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Abstract

In this paper, we propose a visual attention module thatraatically detects the regions of an input
previously unseen image, which armre likelyoccupied by a known object. The module can be integrated
in many object recognition systems for reducing the imagecsgn which to search the object, and the
computational costs. The strategy has been tested on twit pedl-world image databases showing good
performances. Moreover, we measured the usefulness o$élastive visual attention by comparing the
performances of the SIFT recognition algorithm with andhwitt the proposed attention module.

1 Introduction

The recognition of the objects of a given database in an unknown imagéstom finding a correspondence
between features describing the objects and the image. In the last yegrappaoaches have been developed,
e.g. [17], [20], [18], [19], [22], [30], but a completely automatic eifint system for object recognition is
not yet available. One of the main difficulties in automatic object recognition itatheof information about
the presence, the position and the number of occurrences of the objebis image. This results in the
necessity of extending the object search to the whole image and congdnenlong time for the feature
extraction and matching. Pruning strategies - typically relating to geometricgreheance-based constraints
- are particularly necessary when the algorithm complexity depends oruthber of image pixels or regions
to be analyzed [1], [17], [19], [18], [20].

In the human visual system,vésual attentionmechanism allows to rapidly detect the location of the most
interesting components of the seen scene [5], [14], [28]. Human \a¢tggition consists of two complementary
processes, which generally work in parallel. In the first one, nabmttbm-upattention, human attention is
involuntarily attracted by some visualbalientfeatures, like contrasts, luminance, brilliant colors, direction
and speed of the motion. galient mapencoding these conspicuous stimuli is automatically computed in less
than 50ms in the early visual cortex area. In the second process, tiebwnattention, the human visual
system focuses on specific locations or objects in the scene, depemdihg task at hand, like for instance
to establish the presence and the position of a certain object in a room cragnize a person. The top-
down attention is controlled by a complex brain network, that connects that@gareas to the early visual
cortex, and differently from the bottom-up attention it requires voluntafigresf and more time (about 200 ms
per scene). Understanding how the visual attention mechanism worksitractive still unsolved challenge
not only in Neuroscience but also in Computer Vision, where tasks sustirasillance, object recognition or
semantic image annotation, could take advantages by simulating this human cafbjliy [27]. Therefore,
many computational models of visual attention have been developed [#Ifyamy works show that simulating
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visual attention improves the accuracy and the efficiency of the softwaleftr object recognition in images
[3], [9], [24].

In this work, we present a novel simple top-down attention module, that eagasbily integrated in any
system for the detection and recognition of objects in color images with clutekround. The module
selects the image portions where to find the objects is more probable. Evempibthlem has been addressed
by other methods, as far as we know, the exact approach we pregerttds never published previously. We
represent each obje€l to be detected by a multi-view model, i.e. by many color pictures portraying it from
different points of view. For each of these pictures, the set of pixelesponding to the object (i.e. the view)
is specified by a binary mask. We describe each object view and the immviqusly unseen) imagg by
parts, calleccovers and we compute eorrespondence maghat assigns to each cover b confidencedo be
occupied by a cover of). The confidence is expressed in terms of visual similarity between the evedid
covers. More precisely, each view and image cover is described bgtarva low-level features encoding
information about color, texture and edge distributions. The correspm®map associates each cavesf 1
to the object cove€', that is visually the most similar t6'. The visual similarity between the covers is defined
as theL! distance between their descriptor vectors. A threshateh the visual similarity is then used to find
out the regions (if any) of whereO is more likely positioned.

Three are the novelties of our method: firstly, we represent the objedthanmage by part®pologically
defined and we describe each partdbgbal low-level descriptors; secondly, we define an object-imeqee-
spondence maphat specifies for each objectanfidence leveb occupy a given image part; finally, in order
to reduce the user interaction, we proposeaatomatic estimatef the main parameters used in our approach.

The description of an object or image by parts is not new: many popular netaod. [8], [19], [22], [23]
represent the objects and the image by sets of pixels, teimer@stor key points These are characterized by
salientfeatures that allow a good recognition of the object which they belong toplited brightness, color,
high curvature, gradient orientation. In some cases [6], [8], [11H].[[22], groups of adjacent interest points
(interest regionsare considered. The detection of the key points simulates a bottom-up nsnhaitored to
object recognition, but this method is strongly dependent on the choice shtlent features, that are not easy
to be determined. Often supervised learning strategies are namely empioyldif selection [16], [26].

Unlike the saliency-based methods, our approach does not implemenbaagntup attention strategy, as it
avoids the definition and the extraction of the features that are the mosimeferthe recognition task. In fact,
the covers are not defined by their visual properties, but by the folgptgpologicalcondition: a cover of an
object view (or of an image) is the intersection set between a circle and thdaief the image). Changing
the radius and the center coordinates of the circles, we can define méengnlifsets of covers. Although the
radius and the center as well as the threshotiin be entered by the user, we developed and implemented a
technique to estimate them automatically. Therefore, the task to direct thedprede efficiently recognize
the objects is not completely left to the user, that often does not haveiagmea about the optimal values of
the system parameters. The correspondence map we compute makesdgmitimtprocess more efficient: it
allows to circumscribe the detection process to some image areas, and establsiority on the order of the
image portions where the objects have to searched, and of the objectsdtebted (from the most to the less
probable). The experiments carried out on two public real-world dataketss that on average our approach
restricts the search for an object to the 50 % of the area of the input imaggefifally results in a reduction of
the computational time for the recognition.

In order to demonstrate the effectiveness of our visual attention modalbawe integrated it into the well
known algorithm SIFT [19]. This achieves object recognition by seleaimymatching scale-, illuminant- and
noise- invariant key points extracted from the objects as well as from fhea image. Our selection of the
image regions with high confidence to contain an object reduces of the 47%uthber of key points of the
image to be matched with the key points of the object, without affecting the SIFdrpmnces.

Synopsis - Section 2 explains how to compute and to describe the object and image, cglidesSection 3
defines the correspondence map. Section 4 illustrates the automatic estinthepafameters for the cover
computation. Section 5 presents the performance evaluation experimectisn$eproposes some applications
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Figure 1: An object (here a pear) is represented by many 2D imagedidgpidrom different viewpoints. For
each image, the part actually correspondent to the object is definedibgirgt bnage: the black pixels belong
to the object and form the support of the view, while the white pixels belongetbalckground.
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of our approach in object recognition. Section 7 presents a compaifisom approach with one saliency-based
method. Finally, Section 8 contains our concluding remarks and outlinesiowefwork.

2 Computation and Description of Object and Image Covers

Let D be the database of the objects to be searched for. Each ébjecD is modeled through a set of 2D
color pictures portraying it from different points of view. The objectwidepicted in one of these pictures
is the portion of the picture that actually corresponds to the object, while gh@f¢he picture is regarded as
transparent. In practice, to each picture is associated a binary images thikeblack pixels refer to the object
view and the white pixels to the background. Figure 1 shows such a modelaject.
Hereafter we refer to the set of coordinates of a certain poiasf an imagel as thesupportof P. There-
fore, the support of a view, here denoted by supp), is the set of coordinates of the black region in the
correspondent binary image, while the support of an imaigethe set of coordinates of the pixels bf

A cover of an object view (or of an image) is defined as the portion of the Y& of the image) whose
support is the intersection set between a circle and the support of théariefthe image). A circle intersecting
a support of a view is considered in the cover generation only if (R1)ithke cloes not contain the whole view
support and (R2) the ratio between the overlapped area and the ceads greater than a threshqld These
conditions constrain the length of the radius and the position of the centez obtrer. In particular, rule (R1)
forbids the generation of a trivial cover whose support coincides wetwthole view support, while rule (R2)
controls the percentage of area of the view support that is coverecelmyrtile and then avoids the creation of
too small covers. The radiuB of the circle is input by the user or estimated automatically by the procedure
detailed in Section 4 and it is the same for each database view. Since anaajexgipear in an image with
a size different from that of the model in the database, covers with éifteradii \; R, j = 1, ..., m, are
generated, wherg; is a scale factor.
A cover of an image is similarly defined by the rules (R1) and (R2). In this,qate (R1) states that the circle
must not contain the whole image support. The radius of the image covgrs is
We note that the covers of an object view or of an image are generaigjoind, i.e. they do not form a partition
of the view or of the image.
Each view and image cover is described by a vector of low-level dessijpso that the visual similarity
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between a cover of a view and a cover of an image is expressed h¥'théstance between their feature
vectors. The more probable positions of an object in an image are deterbyireanparing each image cover
with the multi-scale covers of the object to be searched for.

Subsections 2.1 and 2.2 contain the formal definitions of object and images¢cavhile Subsection 2.3
explains how the covers are described.

2.1 Object Covers

Let O be an object ofD, and letv be a reference view af. A cover ofv is the intersection set between
a circle and sup@). More precisely, the cover af with centerp;, and radiusR is the portion ofv whose
pixels belong to the seB(py, R) N supfv) where B(pg, R) is the circle with centep,, and radiusR and
B(pg, R) N'supdv) # (). Moreover, by rule (R1), sugp) is not properly included itB(py, R), i.e. supiv) ¢
B(pk, R) .

The computation of a sék(v) of covers for each object viewis implemented as follows:

1. Compute the minimum bounding rectangle MBR(gupp of supgwv), i.e. the rectangle including
supfv) and having the smallest area;

2. Fixaregular grid7(v) = {pr € MBR(Supgv)) }rex on MBR(supfv)), with K a set of indices;
3. DefineC(v) = {portion of v with supportB(py, R) N Supgv) : px € G(v), ux > pulrex, where

A(B(py, R) N supiv)) _ 1
A(B(pr, F) R

g, = A(B(pk, ) N'sUpfv)), (1)

A(-) denotes the area of the region specified within the bracketg &néd real number in (0,1].

(@) (b)

Figure 2: Steps for the computation of the cover of the reference viewa(gjid is fixed on the MBR of the
view support and superimposed to the view (b); the circular regionsaettare shown in (c).

An example of covers for an object view is shown in Figure 2.

The cover set of a view depends on the values pfand R and on the grid superimposed on MBRpfv)).
These parameters are user inputs and determine the existence of astdeer sFor instance, large values of
R make the conditiom, > u false for each node on the grid, so that no covers can be generargd =-1.0,
only circles completely included in sufyp are taken as covers.

Hereafter we assume that the objects in the database have similar aspectQ#tierwise, choosing a unique
radius R for the covers of all the database objects is not recommendable, bebhauebjects can be covered
only by covers with circles with diameter equal to the object thickness. Byubkimradius of these circles for
covering bigger objects, we would obtain a lot of covers, and the featlgscribing the most of them could
not allow a good object detection. To overcome this problem, when a databatins objects with different
aspect ratios, we cluster the items by the aspect ratio and we consided@steln as a database of objects with
an uniform aspect ratio. Given an input image, we compute a correspoadgnap for each of these databases.
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However, in this work, we focus on databases with homogeneous aafiect

The valuey, defines the rule (R2). It measures the percentage of are@ofered by the circld3(p, R). If

Lk 1S zero, the circleB(px, R) does not intersect supyp); a small value ofu, indicates that3(px, R) covers
only a small part of sup), like in the case of circles intersecting parts of supmear to its boundary. The
thresholdy is an user input, and it is used to exclude the covers with a small intersectiarwéth the view.
These covers are in fact not relevant for the detection task. A typaséhility range ofu is [0.7, 1.0]. In this
work, we sety = 0.75.

In principle, the user could choose any non zero positive valu&fdut, as discussed above, the existence of a
database cover set is not guaranteed for each vallée bf this work we propose two formulas for computing
R in order to generate non empty cover set for the objects. The formulaslatiag to the geometric properties
of the objects in the database.

For databases whose objects have an aspectgatmse to 1.0 (in this workyp > 0.6), the value of the cover
radiusR is computed by the following formula:

1 A(supgw)) :
R—N(r)nel]r:l){ f,UVIeWOfO} (2)

whereN is an integer strictly positive number that is fixed by the user. The smillist the larger the number
of covers for the object views is. In case of thin objects (hete0.6), the radius is set up as

R = % (r)neig {t(supr(u)), v View ofO} (3)
andt(supfv)) is the average thickness of

Specifying a value foR such that the existence of a cover set and good detection performareagsaranteed
could be a difficult task for an user, especially without having informatlmuathe objects. Formulas (2) and
(3) constraint the value ak to the aspect ratio and to the area or thickness of the database views. sBy the
equations, the user fixes the valuefdothroughN as portion of a function of the area or of the thickness of the
database views. Qualitatively, for the user, fixiNgnstead ofR is simpler than entering a numerical value for
R: for N = 1, R is the radius of the circle covering the smallest object view (by formula (2pne half of

the smallest average thickness (by formula (3)). The user can se@lifatjively the value ofV by looking at

the database views or just at the smallest and at the greatest views (in feares or thickness) and then to
fix the value of vV that he/she retains the most adequate. However, in Section 4 we prisseatraethod for
estimatingV and hence? automatically.

In order to deal with changes of scale factaglti-resolution coversf each database object are computed. The
user specifies a discrete geYy, . .., A\, } of scale factors with\; = 1.0 and for eachj = 0, ..., m, the view
covers with radius\; R are computed.

To have the most complete descriptiorvpthe nodegy, := (=, v ) of the grid have to be chosen such thag
almost entirely covered by the union of its covers. We aayostbecause the thresholdavoids the generation

of covers intersecting small portions of generally close to the view boundary. In this work, we fix the grids
such that

|Tht1 — k| = Y1 — Y| = Aj R, 4)

foreachj =0, 1,...,m.
Other grids can be considered. In Section 5 we use a coarser grid amhalyze the dependency of the
detection accuracy on the grid resolution.

The covers of the object views having radiugk with j = 0, ...m are saidobject covers with basi&. In
the following, we denote bg(O) the set of all the computed covers of the viewsof

The cardinality of the set of the object covers depends on the numbefenénce views of the objects and
on the parametergpy }1, © and R (or N). When many reference views are used in the object representation,
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the memory space requested for storing the object covers can be \g@y llaorder to limit it and also to speed

up the description and matching of the covers, we reduce the number of medeling each object by means

of the clustering algorithm described in [17]. The views of each objecyesuped by a k-means algorithm and

the centroids of the obtained clusters identify tblevant viewsTheir number varies from object to object and

it is determined automatically. Here we do not illustrate this technique, but we dem|i 7] for more details.
Figure 3 shows the multi-resolution covers computed for a view of a kegbadarthis exampleR = 28, Ag

= 1.0 for the coverage in the middI&; = 0.7 and\, = 1.3 for the covers on left and right respectively.

2.2 Image Covers

Let D be the database of objects whose covers have Baaigd let/ be an unknown image where the objects
have to be detected. The coversioére the circlesB with radius R, centered at the nodes of a regular grid
G(I) fixed onR? and such that

pr = AB Z(S;?FU)) = W}_l_-ig A(BnNsupdl)) > p. 5)
The parameter is the same used for the computation of the object covers. The pargmetet.O for all the
circles B entirely contained in sudp). It is smaller than 1.0 for the circles that intersect the image support
on its borders and zero for those non intersecting the image support. efeeation of the border covers is
controlled by the threshold, that in this work is the same as that used for computing the object covers.

We note that it is not necessary that the nodes of the@(it) are spaced like those of the grid used for the
database objects. Generally, when a fio@afse, resp.grid has been used in the object covers computation, a
coarsefine, resp). grid is computed on the image.

Figure 4 (left) shows a cover set for a picture containing the keybdaribare 3. In this casel = 28 but the
grid used for the computation of the image covers is coarser than that eddarscovering the model of the
keyboard.

2.3 Cover Description

Each cover of an object view or of an image is described by the followinglével features: ij color: his-
tograms of hue, intensity, and distribution of the saturation with respect tasejl) edges distribution of the
module of the edges detected by the image gradigintié€xture distributions of bi-dimensional co-occurrence
matrices of hue and intensity.

The computation of these descriptors is completely automatic and no usertioteracequested. The features
are encoded in a vector and the visual similarity between two covers is reddsyithel! distance between
the correspondent feature vectors. In [4] it has been reportedftihdlhe considered descriptors, this distance
gives the best performances in terms of recognition accuracy and ¢atigmal time. The considered features
are invariant to rescaling and in-plane rotations, so that rescaled antHted versions of the database objects
can be detected. The visual similarity is normalized in order to range [0,H cldser to 0 the distance is, the
more similar the compared covers are.

3 Correspondence M aps

The correspondence map relates a cover set of an image with the cts/ef e objects in the database. As
mentioned in Section 1, it specifies for each object the confidence toyeaatgrtain cover of the image.

Let D be a database with objectsOq, ..., 0O,, and letC(O,), C(O3), ...,C(O,,) be their cover sets with
basisR. Let I be an image and l€t(/) be its cover set with radiuB. For each cover of C(I) we define the
distanceof ¢ from the objecO; (j =1, ...n), as

d(c,0;) = min{d(c, ¢y) : ¢, € C(O;)} (6)
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Figure 3: Three coverages at different resolutions (i.e. with diffebesis) of a view of a keyboard.

Legend: distance from O to 0.045

Figure 4: Left: The coverage of a picture depicting a scene with the lkeygbaf Figure 3 and Right: the
confidence regions selected by our algorithm.

whered(c, ¢, ) denotes thd.! distance between the features vector ahdc,. As mentioned in Subsection 2.3,
0 measures the visual similarity between the coveasidc,, and it ranges over [0, 1], therefodetoo ranges
over [0, 1].

The correspondence maglating the cover sets(1) andC(0;), j = 1, ...,n, is the functionM : C(I) x
I17_,C(0;) — [0, 1]" such that/ c € C(I)

M(c,01,...,0,) = (d(c,01),...,d(c,On)).

The complexity of the computation 0¥1 is O(qz) wherez is the number of object covers agds the cardi-
nality of C(I).

Distanced(c, O;) provides econfidence measuwd the possibility that a coverof C'(1) is occupied by the
objectO;. The higher the distanaé(c, O;) is, the lower is the possibility tha®; is located in the image part
covered bye.

The 7-confidence regioof I for the objectO; is the portion off composed by the image covefs ..., c,
such thatl(cy, O;) < 7, foreachk =1,..., h andr is a threshold ranging over [0, 1]. Mathematically:

Q(0;) = U {ex € C(1) : de, O) < 7). @)

Figure 4 shows on left a grid superimposed to an image, where an insthtiwe leeyboard of Figure 3 is
depicted. On right the-confidence regions of the keyboard are highlighted. In this exampte).045.

4 Automatic Estimate of Cover Basisand Similarity Threshold

The user inputs of our approach are: the database of the objects tarbbes an input (unseen) image, the
parameters;, R, A1, ..., A, and the threshold.
Here we propose a strategy to set up automatidalindr. It consists of the following steps:
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1. We randomly transform each view of the objectdirby changing its size and its in-plane orientation.
In this work, the scale factor and the orientation are chosen in [0.5, 1d5]0a2r] respectively.

2. We computew basesRy, ..., R, by consideringw different values ofN in the formula (2) or (3),
depending on the object database.

3. Foreachradiu®; (: = 1, ...,w), we estimate a valug for the similarity threshold as follows:
1. we compute the covers with badis of the reference views and of their transformed versions;
2. we compute the ratio; between the number of transformed views with non empty cover set and the
total number of views in the database, i.e.

L #{T(v) : vis an object view inD and3 C(T'(v)) # 0}

Z 4{ object views inD} 8)

where # indicates the cardinality of the subsequent setZand is the change of scale and in-plane
orientation applied te;
3. for each viewv we compute the distances

d(e,T(v)) =min{d(c,cr) : c € C(v),cr € C(T(v))}
and we fixr; as the value of the distancég:, T'(v)) averaged on the number of viewsn D.

The value oly; varies in [0,1] and it is used to set up the valuddindr: in fact, a small value; indicates that
many set of covers with radiug; are empty, and therefore this valli® must be not considered. By default,
the values of? andr are given by the values of the p&iR;, ;) with the smallest radius and maximum By
this estimate, the parameters the user must set up, are the nunpabemnge of variability ofV (i.e. the number
w), and the scale factors, i =1, ...,m.

5 Performance Evaluation

Here we illustrate the tests we carried out on the two public real-world daalGNCE-DB [25] and PM-
GADGETS-03 of the Caltech Computational Vision Group. Both of them cbo$ia database of different
kinds of objects represented by a multi-view model and of é'ssttest pictures containing the objects.

The performances of our visual attention module are evaluated by mega$umin many objects and how
much part of them are recovered in the images$ @nd the percentage of image area where the object search
can be focused. Since the considered datasets contain non thin objectslitisR has been computed by the
equation (2). The performance analysis has been repeated for ifieeerd values ofR obtained by setting up
N =1, 2, 3 and the four values 0.02, 0.03, 0.04 and 0.05 for the threshdidaddition, for each dataset we
also considered the value &fandr estimated automatically. The multi-resolution covers have been generated
by using the two scale factopg = 0.7 and\; = 1.3. The radius length is measured in pixels.

More precisely, for each paitk, 7), for each imagd in S and for each instance of an objectO portrayed in
I, we compute the-confidence regiof of O. We evaluate the detection accuracy by the quaniie® and
3} defined as follows:

1. Ow) = Ag‘”&?): the rate of the area af covered by

2.9(w)=1- Af:ggs))): the rate of the area @t not belonging tav;

3. X(Q) = %: the rate of the image area selected{byi.e. the rate of image area to be explored for
searching).
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In Tables 2, 3 and 5, the values 6f © andX are averaged on the numb@rof object instances actually
portrayed in the test images. Moreover we computedittection ratedefined as the ratio between the number
of object instances whoseconfidence region ha® > o, and@. The parametes varies in [0, 1], and in the
following tests,c = 0.00, 0.10, 0.50.

Let us now describe how false positives and misclassification cases aseired. For each obje€tnot present
in I, letQ be itsT-confidence region. The false positives are quantifie@ly), that is the percentage of the
area ofl covered by). The values of(Q) reported in Tables 2, 3 and 5 are averaged on the nuflmdithe
objects not contained in the test pictures and they are simply indicat&d by

To quantify the misclassification cases, for each obfectot present in/, we compute the percentage ©f
overlapping a portion of where an objecO # O is depicted, i.e. the portion ¢ that intersects an object
instancew. This measure is indicated by . Its values, averaged ap, are reported in Tables 2, 3 and 5.

For the basigk giving the best performance®{..;), we report also the mean rafeof image area com-
posed by the union of the-confidence regions of each database object (present or not in the)ima these
experiments we varied the valuesrof

The experiments presented here have been carried out on a Pentium2.8PGHz. On average, the
computation and description of the cover set of a view take about 0.04d®cahile the mean time for the
computation of the correspondence map is about 46 seconds.

5.1 Experimentson PONCE-DB

PONCE-DB database has been built up by the Robotics and Computer Vialmrdtory Beckman Insti-
tute (lllinois, USA). It consists of 161 references images depicting 8 tbjecdifferent poses against an
almost uniform background and of 51 test pictures containing resaaitded, partially occluded and differ-
ently illuminated instances of the objects. Objects, test images and groundnfiartnation are available at
http://tev.fbk.eu/DATABASES/objectsPonce.html.

We applied the clustering algorithm reported in [17] to reduce the storage rgespace and to speed up the
computation of the correspondence maps, so that the total number ofritelésas is 24. Table 1 shows the
three bases, the correspondent number of object covers, andridregiarsy and+ automatically estimated.
The number of covers and the detection rate decrease by increasingglie ¢¢ the basis. The worst results
are obtained for the coarsest object cové¥s{(1). In the other cases, no empty covers are generated.
Tables 2 (a), (b), (c) show the detection performances for eacti Bait). The best results are obtained for the
values of R andr estimated automaticallyi = 24, 7 = 0.0391, in the last row of Table 2 (a)). In this case,
the mean percentage of object area detected is about 87%, while thetpgecef image area to be explored is
about 43%. This means that the 57% of the image can be excluded fromjtioe sdarch. The detection rate
is very high for each value af, and the values o/ andy are smaller than 30%. The mean valud ok in
this case about 74%.

In order to analyze the dependency of the detection performances onriitger of object covers, far = 24,
we repeat the experiments by using a coarser grid for the generatidojeat covers, so that their final number
is 3126 instead of 6225. On the contrary, the image grid has not been rdodifie results, reported in Table
3, show a noticeable decrement (about the 20%) of the detection rate.

Figure 5 shows the-confidence regions of each database object computed by usifig03, R = 20.

R | N. of Covers v T

24 6225 | 1.0000| 0.0391
37 2384 | 1.0000| 0.0333
73 487 | 0.8447 | 0.0246

Table 1: PONCE-DB: Results of the automatic set up of the cover radiusfahd visual similarity threshold.
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Figure 5: Detection of the-confidence regions of the objects in a test image of PONCE-DB. The abdarch
image cover represents the value of the distance (6) from the objeatscd®kie corresponds to distance 0O,
while red corresponds to the similarity threshele 0.03. HereR = 20.

5.2 Experimentson PM-GADGETS-03

The PM-GADGETS-03 database has been built up by the Computationah\@saup of Caltech, (California,
USA). It consists of 48 references images portraying 36 objects utiffierent poses. These images are avail-
able along with two different test sets at http://www.vision.caltech.edu/html-fitdsya: html.

Here we consider the test set namEgkst Scenes, including 45 test pictures with some rescaled, rotated,
partially occluded and re-lighted instances of the objects. Since the nufnbdews used for representing each
object is very low, no clustering process is necessary. The valuésaainsidered in these experiments are
shown in Table 4 with the correspondent number of object covers, &hdhve parameters and+ automati-
cally estimated. As for PONCE-DB, the best results are obtained for thet fibbgect coversi{ = 3).

The detection performances obtained by varyRi@gndr are presented in the Tables 5 (a), (b), (c). The pair
(R, ) estimated automatically allows a very high detection rate (greater than 0.98=fd@.50) and the de-
tection of the 97% of the area of the objects depicted in the test images, but tipe area excluded by the
object search is only the 21 % about, while the values measuring the falis@gdstection rate are higher
(60% about). Good results are obtained also by uging20, andr = 0.03. In this case the mean percentage
of object area detected is about 88%, while the percentage of image dveaeiplored is about 57 %. The
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(@) R = 24 (Rpest)
T S 5] ) Detection Rate M ) r
c=0.00 | c=0.10 | 0 =0.50
0.02 0.3611 | 0.4393| 0.0601 0.7976 0.6517 0.3933 0.02596| 0.0221| 0.2071
0.03 0.6769 | 0.6719| 0.2306 0.9888 0.9213 0.7416 0.0921 | 0.1246| 0.4927
0.04 0.8827 | 0.7505| 0.4393 1.0000 1.0000 0.9326 0.2165 | 0.3202 | 0.7607 [
0.05 0.9576 | 0.8070| 0.5799| 1.0000 1.0000 0.9888 0.3875 | 0.5749 [ 0.8750 ‘
0.0391 | 0.8711 | 0.7466 | 0.4245 1.0000 1.0000 0.9326 0.2022 [ 0.2987 [ 0.7453 ‘
(b) R=37
T e [E) ) Detection Rate M )
oc=0.001| c=0.10 | ¢ =0.50
0.02 0.3053 | 0.3249| 0.0388 0.6292 0.5169 0.3483 0.0157 | 0.01413
0.03 0.6031 | 0.6021| 0.1667 0.9326 0.8539 0.6517 0.0621 | 0.0920
0.04 0.8584 | 0.7369 | 0.4023 1.0000 0.9888 0.9213 0.1660| 0.2638
0.05 0.9543 | 0.7923| 0.5534| 1.0000 1.0000 1.0000 | 0.3361| 0.5208 ‘
0.0333| 0.7022| 0.6725| 0.2471 0.9775 0.9213 0.7865 0.0899[ 0.1385 ‘
(c)R=73
T ) 2] ) Detection Rate M >
oc=0.00 | 0=0.10 | 0 =0.50
0.02 0.1679| 0.1430| 0.0206 0.3146 0.2809 0.2359 0.0046 | 0.0059
0.03 0.3935| 0.4147 | 0.0966 0.5955 0.5730 0.4382 0.0335| 0.0406
0.04 0.7436 | 0.6866 | 0.3354| 0.9326 0.9101 0.8089 | 0.1029| 0.1563
0.05 0.9137| 0.7767| 0.515 0.9888 0.9888 0.9889 | 0.2432| 0.3609
0.0246 | 0.2397 | 0.2045| 0.0348| 0.3820 0.3708 0.3034 | 0.0129| 0.01154

Table 2: PONCE-DB: Detection Performances obtained for differdoegaof R and for different values of.
The last row reports the results obtained by using the parameters estimttathtacally.

T S} €] > Detection Rate M >
c=0.00 | 0=0.10 | 0 =0.50
0.02 | 0.2404 | 0.5204 | 0.0700 0.6517 0.5169 0.2247 0.0604 | 0.1251
0.03 | 0.5128| 0.6361 | 0.2184 0.8315 0.7865 0.5393 0.2021 | 0.3604
0.04 | 0.7264 | 0.7123 | 0.4469 0.8427 0.8202 0.7753 0.4035| 0.6156
0.05| 0.8147| 0.7431| 0.6299 0.8427 0.8427 [ 0.8427 0.5929 [ 0.7664 ‘

Table 3: PONCE-DB: Detection performances obtained by using a eagnidewith respect to that fixed by
default (see formula (4)) anfl = 24.

detection rate is very high for each valuemfand the values ol andX are smaller than 26%. The value
of I is for this dataset very high, because many background parts of tHenbegts are similar to some object
covers, especially in the case of the glass bottle.

@ ® y
(a I () bR cepn peeape”| o) O TS
Legend: distance from 0 t0 0.1014 m— T

Figure 6: PM-GADGETS-03: Correspondence maps of the objects dfrthge (a). The object contour has
been highlighted in the maps (b), (c), (d). Blue corresponds to the maxirimitarity (distance is 0), while
red corresponds to 0.1014, that is the maximum distance between the image @od the object covers.
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R | N.of Covers v T ]
20 20900 | 1.0000 | 0.0464
30 8534 | 0.9375| 0.0423
60 1654 | 0.8334| 0.0321

Table 4: PM-GADGETS-03: Results of the automatic set up of the covés bad of the visual similarity
threshold.

(@) R=20 (Rpest)
T ) o ) Detection Rate M ) r
oc=0.00 | c=0.10 | ¢ =0.50
0.02 0.6418 | 0.5746| 0.3280 0.9588 0.9339 0.7190 0.0770| 0.065 | 0.8060
0.03 0.8761| 0.6870| 0.5714 1.0000 0.9835 0.9339 0.2597 | 0.2449| 0.9600
0.04 0.9499 | 0.7487 | 0.7199 1.0000 0.9917 0.9835 0.4546 | 0.4696 | 0.9666 ‘
0.05 0.9760| 0.7845| 0.8229 1.0000 1.0000 0.9835 0.6159 | 0.6619 [ 0.9666 ‘
0.0464 | 0.9700| 0.7743| 0.7920 1.0000 1.0000 0.9835 0.5604 | 0.5962 [ 0.9666 ‘
(b) R = 30
T e) [C) 3! Detection Rate M )
oc=0.00 1| c=0.10 | ¢ =0.50
0.02 0.5736 | 0.4987 | 0.2552| 0.9008 0.8678 0.6281 | 0.0425| 0.0399
0.03 0.8387 | 0.6322| 0.4831| 0.9669 0.9587 0.9174 | 0.1805| 0.1855
0.04 0.9375| 0.7333| 0.6726 1.0000 0.9917 0.9752 0.3674 | 0.4111
0.05 0.9658 | 0.7789 | 0.7883 1.0000 1.0000 0.9917 0.5361 | 0.6137 ‘
0.0423 | 0.9483| 0.7481| 0.7006 1.0000 0.9917 0.9834 0.4079 | 0.4610 ‘
(c)R=60

T e) 5] b3 Detection Rate M )
c=0.00 | 0=0.10 | 0 =0.50
0.02 0.4548 | 0.3216 | 0.1887 0.7355 0.7273 0.4876 0.0103| 0.0131
0.03 0.7366 | 0.5695| 0.3934 0.9008 0.9008 0.8347 0.1015| 0.1182
0.04 0.8677 | 0.6976 | 0.5977 0.9422 0.9339 0.9174 0.2648 | 0.3183
0.05 0.9242 | 0.7539| 0.7276 0.9752 0.9669 0.9504 0.4278 | 0.5227 ‘
0.0321 | 0.78237| 0.5989 | 0.4348 0.9174 0.9091 0.8843 0.1331 | 0.1539 ‘

Table 5: PM-GADGETS-03: Detection Performances obtained for diffieralues of? and for different values
of 7. The last row reports the results obtained by using the parameters estiratiathtcally.

Figure 6 shows the correspondence maps of the objects of a picture @ADGETS-03. The maximum
distance between the image and object’s covers is 0.1014.

6 Integration in an Object Recognition System

As mentioned in Section 1, our visual attention module can be integrated inediff@ays in an object recog-
nition system to reduce the complexity of the search and to improve its perfoeman

Firstly, the correspondence map establishes an exploration order oadioas of the input image: from
the portion where it is more probable to find the objects to that where this Ipifitipdés lower. The map also
determines an order on the objects to be searched for: from the most tesherédable. Finally, using the
thresholdr for the selection of the-confidence regions allows to circumscribe the object search in specific
image portions and to restrict their matching to a subset of database objects.

By the priorities on the region exploration and on the object matching, thetaetesf the objects more
likely present in the image is put before the detection of the others. This belpdo discard false positives.
In systems like [17], where the object search is stopped when a numhbjexft hypotheses in a certain
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image portion is found, these ordering criteria could be used to improve tf@mpance in terms of time. The

hierarchies imposed by the correspondence map could be also integrateditautomatic systems for object
recognition, where the user stops the search process when the obgefisrad or filters manually the object
hypotheses output by the system, like [10].

In order to measure the benefit of the integration of our attention module iotakjognition, we compare
the performances of the well known object recognition algorithm SIFT Wiith and without the selection of
the r-confidence regions.

SIFT assumes the multi-view model for the object representation and desthnib database views and every
input image by key points, characterized by scale-, noise-, occlusiod-jluminant- invariant features. Typi-
cally, the number of key points in an image is very large, so that their extraatidnmatching are remarkably
time consuming. For PONCE-DB, the mean number of the key points is 545 fabjket views, and 1782
for the test images. On average, selectingrttnfidence regions object by object reduces the number of key
points of the test images to 831.

SIFT achieve the object recognition by comparing the key points of the tegieiwéh those of the given
objects and using a nearest-neighbor technique for retaining only thereliafie matches. Although some
reliable matches are lost due to the selection of#thmnfidence regions, for 87 of the 89 object instances
contained in the testimages of PONCE-DB, the use ofthenfidence regions does not affect the SIFT recog-
nition performances. However, as shown in Figure 7, in the two caseseine matches are discarded, the
SIFT key points are very close to the selected image portions.

Finally, we notice that there are 6 cases where no reliable matches atelfp@iF T, while our module detects
more that the 70% of the area of the object instances contained in those imhgesuggests that our approach
could be also employed as an additional source in other tools for objectidete

i ‘_;
b ¢
IFTI';;E-Y\”POINTS
ol

Figure 7: PONCE-DB: for these images the SIFT matches (highlighted bytitie iectangles) are notincluded
in the area selected by theconfidence regions, but they are very close to them.

7 A comparison

As outlined in Section 1, our confidence region selection as guidancéjectsearch does not simulate the
human bottom-up visual attention mechanism. This relies namely on the percepticxt@action of con-
spicuities, like high curvature points or constrasts, which are then pedesd tied together by the top-down
human mechanism for interpreting the visual scene. In many object rigicogapproaches, the conspicuities
are defined by interest operators [21] or salient feature detect®fsHiere we compare our SIFT-integrated ap-
proach with the method described in [29] where the authors use a saliaseg model of bottom-up attention
for showing the usefulness of attention in object recognition. We chodsetiik among the others because it
has been tested on a small but public dataset (102Testimages) available at

https://netfiles.uiuc.edu/walther/www/wapcv04/
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Object | Method [29] Our Method
Hits | Missed | Hits | Missed
box 21 2 22 1
book | 14 10 22 2

Table 6: 102Testimages: Comparison of our SIFT-integrated approtibithe method in [29]. For these
experimentsy = 0.045.

Figure 8: 102Testimages: on left, the image containing the views of the bmbtha box taken as model for
these objects. On right, the two views cropped from the background.

and consisting on 102 real-world pictures with different objects.

In [29], for each object to be recognized and for every input imagera/ithe object has to be searched, they
compute the saliency map of Itti and Koch [12] and cluster the obtained kieyspo salient regions. The
object recognition is therefore reduced to matching the key points of thesadigions of the object and of the
image.

This selective attention algorithm has been applied in [29] for learning eoagnizing objects in video se-
guences and in static images. Recognition is performed by describing antimgatte selected key points by
SIFT. In [29], the authors use their approach for recognizing thd laoa the box of 102Testimages shown in
the picture reported in Figure 8 within the other 101 images of the databasétt#&e contain the box and 24
the book, and among these, four contain both objects. Table 6 showsttias dataset our approach performs
better: the book is recognized in 24 on 23 image, while the box is recogniz&2l am 23 pictures. The re-
sults we achieve are really impressive, especially because in this cadgghernodel is very poor, consisting
just of one view for object. Unfortunately, no results with other objectsaagglable for this dataset in [29].
Comparing our approach with others in terms of performances is quite dliffiecause of the lack of common
public datasets. However, we are currently conceiving and desigrjreyienents for further comparisons.

8 Concluding Remarksand Future Work

In this paper we presented a top-down attention module for selecting autollgatieaportions of an unseen
image more likely occupied by a known object. This task is accomplished byilegcthe object to be
searched for and the input image by parts, called covers, and by cimgpearch object cover with each image
cover in terms of visual global features. A correspondence map l@sdide visual similarity between the
covers of the image and of the object defines for each image cover aeocdi measure to be occupied by a
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part of the object. A strategy for estimating automatically some parametersardbe £over computation and
for the selection of the confidence regions is also proposed, limiting thenisesiction. The experiments we
illustrated here show good results: on average, about the 80% of thefdtee database objects present in the
test images is detected and the percentage of the image area to be expledestésirto the 50%. The integra-
tion of our approach in the SIFT recognition algorithm has resulted in a fexhbrreduction of the number
of the key points to be matched and consequently of the computational time, taffexting the recognition
performances.

The main drawback of our approach is due to the low robustness of tlee descriptors to illuminant changes.
Therefore, future work will consist in introducing a color constancyatgm to make the used features invari-
ant to changes of light and to make automatic also the choice of the scalesfewstnved in the multi-scale
generation of the object covers. We are currently conceiving anigrdag experiments to compare our ap-
proach with others on common databases. Finally we also aim to integrate it ibjted iecognition system
MEMORI [17].
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