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Abstract

This article describes a new method and approach of texharcterization. Using complex network
representation of an image, classical and derived (hieical) measurements, we present how to have good
performance in texture classification. Image is represkbyea complex networks : one pixel as a node.
Node degree and clustering coefficient, using with tradél@and extended hierarchical measurements, are
used to characterize "organization” of textures.
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1 Introduction

Texture analysis have important role in numerous application of image ginge#lany different approaches
to texture analysis have been proposed. Among the most widely used tedaseires are those derived from
gray level co-occurence matrices or difference histograms, "texheryg” measures obtained by local linear
transforms, and features based on multi-channel Gabor filtering ordMaakdom field model [1, 2].

Introduced recently [3, 4, 5], complex networks can be adapted tesept the relation and characteriza-
tion between elements and become appropriate to characterize picture.pHtisrpossible to represent an
image as a complex network and used tools from texture networks theonatactérize the created image:
segmentation [6], texture analysis [7].

This paper overviews our approach, presents in the first part comptaxorks and image representation, in
the second part methods that were used for comparison. The thirdxpages complex networks method’s
results, with the efficiency of hierarchical measurements. The last padudes with an overview of the
obtained results and suggest possibilities for further improvements andesoergary work.
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2 Complex Network And Image Representation

2.1 Complex networks and measurements

A complex network is a set of nodes connected between them. One comn@etedge) between two nodes
(or vertices) indicates an interaction between these two edges. Eddges barary (i.e. presence or absence of
connection) or weighted, and directed or not. The present work is limitedrtalitected edges. All complex
networks can be represented mathematically by a matrix ctikeddjacency matrixNith a complex network
with V nodes, the adjacency matrild{) have a dimensio®v x N. The weight of the connection from each
nodej to each node (i, j = 1,2..., N) is represented d&/ (i, 7), with null value being assigned in the absence
of such a connection. A second matiiX;, binary, is also obtained. It contains only the most significant
connections. For example, connections wich are greater weight(only iefdl” which are greater than or
equal to a threshold are kept); it can be seen in the example in Figure 1. The characterizattmtopological
and connectivity properties of complex networks can be achieved by oeasurements borrowed from graph
theory [8] and complex network research [5] including but being by narmadimited to:
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Figure 1. (a): Weighted small complex network (b): the adjacency m#triXc): W matrix (binary) obtain
with T" = 2.

Degree: The degree of a given node is equal to the number of connections whichkiés. For weighted
connections the degree of a node is called strength and correspondsstaritof all the weights of the
respective links. An example in Figure 2 illustrates this definition. The frecuéistograms of the
degrees provide an important characterization of the connectivity ofettveork under analysis.

Clustering Coefficient: The clustering coefficient of a given nodés defined as:

Number of connections between nodes connected to node i

Ci =

1

Number of possible connections between these nodes @)
whenever the denominator is equal to zero, we imggse: 0. Note that it follows thad < C; < 1 for
any possible node. Figure 2 illustrates the calculation of the clusteringaestffor a simple network.

Figure 2: lllustration of degree (D) and clustering coefficient (C) datian of the node represented in black:
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Hierarchical Measurements: Several complex networks measurements, including the node degree and clu
tering coefficient, can be generalized to take into account not only the imteedighborhood of a node,
but also those which are at successive distances (i.e. 2, 3, ...) frosp#atic node [9] (example in Fig-
ure 3). In particular, the hierarchical degree of a node for hieieaitleveli corresponds to the number
of edges connecting the nodes at distanttethe nodes at distanéer 1. The hierarchical clustering co-
efficient of a given node for hierarchical levigk calculated in the same way as the traditional clustering
measurement, but considering the edges between the nodes at distaddbe nodes at distante- 1.

Figure 3: Hierarchical representation (b) of the complex network fahnode 1.

For all measurements, all nodes of the complex network are charactefinduave a global information
of the complex network, two parameters are extracted from these histogrémsmean and the standard
deviation.

2.2 Image representation

To transform an image into a complex network, we assume that each pixpiéseated by one node. Weights
of edges are defined with the grey level of pixels. The connection battmeenodes and; is defined by :

o 255 —|G() — G
whereG(i) represents the grey level of node= [0,255]. Weights are defined in th@, 1], zero define no
connection, and the maximum connection between two nodes.

Connections between edges are defined only inside a circular regiadior centered on each pixel. The
matrix W is a thresholded matrix. It is a binary matrix where the vdlwkefine a connection, aridnot. An
example of construction of the two matricds andW ;- can be seen in Figure 4 and a complete representation
in complex networks of image is illustrated in Figure 5.

3 Comparatives methods

The results obtained by using the complex network methodology have begraced to those provided by the
co-occurrence matrices introduced by Haralick [10] and by Gaborsfilfel, 2].

3.1 Co-occurence features :

Co-occurrence matrices consider repeated occurrences of somnéegee configuration in the texture. A
co-occurrence matrix is constructed by observing pairs of pixels atgghby a distancé and increment-
ing the matrix position corresponding to the grey level of both pixels. Theevali j) represents the fre-
quency of occurrence of the situatigitz1,y1) = 4, f(x2,y2) = j, |[x1 — x2| = dor|y; —y2| = d or
V(e —21)? + (y2 —y1)? = d.
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Figure 4: (a): part of image in Grey level (b): adgency mat¥ix)(of the sub-image representation in complex
network , (c)IWr matrix withthreshold = 8 .

(@)

Figure 5: (a): A30 x 30 sub-image with the0 x 20 usable centered zone (radius= 5), (b): typical
representation of the complex network withreshold = 0.99, and (c): representation witthreshold = 0.98

Various characteristics can be extracted from the co-occurrence niatexgy, Contrast, Correlation, Dis-
similarity, Homogeneity. In our case, these characteristics were determitted w 1 andd = 5 [12].

3.2 Gaborfilters :

Gabor filters which perform a local Fourier analysis, are essentiallyaidecosine (complex exponential)
modulated by a Gaussian window. In the complex space these filters aessagpmas:

h(z,y) = g(z',y').e??TatV) 3)

_ _(a:/;)22+y2 | | mcos(p)+y.sin(¢)
whereg(z, ) ST 7 and [ ! ] - [ —x.81n(P) + y.cos(¢)

= 2mho”
¢ is a clockwise rotation along theaxis,U andV represent the frequency coordinates.
o is the standard deviation of the Gaussian envelope (which defines itssize)sthe shape parameter of the
Gaussian.
The Gaussian has a circular shapeXot 1.
The transfer function ok (z, y) is expressed as:

H(z,y) =G -U" v -U") (4)

/ .
With G(u, v) = e~270*@ X 4%)  gng [ u ] _ [ u.cos(p) + v.sin(e)

v —u.sin(¢) + v.cos(¢)

H(u,v) is therefore a Gaussian band-pass filter, which principal axis is orietgdlegree from the: axis
and with central frequency defined by :F' = (U + V)l/2 oriented according to the polar andgle as shown
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Figure 6: : General Gabor filter in the Fourier spécg ¢ .

in Figure 6. In our case, 3 frequency and 6 angles are usedfwitly. Parameter extracted of this results is
the energy :

Energy = Zpia:elQ; (5)

3.3 Wavelets :

In practice, the 2-D discrete wavelet decomposition can be obtained by asieparable filter bank to the
image [13]:

Ln(bisby) = [Ha s [Hy L] 5 1, Binb)
D (bi, by) = Hx x[G * Ln_l]m: 1, Bind) o
Do (bi, b)) = :Gx « [H, * Ln_l]m: 1, Bind)
D (bisby) = |G %Gy + L] | 1, Bind)

wherex denotes the convolution operatdr?, 1 sub sampling along the rows apd, 2 sub sampling along
the columns.ly is the original imageH andG are lowpass and highpass filters.
The decomposition is obtained arevels by applying recursively the filter bank n times on the image. Figure 7
shows examples of decomposition for two different levels.

Figure 7. Example of image of texture (a) and 2D discrete wavelet decatopaat level 1(b) and 2(c) with
Haar wavelet.

To extract wavelet texture features, the texture is decomposed with thetdis@velet transform first. Once
the image is decomposed, each sub band is characterized by signatuces.chse, the energy signature is
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used. To a sub band, the energy is:

Bia= 5 20O (i, ) ™

wherel, 4 is the coefficient of the sub image, at thelevel of decomposition.

4 Results

The comparative study was performed while considering different estesulting from Brodatz data base.
Six different types of textures, illustrated in Figure 8, were used. Fdexilires, 20 "sub-images” are consid-
ered.

Figure 8: Samples of the 6 classes of textures used.

The classification is performed by a multilayer perceptron, issue of the a@&thANAGRA [14], with 25
neurons, 500 maximum iterations and a learning rate equal to 0.25. The me#®d % of "sub-images”
for training and30% for classification. To compare our results of classification with compatativethod, the
Error Rate is defined as the number of bad recognitions divided by theerwhbamples.

Figure 9 shows error rate of classification for our method and Tabledofaparison methods (only best re-
sults of comparative methods are visible). Different experiments was maderhplex networks method, with
several thresholds and several hierarchical levels. Note that éa@ndhical levelt in the z—axis indicates
the use of all hierarchical levels up k9 and not just the hierarchical valée

With these results it appears that the use of measurements consideringspivg hierarchical levels has a
definite effect in improving the classification rate (lower error rate). Themum of Error Rate is obtained for
the level 4 for the threshold equal @75. The error rate of classification stop to level 5 (defined manually); if
higher levels are used, the error rate increase. This is the limit of the ¢hérar measurements. This limit is
due to the low density or non-existent of connections on higher levels asg#rameters determined (degree
and clustering coefficient) can not be good to discriminate classes of nkstwbhis better hierarchical level
depends of the image database and the threshold used [7].

Method Error Rate
CO occurence 0.04
Gabor 0.4
Wavelet 0.35

Table 1: Error Rate for comparative methods : Haralick’s approacta(died = 1 to 5 with 8 angles), Gabor
filters(3 frequencies and 6 angles) and Wavelet(Bior wavelet), usingeifoeptron classifier .

5 Conclusion

Method for texture classification using complex networks had been pgessand compared. Two methods
for texture classification using complex networks had been presentedoamghred. ur simple method, us-
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Figure 9: Evolution of Error Rate in function of hierarchical measuremesgsl. Results of classification is
obtained by the multilayer perceptron.

ing Complex networks with measurements of topology and connectivity, has@ apility to represent and
characterize textures. The interest of hierarchical levels was mada@aedse the efficiency of the classifica-
tion of characterization of textures. Although promising results have ble&ined, our method used simples
parameters (mean and standard deviation).

We are currently working to improve this shortcoming : use more informatiooatahe histograms (i.e.
moments and coefficients), an automatic determination of the better hierateligab improve the classifica-
tion. An improvement of the method in relation of the determination of the bettetibicesan be done using
measurements for weighted networks [16].
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