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Abstract

This paper deals with image quality assessment that is capturing the focus of several research teams
from academic and industrial parts. This field has an important role in various applications related to image
from acquisition to projection. A large numbers of objective image quality metrics have been developed
during the last decade. These metrics are more or less correlated to end-user feedback and can be sepa-
rated in three categories: 1) Full Reference (FR) trying to evaluate the impairment in comparison to the
reference image, 2) Reduced Reference (RR) using some features extracted from an image to represent it
and compare it with the distorted one and 3) No Reference (NR)measures known as distortions such as
blockiness, blurriness,. . . without the use of a reference.Unfortunately, the quality assessment community
have not achieved a universal image quality model and only empirical models established on psychophysical
experimentation are generally used. In this paper, we focusonly on the third category to evaluate the quality
of CRT (Cathode Ray Tube) and LCD (Liquid Crystal Display) color reproduction where a blind metric
is, based on modeling a part of the human visual system behavior. The objective results are validated by
single-media and cross-media subjective tests. This allows to study the ability of simulating displays on a
reference one.

Key Words: No Reference metric, quality assessment, Display technologies ,color reproduction, single-
media and cross-media validation.

1 INTRODUCTION

Image quality assessment is a very important activity for many image applications. The best way to assess the
quality of an image is to ask observers to look at it as the Human Visual System (HVS) is the end-receiver in
most processing environments. However, this approach is tedious, time consuming and expensive for practical
usage. Moreover, it requires a normalized environment ensuring the best conditions for the targeted application.
The most frequently used method for quality and/or fidelity measurement is the computation of parametric
models that include characteristics of either the image or the application. Great efforts have been made over the
last few years to develop objective image quality metrics that correlate with the perceived quality measurement
with unfortunately relatively limited success. Indeed, inmost cases, these metrics are limited to measuring
differences between images before and after processing. According to the application, models including some
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HVS properties are integrated in the developed metrics. However, display device characteristics are not often
taken into account in these models.

Quality assessment metrics could be classified into three categories: Full Reference (FR), Reduced Refer-
ence (RR) and No Reference (NR) metrics. In practice, FR methods may not be usable since the reference
image is often unavailable. Hence, it is necessary to assessthe quality by using the impaired image only. Un-
fortunately, NR quality measurement is an extremely difficult task because many unquantifiable factors play a
role in the way the observers assess quality, such as aesthetics, cognitive relevance, learning, context, user back-
ground and so on. Consequently, most proposed NR quality metrics are designed for one or a set of predefined
specific distortion types and cannot be extrapolated to images with other distortions. In image compression ap-
plications, for instance, NR quality metrics measure structural artifacts such as blockiness, blurriness, ringing
due to coding algorithms [14, 17]. Because of the complexityof the blind quality assessment field it is largely
unexplored. RR metrics are preferred in certain cases because they allow to embed some characteristics of the
image in order to be compared to those extracted after the process (transmission for instance).

In this paper, we focus on a blind quality assessment using a NR metric for color reproduction applications
dedicated to displays. The development of new display technologies such as LCD (Liquid Crystal Display) or
OLED (Organic Light Emitting Diode) do not simplify the taskof quality assessment of image reproduction.
This could be explained by the large variation in gamut, tonereproduction curves, . . . that can exist between
LCD, CRT or any other technology. Thus, metrological approaches defined by standard organizations such
as VESA [18] or CIE [6], that measure the physical performance of displays, are somewhat limited when
the measurement of the subjective quality of rendering is needed. It is thus natural to ask observers to take
part in the evaluation in order to measure the defects of the various monitors from a subjective point of view.
Unfortunately, this stage is tedious and, time and money consuming. Novel studies, like the one presented
in this paper, are necessary to integrate the human observerin the assessment loop.Watson[20] proposed
a method of observer integration to determine the motion blur and local contrast defects.Bringier et al.[3]
described a method to measure the differences, in terms of perception, between various display technologies.
These methods do not allow to directly predict the subjective quality of a color reproduction. They are limited
to the detection of defects and/or a comparison measurementwithout subjective quality information. This is
why it is necessary to provide new approaches and methodologies to answer the problem.

For subjective quality applications, the contrast is generally considered to be one of the most important
quality parameters [22, 7]. It is commonly defined in terms oftone reproduction curves for color reproduc-
tion applications. Unfortunately, two sets of images having very different white and black points may have
very different perceptual contrasts. So, image quality cannot be established from the tone reproduction curves.
Consequently, empirical models based on psychophysical experiments have been developed to compute the per-
ceived quality with regards to the contrast of the image. Themost successful model uses a simple definition of
Lightness-Contrast, Chroma-Contrast and Sharpness-Contrast [5] in the CIE L*a*b* color space. However, the
parameter weights in this type of models depend highly on theset of images used in the subjective experiments.

To solve this problem, we propose a new no-reference algorithm based on an HVS modeling. Initially, we
compute the perceived information by using a hardware reproduction performed by the selected displays and
a software reproduction performed by a simulation of the display characteristics. Then, a color local contrast
definition is used to assign quality scores. Finally, we validate our quality measurement thanks to subjective
experiments and analyze the correlation between the metricpredictions and the observer ratings. The subjective
experiments are performed in two ways : using a single-mediavalidation and using a cross-media validation.
The latter allows the explorations of a field where no assessment standard exists.

The remainder of this paper is organized as follows : Section2 is dedicated to color reproduction issues. In
section 3, we describe the proposed no-reference metric. Section 4 presents the experimental methodology and
the results are given in section 5. This paper ends with a conclusion and some future directions.
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2 Color reproduction

(a) (b)

Figure 1: Example of spectral radiance distributions for full color, red, green and blue for CRT (a) and LCD
(b)

A large numbers of new display technologies are introduced for the needs of emergent applications which
generate different color reproductions of the same material. For instance, LCD or plasma displays do not have
the same reproduction as conventional CRT. Some characteristics like tone-reproduction curve or spectral and
basic colorimetric characteristics can change the color reproduction and, hence, the image perception of an
observer. Figure 1 shows spectral differences between CRT and LCD displays.

To model the luminous field emitted by the display for estimating the perceived information by the HVS,
traditional methods described in literature [6] are adequate and do not need improvements for the needs of
this work. So, for the purpose of this work, we selected the S-Curve characterization [12] because it allows
approximating as well as CRT and LCD displays.

3 Proposed no-reference metric

The human perception is able to naturally define quality standards to classify a set of images. It is thus natural
to try to use the HVS behavior to develop a quality model for color reproduction. The proposed method for
predicting quality uses the contrast definition ofPeli [15] dedicated to color images. Figure 2 summarizes the
approach of Local Band-limited Contrast (LBC) computation.

The LBC is performed in theAC1C2 color space [16] after the CSF (Contrast Sensitivity Function) filtering
stage. The CSF is one of the most used models of the HVS and allows to represent its sensitivity with regards to
spatial frequencies [13]. Several CSF models exist and follow different strategies which means that the choice
can have an impact on the performance of the developed metric. To compute color contrast, the image is filtered
by a set of band-pass filters and fan filters like a cortex transform [19]. Four spatial frequency bands and four
orientations allow the frequency decomposition. With thisfiltering, the radial frequency selectivity and the
orientation selectivity are modeled. The effects of these filters are cascaded to describe the combined radial and
orientation selectivity of cortical neurons [7].

Then, the frequency bands are converted into a measure of perceived contrast in the image for both chromatic
and achromatic channels. Generally,Weber(eq. 1) orMichelson(eq. 2) contrasts are used to compute simple
stimuli contrast.

CWeber =
∆L

L
. (1)
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Figure 2: Local Band-limited Contrast method.

CMichelson =
Lmax − Lmin

Lmax + Lmin

. (2)

Unfortunately, it is also obvious that none of these simple global definitions is appropriate for measuring the
contrast of natural images, because a few points that are very bright or very dark would determine the contrast
of the entire image. To solve this problem,Peli[15] proposed a local band-limited contrast definition given by
the following equation:

LBCk(x, y) =
Bk(x, y)
∑k−1

i=0 Bi

, (3)

whereBk(x, y) is the band-pass filtered image of thekth band, and
∑k−1

i=0 Bi contains the energy below this
band. In our model, we used a modified version ofPeli’s contrast definition [21] given by this equation:

LBCk,l(x, y) =











Bk,l(x,y)

Mk,l+
∑k−1

i=0
Bi,l

∀ k = 2 . . . K, l = 1..L

Bk,l(x,y)
Mk,l+B0

∀ k = 1, l = 1 . . . L
(4)

whereB0 is the average of the image defined by the center ofDaly frequency decomposition andMk,l is the
function that can be used to introduce the average of the image and to model the frequency and orientation
sensitivity of the HVS.Mk,l gives the flexibility to take into account the influence of chromatic and achromatic
local average and the range of the display device. Moreover,Mk,l avoids a division by zero in the originalPeli
equation.

A this stage, the color contrast information is combined to provide a global contrast assessment. Coefficients
are used according to frequency and orientation decompositions. A factor of 2 is affected to achromatic channels
compared to chromatic channels according to the color coding in the human visual system [1, 4]. The same
weighting factor is affected to high frequency informationcompared to average frequency one. Thus, luminance
contrast is considered more important than chromatic contrast. Indeed, in this study, the changes of contrast
in images according to the tone reproduction curves appear primarily in luminance. Moreover, the sharpness
depends primarily on the high frequencies; It is thus obvious to assign a high factor to them. It is also consistent
with the neurophysiologically-based encoding functions.
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(a) (b)

Figure 3: a- Original image, b- Local band-limited contrastimage for average frequency and four orientations.

4 Subjective assessment methodology

Subjective tests provide the foundations for building vision models[11]. At the same time, they are the only true
benchmark for evaluating the performance of the various perception-based image processing. Unfortunately,
perceptual responses cannot be represented by exact figures; due to their inherent subjectivity, they can only be
statistically described. Even in psychophysical threshold experiments, where the observer’s task is just to give
a yes/no answer, a significant variation between the observers could exist. Although the subjective experiment
is time-consuming, it is considered as the main way to validate the metric results by studying the correlation
existing between them.

4.1 Experimental conditions

In this section, we describe the most important conditions and the values that we have chosen to set up the
experiments.

4.1.1 Psychophysical test-room

This room is constructed in compliance with the recommendations of the ITU [8]. It is lighted by neon tubes
D50 for an ambient illumination of62 ± 4 lux approximately. The walls of the psychophysical test-room are
painted in neutral gray in order to minimize the stray reflections on the display (see figure 4).

4.1.2 Displays

The monitors used for the assessment have a diagonal of 17”. The calibration of the CRT and LCD displays
was carried out using a spectro-colorimeter PR-650. The white of the monitor is around6500 ± 100K for a
brightness of80 cd/m2.

4.1.3 Observers

The observer panel consists of a coherent set of non-expert people representing different age, gender and socio-
professional categories. Before each test sequence, this panel undergoes a visual acuity test (Snellen) and color
blindness test (Ishihara).
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Figure 4: psychophysical test-room setup

4.2 Subjective assessment protocols

The aim of this section is to validate our metric by using subjective assessment. To obtain significant subjective
data, the ITU [8] gives recommendations concerning the methodology, the environment and the data analysis.
Nevertheless the assessment methodology is based on a single device procedure.

In order to avoid the bias introduced by the simulation of tone reproduction curves of the displays on the
same and unique device, we managed a cross-media validationbased on the assessment of different displays at
the same time.

The two tests were performed in the same environment in orderto preserve the reliability of the results. The
analysis of the assessment results is decomposed in two stages. First, we compute the MOS (Mean Opinion
Score) which is the average of the observers results and the 95% confidence interval inside which the results are
considered as the most reliable. Because the reference caseis a normal distribution, we need to run the kurtosis
test to reject outliers observers and/or observations.

The kurtosis coefficientβ2 (i.e. the ratio between the fourth-order moment and the square of the second-order
moment) is given by [10]:

β2 =
m4

(m2)2
, (5)

β2jkr =
1
N

∑N
i=1 (ūjkr − uijkr)

4

(

1
N

∑N
i=1 (ūjkr − uijkr)2

)2 , (6)

whereuijkr is the score of the observeri for the degradationj of the imagek and therth iteration.N represents
the number of observers . Ifβ2jkr is between2 and4, we can consider that the distribution is normal. The
different steps of the algorithm are summarized below :
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Algorithm 1: Steps for outliers rejection

if (2 ≤ β2jkr ≤ 4) /* (normal distribution) */ then
if (uijkr ≥ ūijkr + 2σjkr) then

Pi = Pi + 1;
endif
if (uijkr ≤ ūijkr − 2σjkr) then

Qi = Qi + 1;
endif

endif
else

if (uijkr ≥ ūijkr +
√

20σjkr) then
Pi = Pi + 1;

endif
if (uijkr ≤ ūijkr −

√
20σjkr) then

Qi = Qi + 1;
endif

endif
/* Finally, we can carry out the following eliminatory test :*/
if

(

Pi+Qi

J.K.R
> 0.05

)

and
(∣

∣

∣

Pi−Qi

Pi+Qi

∣

∣

∣ < 0.3
)

then
Eliminate scores of observeri;

endif
/* WhereJ is the total number of degradations,K is the total number of images andR is the total number
of iterations. */

4.2.1 Single device validation

The aim of this test is to obtain a classification of the various monitors. The assessment of the modified images
is performed on a single device. The image modification lies in a variation function of the tone reproduction
curves it represents. Figure 5 details the synoptic of the followed methodology for studying the correlation
between objective and subjective measurements.

Figure 5: General Synoptic of single-media validation.

In this test, we have nine versions of the same image by using nine different tone reproduction curves, each
representing results obtained in the characterization stage. These versions are displayed simultaneously on the
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same monitor described above. The observer is asked to answer the following question :The same image
reproduced in different ways will be displayed. You are asked to select the worst representation by clicking on
it. The image you have selected will be masked and you are requested to do this again eight times

4.2.2 Cross-media device validation

During the last subjective experiment, the variations in the monitors’ gamut were not taken into account. This
is due to the use of a single monitor to simulate the entire setof monitors. The aim of the current test is to
assess the color reproduction quality by using the monitorsthemselves. The image modification is not done
by using a software but by the inherent characteristics of the monitor. What differs from the previous test, in
order to avoid a too important variation of all monitor parameters, is the use of only LCD technology displays.
Note that cross-media evaluation is very tedious and no standard exists. So, this limitation to LCD only allows
the reduction of the number of parameters to be tuned. Figure6 shows the synoptic cross-media validation
flow-chart of the cross-media methodology. Thirty non-expert observers performed the test.

Figure 6: General synoptic of cross-media validation.

For this test, the image was displayed on the five monitors at the same time. The observer was asked to
rank the color reproduction from the worst to the best. In this case, the image on the monitor was not masked
allowing the observer to recheck his choice. The question hewas asked to answer is quite similar to that of the
single-device test.

5 Experimental results

To confirm the perceptual relevance of our metric, we carriedout two sets of subjective experiments. First, a
database, with twelve test images representing typical images used in multimedia applications (Corel Photo),
was created by simulating nine tone reproduction curves that can be typically obtained in CRT and LCD dis-
plays. This experiment is used to validate the performance of the no-reference metric. Then, another experiment
is performed on 5 LCD monitors to validate our method througha cross-media test. Figure 7 shows an example
of the images used for the subjective experiments.
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-a- -b-

Figure 7: Example of test images for the quality assessment experiments (-a- Synthesis, -b- Transport).

(a) (b)

Figure 8: Error-bar plot with 95% confidence intervals of subjective ratings versus no-reference perceptual
contrast measurement for two images of the database (a- Transport, b- Synthesis).

5.1 Single media results

The prediction model of perceived color contrast is appliedto the entire set of images used during the subjective
test. Figure 8 shows a part of the most significant results (complete results could be found in [2]). One can
notice two types of curves: for ”Transport” test image (see figure 7), we obtain a linear correlation between
MOS and perceived contrast prediction. In this case, we can conclude that perceived contrast prediction could
directly define the quality prediction. Thus, for the entireset of images that have the same results (seven images
from the database), we obtain a correlation between perceived quality and subjective results as high as 90%.

For other test images from the database, we obtain slightly different results. Initially, the correlation between
perceived contrast and subjective judgment is positive. Then, after a given threshold, we obtain a negative
correlation (figure 8). However, too much contrast in an image can decrease its visual quality as explained by
Janssen[9]. In the framework of his work, a psychophysical experimentation was used to determine the quality
and the naturalness of an image based on the contrast.

The global color contrast value is not sufficient to determine quality. A threshold, function of contrast, must
be applied to obtain a quality measurement. Figure 9 shows the results of quality prediction for ”Synthese”
image. Similar results are obtained for the three other images whose have the same subjective results. Thus, on
the whole image set, we obtain a correlation between qualityperceived and subjective results as high as 90%
as previously mentioned.
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Figure 9: Error-bar plot with 95% confidence intervals of subjective ratings versus no-reference perceptual
quality measurement for ”Synthese” image.

5.2 Cross-media results

In this section, we present the results of the cross-media validation previously described. This approach is quite
new because it allows the assessment of several displays at the same time by exploiting their own characteris-
tics. As mentioned in the dedicated section, this methodology is tedious and time consuming. That is why it
is not always possible to repeat it. However, the extracted results are very interesting for the metric validation
and for future works on objective assessment.

(a) (b)

Figure 10: Error-bar plot with 95% confidence intervals of subjective ratings versus no-reference perceptual
contrast measurement for two images of the database( a- Image ”11”, b- Image ”14”).

The metric is applied to a cross-media evaluation to verify the results obtained in the first experimentation.
Figure 10 shows the results for the five LCD displays for two pictures (a and b). The X-coordinate represents
the prediction of contrast and the Y-coordinate the subjective scale. The error-bar plot with 95% confidence
intervals represents the data obtained for one display. Theobserver’s preferences are classified to the display
characteristics. The red bar shows the correlation betweenthe subjective and objective data. We can observe a
good correlation between them for picture 11 and a not as goodcorrelation for picture 14.
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(a) (b)

Figure 11: Example of test images : -a- Image 11, -b- Image 14

To compute the correlation ratio, we used two well known coefficients : Pearsonrp and Spearmanrs.
Pearson coefficient is given by the following equation :

rp =
n

∑n
i=0 XiYi − (

∑n
i=0 Xi)(

∑n
i=0 Yi)

√

(
[

n
∑n

i=0 X2
i − (

∑n
i=0 Xi)2

] [

n
∑n

i=0 Y 2
i − (

∑n
i=0 Yi)2

]

)
(7)

wheren is the number of pairs of scores. The degree of freedom isdf = n − 2. Spearman coefficient is given
as follows :

rs = 1 − 6
∑n

i=0 d2
i

n(n2 − 1)
(8)

The Pearson correlation between the subjective and the objective results is globally equal to0.78. It indicates
a good relation between the variables. The Spearman coefficient is equal to0.90 with a p-value< 0.05. We
obtain thus a good correlation between the subjective and the objective tests.

Figure 12: Contrast measurement for each display and each image.

Table 1 compiles the results for each image and allows to analyze the results. Figure 12 shows the predicted
contrast for each image. We can observe a high variability and we obtained a poor correlation for image 16
only. For the other images the results are relatively acceptable. The best result is obtained for image 11 (figure
11-a).

Since during the subjective test the observer was asked to classify the different reproductions, the results
must be analyzed by using the Spearman coefficient which exploits the notion of rank order. Table 2 gives the
different Spearman coefficients. As we can notice the correlation is satisfactory in all cases.
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Picture label 13 16 3 4 5 6 15 14 9 10 11 12

Coeff. Cor 0.73 0.39 0.75 0.79 0.85 0.74 0.62 0.54 0.87 0.75 0.89 0.64

Table 1: Pearson correlation for each image

Picture label 13 16 3 4 5 6 15 14 9 10 11 12

Coeff. Cor 0.70 0.50 0.90** 0.80 0.90** 0.90** 0.70 0.35 0.70 0.9** 1.00 0.56

Table 2: Spearman coefficient correlation for each image; **p-value< 0.05

6 Conclusion and future works

In this paper, we presented a no-reference metric for quality assessment of color reproduction devices (dis-
plays). This type of quality prediction application is rarein literature. Indeed, a full reference model is gen-
erally used to evaluate the performance of image processingsystems and no-reference models to evaluate a
precise artifact like blockiness in compression. Moreover, we used the human visual properties to develop our
no-reference model. Consequently, we obtained a generic measurement that enables to evaluate the quality of
an image that does not have deformations like blockiness. Finally, the model is validated with two different
subjective tests. The first one is based on the contrast change in an image. A correlation between the results
of this test and our quality prediction higher than coefficients can be refined to improve the prediction perfor-
mance. Then, another subjective test is performed to validate our approach for soft copy quality evaluation. The
results give a good correlation between our method and the subjective data. Nevertheless, we want to achieve a
better correlation in the future. For this we need to incorporate more criteria into the metric.
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