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Abstract

We present an automatic human shape-motion analysis me#dsmt on a fusion architecture for hu-
man action and activity recognition in athletic videos. Bsttshape and motion features are extracted from
human detection and tracking. The features are combinddnatite Transferable Belief Model (TBM)
framework for two levels of recognition. The TBM-based milidg of the fusion process allows to take
into account imprecision, uncertainty and conflict inhéterthe features. First, in a coarse step, actions are
roughly recognized. Then, in a fine step, an action sequermognition method is used to discriminate ac-
tivities. Belief on actions are made smooth by a Temporati@IrEilter and action sequences, i.e. activities,
are recognized using a state machine, called belief scbeddsed on TBM. The belief scheduler is also
exploited for feedback information extraction in ordertaprove tracking results. The system is tested on
real videos of athletics meetings to recognize four typesctibns (running, jumping, falling and standing)
and four types of activities (high jump, pole vault, triplerjp and long jump). Results on actions, activities
and feedback demonstrate the relevance of the proposenldsaind as well the efficiency of the proposed
recognition approach based on TBM.

Key Words Video Analysis, Human Tracking, Action and Activity Reaotion, Transferable Belief Model.

1 Introduction

Human motion analysis has many applications in many areas, such as anatbiett events, surveillance,
content-based image storage and retrieval. The main scientific challengemanhmotion analysis are to
detect, track and identify people and to recognize the human activity [h] dlwservations coming from video.
The detection and tracking algorithms are challenged by occluding andofagticated moving objects, as
well as illumination changes.

1.1 Related work

A combination of human shape-motion features estimation, silhouette analysispfi detection, template
matching, 2—-D/3-D human modeling, background modeling have been usedr@an detection and tracking
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systems. According to the application, single/multiple or static/moving cameragbasibed. The silhouettes
are easy to extract providing valuable information about the position aypksif the person. There are model
based approaches and systems using Shape-From-Silhouette methdelsttardktrack the human in 2D [2] or
3D space [3]. When the camera is static, background subtraction teelrign give high accuracy measures
of human silhouettes by modeling and updating the background image [4].rwixbewhen the camera is
moving, camera motion estimation methods [5, 6] can locate the independently nobyeats.

The system called W4 [7] is based on a statistical-background model to [meapée and their parts (head,
hands, feet, torso, etc.) using static cameras and allowing multiple persaopsgrdVang, Hu and Tan [8]
emphasize on three major issues of human motion analysis systems, namely haiewiorn tracking and
activity understanding. Figueroa et al. [9] propose a system of trgaddrcer players using multiple static
cameras. The occlusions have been treated by splitting segmented bletd®basorphological operators and
a backward and forward graph representation based on human shatien and color features. However, in
a real soccer game, there are crowd situations, where the people bleauhually tracked. Cheng and Chen
[10] propose a method for detecting and tracking multiple moving objects lmasdidcrete wavelet transform
and identifying the moving objects by their color and spatial information usirtgldescamera. The human
detection is done using the low band of the wavelet transform of the imagm® due fact that most of the fake
motions in the background can be decomposed into the high frequencietswe-band.

Many methods have been proposed for action recognition [8] notabldbas classification template
matchingand neural networks Generally, the methods are based on Bagesian frameworkvith Hidden
Markov ModelfHMM) [11, 12] andDynamic Bayesian NetwofP®BN) [12]. Other methods are developed in
Artificial Intelligence community notablfPetri Nets[13]. In previous work, a novel architecture utterly based
on the Transferable Belief Model [14] (TBM), an interpretation of ®naftheory of evidence [15, 16], was
proposed [2, 17] for human action and activity recognition in athletic spintesos. The TBM is well-suited
for action recognition notably because doubtful transitions between aa@rerexplicitly modeled, conflict be-
tween features reflects the need to improve the fusion process and reliabfitigtures depends on the context
and can be included in the system. Belief theory has been successfuilgdapp other pattern recognition
problems, e.g. human postures classification [18] and emotions recogiipn [

The most of aforementioned human motion analysis and activity recognition dsesluppose static cam-
eras. They have been generally tested using videos with simple action sudilking people. Moreover,
generally constrained indoors or outdoors environments are assurttied ¢gegh accuracy results of human
activity recognition and human detection and tracking.

In Figure 1(b), the silhouette quality is high, since accuracy of humandasyrestimation is high and the
number of wrong classified pixels is low. A challenging problem appeaewiie camera is moving and the
estimated human silhouettes are of low quality or extremely wrong (see Figi))e 1(

1.2 Contributions

The presented work focuses on real videos of athletics acquired byiagrmamera without initialization and
any assumption or knowledge about its motion. Moreover, the videos ueser real and unconstrained envi-
ronments with other moving people. Videos come from various sourceslefiathmeeting such as broadcast
TV, Internet and DVD. These videos present a dynamic environmentsalmnconstrained, a varying quality
and in which the athlete’s motion is extremely fast and complicated. We suppisthehcamera tracks the
athlete and we test the algorithms of tracking and recognition in individuaissgpach as pole vault, high jump,
triple jump and long jump (called activities) in which we recognize actions (sachraing, jumping, falling
and standing).

Camera motion as human action feature was a few used [20, 21]. Thiseféatomportant since action im-
plies motion as emphasized by a recent work of Irani [22] where optmalifl exploited for action recognition
at distance applied to field-view videos such as football. In this papertiverfmcus on one athlete and we are
interested in decomposing his movement (the proposed algorithms can thaed&uother state sequence
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recognition such as gesture). For instance, given a video, one afbjective is to not only recognize one
jump among a list of possible ones but also to detect correctly actions. Oroihis we have a quite differ-
ent approach compared to usual HMM-based methods which do nat écactions within activities (or one
needs to use one HMM for each action). Moreover, in usual probabiised methods, generally mixtures of
Gaussians are used in “black boxes” where user feedback is almostsibieo In this paper, we propose a high
level fuzzy-based description of actions using rules. New rules aily ealded. The used of fuzzy description
is explained by the fact that we focus on multmedia applications where dxpmvtedge and user feedback are
important and useful. An original method to recognize actions and activitiegtaneously is proposed (based
on a conference work [23]). The method is online and we propose arigsia for inference. The proposed
algorithm is also exploited for feedback on tracking. The method we peopsss camera motion to obtain a
global information about human actions. The detection of actions is themdeiising more precise features
and sequences. Note that we use the algorithm proposed in [24] intordetect whether a video concerns
individual sports (which is processed) or group of athletes (whichtiprozessed). This algorithm alleviates a
great assumption concerning the content of the video but is not dedanitids paper.

One characteristic of the proposed system is that it works automaticalbgnmizing action and activities
without any initialization or prior knowledge about camera motion and humamrfes providing also statistical
results about athlete motion. Fuzzy rules need expert knowledge whigdilistde in athletics videos. Another
contribution of this work is the use of Transferable Belief Model (TBM)][for static and dynamic action and
activities recognition. Related work concerns only the use of DempstdfeSineory [15, 16] for static but not
dynamic recognition [25, 26]. So the proposed algorithms are original.

@ (b) (© (d)

Figure 1:(a), (b) Original image and the silhouette estimated by the method of [7] under stableecémefd)
Original image of an individual sport (long jump) the silhouette estimated by thlead®f [5] under moving
camera.

MOTION ANALYSIS RULES FOR
/ HUMAN ACTION
CAMERA HUMAN MOTION/SHAPE
ngﬁ?w —  MOTION > RESS(':STEION — DETECTION/ FEATURES FUSION ACRTEISON&CJ:XLTY
ESTIMATION TRACKING EXTRACTION

\—/\ SHAPE ANALYSIS RYCHSHOR

HUMAN ACTIVITY

Figure 2: Schema of the proposed system architecture.

The proposed architecture consists of several main modules (Figure 2):

1. Silhouettes are computed using a camera motion estimation method [5], wiadfie@model is used to
describe the camera motion. Such a model is generally sufficient for moslofideo sequences. The
above method that we use, was implemented by the Vista Team of IRISA.
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2. A silhouette noise reduction procedure is executed next and humariaetnd tracking is performed.
Four major human points are recognized and tracked using the human sileouette

3. Shape and motion analysis is executed, in order to extract relevgreg ahd motion features that can
be used on action and activity recognition. The pole detection procedwskape analysis method),
is applied to the human silhouette detecting the pole and extracting features telatesuch as its
eccentricity and its position. The human major points can be recomputed afiky @emoval.

4. A fusion architecture, based on TBM, is used for action/activity reitimgp. The input features for the
fusion process include camera motion, pole detection and human shape-featioes estimated by the
corresponding modules. The results of the fusion process can basisstiback information improving
the results of human tracking.

The rest of the paper is organized as follows: Section 2 presents thantslmrape-motion analysis method.
Section 3 describes the action/activity recognition and feedback methodllyFfBections 4 and 5 provide
experimental results and the discussion, respectively.

2 Human Shape and Motion Analysis

In order to detect action and activities, it is required to extract relevaattifes. Real videos of athletics are
noisy therefore the colour feature is not reliable. In this section, weribesmethods to extract human shape
and motion features.

In pole vault videos, the athlete’s pole can disturb the tracking and acthoigméion because it is moving
with the athlete. To cope with this problem, a robust shape based methoddatgtection and deletion is pro-
posed. Then, some major human points are tracked using a shape-mo#drtdimique. These algorithms
are applied on binary images obtained from the camera motion estimation methaa®&gisnple morphologi-
cal operations to reduce noise and create quite homogeneous aredrmd pigels (the silhouette obtained can
be in several pieces).

2.1 Pole detection

The pole is recognized first since it can be easily detected by its shapeh tdis very high eccentricity
comparing with the human members. The eccentrieity (1) is defined by the ratio between the two principal
axes of the best fitting ellipse, measuring how thin and long a region is. Ifeteeid region has high(e.g.
more than 20) then it is probably a pole. This feature is relevant in the fusmress to recognize the pole
vault videos.

“Pole Eccentricity / W“"’MJ

12|

10f /

Figure 3: The two main steps of the pole detection method: The detection of phifts(left image) and the
region growing algorithm which detects the pole (heavy gray pixels on thel@iitidge). The eccentricity per
region is shown on the right image, its maximum value corresponds to the digpedteregion.
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The eccentricity can be defined by the three second order momentg. o andy o:

p2,0 + po,2 + \/(m,o — po2)? +4-pi
€= (1)

H20 F Ho2 — \/(“2,0 — po2)? +4- 3

with 1, 4 = Z (x—xc)P(y—y.)? where ., y.) are the coordinates of the mass center of the object (defined
(z,y)€0;

as the mass cent:ar of the object pixels). Based on this definition, the pottiaieterocedure (Figure 3) is

described as follows:

— First, the highest area objead() is detected, which is defined as follows. The silhouette is possible
to consist of more than one objects (see Fig. 1(d)), due to noise effeéotseach object of them we
compute its area in pixels, thén is defined as the object of maximum area. Then, the end of pole point
(P.) is estimated P, is defined as the farthest; point from the mass centef’] of O, object under the
constraint that it lies above th& as the athlete is running.

— The pole pixels will be detected by a region growing method (RG) startimg ffopoint. RG stores in a
stack the added points. In each iteration step, RG adds a pixel from bguwfdagion of added points
and the rest object in the stack. This method terminates when the area of ezgeeds th80% of the
O, area or when the number of pixels of the boundary between the regio@aegceeds a threshold.
The threshold is a percentage (e.g. 40%) of the square root é)tlaeea approximating the double of
071 mean width.

— However, the region will have been expanded in the athlete area. foleerere have to ignore the last
pixels that RG adds, until the region wherill be maximum (Figures 3 and 4). Lél, be the estimated
pole region. We compute the distantketween the farthest poin®) of O, from P, andF, itself. Then,
¢ can be estimated by the ratio= O;Ziea. P; can be approximated directly by the last point that the
RG method adds.

— Finally, the estimated pole regio®y{) is characterized as pole if its shape is like the pole’s shape. We
measure this similarity using the region eccentricity< i§ higher than a threshold (e.g. 20) and the
region length is at leagb% of the O, length then th&, object will be a pole.

The proposed pole detection method detects the pole with high accuracy g¢abeowithout false alarms)
and robustness to silhouette noise (see Figure 4(e)). We can recgnedetected region is pole (gray pixels
of Figure 4(e)) using a threshold on detected region eccentricity £0). When the eccentricity is high then
the pole is deleted. The strong point of this method is that it is simple and low duste$ults on our database
show a great performance of this detector. Notice that uBirgnd Py points, we can compute the slope of the
detected pole (not used in this paper).

2.2 Points detection and tracking

Real athletics videos can be of bad quality (provided my home’s TV recordm Internet) therefore details on
athletes are not available, only the rough positions of “major” points camtaéned. We assume that the head
center, the mass center, the left end of leg and the right end of leg (ag&e Bigare sufficient for global action
recognition (such as running, jumping, falling or standing-up). Moredvese points remain quite visible
along a video sequence.

These four major points are detected and tracked using human silhouettipsitasThe method is divided
into two procedures: detection and tracking. This method is an extensidirpfwWhere three major human
points are detected and tracked.
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Figure 4: Results of pole detection procedure. The light gray pixelstdehose that ignored (last added) by
the RG method and the gray pixels denote the detected pole rég)an= 6.08, (b) e = 12.24, (c) e = 31.27
(d) e = 50.01, (e)e = 31.32.

2.2.1 Detection

In this step, the four major human points are automatically detected. This predscexecuted just once, in
the first silhouette frame of the sequence. The previous position of therfajor human points is unknown,
so we assume that the human stands vertically in the first frame (the headdiesthb mass center). The
algorithm named “Human Points’ Detection” is executed as it is describedftere

— First, the mass center point is computed. This point is defined as the méssatehe foreground pixels.
The other major human points belong on human boundary. We compute themthisdestriction using
the precomputed mass center. Thus their search space is reduced.

— Next, the human body major axis (Figure 5(b)) is computed using secded moments:

211

0 = arctan(
H2,0 — H0,2

), 6 ¢€[0,180] (2)

The head pointH) is defined as the farthest major axis point from the mass cefidetifat lies above
the mass center.

— Then, the end of leg points search space is reduced to the silhouetteabppoihtsS that are found
under the mass center. This property can be expressed by the follawiegajntC?J-CqL <0.1-|CH|?,
L € S. The first end of leg pointl{;) can be computed by getting the farthest foreground pixel from the
C, that lies below the”.

— The next end of leg pointlf;) should have the following properties: high distances fromH and
Ly. Moreover, the trianglé’C L, should be close to an isosceles triangle, whemenotes a candidate
L, point. The last two constraints are equal to the triangle afg&® (' L)) maximization. Thus, the
maximization of product|PH| - |PC| - E(PCLy)) provides thels point.

Figure 5(a) illustrates graphically the predefined symbols. Finally, it is triiaistinguish the leg points
L1, L to the left and right end of leg points using the human major axis.
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(@) (b) (© (d)

Figure 5:(a),(b) Estimated human points: head center (green point), mass center (magetitagfoiend of
leg (blue point) and right end of leg (brown point). The human body majsriaxshown as a red dashed line.
(c) The four major human pointgd) The two characteristics angles: the human major axis afyjleand the
angle between leg®4).

2.2.2 Tracking

binary silhouette image

T

NOISE
REDUCTION

/[\_r

4 major human points
of the previous frame

POINTS | |
TRACKING [ ]

Figure 6: Individual points tracking schema.

In this step, the four major human points are tracked. This procedure ¢sitexkin every frame of the
sequence, apart from the first one, taking as input the position of therfajor human points in the previous
frame and the current silhouette image (Figure 6). Finally, the position obtireniajor human points in the
current frame is estimated.

First, a noise reduction procedure is applied which reclassifies the tuillaoyette image pixels in order to
reduce the number of wrongly classified pixels. For that, we compute the mindstamce of each foreground
(white and moving) object from the previous position of the four human poiis then multiply it by the
percentage of foreground pixels that belong to a line segment startedrags center of the foreground object
and ended on the specific major human point. If this distance is higher thaashdtat then the foreground
pixels will be classified to background class (gray pixels of Figure 5(Ext, we reclassify all background
pixels that belong to human silhouette holes to foreground class.

The four major human points can be detected by “Human Points’ Detectionfithigowhich has been
described in the previous section. This method produces two pairs of s@lditivthe head point and the leg
points, as it is unknown if the head point lies above or under the mass .cafftechoose the closest pair
compared to the estimated pair in the previous frame (see Figure 6).
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2.3 Human shape-motion features

human major axis angle (rands) 2

human major axis angle (rads)

eccentricity
eccentricity
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Figure 7: The human eccentricity and the human body axis angle in a high juirgplang jump sequence.

Using the results of pole detection and points tracking, we can compute-siamn features useful for
action recognition. The estimated pole eccentricilyi¢ relevant shape feature since we can recognize if the
detected region is a pole. It can also be used to detect dropping bag ¢lumping or falling stages in high
jump and pole vault. The time-varying human silhouetie an important shape feature, because it is related
with the human action. For example, the human eccentriciylower during the jumping of a high jump
sequence and it is useful for gait period estimation. We compute theseefeating the estimated silhouette
(after the noise removal) by the points tracking procedure.

The motion based features are computed from the major points trajectoriegmPortant feature concerns
the vertical translation of the mass centét,.(,:). Then, the angle between the human major axis and the
horizontal axis ©1) (see Figures 5(d) and 7) is of key of importance for action discriminatfahis angle is
about90°, the human is standing or running, whereas important variation occurgdimérjumping and falling
in high jump and pole vault. Moreover, the angle between the 18gs) (see Figure 5(d)) is another relevant
feature. Indeed, the gait period can be measured from its trajectargiprp an estimation of the human speed.
The camera motion features are also exploited for action recognition: theaaorzontal translationi.,;),
the camera vertical translatioR{,;), and the camera zoon#®;).

Finally, a set of6 features are automatically computed at each frame and are used for &cigmition.
They are listed in Table 1.

Vertical translation of the mass center Psot
Angle between the human major axis and the horizontal pxi®
Angle between the legs O34
Camera horizontal translation Py
Camera vertical translation P
Camera zoom P.,

Table 1: Features used for action recognition.
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3 Human action and activity recognition

The features described previously are now combined within the axiomaticallfaunded Transferable Belief
Model (TBM) framework proposed by Smets and Kennes [14]. Théigda obtain a global belief on actions
which takes features imprecision, uncertainty and conflict into account.

Since usually probabilistic methods are applied (in Computer Vision applicatiibvesjeader may refer to
both Philippe Smets’ homepage and Thierry Denoeux’s homepage in ottkectmvinced about the relevance
of TBM: many applications (medical, diagnosis, target identification, ...) amapaoisons with fuzzy and
probabilistic methods are proposed. Roughly, TBM is a more general frarke¢han probability theory and
is based on Shafer’'s Theory of Evidence [15]. It relies on belie€tions which allows to explicitly model
doubt whereas doubt is implicit in probability. The Bayes theorem was aiserglized in TBM [27] yielding
to many possibilities for TBM-based networks. The TBM also emphasizetiatdretween hypotheses which
is an original and strong advantage compared to other formalisms.

The system works as follows: 1) features are converted into belief mbalg and such that doubt is ex-
plicit [17], 2) for each action, separately, beliefs are combined aguptd predefined rules using TBM frame-
work [17], 3) beliefs on each action are made smooth and coherent th&rngmporal Credal Filter [28], 4)
a sequential data analysis method based on TBM and called Belief Stateulgchedapplied to recognize
sequences of actions [23], and finally 5) a quality criterion is computeddoi action and each activity in an
online manner in order to infer action and activities at each time. Note that lyelescribe briefly the system
and the reader may refer to [17, 28, 23] for more details and illustratianshid paper, we also propose a
coarse-to-fine activity recognition: instead of combining every featbliedly, we exploit features character-
istic in order to combine them hierarchically.

3.1 From numerical features to belief on actions

An action A is described by two states gathered in the frame of discernment (BaDy {Ra, Fa} with
R4 (resp. F4) stands for “actiond is right” (resp. “A is fals€’). A basic belief assignment (BBA) on aa
according to a featur® is defined on the set of propositio2$+ = {{(}, gRA}’ {Fa},{RaUF4}} (for sake
of simplicity the braces will be omitted, i.¢ 4} will be written Fy) by mz* @ 294 — [0,1], X — m%A (X)
and by constructiom%‘(@) =0,and)_ xq, m%‘ (X) = 1. The propositionR 4 U F4 explicitly represents
the doubt concerning the real state of an action: it does not imply any athliitaims regarding the subsets,
i.e. neitherR4 nor F4. This is a fundamental difference with a probability measure which is additive

A fuzzy-set inspired method [17] (using trapezoids) is used to comamth numerical feature (described
in Section 2.3) into sources of belief. An illustration is depicted Figure 8(appdzoids learning can be
made using expert knowledge (if features are understandable as itdagtén this paper) or statistics. Belief
synthesizing is performed frame by frame. In usual probabilistic methoglspilterpart of the TBM-fuzzy-set
is the mixture of Gaussians.

3.2 Transferable Belief Model fusion

Belief of features are combined in the TBM framework [14] in order to obaagiobal belief on actions which
takes features imprecision, uncertainty and conflict into account. Thenfpsocess is performed frame by
frame for each action independently by rules of combination defined fodistimct BBASm%“ andm%;‘ by:

mp Ompt(B) = Y mpH(C).mp(D) 3

with A = N (resp. V) for the conjunctive (resp. disjunctive) rule of combination. The rufesoonbination
can be used in logical rules such @s.“..AND ...OR...then...” for describing actions by means of features
states. These logical rules are then translated into belief combinationstivedogicalAND is replaced by the
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Figure 8: A BBA for an action "jumping” (J) in a high jump obtained by the fusidrtamera vertical motion
and center of gravity variation features.

@-rule and the logicabr by the ©-rule assuming the same FoD [14]. One can also use hand-made table of
rules, this approach is well suited when expert knowledge is available[28]ifor medical diagnosis.

We propose to use first a coarse definition of actions using the followlag (see Section 2.3 for symbols):

IF (Pay is high OR P, is high OR Pyt is almost null) THEN (R, is true)

IF (Pt is highly positive OR Pyt is highly positive) THEN (J, and U, are true)

IF (Pt is highly negative OR Pyt is highly negative) THEN (F, is true)

Some reliability factors are also integrated in equation (3) (before combinagidhe rules) as described
in [23]. Reliability is an important tool for action recognition in video (not reakploited until now) because
it gives a penalty on belief provided by sources that work in non-optimmatlitions. Reliability factors are
automatically computed from data at each frame of the video and in an onlineemntake into account
the reliability that may vary, in particular according to the video quality. A coieffit of reliability, denoted
a € [0, 1] (its dual is called the discount factor with value- «)), is applied on a believfn%‘ (defined orf24
for an action4) and a new beliefn%’ﬂf‘ is obtained as follows:

myA(X) = a.mPA(X) VX CQy @
mEM(Qa) = (1 —a) + a.m$PA (Q4)

The belief of each proposition is discounted and the remaining of the belisfimatansferred onto ignorance
(R4 U Fy). For example, letn$4 (1) = 0.12, m$4(T4) = 0.55, m$4(Fa) = 0.07 andm 24 (24) = 0.26.
Let the discount factor be = 0.74 at timet. The discounted BBA isn% ™4 () = 0.09, m%5%4(T) = 0.41,
m% A (Fa) = 0.05 andm%?4(Q4) = 1 — 0.74 4 0.19 = 0.45.

Expert knowledge or statistics can be used to compute this coefficient. 0Jnd&counting factors are
computed using distance measures and risk minimization. Our methodologytsoasier in computing
automatically the discount coefficients from data at each frame. Two discoefficients are automatically
computed: one for trackingx;s;) and one for camera motion estimatian.{,). The computation, at each
frame, of those coefficients are as follows:

— ag;s. the distance between the center of gravity and the head is assumed to déetagen two
successive frames. The distance is normalized|intt (by using the size of the image) and is used as
a coefficient of reliability. When the distance is constant, the coefficiedbgedol so the reliability
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is high and vice-versa. This coefficient reflects the quality of the trackirigen other moving objects
appear, the binary silhouette can be of bad quality and so does the tracking

— ouyp: the number of pixels of the silhouette is assumed to be quite constant betwesndoessive
frames. This number is computed after the binarization. The relative difereetween two successive
frames is converted into a quality coefficient using a fuzzy set with [€a9e1.0] and suppori0.75, 1.0].
With this conversion, if the variation is greater thah% then the motion estimation is not reliable
(csup = 0). This coefficient allows to discount features coming from the camera mesibmation.

A system originally based on TBM was recently proposed for belief filterimg) data sequence analysis
using belief functions and TBM framework. We describe hereafter the praims of the system and the reader
may refer to [28, 17, 23] for details and illustrations.

3.3 Temporal Credal Filter for action state filtering

The Temporal Credal Filter (TCF) proposed in [28] makes belief on axtemporally consistent (the resulting
belief has no conflict and made smooth) and separates action states @ssuredrue or false). The TCF
works on-line on each action independently taking as input the BBA obtdinad features fusion and the
previous TCF output. The system is described in Figure 9(a). In this se¢kie main points of the TCF
process are recalled [28].

The TCF uses a model of belief evolutiget € {7, F}, one for each statel{ for 74 and.F for F}). Only

one model is applied at each tinfeand each model assumes that the BBA of the current TCF Om&];t
at framef is close to the previous one?h ' (this is a common hypothesis in filtering, in particular for our

application since human motions are continuous). A model of evolution camebed as an equivalent to
conditional probability tables but in the TBM context.

;

1-Prediction: A model of evolution is used to predict the current state of each aémiéf] (at time f) by

combining the BBA of the current model of belief evolution and the previoOE iSutputhﬁx_1 resulting in
f f

two possible BBA [28]: eithem?f‘ if the current model ig” orm%‘ if the current model isF. These BBAs

. . r _
are given by (T4) = v - m@h (1LY, mdA () = 47 - m® (Q)7Y) + 1 — 7 for the first case,

; . i .
andmpA (F) = vr - m@h (FI7H, miA Q) = 77 - mP (@471 + 1 — 4 for the second case.

A method has been proposed in [31] in order to estimatethat we can not describe in this paper due to
limited space. In this paper we have always set these parametefs to

2-Fusion of prediction and measurezmh = mQMQ @mgfx combines the available information, where the
operatorQ) is the conjunctive rule of combination defined in equation 3.

3-Conflict: ey = mQQ(V)Q) quantifies the contradiction between model of belief evolution and data. The
higher the conflict, the higher the necessity to change the current model.

4-Cusum: CS(f) = A x CS(t — 1) + ¢ builds the cumulative sum of conflict along time, and: [0, 1]
is a fader coefficient to cope with low/high variation of conflict (smoothing).

5-Decision on model changewhen the cumulative sum is too high, i.e GS(f) > 7; (stop threshold) at
frame f,, the model is changed. The new model is applied ffgm

6-TCF output: if current conflicte ¢ is low, then the output is the fusion result of prediction and observations.

!
It conflict is too high, then we keep the prediction (cautious approadmmély: m%h = m%‘ @mﬂ;i if e <

f
oy andm?j‘ otherwise wheréy is a threshold reflecting a tolerance to the conflict adaptively computed using

the mean of conflict over a window (si2é = 5) of a few framessy = 1/N - Z;-:(f—N—l) €f;-
In order to remain coherent with the model of evolution that is used, we mugafigelief mass as follows: if

the model used ig then the belief on the emptyseh{lﬁ(ﬂ)’;)) and the belief oer; (mQﬁx (Fj;)) are transfered
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ontoT" andQ’, respectively, i.e. when the model i*: the state is true’n*4 (1) — m® (T4) +m% (0)),
mQx{x(Qﬁ) — mQx{x(Qﬁ) +mh (F9), mQQ(W;) = m%h (F%) = 0. When the model is* : the state is false”,
mP(FY) — mA(F]) +m® @), mP4(@F) — mP(Qh) + mPA (1)), m¥ @) = m¥ (1)) = 0.
These redistributions allow to decrease conflict between successmedr

7-Local Quality criterion: given a model of evolution¥1), we compute the quantit)[;Q{;:f[M](Tj) =
(1- ﬁ) X LQ{}:(f_l)[M}(Tji) + (1 —€p)- mh (T4)/(f — f.) for each action; within each activitys;.
This criterion is computed on-line and embeds past events and innovati@esltonflict to weigh the current
belief onTj;. This criterion is said “local” because concerns only one action within aeseeu It reflects how
we can be confident in an action.

8-Transition and false alarm detection: when the stop threshold is reached for an actignn sequence
S;, we compare its Local Quality criterithfi;:f[M](Tj;) with a thresholdra Which is the minimal quality
value required to validate a model change. If the criterion is lower, we ieitla model change. When a false
alarm occurs with the mod€él on a given interval of frames, then the TCF is run again on this intervahleut
model is compelled to be falsk (it does not take into account the stopsum threshold on this interval).

( Features
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IPCTEER .. fusion
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o CHANGE V'
it prEDICTION| ] < LT &
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f 3
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o Fusion |l cranGe Ha —
>0 4 > DETECTION Temporal Belief
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(a) TCF principle. (b) Action filtering using TCF and se-

quencing using Belief Scheduler.

Figure 9: Sequential data recognition using the proposed TBM basedaagbp

When the TCF is applied on several actions separately, we obtain smoothdoetetions. In this case,
action state is called natural. In order to recognize activity, we need to lidnacand for that we use the
notion of constrained state: the state of on action depends on the state tifehaaiions. That is the purpose
of the next section.

3.4 Belief Scheduler for action sequencing

We have proposed a state machine, called belief scheduler of stateb428fl on TBM and relying on the
TCF. The scheduler allows to recognize a sequence of actions in the ©Bteéxt (Fig. 9(b)) and ensures that,
at each frame of the video, one and only one action is imigte statewhile the others are in thialse state

We assume a sequensg = {A} — A} — --- — A} — .- — A%} made ofK actions. The sequences
evolve from an actio;’ to the following oneAj , if the TCF indicates thatl}; becomedalseor if A},
becomesight. As presented in the previous section, this information is provided b tise) m:

— Ay and Ay, are false: if thecusum of A} is greater than the stop threshold and if the quali€y of
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this action is high, then the following action becomes true. The modélobecomes naturally false
while the model ofA , is compelled to be true. We call this process a forcing [23].

— Ay and A7, are true: if thecusum of A7, is greater than the stop threshold and if the action quality
LQ is high, then actiom}, ; becomes true. The model df’ , is naturally true while the model of};
is compelled to be false. This is the preemption process [23].

Some illustrations are depicted in Figures 10 and 11 for a high jump sequeigoee 10 demonstrates the
capability of the both TCF and Belief Scheduler to smooth belief on actions.ré=ijLidepicts conflict and
cusumin a high jump sequence. Conflict is generally high during transitions.

3.5 Action and activity inference

In order to infer which action and which activity are true at a given time, seethe Local Quality recognition
performance for action (LQ) and we compute a Global one (GQ) forigctiv

When the sequencg, evolves from actiond} to action A}, a criterion L£.Q}) is computed forAjy
without reference (see previous Section). When a sequence isdaegally, K values ofLQ} are available.
A criterion GQ" is computed by aggregating the local on€¥Q™ = Zszl LQ} /K. The sequenc#,, better
corresponds to the data thapif GQ™ > GQP and if GQ" is greater than a given required value (&0%).

In a recognition process with four activities (high jump, pole vaults, triple juamaslong jumps for instance),
we just need to compute the Global Quality for each activity given a sets#robtions (features) and then to
choose the one that maximizes the global criterion.

The proposed criterion has the same role as likelihood in the probability ¢dniexhis criterion has the
strong advantage to be understandable. It can be thresholded in@mteate a new class of action or a new
class of activity (class of rejects) since it is bounded. Class of rejentsi@areally be obtained using usual
log-likelihood in probability context except by using log-likelihoods ratio thi is not well justified in case
of several online and competing actions and activities recognizers.

The proposed inference method is illustrated in Figure 11(b). This figowsevolution of Local Quality
recognition performance for the two possible action states: action is righm@{mf [T](R4) (left-side) and

action is false withLQj.if;]f [F](F4) (right-side). For instance, actions quality given the model is true (lef}side
are around 00%, 80%, 70% and95% for running, jumping, falling and standing up respectively. So the Global
quality is of abouB6% (using the mean). This value reflects the confidence of the system in abtgfityump.

3.6 Coarse to fine approach and feedback

The action sequence method consists of two steps: a coarse detectidinaraktection of actions. The coarse
step involves the camera motion features and the center of mass. In the fiingestgencing is based on other
“specialized” features such & in order to discriminate all actions.

3.6.1 Coarse step

The sequences to be recognized represent four types of jump: high(fyy)p pole vault §,,), triple jump
(S¢;) and long jump £;;). Sequences,,, Vn € {hj,pv,lj} are firstly described by eoarseaction sequence:
Sp = {R, — Jn — F, — U,}, whereR,, is the running action,/,, is jumping, F;, is falling andU,, is
standing up in sequencs,. For triple jump, the coarse sequence $§; = {R;; — Jiyj — Fij — Jij —
Fyj — Ji; — Fy; — Uy} There is no subsequence for triple jump because the coarse onedstehatic and
can not be confused with the other types of jump.
Allactions{R,,, Jn, F,, Uy },¥n € {hj,pv,lj,tj} are detected by a fusion process performed at each frame
of the video as described in Section 3.2.
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(a) Before filtering and scheduling. (b) After filtering and scheduling.

Figure 10: Variation of belief in each action ofrégh jumpsequence before (a) and after (b) filtering and
scheduling. The activityigh jumpis found using only the belief ottue (blue). Legend: states trué@’, in
blue), false {4, false), ignorancel(y U F4, in green) and conflict), in magenta).

The coarse definition of a sequence provides the intervals of frameevalmeaction is potentially true but
does not allow to distinguish the type of sequence. In order to differertiateequences, a fine analysis is
required.

3.6.2 Fine step

When a jumping action is coarsely detected (using vertical variation) byraesaquence, the analysis of the
angle is performed within the interval of frames where the jumping was detastedan call it a subsequence.
This process allows for instance to discriminate between a jumping action in &adter in a high jump.

The fine analysis is thus performed in the intervals of frames detected bydngecprocess by exploiting
feature®;. The numerical-to-symbolic conversion [17]©f is performed by dividing the interval of possible
values[—180°, 180°] into 4 main positions{ N, S, W, E'} (North, South, West, East) ardintermediate posi-
tions{NW, SW, SE, NE}. The conversion is depicted in Figure 12 and shows the explicit modellingeof th
doubt between two positions, for instan§8” U 1. The fuzzy description of the angle value allows to take
imprecision and uncertainty of this feature into account. Notably, each pogtimodelled by a trapezoidal
fuzzy set with a size support db°.

The sequencing of the angle value is performed according to each aetjaeree. One set of sequences
is necessary for both right-to-left and left-to-right translations of threara. In Table 2, only the right-to-left
case is described. In Figure 13(b), the high jump action sequence isgigtdescribed.

When a fine sequence is recognized, a criterion LQ is computed for alhaatithin the sequence. These
criteria are then aggregated (as described in the previous Sectiongimombmpute the global quality criterion
GQ of the whole sequence including subsequences (coarse and fine).

3.6.3 Correction of tracking using activity recognition

A feedback is a powerful means to adapt a processing chain to vargimitions. In this paper, we propose
a solution to detect inversion of points in tracking that is basedramr sequencewe assume that we know
some sequences that correspond to inversion.

An example is provided in Figures 13-14 for a high jump where inversiomajteurs at the end of the
sequence. In these figures, the angle shows an inversion of the humas grovided by the tracking due
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Figure 12: Numeric-to-symbolic conversion©f.

to very bad segmentation when the athlete falls on the air mattress (top foot, lieam). This error can
be detected by means of action sequencing (Figure 13(b)). For thateneged;,; the symbol (of activity)
associated to the inversion in a high jump. Coarsely, the inversion (dedq@ibeiously) is searched after a
falling action. Finely, the sequence used to detect this errl;%lis: {§ - SE - E — SE — E}. This
sequence is depicted in Figure 13(a).

When the error sequence is of high quality, i.e. its qualit@) is high, then an error is assumed to be
detected (the correct sequence, even “of error”, is detected)islodbe, a feedback process is performed onto
the tracking algorithm in order to correct the inversion (Figure 13(b)).

4 Experimental Results

In this section, we present experimental results on human detection, tyankshaction/activity recognition.
Algorithms have been implemented using C and Matlab.

We have developed a dataset of 68 videos, in order to test the propciseshe. The database is charac-
terized by its heterogeneity with a high variation of view angles as well asnstragned indoor or outdoor
environments (other moving people can appear), and athletes (male, feitatbfferent skills, skin colors).
The most of the videos are in low quality (having resolution 352 x 288) cagtitom broadcast TV.

Some results of the proposed framework are available at the Web agknessy.lis.inpg.fr/pages_
perso/ramasso/index.htm andwww.csd.uoc.gr/  ~ cpanag/DEMOS/actionActivityRecognition.
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htm.

In many cases, the low quality silhouettes increase the errors of major hurivda pomputation (about
10 — 15% of human height) mainly on leg points. These low tracking accuracy restftsestor action and
activity recognition.

The database contains 68 videos with four types of jumps: high jump (hj)vaale(pv), triple jump (tj)
and long jump (Ij). Each video is analyzed by the four sequestes’n € {hj,pv,lj,tj} providing four
criteriaGQ". A jump n* is associated to the current videaif = max,, GQ" and if GQ™ is greater than
50%. One setting per type of jump is provided for the TCF. Then, the obtainedtsee compared with
the manually annotated video to compute a precision index. Using the cogtsmsing, all actions are well
detected. However, to discriminate actions, we use the refinement delsicriBection 3.6.2 and based on the
angle.

Theclassification ratesire:

Chj = 87% (13/15) ; Cpy = 85% (22/26) Cy; = 75% (9/12) Cy; = 74% (11/15)

(for high jumps, pole vaults, triple jumps and long jumps respectively). Fdr joignps, two videos have been
confused with pole vault due to errors in body rotation during the jumpingfahidg steps. For pole vaults,
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Table 2: Sequences of the angle for each type of jump.
sequence namgsymbol and action sequence expression

pole vault Spv = {Rpv — Jpv = Fpy — Upw }
running Ry, = {N U (e is high)}

jumping Jow={N—-NE —-FE—SE—S—SE— E}
falling Fpo={F—NE—-N—>NW — W}
standing up Up ={W — NW — N}

high jump Shj = {th — Jpj — Iy — Uhj}
running Rp; = {N}

jumping Jpj ={N = NW — W}

falling Fypj ={W — SW — S}

standing up Upyj={S—=SE—-FE—-NE— N}
long jump Sy ={Ry; — Ji; — F; — Uy}
running R ={N}

jumping Ji; ={N}

falling F;j={N —- NE — E}

standing up U;={F - NE — N}

four videos have been confused with high jumps still due to errors in bo@yion during the jumping and
falling steps. For long jumps, confusions with pole vaults (2 cases) andurigts (2 cases) have occured due
to the athletes’ arms movements that have disturbed the tracking and simulatiech ratastly, 3 triple jumps
confusions with long jumps have occured due to lack of texture in the videdvhés disturbed the camera
motion estimation and has hidden the two first jumps (the third jump is the one with theshayhplitude).

Concerning inversion of the tracked points, we have tested high jumpsodmdauilts:8 videos with inver-
sion were tested and the detection rate Was,_5; = 75% (6/8).

Error rates in classification concerns the videos with 1) pure divegg@mom) with athlete in front of the
camera preventing from using the angle, 2) bad pole deletion, 3) vidéalsaioges and 4) bad camera motion
estimation in too low quality videos.

5 Conclusion

The proposed human motion analysis framework based on Transfei@&éNodel (TBM) has demonstrated
good performance on athletes actions and activities recognition. The TBMWsato represent doubt and
conflict which can not represented in usual probability theory. Thesens are fully exploited in this paper
in both the Temporal Credal Filter which smooth belief on actions and in the B&tisgé Scheduler which
recognized activities as sequence of understandable actions. TheRateScheduler has been exploited for
hierarchical recognition of actions and activities in order to simplify theiogedion. It has also been exploited
for error sequence recognition in order to detect inversion of poiniggltracking therefore enabling one to
perform feedback from high level to low level modules.

Algorithms for action and activities process features provided by roéxisactors related to shape and
motion of athletes. Videos are assumed to be acquired by moving camerdisRasw good performance
in the recognition of running, jumping, falling and standing up actions as 8ddtlaetics jumps that are pole
vault, high jump, long jump and triple jump.

An extension of the proposed methodology include the addition of more spadtactions.
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