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Abstract

The emerging discipline of cognitive vision requires a mopepresentation of visual information in-
cluding spatial and temporal relationships, scenes, sysamantics and context. This review article sum-
marizes existing representational schemes in computemwshich might be useful for cognitive vision,
and discusses promising future research directions. Theusaapproaches are categorized according to
appearance-based, spatio-temporal, and graph-basedeapations for cognitive vision. While the repre-
sentation of objects has been covered extensively in canpigion research, both from a reconstruction
as well as from a recognition point of view, cognitive visiail also require new ideas how to represent
scenes. We introduce new concepts for scene represestatiohdiscuss how these might be efficiently
implemented in future cognitive vision systems.

1 Introduction

Cognitive vision brings together such diverse fields of aesle as digital image analysis, computer vision and
cognitive sciences. ThResearch Roadmap of Cognitive Visid®0] presents this emerging discipline as ‘a
point on a spectrum of theories, models, and techniquesoitiputer vision on one end and cognitive systems
at the other’. Potential definitions of a cognitive visiorstgm range from ‘visually enabled cognitive system’
to ‘cognitively enabled vision system’. Typical result@tlwe would expect from a cognitive vision system
are for instance to be able to correctly answer queries dagathe relative position of occluded objects or to
recognize previously unseen objects of a learned catetmhje¢t categorization’ [136]).

From a computer scientists point of view, several majordsdwave to be solved in engineering a cognitive
vision system. embodiment, learning, recognition, andoaag. At the basis of all these efforts, we require
a properrepresentatiorof visual information, spatial and temporal relationshipsenes, events, semantics,
and context. This paper reviews existing approaches t@septations that should suit some of the require-
ments of a cognitive vision system and outlines promisirggaech directions. Special emphasis is put on
appearance-based, spatio-temporal, and graph-basexsseatations, including a comparison of these rather
diverse approaches.
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1.1 From Computer Vision to ‘Cognitive Vision’

The first complete theory of @omputationalapproach to vision has been presented by the late David Marr
[106]. This seminal work has not only significantly influed@decade of Computer Vision research, but is still
used by researchers from related fields as the referencevirark in setting up new theories (see e.g. Palmer
[133]). Marr distinguished betweenraconstructionand arecognitionapproach, which has been further de-
tailed by Aloimonos and Shulman [5]. He also initiated workrepresentations when he introduced what he
called a ‘primal sketch’ (local 2D saliency), a ‘2-1/2-D s#t@ (visible surface depth and orientation), and a
‘3D object model’ (volumetric object representation, tgdly Marr’s ‘generalized cones’). Primal sketch and
2-1/2-D sketch are ‘viewer centered’ in image coordinadesl, the 3D model is ‘object centered’ in a specific
object coordinate system. This allows to build a scene m@dedcene coordinates), which is composed of
individual objects, and their poses (position and oriémtatand scales. The idea also supports nicely the de-
composition of an object into (volumetric) parts, and Makook has triggered a ‘Recognition by Components’
(RBC) school, which has been advocated by Biederman [18) &xa@ognitive psychology viewpoint, and was
supported by Dickinson and others in the computer visionmanity (e.g. [42]).

Some computer vision researchers have reviewed Marr'sytHfeam a more critical point of view. One
interesting aspect is provided by Medioni et al. [111]. Thewcentrate on the limitations of a 2-1/2-D sketch,
which may even complicate the problem of reconstructionrwin@ny different views are used. Instead, they
propose to uséayers a layered representation of visible curves and surfacestteey present tensor voting
as the appropriate computational framework. Other rebeas¢c including Ullman [157] and Edelman [45],
advocate view-based approaches, which avoid computétiagensive and sometimes ill-posed 3D recon-
struction. View-based recognition also has strong supdpont cognitive scientists (e.g. [153]) and biologists
[150].

Computer Vision has seen a rapid and fruitful developmebfeconstruction from multiple images and
image sequences (stereo, structure from motion), and #&l8142-D (shape from X), with an especially
concise treatment of algebraic projective geometry (s8e 64, 105], but also [148]). While it seems now
possible, to reconstruct a 3D scene in terms of visual featand their positions in scene coordinates, the
automated assembly of 3D object models has turned out to Ive difficult. RBC, especially geon-based
recognition suffered from the problem of insufficient logwl image analysis - while higher level algorithms
worked nicely, the necessary segmentation had to be cirentad by line-drawings [41]. Some success was
reported for very narrowly limited cases, for instance, leyrdug and Nevatia [169] for a few special types of
generalized cones under orthographic projection.

On the other hand, appearance-based object recognititimofwirequiring 3D reconstruction, and working
purely in the 2D image domain) has been very successful, htias not reached its limitations, over the
past 10 years (e.g. early work by Murase and Nayar [120] oustoBCA by Leonardis and Bischof [93]).
Recently, Nistér and Stewénius [124] presented a voeaptiiee, and claim that they can recognize a specific
object out of 110 million candidates in less than 6 secondsilé/global PCA and related subspace approaches
(e.g. LDA, ICA, etc.) work on the 2D images themselves, irewell defined pixel arrays (including certain
size and brightness normalization), recent developmawtsedating back to Marr’'s primal sketch and try to
reduce the complexity of the problem by looking only at sdlipoints. The theoretical foundation for this
work is scale space theory [98] and some of the saliency @eteare invariant to scale and/or affine distortions
[78, 116, 101, 109]. They have been successfully used t@sept, detect, and recognize individual objects
and even object categories by a collection of object spdoifial features (e.g. [163, 50, 127, 1, 53, 91]).

Perceptual grouping approaches may be considered sonmeewhtitre middle between purely appearance-
based and 3D reconstructionist approaches. Starting flasict Iprimitives (points, lines, curves), these ap-
proaches work towards grouping these primitives into hidgéeel entities (closed contours, surfaces, volumes).
Seminal work in this area has been contributed by Lowe [1D8kinson [42], and Sarkar [142]. Grouping
may be either data- (bottom-up) or model-driven (top-doviRgcently good results for object recognition were
achieved with object representations using curves astresi(e.g. [17, 87, 51, 149, 129]).
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Up to this point, we did not explicitly mention time in our disssion. Early work in computer vision was
mainly based on the interpretation of individual images orstereo pairs, which were captured at a certain
instance in time. A reconstructionist approach for dealirtly time will include a history, object trajectories,
and prediction of future motion. The straightforward waydsextend 3D reconstruction techniques towards
4D (3D space + time), which has partly been covered for staénes (see e.g. work by Pollefeys, Nistér and
others [119, 123, 2]). There are many applications of traghn videos which are recorded by a stationary
camera and deal with the 3D space-time domain (2D image cwies$ + time, for instance person tracking
and traffic monitoring). A recognition point of view is to extd scale-space theory towards scale in space and
time, and to detect salient space-time events. This forxtehsion towards space-time scale space has been
presented by Laptev and Lindeberg [88].

A suitable representation for cognitive vision has to beidge representational gap between raw images
and high level interpretations of scenes [81, 82]. Comp\ision over the past 30 years has followed a path
from generic (prototypical) models (generalized cylirgjesuperquadrics and geons) to individual (exemplar-
based) models (starting with 3D CAD based models, appeataased models, generative probabilistic mod-
els). There is evidence that some mechanisms in human \dsgaition are view-based and do not require
the reconstruction of a 3D object model, or a 3D scene modd][1However, to a certain extent, when we
have to reason with objects, their motion, and their retegtito each other in space and time, we will require
to explicitly represent these entities. Some cognitivechelogists also advocate that relational structural rep-
resentations are required in object category recogniee €.g. [71]). A survey on human representation of
visual perception of objects can be found in [24].

1.2 Terminology

A common terminology is required when several fields argedlto each other under a new perspectiviie
look at the main concepts involved in representation (aadaring), discuss the related terms, and indicate
their dimensionality in space and time (boldface numbahg .deal withimages(dimensionality2: 2D space),
image sequencd8: 2D space + time)sceneg3: 3D space), andbjects(3: 3D or2: 2D projections) Objects
can be represented by one or mei@w(s)(2: 2D space), or by 8D model(3: 3D space), and their motion can
be described byrajectories(3: 2D space + time, oft: 3D space + time). Depending on the type of the objects
and their motion, these trajectories can be simpler (eggd dbjects) or more complex (e.g. articulated motion
of a human). Furthermore, we might want to represseints which are characterized by spatial extent (2D or
3D), and occur at a certain instance in time. Events halration (time interval).

It turns out, that one case is not well grounded in this teatoigy: while an image sequence (vid@p2D
space + time) is a common term, we do not have anything corblgafer a sequence of scenes. How should
the successive states of a scene be called? In ComputeriGraiere is the term of asnimation sequence
In this paper we will use the terscene sequender a 4D development of a scené: (3D space + time). A
scene sequence is certainly more than an object traje@a@mgene sequence could be represented by a number
of independently moving objects (thus resembling a numbsinaultaneous, related or unrelated trajectories),
or, depending on the scene representation, it might begepted by a sequence of occupancy grids or graphs
(as proposed by [74]).

Further terms that will be used incluthéstory (knowledge about the past states of an object/scenejic-
tion, topology (adjacency, containment and decomposition/part relgtjamdbehaviorof an object, parts of
an object, or a group of objects (e.g. hiding, seeking, aerotion pattern, etc.).

*Cognitive vision is related to such diverse research areasmputer vision, cognitive psychology, computer gragphitsualiza-
tion, human-computer interaction, and augmented reality.
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1.3 Ouitline of the paper

The previous introductory sections already showed thatdpie of representation in vision is quite broad so
that it deserves to be reviewed from various viewpoints. & with brief and rather general aspects on visual
abstraction and representational levels (section 2), aoalsfthen on object representations in section 3. The
extension from objects to scene representations is coumrexction 4, and we conclude with a dedicated
section on promising future research directions (sectjon 5

2 Visual Abstraction and Representational Levels

Recognition, manipulation anépresentatiorof visual objects can be simplified significantly by “abstiai”.
By definition abstraction extracts essential features anggsties while it neglects unnecessary details. Two
types of unnecessary details can be distinguished: redaimtaand data of minor importance.

Details may not be necessary in different contexts and wiifferent objectives which reflect different types
of abstraction. In general, four different types of abgtoacare distinguished [86]:

isolating abstraction: important aspects of one or more objects are extracted fnemadriginal context.
generalizing abstraction: typical properties of a collection of objects are emphabsemed summarized.

idealizing abstraction: data are classified into a (finite) set of ideal models, wittapeeters approximating
the data and with (symbolic) names/notions determining #enantic meaning.

discriminative abstraction: only aspects discriminating one object from the other arsiciered.

These four types of abstraction have strong associatiotiswéll known tasks in computer vision: recog-
nition and object detection tries tsolatethe object from the background; perceptual grouping needugla
degree ofgeneralization and classification assigns data‘tdeal” classesdiscriminatingbetween them, dis-
regarding noise and measurement inaccuracies. Such gestoa allows to treat all the elements of a general
class in the same way. When applied successively, the fpestgf abstraction imply a hierarchical structure
with different levels

e of concepts for representing knowledge about the world,thegconceptual hierarchy in [8],
e of representation,

e of processing stages, e.g. hierarchies of invariance initiog [10], and

e in the complexity of processing images.

In all cases abstraction drops certain data items whicharsidgered less relevant. Hence thmportanceof
the data needs to be computed to decide which items to dramdalvstraction. The importance or the relevance
of an entity of a (discrete) description must be evaluateti véispect to the purpose or the goal of processing.
The system may also change its focus according to changlg gtier knowing certain facts about the actual
environment, other aspects that were not relevant at thegfaiece may gain importance. Representational
schemes must be flexible enough to accommodate such at@nsbifts in the objectives. With respect to
cognitive vision, abstraction can help in obtaining conpm still very descriptive representations. It is one
of the known ways to connect low level data with high levelgasses such as high level reasoning (Where is
the cup?), and is needed to comunicate with humans in thieiraldanguage.

Multiple abstraction levels have been identified, spanfiiog the low, image-based (pixels) to the high,
object, model, and topology based. Table 1 shows the matreatien categories and some of their properties.

To build a scene representation one needs at the basisdaebrior the semantic interpretation of images, in
particular to localize and name objects contained in a saaddo assess their mutual relationships. A general
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Table 1: Abstraction Levels

addressing and axi$ entities

neighborhood

image-based

2D (row, column)

pixel

4,8-neighborhood

appearance (view)
-based

n X m-D subspaces

points in subspace

distance to subspag

part-based

part-whole relation

properties, parts

semantics

object/model-base

l name, location

sub-objects/models part/whole

scene-based

xy,z,t,...)

objects

spatio-temporal
semantics

topology-based

relational paths

topology domain

explicitly encoded

topic within this interpretation is the question of the reg@ntation levels. Different aims (tasks) and different
scenes might need more or less detail.

Some of the pictorial entities, their information conteanid the operations that can be performed at different
processing levels are summarized in Table 2.

Table 2: Pictorial entities at different levels of procesgsi

Entity information content examples for operations
Picture imaging conditions, geometry | sampling, rectification

Pixel gray value / color vector enhancement, classification
Neighborhood| spatial locality shrink, expand

(Step) edge | magnitude, orientation edge detection and linking
Region homogeneity, connectivity segmentation

Boundary shape connecting continuous curve segments
Image Part specific image properties property measurement
Object Part specific object properties property matching

Object functionality relational matching
Situation specific configuration of objectsinterpretation

Scene visible situations of the world | description

In [155], theconnection tablallows the transition between the different levels of eagton. Five different
representation levels are identified from the real to thenitivg world: 2D image (image-based), 3D skeleton
(feature-based), connection table (part-based), objestrigbtion language (model-based), natural language
(language-based) (see Table 1). Basic descriptive notimsobjects - parts - primitive parts. Thennection
tabledescribes the way in which parts form an object.

While visualization generates an image from a computeedtdescription, digital image analysis is sup-
posed to produce descriptions of a digital image. Stillhditlds have at the basis descriptions at different
levels of abstraction. The following levels are identified:

1. 2D digital image with pixels;
2. image segments such as region, edge, or texton [77];
3. image segments with specific properties such as gerentalidinders;

4. fragments, parts of objects, 'GEON'’ [20];
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5. objects, models;
6. functional areas [110];

7. natural language like in [155].

3 Object Representations

One of the most important decisions that have to be taken wlesigning a vision system is how objects
and their properties are represented. This determinesldlsses of features that could be used, how they
are grouped, and how they are matched. Current object mrget®ns, depending mostly on the task, span
from prototypical (high abstraction level, used mainly fianeric object recognition) to exemplar-based (low
abstraction level, used mainly for recognizing particifstances). We give here a summary of existing object
representation frameworks and discuss their advantagkdisedvantages. The section is structured into three
major subsections on appearance-based, spatio-temandafjraph-based representations.

3.1 Appearance-Based Object representation

Appearance-based representation of objects has probably dne of the most researched areas in Computer
Vision over the past decade. More recently, we have seentiadfisn between global appearance-based
methods (such as PCA), and local (e.g. saliency) detectarsl@scriptors.

3.1.1 Global Subspace Methods

The basic idea underlying subspace methods for visualifeaemd recognition is that an image can be repre-
sented as a point in a high-dimensional space (the spaceexpduy its pixels), a change of the object in the
image (e.g., object rotation) has not an arbitrary effecthenpoint in the high-dimensional space. Therefore,
an object (or even an object class, e.g. faces) can be cbaract by the set points (the subspace) they occupy
in the high-dimensional space. Since this subspace islysafahuch lower dimensionality than the original
space a considerable amount of compression can be achigwebditacterizing this low dimensional subspace.
The difficulty is to find a compact representation of this Uigusighly non-linear space. A common approach
is to choose a linear approximation:

y = Ax

where,x € R" is the original imagey € R its low dimensional subspace representation And R"*" the
linear subspace. Depending on the required propertiegeaithspace we can obtain different (linear) subspace
representations. Among the most commonly used repres@rgatre:

Principal Component Analysis (PCA): The most commonly used technique for compression of trgimn
ages is based gprincipal component analysi@CA) [70]. PCA requires that the reconstruction error
(the error obtained when reconstructigrfrom its low dimensional representatigr) over all training
images is minimal. To achieve this goal, the directions whih largest variance of input data are found
in the high-dimensional input space. The dimension of tleesgan be reduced by discarding the direc-
tions with small variance of the input data. By projecting thput data into this subspace, which has the
principal directions for the basis vectors, we obtain arrexmation with an error, which is minimal (in
the least squares sense) among all linear transformatiansitbspace of the same dimension. It turns out
that the correlation between two images can be approximatdte distance between their projections
in the principal subspace. Thus, the recognition can bécbout by projecting an image of an unknown
object into the principal subspace and finding the nearegeqted training image [120].
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Independent Component Analysis (ICA): [72, 7] is a powerful technique from signal processing known
also asblind source separatianContrary to PCA it does not only find uncorrelated composentit it
delivers a linear transformatioA such that the projections are as statistically independgmossible.
This can be seen as an extension of PCA, where the projeaifahg input data into the subspace are
not only uncorrelated but also independent. Independgmésentations lead to sparse codes which is
considered as one goal of sensory coding in the brain (cf).[11

Linear Discriminant Analysis (LDA). PCA and ICA areunsupervisednethods, which means that no addi-
tional information about the training images is necessahuild the representation. If, for instance, PCA
is used for classification, no information on classes is ugra the discriminant information might be
lost. In this case, rather than maximizing the variance Igbrajections, one would prefer to maximize
the distance between the projected class means, whictasegdhe discriminant power of the transfor-
mation. This is the goal dinear discriminant analysigLDA) [107]. Furthermore, next to maximizing
the distance between the clasdésher’s linear discriminanf15] minimizes the distances within classes
by minimizing within-class variance of the projectionsh#ts been a popular tool in the field of pattern
recognition, where it is frequently used to reduce the dsmerality of the input signal to alleviate the
subsequent classification step.

Canonical Correlation Analysis (CCA): If the task is regression (not classificatioagnonical correlation
analysis(CCA) [112] is the method of choice. It relates two sets ofeslations by determining pairs
of directions (canonical factors) that yield maximum ctatien between the projections of these sets.
Thus, it is suitable, for example, for estimation of origimta, where one set of observations consists
of observed images, while the observations in the secondrsebbject orientations from which the
corresponding images were acquired.

Non-negative Matrix Factorization (NMF): Another subspace techniguersn-negative matrix factoriza-
tion (NMF) [90]. It is similar to PCA (finds the representation iwthe minimal error) with the constraint
that the factors consist of hon-negative elements only. Dukis non-negativity constraint it tends to
decompose the input images into parts (e.g., learn from afdates the parts a face consists of, i.e.,
eyes, nose, mouth, etc.), leading to a part based représanta

Kernel methods: As explained above the subspace of images is usually narlie@d all the methods dis-
cussed so far provide only a linear approximation. They hamjever, be extended twnlinearfeature
extractors [34, 145, 113, 112]. This can be done by first mmagppiput vectors using a nonlinear map-
ping into a high-dimensional feature space and then peinfgyra linear method on the obtained high-
dimensional points. This procedure is equal to the employroga non-linear method in the original
space. To avoid computing a nonlinear mapping into a spaaeefy high (possibly infinite) dimension,
the so callekernel trickcan be applied [34]. This method was originally proposedhédontext of Sup-
port Vector Machines (SVM) [159]. It can be applied wheneté& possible to formulate the algorithm
in such a way that it uses only dot products of the transformpdt data. The dot products in feature
space are then expressed in terms of kernel functions i ggace, thus all operations can be performed
in the original lower-dimensional input space.

The major advantage of the subspace approach is that botiingas well as recognition are performed
using just two-dimensional brightness images without amy- lor mid-level processing. However, due to the
direct use of two-dimensional images there are variouslenad associated with the direct application of the
methods, in particular, robustness against occlusioringgavarying background, illumination changes etc.
Recently some new methods that can cope with these problemestdeen proposed (e.g., [93] has demon-
strated how to handle occlusion, varying background andrdtimds of non-Gaussian noise in PCA, [23] has
demonstrated how to handle severe illumination variajioAso the problem of learning these representations
in a robust manner has been addressed recently [151].
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Besides using these methods on whole images they can alggpbedalocally to image patches [126] or
local descriptors, a recent example is the so called PCA-f6] descriptor.

Another characterization of the subspace approaches isttogiiish, whether a generative model (i.e., the
ability of reconstruction and generation of samples), oisardninative model is employed [122]. Each of
them offers distinctive advantages. Generative modelb sascPCA, ICA, etc. enable robustness in model
construction due to their ability to reconstruct the inmaini partial data Their representation is also not task
dependent and can be used for different purposes. On théveegiale, generative representations are usually
wasteful in the resources and do not scale well. On the o#lngd Hiscriminative methods such as LDA, SVM,
etc. achieve in general higher recognition rates. Theirag@mtation is tailored for the specific task and they
are usually faster. On the negative side, discriminativesentations do not enable reconstruction, therefore,
robust methods cannot be easily used. Furthermore, thesemation is less flexible and cannot be adapted
to new tasks. Since these two representations have quitpleorantary properties it makes sense to combine
them, and recently people have started to work on such catibirs, e.g., [55].

3.1.2 Local Detectors and Descriptors

As there are many problems with global representations-¢palbbe methods, aspect graphs) of an object
(e.g. outliers, occlusion, varying background) recentaesh focuses on a local description of the object. The
basic idea is to first extract distinguished regions in angenguch that the regions can be re-detected with a
high probability), then describe the region and/or its lawghborhood with a possibly invariant photometric
descriptor and use the descriptor for matching with new #sagrhe advantage of these approaches is that
they do not require a segmentation and can deal with occisgiad clutter. Using photometric descriptors the
approaches are discriminative (see [117] for a comprebemsiview and evaluation of different approaches).
There is a wide variety of different distinguished regiomedéors.

Simple detectors: A large class of detectors is based on measures of corngemeesg those the well known
Harris corner detector [66]. The idea is reformulated ugimg structure tensor [21] and the second
moment matrix respectively, leading to different variaotsorner detectors [56, 154, 140, 84]. Other
approaches use the second derivatives (Hessian matrbeach®f the first derivatives. All these ap-
proaches can be considered belonging to one class of simipleest point detectors. They all detect
only a location. Therefore, for a subsequent task like inragéching via cross-correlation the size and
orientation of the necessary matching window has to be chioskependently. This is a severe limitation
when dealing with differently scaled or affinely transfodmegions.

Scale and Affine invariant detectors: This limitation was addressed by estimating a proper scalevery
detected interest point. The first work going into this dil@t was presented by Tony Lindeberg [99]
in 1998. Other approaches followed shortly by David Lowed]lér Krystian Mikolajczyk [115]. This
class of interest operators is usually called scale-iamtiinterest operators.

However, research again went one step further. Accordilgg@uccess of interest operators which are
invariant to scale changes, methods were sought to cre@iesh operators invariant to a larger class
of image transformations. This was driven mostly by develepts in wide baseline image matching
were significant perspective distortions occur. Resedrefein led to a new class of interest detectors,
affine-invariant detectors. In most cases such a detectiosists of a point location and an elliptical
delineation of the detection. The ellipse representateptwres the affine transformation of the detec-
tion. By normalizing the ellipse to an unit-circle the affimansformation can be removed. This method
was first suggested in 2000 by Baumberg et al. [12]. This had te a wide variety of affine-invariant
detectors [116, 109, 79, 156]. The common property of thppeoaches is that they provide information
how the region around the detection can be normalized tavaittage matching. The detections them-
selves, however, may not be simple point locations anymloréhe case of the MSER detector [109] a
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detection is a whole image region showing similar gray-esluApproaches like that are usually referred
to as interest region detectors, moreover as every affimeetdefines its own support region too.

Besides the detection of local regions we need also a désaripf local photometric content of the regions,
which is then in turn used for matching. The descriptors @rolighly divided into three classes:

Distribution-based: Distribution based methods represent certain region ptiegeby (sometimes multi-
dimensional) histograms. Very often geometric propefges. location, distance) of interest points in the
region (corners, edgels) and local orientation informmafgradients) are used. In this class falls the well-
known SIFT descriptor [102] that uses histograms of locgeedrientations. Ke and Sukthankar [80]
modified the SIFT-key approach by reducing the dimensignafi the descriptor by applying principal
component analysis to the scale-normalized patches. fagotavariant version of SIFT is obtained by
the Gradient location-orientation histogram (GLOH) dgsor, which divides the patch into a radial and
angular grid [114]. Other well known distribution based aéstors are the spin image [76, 89] and the
shape context [16] that uses the distribution of relativenfppositions and corresponding orientations
collected in a histogram as descriptor.

Filter-based: The basic idea of filter-based methods is to use the respdmsset of filters as a description of
the region. Properties of local derivatives (local jet®) well investigated and can be combined to sets of
differential operators in order to obtain rotational ingace. Such a set is called “differential invariant
descriptor” [144]. “Complex filters” is an umbrella term dstor all filter types with complex valued
coefficients. In this context, all filters working in the fregpcy domain (e.g. Fourier - transformation)
are also called complex filters, examples are [13, 143, 31].

Other methods: The simplest method that can be used as a descriptor is tdahtelgray-value patch as it is
and use cross-correlation for matching. To obtain invagamoments can be used [158].

Local descriptors are also used for object categorizatibime idea is to learn local descriptors which are
category-specific. Various methods are used to learn therésawhich are best for classification: Boost-
ing [127], Naive Bayes [166], SVM or PCA on local features6@]), and others.

A problem with all these approaches is the fact, that thenlegralgorithms do not know where the objects
are in the image, so that they also learn features on the baakd which are related to the object (e.g. [128]).

We have shown in [146] that such learned classifiers give gdaskification rates on images which are
similar to the images used for learning, but they give pooogaition rates on ground truth data (just the object
without any contextual information). We have also shown tigect localization based on spatio-temporal
reasoning is one method, which can improve the learningegphae to give also good recognition rates on
ground truth data.

In recent work we have studied the problem of learning loeakcdptors from image sequences for specific
objects [60] and object categories [132]. In particulacalofeatures are tracked in image sequences leading
to local trajectories containing dynamic information. Ba®n these trajectories the quality and robustness of
the local feature can be evaluated (and only those that@pkestnter the representation). In addition the most
representative local description can be selected baseldeomformation obtained from the trajectory. This
approach shows that by using dynamic information compadtdistinctive local object descriptions can be
obtained.

3.1.3 Models Based on Local Descriptions

The biggest problem in using collections of local featui@sobject categorization is the fact that the features
can be located anywhere in the image. We know for instandelibee has to be a nose between two eyes to
be a face, but the algorithms listed above do not take thisnmdtion of spatial relation between features into

account. Many papers exist in face detection which have-$epraed representation of the model of the face,
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which consists of eyes, mouth, nose and also ears [68, 16#seTare only useful in limited cases where we
know the model of suited features (namely the parts of the)fadowadays people try to learn the model also
from the training images.

In [163, 50], for extensions see [49, 51], the model is ledeea flexible constellation of features, where the
variability within a class is represented by a probabilignsity function. The main problem with this approach
is that the images used for learning must look similar, whigdans that the objects in the images must be
roughly aligned, resulting in similar position, orientatiand scale of the objects. This approach can only learn
2D models from rather aligned images.

An enhancement to this approach was made by [69] to be ttammsknd scale invariant in both learning and
recognition of the objects. Results are only reported foe fimages, where the learned parts look like eyes,
chin and eyebrows.

The constellation model is probably the most prominent ésewgeral similar representations. The constel-
lation model proposes a fully connected graph of all modelspaCrandall et al. [37] presented théifan
model, where: denotes the number of parts that are fully connected toladrgiarts in the model. A-fan can
be regarded a star-shaped model, as was also presentedyog Etal. [52].

Constellations and similar representations model objeagpa explicitly by a limited number of salient parts
and their spatial constellation. Leibe et al. [91] presérteodebook of local appearance (local salient features
and their descriptors) that is used together with an impslsape model (the location of each salient point is
mapped relative to the object center).

3.2 Spatial and Temporal Representations

In comparison to appearance, the methods discussed heteeaased to represent objesthiape 3D scene
structure, volumetric object models, and temporal charstics like typical motion patterns.

3.2.1 Curves, Boundaries, Fragments

Although there has been significantly more recent work oeathjepresentation by local, salient patches and
their descriptors, 2D object shape can often be efficierd@prasented by an object’s internal and external
contour. When shape is a dominant cue (e.g. in distingugsbaws from horses), such models may be better
suited than patch-based methods. On the other hand, paseltbepresentation can emphasize texture (e.g. to
distinguish horses from zebras, which is impossible basetign the external contour). It is slightly more
difficult to represent boundaries at varying scales, ogitioris and other spatial transformations, but together
with the idea of a codebook with object centroid votes, themecent success in representing codebooks of
contour fragments [149] or boundary fragments [130]. Aniobs, promising direction of future research will
be to combine patch and boundary representation into a dmifiedel (as we report in [131]). Yet another
approach models object categories as a highly connectgyh gfapairwise relationships between boundary
fragments [94].

3.2.2 3D Object Representations

There is a vast amount of literature on shape from X methoafsrdtover 2-1/2-D representations and on
the recovery of 3D object models either from images, or frotY2D. Photogrammetric methods include
calibrated stereo and block bundle adjustment methodse wie Computer Vision approach is rather directed
towards the recovery of scene structure from uncalibraigelov/[119, 123], or from potentially very disparate
views [109]. The typical object representation that em&fgam such approaches is a 3D point cloud of salient
points. It is not only necessary that a certain saliencyatieteesponds above threshold, but it is also required
that point correspondences between views can be establi€hme way to obtain high quality point clouds is to
texture the objects (when this is possible, e.g. by spratfiegh with a random pattern), another one to mount
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them on a rotating table. Tracking of feature points whike dlbject is rotated, or while the camera is moved
around the object can substantially ease correspondeanghse

There are cases, when 3D point clouds, either in scene o@oedi or in object-centered coordinates, are
a sufficient 3D model. For instance, in computer graphicitdmased rendering attaches a grey-, color- or
texture-value to each point and obtains very realistic eend results when the point cloud is sufficiently
dense. In computer vision, however, the necessary nexistepaggregate metric 3D point clouds into more
abstract models. One obvious way is to try to fit parametricet®oto the 3D data. This can be the fitting of
dominant planes, or of higher order parametric surfacels aasuperquadrics (e.g. [152], obtained from dense
3D range images). Another idea is to model 3D objects and tim trecover their 2D projections in the images,
e.g. by geometric hashing [167].

The above approaches all obtain metric 3D models from m@lieconstruction. While this is an important
research goal on its own, cognitive vision will probablyugq other kinds of 3D object representations, which
are more qualitative, but at the same time may generalizZeowalpresent object categories as well as individual
objects. However, the research landscape in qualitativel§€ct representation is far more sparse than for 3D
reconstruction.

Marr proposed to recover generalized cones and cylindera &ingle intensity images. This has been
achieved for a limited number of specific types of generdlizglinders, based on clues like curvilinearity,
symmetry, and low- and mid-level geometric reasoning [169]

Geons have been introduced based on a cognitive theoryiitidjase been recovered from intensity images
[42], but many open problems remain [41]. However, geonslavba attractive, because they constitqteli-
tative models, which eases their use for generalization and a@tatjon, and a certain amount of success has
been reported in using geons in content-based image @tf#R]. The graphs produced in [42], however, lack
a proper representation of spatial configuration. A workkatbhas been presented in [137], which might also
work for representing spatial and temporal relations.

A very different approach is advocated by Medioni, who agytleat the Marr paradigm has been very
influential. It triggered numerous reconstructionist egsh in shape from X and in 2-1/2-D. Medioni prefers a
more direct, layered representation, which circumvergsnécessity of reconstructing 2-1/2-D (tensor voting
[111]).

3.3 Graph-Based Representations

Handling “structured geometric objects” is important foamy applications related to Geometric Modeling,
Computational Geometry, Image Analysis, etc.; one oftes thadistinguish between different parts of an
object, according to properties which are relevant for {hy@ieation (e.g. mechanical, photometric, geometric
properties). For instance for geological modeling, the-grdund is made of different layers, maybe split
by faults, so layers are sets of (maybe not connected) gealdglocks. For image analysis, a region is a
(structured) set of pixels or voxels, or more generally su¢stired) set of lower-level regions. At the lowest
level, such an object is a subdivisign.e. a partition of the object into cells of dimensidhsl, 2, 3 ... (i.e.
vertices, edges, faces, volumes, ...).

The structure, or the topology, of the object is related ®dbcomposition of the object into sub-objects,
and to the relations between these sub-objects: basittgliglogical information is related to the cells and their
adjacency or incidence relations. Other information (etdio®y information) is associated to these sub-objects,
and describes for instance their shapes (e.g. a point, a,capart of a surface, is associated with each vertex,
each edge, each face), their textures or colors, or othemiation depending on the application.

fFor instance, a Voronoi diagram in the plane defines a sudidiviof the plane
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3.3.1 Aspect Graphs

The use of Aspect Graphs (see e.g. [57], chapter 20) as antakjgresentation is a generalized method,
representing the view space. The main idea is to combinerdiit viewing directions, where the object looks
alike, to one aspect. The object is represented by a numtespafcts, a representation of these aspects and
a graph which describes the possible transitions betwesn.tiispect Graphs were used in the early 90’s to
recognize simple polyhedral objects, or objects which@d& decomposed into generalized cones.

[137] sketches an extension of Aspect Graphs using CAD yoes and a view-sphere for generic object
recognition. This work is also based on simple geometrieaisjwhere the generality of the method deals only
with small variations of the parameters of the used mode&lsdralized cones).

An aspect graph is defined only for polyhedral objects, batdbncept can be generalized for arbitrary
objects. In this case one is interested in partitioning teegphere of on object, such that the view of the object
changes only slightly within the partition. An example hdwstcan be done using a PCA based representation
is the multiple eigenspace algorithm [92].

One advantage in using aspect graphs and related reptésenia that with the recognition of an object we
not only know the object, but also its corresponding asgewl,the possible next aspects. This aspect gives us
an idea of the viewing direction i.e. the pose of the camera.

3.3.2 Characteristic View

The concept of a characteristic view (CV) is useful in appree-based object recognition [161]. Characteristic
views are intended to help obtain a representative and atleguouping of views, such that a given level
of recognition accuracy may be achieved using a minimum rurob stored views [44]. Clearly, this has
important implications for the storage space needed t@sent each object, and the number of matches which
must be performed at run-time for the purpose of recognitdiew grouping has been addressed using CVs
and aspect graphs. An extension to the original idea of Kexdmil et al. [83], the so called appearance graph
uses the appearance of the object under consideration assvigiformation like illumination, texture etc.
Problems in building aspect graphs occur when the objearwhsideration has curved surface, non-uniform
illumination, etc, since it is hard to find stable views. &ead of building a complete aspect graph one can build
an approximate of the object’s appearance [27].

3.3.3 Generic Models based on Graphs

In learning a prototype from a set of noisy examples of theesabject the goal is to find a representative
model. If the examples are given as graphs, Jiang et.alifitfdduced a concept of set median and generalized
median graphs and a genetic algorithm to obtain the protogypph. The generalized median concept is more
powerful since it does not constrain the resulting grapheasgoone of the example graphs. Spectral methods
were utilized to cluster graphs of different views [100].

Recently, Keselman and Dickison [82] introduced a novelaagh based on graph shortest paths approxi-
mation to close the representation gap in the domain of aatioracquisition of 2D view-based models. The
harder task of recognition is not tackled.

Cyr and Kimia [39] introduced a 3D object recognition algiom based on 2D views. The aspects are based
on a notion of shape similarity between views.

3.3.4 Dual Graphs and Combinatorial Maps

Dual graphs [85] can be seen as an extension of the well knegiomr adjacency graph (RAG) representation.
In 2D space a dual graph representation consists of a pafreoptimary planar graph and its dual (called

also geometric dual [65]). This representation is able tmda any subdivision of the 2D topological space.
Encoding higher dimensions with graphs is a difficult praileCombinatorial maps or generalized maps are
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well-suited representations to overcome this problem. Dnspace simple dual graphs are equivalent to 2D
combinatorial maps.

N-dimensional combinatorial maps [95] may be seen as a grébhaw embedding in afV-dimensional
space, i.e., in the case of 2D [29], combinatorial maps amagyl graphs encoding the orientation of edges
around vertices. The base elements offéwtlimensional combinatorial map are the darts, also calbdtl h
edges, which are connected (sewed) together by the orbitspefmutation andv — 1 involutions. In the
case of 2D [29], the permutation is calledand forms vertices, and the involution is calledand specifies
edges (other attributions for the permutations exist). Ofrihe advantages of combinatorial maps is that in
the 2D case, unlike dual-graphs, they explicitly encodeottentation of the plane, correctly handling all the
complicated cases with self-loops and parallel edges.

Like combinatorial mapsp-dimensional generalized maps [95, 96] are defined in angn&on and cor-
rectly represent all topological configurations of thelimensional space (including 2D). Their base elements
are darts and use only involutions to represent the coromeckietween them. With these relations they describe
cells in any dimension.

3.4 Geometry and Topology

Many topological models have been conceived for reprasgritie topology of subdivided objects, since
different types of subdivisions have to be handled: genemaiplexes [32, 38, 47, 165] or particular mani-
folds [6, 14, 164], subdivided into any cells [61, 43] or imemular ones (e.g. simplices, cubes, etc.) [54, 134].
Few models are defined for any dimensions [18, 141, 28, 97ineSaf them are (extensions of) incidence
graphs or adjacency graphs. So, their principle is oftepknbut:

e they cannot deal with any subdivision without loss of infatian, since it is not possible to describe the
relations between two cells precisely if they are incidargéveral locations;

e operations for handling such graphs are often complexeshmay have to handle simultaneously different
cells of different dimensions.

Other structures are “ordered” [28, 97, 47], and they do rmvehthe drawbacks of incidence or adjacency
graphs. A comparison between some of these structures semieel in [96]. A subdivided object can be
described at different levels. For instance, a buildinguisdévided into floors, each floor is subdivided into
wings, each wing is subdivided into rooms, etc. Thus, séweratributions deal with hierarchical topological
models and topological pyramids [40, 18, 85]. For geometrizieling, there are often only few levels. For
image analysis, more levels are needed since the goal isite deformation which is not known a priori.

Since a geometric object is represented by a topologicattsire and its embedding in a geometric space
we distinguish: (i) topological operations which modifethtructure; (i) embedding operations which modify
the embedding; and (iii) geometric operations which modbith topology and embedding. For the animation
of articulated objects, the object structure is not modifiHderefore, animation can be performed by applying
embedding operations. Local operations can be easily deéind performed (e.g. chamfering, contraction,
removal, extrusion, split, etc.), and this plays an impurtale when wanting to simultaneously (in parallel)
apply them when an image is analyzed.

Moreover, topological features can be computed from theltmcal structure: orientability for pseudo-
manifolds [30], genus for surfaces, and homology groupsivprovide information about the “holes” in the
object for any dimension [3]. Such information can be useddotrol the construction of the object. For
instance, when simplifying an image and constructing aryjdaone often wants to keep some properties
like connectedness invariant. When an object is made of rpartg, one requires tools in order to check it.
Topology and shape are complementary, and it is very useftdmpute both types of information.

The use of geometry and topology for a generally valid reprtegion should also incorporate the local
object appearances. This third cue increases the use fat wodd scene representation. Different scenarios
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can be conceived: for instance, a box with a picture of a linriap might be represented by two layers in
topological means (top and bottom of the box). Each of thagers is again represented by a topological
description combined with its geometric appearance. Ondrmagine that the use of the surface appearance
(here the picture of the lion) increases the discrimingbieeer of such a representation.

4 Scene Representations

We can regard the scene representation as the internab$t@teognitive vision system. This representation
should correspond as accurately as possible to the reat sdanoh is observed by the system.

Some of the previously discussed methods for object repratsen in 2D extend quite naturally towards
appearance-based scene representation. These can Hengtiiads modeling brightness, contrast, color, tex-
ture, or integral features, which have for instance beetiepm image retrieval, but also local methods. Bags
of keypoints (and their descriptors) can be similarly usadobject recognition (and, thus, object representa-
tion) [58], and for image retrieval (and, thus, scene regntion) [115].

There is also a straightforward extension of the above egpilans on 3D object representations to a type
of scene representation, which works either in the 2D ("@eeentered’) image coordinates, or in a 3D scene
coordinate system, where each individual object in the scemepresented by a 3D vector that points at the
origin of an ‘object centered’ coordinate system, whichumtis used to properly represent the individual
object.

A scan of literature on scene representations has led toadeesults, which either do not originate from
computer vision (artificial intelligence, linguistics, pwlogy, geometry) and are hard to adapt to cognitive
vision, or they have been tailored for a very specific visippl@ation (havigation, tracking, surveillance, brain
atlas, geographic information systems) and are not suffigigeneral. Obviously, there is still plenty of room
for future research in this area, as will be seen from theesyEnt sections.

In general, a scene representation for cognitive visiomlshaddress the following topics:

1. The scene representation is not independent of the algpisentation, therefore it is important how
objects are represented.

2. Time is an essential factor of the scene representatspecelly the time resolution defines what types
of events need to be represented (i.e., what type of objamiictions can we resolve?).

3. The question of a purposive and qualitative represemtaghould be addressed. It is clear that we do
not need a full representation of every detail (reconsirejt but we must address the question of the
purpose of the representation (cf. purposive and quaiiafision).

4.1 AD-Coordinates

Masunaga and Ukai [108] propose a database of 3D, movingtsbjehich is a 4D (Euclidean space+time)
representation. The representation is at the object lexktansists of:

e Alist of all objects.
e For every object and every time instance: 6 DoF of object [(8Beposition + orientation).

e A set of primary relations like velocity of an object, distenbetween objects and a set of topological
relations: Disjoint, Contains, Inside, Overlaps, Tougligguals, Covers and CoveredBy.

As a difference to the topology-based representationg4i} scene representation has the advantage that
one can use history information. This could be useful asudsed in section 1.2.
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4.2 Appearance-based scene representations

Similar to object representations we could also use theappee of the scene as a representation of it. In
the simplest case we just store some snapshots of the saengoré sophisticated approaches (mainly used
in a robotics context) more complex appearance-basedseqmeadions are used. Similar to object recogni-
tion we have global appearance based scene representatidgipical example is a robot equipped with an
omni-directional camera and global PCA as a representatian [118]. Another class of appearance-based
representations are local ones. Similar to the object r@tiog case, only distinguished regions in the scene
are represented. A recent approach for this type of reptasam can be found in Se et al. [147]. In this paper,
a vision-based mobile robot self localization and mappBigAM) algorithm is presented that uses SIFT de-
scriptors as a scene representation of visual landmarks.irlteresting to note that visual landmarks are also
used by a variety of animals for navigation purposes.

4.3 Occupancy Grids

Occupancy grids [46] are different from the scene represiems discussed above. The world is divided into
fixed grid cells. In every cell there is a value stored, whitdnds for the probability that this cell is empty /
occupied. Thus, this representation does not deal witbréifit objects and their motion in the scene, but with
the space they occupy. From the nature of this represemtatiwill also be difficult to distinguish between
objects and static background.

Occupancy grids are mostly used in robotic applicationgelttee grid is a 2D floor plan of the scene, which
describes where the robot can move around in the world. In apdications the grid is estimated with sonar
sensors or laser-range finders, but there exist also apphisavhere stereo vision is used.

There have also been attempts to model imperfect knowleiget she scene (ignorance, imprecision, and
ambiguity), e.g. within a complete representational fraworlx for fuzzy mathematical morphology by Isabelle
Bloch [25]. Probabilistic, possibilistic, and fuzzy ocamngy grids have been proposed [139, 26]. One problem
with these approaches is their static description (desonipf one frame) of the scene.

4.4 Topology-based

Topology-based approaches often relate to linguisticsritfical intelligence and try to simplify the repre-
sentation based on relations. Such a representation maystaf a list of objects plus a list of relations
between these objects. Interval calculus [4] is used iregsystthat require some form of temporal reasoning
capabilities. In [4]13 interval-interval relations are defined: ‘before’, ‘aft¢gmeets’, ‘met-by’, ‘overlaps’,
‘overlapped-by’, ‘started-by’, ‘starts’, ‘contains’, tling’, ‘ended-by’, ‘ends’ and ‘equals’. In [138], motied
by the work in [4, 35, 36], an interval calculus-like forngath for the spatial domain, the so called region con-
nection calculus (RCC) was presented. In (RCC-8) [138]sttenf8 possible relations between two regions
are: ‘is disconnected from’, ‘is externally connected witpartially overlaps’, ‘is a tangential proper part of’,
‘is non-tangential proper part of’, ‘has a tangential propart’, ‘has non-tangential proper part’, and ‘equals’.
A more expressive calculus can be produced with additicglations to describe regions that are either inside,
partially inside, or outside other regions (RCC-15). Thexist also extensions of RCC to 3D space and time
([162]).

Different graph based representations have been useddol@ethe changes / events in a dynamic space.
In [33] graphs are used to describe actions (vertices reptexctions). Graphs are also used in [9], but here
vertices represent objects. Balder [9] argues that arpitthanges can be best described by a state approach:
the state of the world before and after the change charaegethe change completely. The Unified Modeling
Language (UML), in its state diagram, also defines a grapadeepresentation for tracking temporal changes.
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4.5 Event Representation

Representing objects and their spatio-temporal behawiardgcene can be done in different ways on different
levels. For a cognitive vision system it might be interegtio detect events in a video sequence instead of just
behavior. For instance, lifting a cup, moving it and finallyting it over a smaller item might be described by
the events: ‘lift’, ‘move’, ‘put down’. It could also be regsented by the event ‘hide’. For example, for a short
video with a hand using 2 cups to hide a ball, such a descniptiould be: 'hand from left’, 'grasps left cup’,
'moves it over ball’, releases cup’, 'shifts it to the leftreleases cup’, etc.

Event representation from video sequences has broad shirg. video surveillance). There is a vast
amount of literature and we give only a very brief overviewstate-of-the-art research. Recently a consor-
tium of researchers developed a formal language to desttrbentology of events in videos which they called
‘VERL' (Video Event Representation Language) [121]. In]Z3proposal on spatio-temporal graphs is pre-
sented. The authors proposed to use new relations (likgp,grasve and release) to describe events as the
changes in the scene and to build a hierarchical graph-lrapegsentation to keep track of actions, events, and
relations. Hakeem et al. [63] presented an extension ofGASE’ description method which bridges the rep-
resentational gap between low level vision and human sceserigtion. Such representations can be learned
by e.g. the method of Hakeem and Shah [62] which uses a vid=ut gvaph and a video correlation graph on
a set of training videos.

5 Promising Research Directions

Finally, we conclude with the hard task of presenting pramgiglirections of research for a field as active and
developing as cognitive vision is today. We identify a humdseevident research goals, and we also present
our more specific ideas. Some of them are reflected by our owerduesearch activities, others will probably
be addressed in the near future.

Representational concert: Itis quite clear that for a versatile cognitive system wedhaenultitude of repre-
sentations to have to work together. Probably all (and mayte) that have been discussed in this paper. But
this requires to answer several hard questions, like howamekeep these representations consistent? What
happens if they are inconsistent? Should we jointly updatentor keep them separate? How do we decide
which representation is the most appropriate to solve &task

Recognition versus reconstruction: To which extent is an explicit metric representation of gpand time
required? What are the limitations of purely appearansetha@approaches? It seems that a hybrid representa-
tion might be most appropriate. This could cover the appnaté reconstruction of objects and their trajectories
(spatio-temporal reconstruction, including camera arjdatlpose), a qualitative (graph-based) representation
of spatial and temporal relations and events, and purelgappce-based recognition.

Object versus background: What is a relevant object for the current state of repretientand reasoning in
the cognitive system? What is ‘background’? Attention maitch, and an object may gain importance and
be separated from the surrounding background, for instagagrasping it. On the other hand, some object
may loose importance. Having not been used for an extendeddpef time, it might be merged with the
background. This kind of approach has for instance beeowelll by the EU-IST project VAMPIRE, where a
‘visual active memory’ served the purpose of storing andeing relevant visual information at various levels
of abstraction [64].

Spatio-temporal representation: A 4D scene representation similar to the one described iioset.1 may
be well-suited to represent spatio-temporal relationshiping such a scene representation one could answer

the following important questions:
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e Where are the objects? This information is directly avdddiom the representation.
e Object trajectories? This information is directly avalafrom the history of the representation.

e Which object hides which object? This information can beiiréd from the topological relations of the
representation.

At the object level, a certain amount of metric represeontatvill be required to represent camera-to-object
pose, object and camera trajectories in scene coordinetef\ea base representational level, objects could
be represented as a 3D point cloud, and motion by the comdspoe of moving points between subsequent
frames. This representation might serve as the basis faraeasingly complex representational framework.
One can think about attaching local descriptors to poiniatefest, combining point and contour information,
thus representing an object as a collection of loosely edlgieces of information. Even the boundary of
an object might be represented in a fuzzy manner. First arpatal results in this direction show that a
representation based on a point cloud is sufficient to imgiearning and recognition of object categories
[146], but for a proper object representation and for spatioporal analysis, this can only be considered a
starting point.

Appearance-based representation: Currently appearance-based representations are quitdepapthe ob-
ject recognition community, but there are some obstaclasrtbed to be overcome. First of all we need to
address the issues of scaling (i.e., how can we build a sy$tatrcan recognize thousands of objects). It is
clear that one-to-one matching is not useful, we need proags to hierarchically structure the object rep-
resentation. A recent approach in that direction can bedanrf125], but this approach is not the solution
because it needs too much storage space. Very recentlgrNistl Stewénius [124] presented a hierarchical
system with that scales to many specific objects. It remaibe tshown how the generalization and accuracy is
influenced by the approximations introduced. Another ggBng issue is how we can combine local and global
appearance-based representations in a coherent framawandter to use the best of both worlds. Ideally we
would like to have a seamless integration between thesedpm@sentations so that we can always select the
most appropriate one. A question closely related to legrisrhow we can build a hierarchy of appearance-
based representations, starting with simple patches basdoterest points to more complex constellations
and expressive representations. It is clear that such aseptation needs to be learned (in an un-supervised
manner).

Graph-based representation: Existing graph based representations support any numtgimaisions but
the question of minimum required complexity is still openo @e really need more tha?dD + time and
represent everything in maximum detail or should we focusenom the advantages of representations which
keep embedding information, structure, and topology?iRieary experimental results show that in most of
the cases humans do very well using simple descriptionsneeldaby the power of relation®C'C is definitely
something that should be considered in the future, alonly midimensional graph based representation like
combinatorial maps and generalized maps, for which mangesties in3D and4D still need to be studied.
Holes of different dimension result from the local and gladzmnectivity of parts. Homology generators char-
acterize holes and can be efficiently computed using a gragamd [135]. Other topological invariants like
cohomology rings [59] could also be considered. Stayindp wiialitative measures, landmark based address-
ing, mosaicking graph based patches, and, graph and shapbkimgashould enforce the way to human like
generic object recognition capabilities and, thus, wittamly be part of our future research.
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