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Abstract

When observing a scene horizontally at a long distance imé@-infrared domain, degradations due
to atmospheric turbulence often occur. In our previous wetdk presented two hybrid methods to restore
videos degraded by such local perturbations. These réistogorithms take advantages of a space-time
Wiener filter and a space-time regularization by the Laplaciperator. Wiener and Laplacian regularization
results are mixed differently depending on the distanceden the current pixel and the nearest edge point.
It was shown that a gradation between Wiener and Laplacieasamproves results quality, so that only
the algorithm using a gradation will be used in this article.spite of a significant improvement in the
obtained images quality, our restoration results greatfyethd on the segmentation image used in the video
processing. We then propose a method to select automgtilcalbest segmentation image.
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1 Introduction

Atmospheric turbulence can severely degrade groundgorgt acquisition images and videos in the case of
important temperature fluctuations. We address here tleeafdecal atmospheric perturbations, particularly
in a military context for distant surveillance of dangerausas in the near-infrared domain.

Turbulence strength essentially depends on climatic ¢ondi and on the distance between the scene and
the camera. The video sequence we tested our algorithm dneleasprovided bypRDC Valcartier Canada,
and it was acquired during the NATO RTG40 campaign in New Mexn 2005. In our sequence acquisition
conditions (horizontal observation in the tropospheres distance of about 1 km), atmospheric perturbation
can be efficiently simulated by local blurring and warping aossibly additive noise. Each frame can then be
split into mostly regular areas degraded by the same patiarb(ocal isoplanatism

Several authors developped techniques to restore vidgpadksl by atmospheric turbulence during ground-
to-ground acquisition. Frakes et al. propose to detectrangiheric vector field and to use it in their distortion
compensation process [1]. Yaroslavsky et al. first procedgtzen fuse visible and thermal sequences to obtain
better results [2], or first use a median filter to obtain ananped image and then detect moving objects [3].
Kopeika et al. compute atmospheric effects with differentoiation transfer functions (MTFs) described by
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analytical functions, and restore their images by a simpknéf filter [4]. Fraser and Lambert detail a method
to detect a local atmospheric point-spread function (PBeugh a region-of-interest Wiener filter, and they
compare their new registration and restoration method witidowed cross-correlation previously used [5].

In our last article [6], we proposed two hybrid restoratidgosithms based on a mixing of two space-time
processings: a Wiener filter and a regularization by thea@ph operator. Wiener and Laplacian regularization
results are mixed differently depending on the distancevéen the current pixel and the nearest edge point.
A gradation between Wiener and Laplacian areas improvestseguality, then only the algorithm using a
gradation will be used in this article. A significant impravent has been shown in the obtained images quality,
but our restoration results greatly depend on the segmemtahage used in the video processing. We then
propose a method to select automatically the best segrnmmiatage.

First we recall what local isoplanatism is. Then we explaim general algorithm used to process locally a
video sequence, we show some restoration results and wgsartaem. Therefore the segmentation process
is detailed, and restoration results are given and compaitedorevious ones. Finally, a conclusion and some
perspectives are given.

2 Local Isoplanatism Theory

2.1 Definition

Atmospheric turbulence induce varying perturbations dicapbeams, according to beams propagation direc-
tions. On Fig. 1 is given an example where two beams coming ffee same object cross a thin turbulent
layer.

light beams displacement

L upil image
turbulent layer Bla%e plagne

Figure 1: Origin of different atmospheric perturbatidfiss the angle between the two beams, L is the distance
between the turbulent layer and the pupil, and D is the puigifrabter)
Three degradation types can occur:

e Anisoplanatism: f6L| > D, the turbulent layer areas met by the two beams have no compararThe
beams are perturbed by two completely different degradsitio

e Local isoplanatism: If the observed object has sufficiesithall angular dimensiorés beams originating
from any point on the object and arriving on the pupil can beswtered to have encountered almost
identical regions of the perturbing layer [7]. That will bartslated on the related image by areas where
the perturbation is the same.

e Total isoplanatism: Whe# ~ 0, the two beams suffer from exactly the same perturbation.

2.2 Isoplanatic angle

In the case of horizontal propagation on a distanaea turbulent media, the structure constart which cor-
responds to turbulence influence on optical propagatianpeaapproximated by a constant and the isoplanatic
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anglef, is then defined by [8]:
2T

—6/5 _ _
0 = 0.95(7) L=8/5(C2)=3/5 . 1)
Knowing that\ = 0.86um, L = 1000m andC%, ~ 1.10~'2m~2/3, we obtain an estimated value for the
studied video sequencéy =~ 1.38urd.

2.3 Instantaneous Field Of View (IFOV)

The IFOV is the maximal angle covered by a single detectiameht in the image plane. It can be estimated by
using simple trigonometry. The vertical IFOV is then appnoated by% whereH is the observed object real
height,N is the vertical pixel number needed to repreddnin the detecting matrix, ardis the target-sensor
distance.

Knowing the observed object real height (fh)5and having estimated the related pixel numNd07 pix-
els), we then obtain an estimated vertical IFOV value forstiuelied video sequencéf’ OV = 14.0urd.

Comparingdy and IFOV values, we conclude that IFOV covers a larger arglad, so that our sequence
should be degraded by anisoplanatism. But during the atiquisthe exposure time was about 33 ms which
is not weak enough to “freeze” the turbulence effects on dahe. These ones can then be considered as
averaging of several short exposure images, and that ishayyare composed of different areas with the same
atmospheric perturbation on average. They finally fit wittaldsoplanatism assumptions.

3 Video sequence processing algorithm and results analysis

3.1 Two spatial and temporal methods

e A space-time Wiener filter :

The D. Fraser’'s and A. Lambert’s algorithm [5] schemed on Bigas been used to process our video
sequence. Its principle is to detect a local space-varyamgtspread function (PSF) describing the atmo-
spheric turbulence. The PSF is found by using a Wiener fittth@ on regions-of-interest of a reference
image and each frame of the sequence. The reference imaggalyi the sequence average, and is up-
dated after each deconvolution pass of the complete segqu&he process is repeated until the absolute
difference between the two last average images is minimilregdractice, one or two deconvolutions of
the complete sequence are sufficient.

— averaging -
| original sequenc+—> | reference |mage|
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each degraded framié
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Figure 2: Sequence processing by a local and temporal Widteer

e A space-time Laplacian regularization :
The same general scheme has been used, replacing the laraMilter step by a local regularization
by the Laplacian operator.
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3.2 Spatial and temporal methods results and analysis

On Fig. 3 are shown our first restoration results. The pretksequence is compound of 100 frames of
256 x 256 pixels size from an original sequence provide®BRDC Valcartier It was acquired during night
and the objects were lighted by a laser. We consider thatlpesspeckle noise is eliminated with spatial
integration due to the large target-sensor distance.

Looking at Fig. 3, we can observe that averaging allows tnglly decrease noise in the reference images
but the local Laplacian regularization allows to improvaseoremoval. Also we can choose the best suited
parameter of the local Wiener filter in order to remove the imaxn of the remaining blur so as to obtain
clearer edges.

We made our processing on MATLAB. Local restoration commitime is from few minutes to about one
hour depending essentially on the frame number in the psedesequence, on their size and on the number
and size of regions-of-interest (ROI) used to process aaohd. 32 x 32 pixels ROl were used to obtain results
shown on Fig. 3.

Observed object Degraded frame First reference image

Local Wiener result Local Laplacian result

m
. RiN

Figure 3: First video sequence restoration results.

Several criteria have been used to compare and appreciatesiaration results. We first calculated the
mean variances in the three white squares and also in the bkaek squares on the checkerwork: the results
are noted on Tab. 1. The local Laplacian regularizationgyitie better result.

Table 1: Mean variance values in black and white squaresriagés resulting from the processed sequence
(Contrast estimation by742—271 is given for a better comparison).

Image Black squares variancgWhite squares variance Contrast
Degraded frame 102.1 540.9 0.89
First reference image 11.6 84.1 0.82
Local Laplacian result 11.1 64.0 0.80
Local Wiener result 16.4 98.2 0.91
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The other criteria concern edges areas. We compared the stoganof horizontal and vertical transitions
between black and white squares: the local Wiener filtersgikie steepest mean slope. We also computed the
modulation transfert function (MTF) of each mean transiti@tween black and white squares, which provides
a quantified and graphic representation of simultaneouitiggaof contrast and clearness. The mean transition
MTF is the modulus of the Fourier transform of its derivatiaad is then normalized to range between 0
and 1. According to Fig. 4(a), the local Wiener filter givee thest MTF. Furthermore for each result, we
compared the correlations of each mean transition withdiéalione. According to Fig. 4(b), the local Laplacian
regularization gives a slightly better result than the I6@&ener filter, but this is due to the fact that the Wiener
result is more constrasted than the Laplacien one and thates oscillation before and after the edge.
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Figure 4: First restoration results analygs) Mean transitions MTFs for the reference image, the lat@ner
result and the local Laplacian result. (b) Correlation psaif the same images mean transitions with the ideal
one.

To summarize, the local Laplacian regularization allowsrtprove noise removal on uniform areas whereas
the local Wiener filter allows to get rid of a large part of tleemaining blur on edges. A hybrid method which
takes advantages of these two methods is thereafter prehpose

3.3 Mixing algorithm using a gradation

This algorithm mixes the space-time methods results acoptd each pixel membership of an edge area or a
uniform one. Using a gradation between edge and unifornsdneproves results quality [6]. This algorithm
is compound of two steps: a segmentation step and a fusian one

3.3.1 Segmentation image

We need a segmentation image (i.e. an edge image) to detetatér areas where the Wiener result will be
kept, areas where the Laplacian result will be kept, andsandeere both results will be fused. It is obtained
with the Canny-Deriche filter. To limit false edge detectiwe use the three images we have in input: the
reference image, the local Wiener result and the local lcaguteresult. On the final segmentation image, an
edge point is kept only if it's present on at least two of the¢hused segmentation images.

In a first time, two segmentation thresholdsr] have been arbitrarily chosen: the first one allows to detect
small white circles above and on the right of vertical baig.(B(b)), while the second one allows to obtain a
“clean” segmentation, i.e. without parasite edge (Fig))5(&utomatic selection of segmentation threshold is
under investigation, with a method based on detected edgespumber study.
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(a) (b)
Figure 5: Observed obje¢a) and the 2 used segmentation imag@s:thr = 0.04 and (c) thr = 0.35

3.3.2 Fusion

In the fusion step, the restoration result is adapted acuprih the distance between the current pixel and
the nearest edge point: the local Wiener result will be damimear edges whereas in uniform areas the local
Laplacian result will be better adapted. Between these ages, some pixels can be considered as belonging to
both edge area and uniform area. A gradation is then usedsdfimem the Wiener result to the Laplacian result,
which allows simultaneous attenuation of the small graglleifference between them. A varying weighting
coefficienta is added depending on the proximity of the current pixel tortbarest edge point. For each pixel,
the following formula is used:

Vi, j, WLM (i, j) = a(c) LWR(i,j) + (1 — a(c)) LLR(i,5) , (2)

where WLM is the Wiener and Laplacian Mixing resultWR is the local Wiener resultl.LR is the local
Laplacian result, and is the distance transform of the segmentation image (i.e.distance card obtained
from the segmentation image and representing the distatagebn each pixel and the nearest edge point). The
coefficienta is such as0 < a(c) < 1.

The closer to an edge point, the higherand conversely. The gradation is made on several pixets fne
center of the mean transition on the local Wiener resultpiting to the pixels numbeiN) needed for this
mean transition (Figs. 6(a) and 6(bN.is computed for each edge in the image. In the case whereveis e
the two middle pixels are considered as central pixels. WeBllts are shown on Figs. 7(a) and 7(b).

1 2 3 N 3 2 1

alc) =0 afe) alc)=1  «a(e)=05 afc)=0
‘ ‘ ]
N pixels only Laplacian only Wiener only Laplacian
(@) (b)

Figure 6: Transition exampl@) and processing areas determination with an odd transitiat pumber(b).

3.3.3 Results analysis

Analysis of our mixing results have been realized with thaesariteria than those previously used, and similar
results to previous ones have been found (Fig. 8): WLM resultan transitions provide MTFs almost as good
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(b)
Figure 7: WLM results witithr=0.04 (a) andthr=0.35 (b).
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Figure 8: WLM restoration results analysi@) Mean transitions MTFs. (b) Correlation peaks with theat
transition. WLM result with a low threshold provides at oracgood MTF and a good correlation peak.

as those obtained with the local Wiener result, and coioslateak with the ideal transition has been improved
compared with the local Wiener result. Moreover the Caneyidhe filter has been tried on these results
(Fig. 9), which allows us to conclude that white circles agttdr detected with a low threshold. Horizontal cuts
have also been realized along small white circles abovedtteal bars to determine the brought improvement
concerning circles detection (Fig. 10). Results stronglgahd on the chosen segmentation threshold: if the
circles are not detected on the used segmentation imadeaiecian result is applied and edges are smoothed.

Figure 9: Canny-Deriche segmentations on WLM resii{fsicles are better detectd with a low threshold.)
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Figure 10: Horizontal cuts along white circldgr each curve, high gray levels represent detected whittesi.
On WLM results, circles are better detected with a low thoddh

4 Automatic selection of the best segmentation image

This section is dedicated to the improvement of the segrtientatep. Restoration results strongly depend on
the segmentation threshold. A too high threshold does v &b detect smallest details in the scene, whereas
with a too low threshold noise and textures appear. A methpdaposed to find the best adapted segmentation
threshold, then the new restoration result is analyzed.

4.1 |deal threshold determination

A range of thresholds are applied to the three Canny-Derigbdts (on the average image, on the local Wiener
result and on the local Laplacian result). Each curve of ttieated edge point percentages in function of
thresholds is L-shaped. A small threshold results in tooyralse edges, where a large threshold results in
strong edges only. We look for the best compromise betweesettwo extreme cases. The most interesting
segmentation images are those with points on the L-curveeseto the origin. We choose to compute the
thresholdthr automatically by interpolation in order to minimize the Edean distance between the L-curve
and the origin (Fig. 11) (the thresholds arouhd don’t let to bring additional information). The correspamgl
segmentation image is shownr;.en Fig. 12(a).
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Figure 11: Automatic choice of the segmentation threshotdHe average image.
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4.2 New restoration result analysis

The new restoration result of the WLM algorithm on the degrhdideo sequence is shown on Fig. 12(b). It
visually seems less noisy than the result obtained with atwoashold (Fig. 7(a)) and white circles are clearer
than on the result obtained with a high threshold (Fig. 7(b))

=2 11

(a) (b)
Figure 12: (a) Best segmentation image. (b) New WLM result.
The same criteria have been used to analyze this new réstorasult and they confirm the quality of this
result compared with the previous ones. Variances are weakiform areas (Tab. 2). Concerning mean

transitions between two uniform areas, MTFs and corraiatirves are very close to those found when using
a low threshold {hr = 0.04).

Table 2: Mean variance values in black and white squaresrfagées resulting from the processed sequence.

Image Black squares varianceWhite squares variance
Low threshold result 14.9 88.2
High threshold result 11.9 64.5
Ideal threshold result 12.2 65.3

Finally the Canny-Deriche filter has been applied on this result (Fig. 13). Compared with Canny results
on Fig. 9, textures are less detected than with a low thrdsdmodl white circles are better detected than with a
high threshold. The only drawback is a certain noise presedne to textures.

Figure 13: Canny-Deriche segmentation on the new WLM result
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5 Conclusion and perspectives

An adaptive Wiener and Laplacian algorithm has been praptiseestore video sequences degraded by local
perturbations due to atmospheric turbulence. Resultagiiradepend on the segmentation image found by
the Canny-Deriche filter. The segmentation step has beeroireg to choose automatically the segmentation
threshold. The restoration result is then the best comp®inétween details detection and avoidance of false
edges. It satisfies simultaneously clarity criteria aroeddes and noise removal in uniform areas, which gives
in practice an image adapted for both visualization and-pastessing. Patterns are less noisy and more easily
detected.

Further improvements could be added in the segmentatiqn sither for instance by processing textures
during edge closing [9], or by separating textures befogensatation [10, 11].
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