN is an integer strictly positive number that is fixed by the user. The smallerN is, the larger the number
of covers for the object views is. In case of thin objects (hereρ < 0.6), the radius is set up as

R =
1

2N
min
O∈D

{

t(supp(v)), v view of O
}

(3)

andt(supp(v)) is the average thickness ofv.
Specifying a value forR such that the existence of a cover set and good detection performancesare guaranteed
could be a difficult task for an user, especially without having information about the objects. Formulas (2) and
(3) constraint the value ofR to the aspect ratio and to the area or thickness of the database views. By these
equations, the user fixes the value ofR throughN as portion of a function of the area or of the thickness of the
database views. Qualitatively, for the user, fixingN instead ofR is simpler than entering a numerical value for
R: for N = 1, R is the radius of the circle covering the smallest object view (by formula (2)) or one half of
the smallest average thickness (by formula (3)). The user can set up qualitatively the value ofN by looking at
the database views or just at the smallest and at the greatest views (in terms of area or thickness) and then to
fix the value ofN that he/she retains the most adequate. However, in Section 4 we present also a method for
estimatingN and henceR automatically.
In order to deal with changes of scale factor,multi-resolution coversof each database object are computed. The
user specifies a discrete set{λ0, . . . , λm} of scale factors withλ0 = 1.0 and for eachj = 0, . . . ,m, the view
covers with radiusλjR are computed.
To have the most complete description ofv, the nodespk := (xk, yk) of the grid have to be chosen such thatv is
almost entirely covered by the union of its covers. We sayalmostbecause the thresholdµ avoids the generation
of covers intersecting small portions ofv, generally close to the view boundary. In this work, we fix the grids
such that

|xk+1 − xk| = |yk+1 − yk| = λjR, (4)

for eachj = 0, 1, . . . ,m.
Other grids can be considered. In Section 5 we use a coarser grid and we analyze the dependency of the
detection accuracy on the grid resolution.

The covers of the object views having radiusλjR with j = 0, . . .m are saidobject covers with basisR. In
the following, we denote byC(O) the set of all the computed covers of the views ofO.

The cardinality of the set of the object covers depends on the number of reference views of the objects and
on the parameters{pk}k, µ andR (or N ). When many reference views are used in the object representation,
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the memory space requested for storing the object covers can be very large. In order to limit it and also to speed
up the description and matching of the covers, we reduce the number of views modeling each object by means
of the clustering algorithm described in [17]. The views of each object are grouped by a k-means algorithm and
the centroids of the obtained clusters identify therelevant views. Their number varies from object to object and
it is determined automatically. Here we do not illustrate this technique, but we remind to [17] for more details.

Figure 3 shows the multi-resolution covers computed for a view of a keyboard. In this exampleR = 28,λ0

= 1.0 for the coverage in the middle,λ1 = 0.7 andλ2 = 1.3 for the covers on left and right respectively.

2.2 Image Covers

Let D be the database of objects whose covers have basisR and letI be an unknown image where the objects
have to be detected. The covers ofI are the circlesB with radiusR, centered at the nodes of a regular grid
G(I) fixed onR

2 and such that

µI :=
A(B ∩ supp(I))

A(B)
=

1

πR2
A(B ∩ supp(I)) ≥ µ. (5)

The parameterµ is the same used for the computation of the object covers. The parameterµI is 1.0 for all the
circlesB entirely contained in supp(I). It is smaller than 1.0 for the circles that intersect the image support
on its borders and zero for those non intersecting the image support. The generation of the border covers is
controlled by the thresholdµ, that in this work is the same as that used for computing the object covers.

We note that it is not necessary that the nodes of the gridG(I) are spaced like those of the grid used for the
database objects. Generally, when a fine (coarse, resp.) grid has been used in the object covers computation, a
coarse (fine, resp.) grid is computed on the image.
Figure 4 (left) shows a cover set for a picture containing the keyboard of Figure 3. In this case,R = 28 but the
grid used for the computation of the image covers is coarser than that one used for covering the model of the
keyboard.

2.3 Cover Description

Each cover of an object view or of an image is described by the following low-level features: (i) color: his-
tograms of hue, intensity, and distribution of the saturation with respect to the hue; (ii ) edges: distribution of the
module of the edges detected by the image gradient; (iii ) texture: distributions of bi-dimensional co-occurrence
matrices of hue and intensity.
The computation of these descriptors is completely automatic and no user interaction is requested. The features
are encoded in a vector and the visual similarity between two covers is measured by theL1 distance between
the correspondent feature vectors. In [4] it has been reported that,for the considered descriptors, this distance
gives the best performances in terms of recognition accuracy and computational time. The considered features
are invariant to rescaling and in-plane rotations, so that rescaled and/orrotated versions of the database objects
can be detected. The visual similarity is normalized in order to range [0,1]. The closer to 0 the distance is, the
more similar the compared covers are.

3 Correspondence Maps

The correspondence map relates a cover set of an image with the cover sets of the objects in the database. As
mentioned in Section 1, it specifies for each object the confidence to occupy a certain cover of the image.

Let D be a database withn objectsO1, . . . , On, and letC(O1), C(O2), . . . ,C(On) be their cover sets with
basisR. Let I be an image and letC(I) be its cover set with radiusR. For each coverc of C(I) we define the
distanceof c from the objectOj (j = 1, . . .n), as

d(c, Oj) = min{δ(c, cv) : cv ∈ C(Oj)} (6)
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Figure 3: Three coverages at different resolutions (i.e. with different basis) of a view of a keyboard.

Legend: distance from 0 to 0.045

Figure 4: Left: The coverage of a picture depicting a scene with the keyboard of Figure 3 and Right: the
confidence regions selected by our algorithm.

whereδ(c, cv) denotes theL1 distance between the features vector ofc andcv. As mentioned in Subsection 2.3,
δ measures the visual similarity between the coversc andcv, and it ranges over [0, 1], therefored too ranges
over [0, 1].

Thecorrespondence maprelating the cover setsC(I) andC(Oj), j = 1, . . . ,n, is the functionM : C(I) ×
Πn

j=1C(Oj) → [0, 1]n such that∀ c ∈ C(I)

M(c, O1, . . . , On) = (d(c, O1), . . . , d(c, On)).

The complexity of the computation ofM is O(qz) wherez is the number of object covers andq is the cardi-
nality of C(I).

Distanced(c, Oj) provides aconfidence measureof the possibility that a coverc of C(I) is occupied by the
objectOj . The higher the distanced(c, Oj) is, the lower is the possibility thatOj is located in the image part
covered byc.

Theτ -confidence regionof I for the objectOj is the portion ofI composed by the image coversc1, . . . , ch

such thatd(ck, Oj) ≤ τ , for eachk = 1, . . . , h andτ is a threshold ranging over [0, 1]. Mathematically:

Ω(Oj) = ∪h
k=1{ck ∈ C(I) : d(ck, Oj) ≤ τ}. (7)

Figure 4 shows on left a grid superimposed to an image, where an instance of the keyboard of Figure 3 is
depicted. On right theτ -confidence regions of the keyboard are highlighted. In this example,τ = 0.045.

4 Automatic Estimate of Cover Basis and Similarity Threshold

The user inputs of our approach are: the database of the objects to be searched, an input (unseen) image, the
parametersµ, R, λ1, . . . ,λm and the thresholdτ .
Here we propose a strategy to set up automaticallyR andτ . It consists of the following steps:
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1. We randomly transform each view of the objects inD by changing its size and its in-plane orientation.
In this work, the scale factor and the orientation are chosen in [0.5, 1.5] and [0, 2π] respectively.

2. We computew basesR1, . . . , Rw by consideringw different values ofN in the formula (2) or (3),
depending on the object database.

3. For each radiusRi (i = 1, . . . ,w), we estimate a valueτi for the similarity threshold as follows:
1. we compute the covers with basisRi of the reference views and of their transformed versions;
2. we compute the ratioνi between the number of transformed views with non empty cover set and the
total number of views in the database, i.e.

νi =
#{T (v) : v is an object view inD and∃ C(T (v)) 6= ∅}

#{ object views inD}
(8)

where # indicates the cardinality of the subsequent set andT (v) is the change of scale and in-plane
orientation applied tov;
3. for each viewv we compute the distances

d(c, T (v)) = min{δ(c, cT ) : c ∈ C(v), cT ∈ C(T (v))}

and we fixτi as the value of the distancesd(c, T (v)) averaged on the number of viewsv in D.

The value ofνi varies in [0,1] and it is used to set up the value ofR andτ : in fact, a small valueνi indicates that
many set of covers with radiusRi are empty, and therefore this valueRi must be not considered. By default,
the values ofR andτ are given by the values of the pair(Ri, τi) with the smallest radius and maximumνi. By
this estimate, the parameters the user must set up, are the numberµ, a range of variability ofN (i.e. the number
w), and the scale factorsλi, i = 1, . . . ,m.

5 Performance Evaluation

Here we illustrate the tests we carried out on the two public real-world databases PONCE-DB [25] and PM-
GADGETS-03 of the Caltech Computational Vision Group. Both of them consist of a database of different
kinds of objects represented by a multi-view model and of a setS of test pictures containing the objects.

The performances of our visual attention module are evaluated by measuring how many objects and how
much part of them are recovered in the images ofS and the percentage of image area where the object search
can be focused. Since the considered datasets contain non thin objects, the radiusR has been computed by the
equation (2). The performance analysis has been repeated for three different values ofR obtained by setting up
N = 1, 2, 3 and the four values 0.02, 0.03, 0.04 and 0.05 for the thresholdτ . In addition, for each dataset we
also considered the value ofR andτ estimated automatically. The multi-resolution covers have been generated
by using the two scale factorsλ1 = 0.7 andλ2 = 1.3. The radius length is measured in pixels.
More precisely, for each pair(R, τ), for each imageI in S and for each instanceω of an objectO portrayed in
I, we compute theτ -confidence regionΩ of O. We evaluate the detection accuracy by the quantitiesΘ, Θ and
Σ defined as follows:

1. Θ(ω) = A(ω∩Ω)
A(ω) : the rate of the area ofω covered byΩ:

2. Θ(ω) = 1 − A(ω∩Ω)
A(Ω) : the rate of the area ofΩ not belonging toω;

3. Σ(Ω) = A(Ω)
A(I) : the rate of the image area selected byΩ, i.e. the rate of image area to be explored for

searchingO.
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In Tables 2, 3 and 5, the values ofΘ, Θ andΣ are averaged on the numberQ of object instances actually
portrayed in the test images. Moreover we compute thedetection ratedefined as the ratio between the number
of object instances whoseτ -confidence region hasΘ > σ, andQ. The parameterσ varies in [0, 1], and in the
following tests,σ = 0.00, 0.10, 0.50.
Let us now describe how false positives and misclassification cases are measured. For each objectO not present
in I, let Ω be itsτ -confidence region. The false positives are quantified byΣ(Ω), that is the percentage of the
area ofI covered byΩ. The values ofΣ(Ω) reported in Tables 2, 3 and 5 are averaged on the numberQ of the
objects not contained in the test pictures and they are simply indicated byΣ.
To quantify the misclassification cases, for each objectO not present inI, we compute the percentage ofΩ
overlapping a portion ofI where an objectO 6= O is depicted, i.e. the portion ofΩ that intersects an object
instanceω. This measure is indicated byM . Its values, averaged onQ, are reported in Tables 2, 3 and 5.

For the basisR giving the best performances (Rbest), we report also the mean rateΓ of image area com-
posed by the union of theτ -confidence regions of each database object (present or not in the image). In these
experiments we varied the values ofτ .

The experiments presented here have been carried out on a Pentium4 CPU2.80 GHz. On average, the
computation and description of the cover set of a view take about 0.04 seconds, while the mean time for the
computation of the correspondence map is about 46 seconds.

5.1 Experiments on PONCE-DB

PONCE-DB database has been built up by the Robotics and Computer Vision Laboratory Beckman Insti-
tute (Illinois, USA). It consists of 161 references images depicting 8 objects in different poses against an
almost uniform background and of 51 test pictures containing rescaled,rotated, partially occluded and differ-
ently illuminated instances of the objects. Objects, test images and ground-truthinformation are available at
http://tev.fbk.eu/DATABASES/objectsPonce.html.
We applied the clustering algorithm reported in [17] to reduce the storage memory space and to speed up the
computation of the correspondence maps, so that the total number of relevant views is 24. Table 1 shows the
three bases, the correspondent number of object covers, and the parametersν andτ automatically estimated.
The number of covers and the detection rate decrease by increasing the length of the basis. The worst results
are obtained for the coarsest object covers (N = 1). In the other cases, no empty covers are generated.
Tables 2 (a), (b), (c) show the detection performances for each pair(R, τ). The best results are obtained for the
values ofR andτ estimated automatically (R = 24, τ = 0.0391, in the last row of Table 2 (a)). In this case,
the mean percentage of object area detected is about 87%, while the percentage of image area to be explored is
about 43%. This means that the 57% of the image can be excluded from the object search. The detection rate
is very high for each value ofσ, and the values ofM andΣ are smaller than 30%. The mean value ofΓ is in
this case about 74%.
In order to analyze the dependency of the detection performances on thenumber of object covers, forR = 24,
we repeat the experiments by using a coarser grid for the generation of object covers, so that their final number
is 3126 instead of 6225. On the contrary, the image grid has not been modified. The results, reported in Table
3, show a noticeable decrement (about the 20%) of the detection rate.
Figure 5 shows theτ -confidence regions of each database object computed by usingτ = 0.03,R = 20.

R N. of Covers ν τ

24 6225 1.0000 0.0391
37 2384 1.0000 0.0333
73 487 0.8447 0.0246

Table 1: PONCE-DB: Results of the automatic set up of the cover radius andof the visual similarity threshold.
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Legend: distance from 0 to 0.03

Figure 5: Detection of theτ -confidence regions of the objects in a test image of PONCE-DB. The colorof each
image cover represents the value of the distance (6) from the object covers. Blue corresponds to distance 0,
while red corresponds to the similarity thresholdτ = 0.03. HereR = 20.

5.2 Experiments on PM-GADGETS-03

The PM-GADGETS-03 database has been built up by the Computational Vision Group of Caltech, (California,
USA). It consists of 48 references images portraying 36 objects underdifferent poses. These images are avail-
able along with two different test sets at http://www.vision.caltech.edu/html-files/archive.html.
Here we consider the test set namedTestScenes, including 45 test pictures with some rescaled, rotated,
partially occluded and re-lighted instances of the objects. Since the number of views used for representing each
object is very low, no clustering process is necessary. The values ofR considered in these experiments are
shown in Table 4 with the correspondent number of object covers, and with the parametersν andτ automati-
cally estimated. As for PONCE-DB, the best results are obtained for the finest object covers (N = 3).
The detection performances obtained by varyingR andτ are presented in the Tables 5 (a), (b), (c). The pair
(R, τ) estimated automatically allows a very high detection rate (greater than 0.98 forσ = 0.50) and the de-
tection of the 97% of the area of the objects depicted in the test images, but the image area excluded by the
object search is only the 21 % about, while the values measuring the false positive detection rate are higher
(60% about). Good results are obtained also by usingR = 20, andτ = 0.03. In this case the mean percentage
of object area detected is about 88%, while the percentage of image area tobe explored is about 57 %. The
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(a)R = 24 (Rbest)

τ Θ Θ Σ Detection Rate M Σ Γ

σ = 0.00 σ = 0.10 σ = 0.50

0.02 0.3611 0.4393 0.0601 0.7976 0.6517 0.3933 0.02596 0.0221 0.2071
0.03 0.6769 0.6719 0.2306 0.9888 0.9213 0.7416 0.0921 0.1246 0.4927
0.04 0.8827 0.7505 0.4393 1.0000 1.0000 0.9326 0.2165 0.3202 0.7607
0.05 0.9576 0.8070 0.5799 1.0000 1.0000 0.9888 0.3875 0.5749 0.8750

0.0391 0.8711 0.7466 0.4245 1.0000 1.0000 0.9326 0.2022 0.2987 0.7453

(b) R = 37

τ Θ Θ Σ Detection Rate M Σ

σ = 0.00 σ = 0.10 σ = 0.50

0.02 0.3053 0.3249 0.0388 0.6292 0.5169 0.3483 0.0157 0.01413
0.03 0.6031 0.6021 0.1667 0.9326 0.8539 0.6517 0.0621 0.0920
0.04 0.8584 0.7369 0.4023 1.0000 0.9888 0.9213 0.1660 0.2638
0.05 0.9543 0.7923 0.5534 1.0000 1.0000 1.0000 0.3361 0.5208

0.0333 0.7022 0.6725 0.2471 0.9775 0.9213 0.7865 0.0899 0.1385

(c) R = 73

τ Θ Θ Σ Detection Rate M Σ

σ = 0.00 σ = 0.10 σ = 0.50

0.02 0.1679 0.1430 0.0206 0.3146 0.2809 0.2359 0.0046 0.0059
0.03 0.3935 0.4147 0.0966 0.5955 0.5730 0.4382 0.0335 0.0406
0.04 0.7436 0.6866 0.3354 0.9326 0.9101 0.8089 0.1029 0.1563
0.05 0.9137 0.7767 0.515 0.9888 0.9888 0.9889 0.2432 0.3609

0.0246 0.2397 0.2045 0.0348 0.3820 0.3708 0.3034 0.0129 0.01154

Table 2: PONCE-DB: Detection Performances obtained for different values ofR and for different values ofτ .
The last row reports the results obtained by using the parameters estimated automatically.

τ Θ Θ Σ Detection Rate M Σ

σ = 0.00 σ = 0.10 σ = 0.50

0.02 0.2404 0.5204 0.0700 0.6517 0.5169 0.2247 0.0604 0.1251
0.03 0.5128 0.6361 0.2184 0.8315 0.7865 0.5393 0.2021 0.3604
0.04 0.7264 0.7123 0.4469 0.8427 0.8202 0.7753 0.4035 0.6156
0.05 0.8147 0.7431 0.6299 0.8427 0.8427 0.8427 0.5929 0.7664

Table 3: PONCE-DB: Detection performances obtained by using a coarser grid with respect to that fixed by
default (see formula (4)) andR = 24.

detection rate is very high for each value ofσ, and the values ofM andΣ are smaller than 26%. The value
of Γ is for this dataset very high, because many background parts of the testimages are similar to some object
covers, especially in the case of the glass bottle.

(a) (b) (c) (d)

Legend: distance from 0 to 0.1014

Figure 6: PM-GADGETS-03: Correspondence maps of the objects of theimage (a). The object contour has
been highlighted in the maps (b), (c), (d). Blue corresponds to the maximum similarity (distance is 0), while
red corresponds to 0.1014, that is the maximum distance between the image covers and the object covers.



Michela Lecca / Electronic Letters on Computer Vision and Image Analysis 8(2):68-83, 2009           79

R N. of Covers ν τ

20 20900 1.0000 0.0464
30 8534 0.9375 0.0423
60 1654 0.8334 0.0321

Table 4: PM-GADGETS-03: Results of the automatic set up of the cover basis and of the visual similarity
threshold.

(a)R = 20 (Rbest)

τ Θ Θ Σ Detection Rate M Σ Γ

σ = 0.00 σ = 0.10 σ = 0.50

0.02 0.6418 0.5746 0.3280 0.9588 0.9339 0.7190 0.0770 0.065 0.8060
0.03 0.8761 0.6870 0.5714 1.0000 0.9835 0.9339 0.2597 0.2449 0.9600
0.04 0.9499 0.7487 0.7199 1.0000 0.9917 0.9835 0.4546 0.4696 0.9666
0.05 0.9760 0.7845 0.8229 1.0000 1.0000 0.9835 0.6159 0.6619 0.9666

0.0464 0.9700 0.7743 0.7920 1.0000 1.0000 0.9835 0.5604 0.5962 0.9666

(b) R = 30

τ Θ Θ Σ Detection Rate M Σ

σ = 0.00 σ = 0.10 σ = 0.50

0.02 0.5736 0.4987 0.2552 0.9008 0.8678 0.6281 0.0425 0.0399
0.03 0.8387 0.6322 0.4831 0.9669 0.9587 0.9174 0.1805 0.1855
0.04 0.9375 0.7333 0.6726 1.0000 0.9917 0.9752 0.3674 0.4111
0.05 0.9658 0.7789 0.7883 1.0000 1.0000 0.9917 0.5361 0.6137

0.0423 0.9483 0.7481 0.7006 1.0000 0.9917 0.9834 0.4079 0.4610

(c) R = 60

τ Θ Θ Σ Detection Rate M Σ

σ = 0.00 σ = 0.10 σ = 0.50

0.02 0.4548 0.3216 0.1887 0.7355 0.7273 0.4876 0.0103 0.0131
0.03 0.7366 0.5695 0.3934 0.9008 0.9008 0.8347 0.1015 0.1182
0.04 0.8677 0.6976 0.5977 0.9422 0.9339 0.9174 0.2648 0.3183
0.05 0.9242 0.7539 0.7276 0.9752 0.9669 0.9504 0.4278 0.5227

0.0321 0.78237 0.5989 0.4348 0.9174 0.9091 0.8843 0.1331 0.1539

Table 5: PM-GADGETS-03: Detection Performances obtained for different values ofR and for different values
of τ . The last row reports the results obtained by using the parameters estimated automatically.

Figure 6 shows the correspondence maps of the objects of a picture of PM-GADGETS-03. The maximum
distance between the image and object’s covers is 0.1014.

6 Integration in an Object Recognition System

As mentioned in Section 1, our visual attention module can be integrated in different ways in an object recog-
nition system to reduce the complexity of the search and to improve its performances.

Firstly, the correspondence map establishes an exploration order on the regions of the input image: from
the portion where it is more probable to find the objects to that where this probability is lower. The map also
determines an order on the objects to be searched for: from the most to the less probable. Finally, using the
thresholdτ for the selection of theτ -confidence regions allows to circumscribe the object search in specific
image portions and to restrict their matching to a subset of database objects.

By the priorities on the region exploration and on the object matching, the detection of the objects more
likely present in the image is put before the detection of the others. This couldhelp to discard false positives.
In systems like [17], where the object search is stopped when a number ofobject hypotheses in a certain
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image portion is found, these ordering criteria could be used to improve the performance in terms of time. The
hierarchies imposed by the correspondence map could be also integrated insemi-automatic systems for object
recognition, where the user stops the search process when the objects are found or filters manually the object
hypotheses output by the system, like [10].

In order to measure the benefit of the integration of our attention module in object recognition, we compare
the performances of the well known object recognition algorithm SIFT [19] with and without the selection of
theτ -confidence regions.
SIFT assumes the multi-view model for the object representation and describes the database views and every
input image by key points, characterized by scale-, noise-, occlusion-,and illuminant- invariant features. Typi-
cally, the number of key points in an image is very large, so that their extractionand matching are remarkably
time consuming. For PONCE-DB, the mean number of the key points is 545 for theobject views, and 1782
for the test images. On average, selecting theτ -confidence regions object by object reduces the number of key
points of the test images to 831.
SIFT achieve the object recognition by comparing the key points of the test image with those of the given
objects and using a nearest-neighbor technique for retaining only the mostreliable matches. Although some
reliable matches are lost due to the selection of theτ -confidence regions, for 87 of the 89 object instances
contained in the test images of PONCE-DB, the use of theτ -confidence regions does not affect the SIFT recog-
nition performances. However, as shown in Figure 7, in the two cases where the matches are discarded, the
SIFT key points are very close to the selected image portions.
Finally, we notice that there are 6 cases where no reliable matches are found by SIFT, while our module detects
more that the 70% of the area of the object instances contained in those images. This suggests that our approach
could be also employed as an additional source in other tools for object detection.

SIFT KEY POINT

SIFT KEY POINTS

Figure 7: PONCE-DB: for these images the SIFT matches (highlighted by the white rectangles) are not included
in the area selected by theτ -confidence regions, but they are very close to them.

7 A comparison

As outlined in Section 1, our confidence region selection as guidance for object search does not simulate the
human bottom-up visual attention mechanism. This relies namely on the perception and extraction of con-
spicuities, like high curvature points or constrasts, which are then processed and tied together by the top-down
human mechanism for interpreting the visual scene. In many object recognition approaches, the conspicuities
are defined by interest operators [21] or salient feature detectors [13]. Here we compare our SIFT-integrated ap-
proach with the method described in [29] where the authors use a saliency-based model of bottom-up attention
for showing the usefulness of attention in object recognition. We choose this work among the others because it
has been tested on a small but public dataset (102TestImages) available at

https://netfiles.uiuc.edu/walther/www/wapcv04/
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Object Method [29] Our Method
Hits Missed Hits Missed

box 21 2 22 1
book 14 10 22 2

Table 6: 102TestImages: Comparison of our SIFT-integrated approachwith the method in [29]. For these
experiments,τ = 0.045.

Figure 8: 102TestImages: on left, the image containing the views of the book and the box taken as model for
these objects. On right, the two views cropped from the background.

and consisting on 102 real-world pictures with different objects.
In [29], for each object to be recognized and for every input image where the object has to be searched, they
compute the saliency map of Itti and Koch [12] and cluster the obtained key points in salient regions. The
object recognition is therefore reduced to matching the key points of the salient regions of the object and of the
image.
This selective attention algorithm has been applied in [29] for learning and recognizing objects in video se-
quences and in static images. Recognition is performed by describing and matching the selected key points by
SIFT. In [29], the authors use their approach for recognizing the book and the box of 102TestImages shown in
the picture reported in Figure 8 within the other 101 images of the database. 23of these contain the box and 24
the book, and among these, four contain both objects. Table 6 shows that on this dataset our approach performs
better: the book is recognized in 24 on 23 image, while the box is recognized in22 on 23 pictures. The re-
sults we achieve are really impressive, especially because in this case the object model is very poor, consisting
just of one view for object. Unfortunately, no results with other objects areavailable for this dataset in [29].
Comparing our approach with others in terms of performances is quite difficult because of the lack of common
public datasets. However, we are currently conceiving and designing experiments for further comparisons.

8 Concluding Remarks and Future Work

In this paper we presented a top-down attention module for selecting automatically the portions of an unseen
image more likely occupied by a known object. This task is accomplished by describing the object to be
searched for and the input image by parts, called covers, and by comparing each object cover with each image
cover in terms of visual global features. A correspondence map basedon the visual similarity between the
covers of the image and of the object defines for each image cover a confidence measure to be occupied by a
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part of the object. A strategy for estimating automatically some parameters used for the cover computation and
for the selection of the confidence regions is also proposed, limiting the userinteraction. The experiments we
illustrated here show good results: on average, about the 80% of the area of the database objects present in the
test images is detected and the percentage of the image area to be explored is reduced to the 50%. The integra-
tion of our approach in the SIFT recognition algorithm has resulted in a remarkably reduction of the number
of the key points to be matched and consequently of the computational time, without affecting the recognition
performances.
The main drawback of our approach is due to the low robustness of the cover descriptors to illuminant changes.
Therefore, future work will consist in introducing a color constancy algorithm to make the used features invari-
ant to changes of light and to make automatic also the choice of the scale factors involved in the multi-scale
generation of the object covers. We are currently conceiving and designing experiments to compare our ap-
proach with others on common databases. Finally we also aim to integrate it in the object recognition system
MEMORI [17].

Acknowledgments

The author would like to acknowledge Dr. Carla M. Modena for her inspiring suggestions and fruitful discus-
sions. Moreover, the author would like to thank the anonymous reviewers for their thoughtful work.

References

[1] A. Ahmadyfard and J. Kittler. Colour-based model pruning for efficient ARG object recognition. InProc.
of ICPR, 2002.

[2] Brandon Bennett. Combining logic and probability in tracking and scene interpretation. InLogic and
Probability for Scene Interpretation, Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2008. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

[3] E. Bermudez-Contreras, H. Buxton, and E. Spier. Attention can improve a simple model for object
recognition.Image Vision Comput., 26(6):776–787, 2008.

[4] R. Brunelli and O. Mich. Image retrieval by examples.IEEE Transactions on Multimedia, 2(3), 2000.

[5] C. Bundese and T. Habekost.Principles of visual attention: Linking mind and brain. Oxford university
Press, 2008.

[6] H. Deng, W. Zhang, E. N. Mortensen, T. G. Dietterich, and L. G. Shapiro. Principal curvature-based
region detector for object recognition. InCVPR, 2007.

[7] C. Elfers, O. Herzog, A. Miene, and T. Wagner. Qualitative abstraction and inherent uncertainty in scene
recognition. InLogic and Probability for Scene Interpretation, number 08091 in Dagstuhl Seminar Pro-
ceedings, Dagstuhl, Germany, 2008.

[8] V. Ferrari, T. Tuytelaars, and L. Gool. Simultaneous object recognition and segmentation from single or
multiple model views.Int. J. Comput. Vision, 67(2), 2006.

[9] S. Frintrop and E. Rome. Simulating visual attention for object recognition. In Proc. of the Workshop on
Early Cognitive Vision, 2004.

[10] Md. A. Hossain, R. Kurnia, A. Nakamura, and Y. Kuno. Interactive object recognition through hypothesis
generation and confirmation.IEICE - Trans. Inf. Syst., E89-D(7):2197–2206, 2006.



Michela Lecca / Electronic Letters on Computer Vision and Image Analysis 8(2):68-83, 2009           83

[11] L. Itti and C. Koch. Computational modeling of visual attention.Nature Reviews Neuroscience, 2(3):194–
203, 2001.

[12] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis.IEEE
Trans. Pattern Anal. Mach. Intell., 20(11):1254–1259, 1998.

[13] T. Kadir and M. Brady. Saliency, scale and image description.Int. J. Comput. Vision, 45(2):83–105, 2001.

[14] N. Kanwisher and E. Wojciulik. Visual attention: Insights from brain imaging. Nature Reviews Neuro-
science, (1):91–100, 2000.

[15] B. Ko and H. Byun. Extracting Salient Regions And Learning Importance Scores In Region-Based Image
Retrieval.Int. Journal of Pattern Recognition and Artificial Intelligence, (17(8)):1349–1367, 2003.

[16] S. Lazebnik, C. Schmid, and J. Ponce. Semi-local affine parts forobject recognition. InProc. of BMCV,
2004.

[17] M. Lecca. Object recognition in color images by the self configuring system MEMORI. Int. Journal of
Signal Processing, 3(3), 2006.

[18] H. Lei, C. Han, B. Everding, and W. Wee. Graph matching for object recognition and recovery.Pattern
Recognition, 37, 2004.

[19] D. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer
Vision, 20:91–110, 2003.

[20] M. Marszalek and C. Schmid. Semantic hierarchies for visual objectrecognition. InProc. of CVPR, 2007.

[21] K. Mikolajczyk and C. Schmid. Scale & affine invariant interest pointdetectors.Int. J. Comput. Vision,
60(1):63–86, 2004.

[22] S. Obdrzalek and J. Matas. Object recognition using local affine frames on distinguished regions. InProc.
of BMVC, 2002.

[23] B. Platel, E. Balmachnova, L. Florack, and B. M. ter Haar Romeny. Top-points as interest points for image
matching. InECCV (1), volume 3951 ofLecture Notes in Computer Science, pages 418–429. Springer,
2006.

[24] A. L. Rothenstein and J. K. Tsotsos. Attention links sensing to recognition. Image Vision Comput.,
26(1):114–126, 2008.

[25] F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. 3D objectmodeling and recognition using local
affine-invariant image descriptors and multi-view spatial constraints.IJCV, 66(3), 2006.

[26] C. Schmid, R. Mohr, and C. Bauckhage. Evaluation of interest point detectors.Int. J. Comput. Vision,
37(2):151–172, 2000.

[27] A. Torralba. Contextual priming for object detection.Int. J. Comput. Vision, 53(2):169–191, 2003.

[28] J. K. Tsotsos, L. Itti, and G. Rees.A Brief and Selective history of Attention, Neurobiology of Attention.
Elsevier/Academic Press, 2005.

[29] D. Walther, U. Rutishauser, C. Koch, and P. Perona. On the usefulness of attention for object recognition.
In Proc. of the 2nd international Workshop on Attention and Performance onComputational Vision, 2004.

[30] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local features and kernels for classification of
texture and object categories: A comprehensive study.Int. Journal of Computer Vision, 73(2):213–238,
2007.


