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Abstract

Since the inception of successful rasterization of curves and objects in the digital space, several algo-
rithms have been proposed for approximating a given digital curve. All these algorithms, however, resort to
thinning as preprocessing before approximating a digital curve with changing thickness. Described in this
paper is a novel thinning-free algorithm for polygonal approximation of an arbitrarily thick digital curve,
using the concept of “cellular envelope”, which is newly introduced in this paper. The cellular envelope,
defined as the smallest set of cells containing the given curve, and hence bounded by two tightest (inner and
outer) isothetic polygons, is constructed using a combinatorial technique. This envelope, in turn, is analyzed
to determine a polygonal approximation of the curve as a sequence of cells using certain attributes of digital
straightness. Since a real-world curve/curve-shaped object with varying thickness, unexpected disconnect-
edness, noisy information, etc., is unsuitable for the existing algorithms on polygonal approximation, the
curve is encapsulated by the cellular envelope to enable the polygonal approximation. Owing to the im-
plicit Euclidean-free metrics and combinatorial properties prevailing in the cellular plane, implementation
of the proposed algorithm involves primitive integer operations only, leading to fast execution of the algo-
rithm. Experimental results that include output polygons for different values of the approximation parameter
corresponding to several real-world digital curves, a couple of measures on the quality of approximation,
comparative results related with two other well-referred algorithms, and CPU times, have been presented to
demonstrate the elegance and efficacy of the proposed algorithm.

1 Introduction

The subject on properties, characterizations, and representations of digital curves (DC) has been researched con-
tinuously since the debut of digitization of graphical objects and visual imageries [28, 29, 34]. Nevertheless, in
the abundance of various problems and their algorithms related with digital objects, polygonal approximation
of a digital curve/object has received special attention for its efficient representation and for its potential appli-
cations in connection with analysis of digital images [1, 5, 25]. For, the set of straight edges of the concerned
polygon carries a strong geometric property of the underlying objects, which can be used for efficient high level
description of the objects and for finding the similarity among different objects in the digital plane.
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Figure 1: Cellular envelope E(C,G) of a real-world (thick, rough, and reducible) curve-shaped object C for cell
size g = 8.

Since an optimal solution of polygonal approximation targeted to minimize the number of vertices, and
space thereof, is computationally intensive, several heuristic and meta-heuristic approaches based on certain
optimality criterion have been proposed over the last few decades, and some of these that have come up in
recent times may be seen in [8, 31, 38, 39, 40, 41, 47]. Further, there also exist various studies and comparisons
of the proposed techniques, e.g., [8, 35, 41, 46], to cite a few. This entire collection of polygonal approximation
algorithms, however, consider the input digital curve to be strictly “irreducible”∗ (and connected thereof),
failing which the algorithm may produce undesired results pertaining to polygonal approximation.

Hence, in case of a thick DC, thinning is required to ensure the property of “irreducibility” to the input DC so
that it can qualify for the subsequent process of polygonal approximation. A thinning procedure, being plagued
by asymmetric erosion in the thick regions and shifting of junction/end points, and being liable to slow down
the overall run time of the approximation process, is susceptible to deteriorate the results of approximation.
Furthermore, the result goes on worsening if there occurs some missing grid points (pixels) in the input DC
— which splits, therefore, into multiple DC’s — producing several approximate polygons instead of a single
polygon, thereby giving rise to misleading impression, and more specifically, posing severe problems in the
subsequent applications. These problems have been tackled in our method using the novel concept of cellular
envelope of an arbitrary digital curve whose thickness may vary non-uniformly. In our method, we consider
that all possible thicknesses — including 0 (missing pixel) and 1 (one pixel thick) — may occur in a (connected
or disconnected) DC (or a curve-shaped object)† when it is subject to polygonal approximation.

A brief outline of the paper is as follows. In Sec. 2, we present a combinatorial algorithm to derive the
cellular envelope of an arbitrary DC (stage I) using its inner and outer isothetic polygons [7, 11, 49]. Sec. 3
enumerates some digital geometric properties of cellular line segments (CSS), followed by the motivation and
underlying principle for their extraction (stage II) from the cellular envelope of the input DC obtained in stage I.
In Sec. 4, we present our method PACE with the major steps of the two algorithms corresponding to stage I
and stage II, along with their brief analysis. Sec. 5 exhibits some test results on some typical curve-shaped
objects with varying curve thickness, which shows the elegance and efficiency of the proposed method. Finally
in Sec. 6, we summarize the strength of our method, comment on its future scope and further works, and point
out the possibilities of polygonal approximation in the cellular plane.

∗A digital curve C is said to be “irreducible” if and only if removal of any grid point p in C makes C disconnected.
†In this paper, we use the term “DC” to denote a digital curve (reducible or irreducible) as well as a curve-shaped object that may

contain multiple disconnected segments producing the impression of a single object.



78 Bhowmick et al. / Electronic Letters on Computer Vision and Image Analysis 7(2):76-95, 2008

1.1 Existing Methods

Algorithms for approximating a given digital curve or contour, which is one-pixel thick, had been proposed
since the early period of digitization [1, 5, 25]. Efficient and suboptimal algorithms of several variants had been
proposed later [9, 10, 11, 31, 38, 39]. The problem of polygonal approximation of a digital curve persisted to
be engrossing even today, and with the inset of new paradigms that opens up new possibilities, a number of
algorithms have been proposed in recent times [4, 3, 12, 13, 22, 45]. All these methods are meant for polygonal
approximation of a strictly one-pixel thick digital curve and mostly based on the conventional techniques, such
as an appropriate distance criteria, usage of masks, eigenvalue analysis, Hough transform, etc. In general,
all these algorithms can be broadly classified into two categories — one in which the number of vertices of
the approximate polygon(s) is specified, and the other where a distortion criterion (e.g., maximum Euclidian
distance) is used. The principles and salient features of some of these algorithms are mentioned below.

Amongst the earlier algorithms, the scan-along algorithm proposed by Wall and Danielsson [42] needs a
mention here for its high speed of execution owing to a simple-yet-effective concept of area deviation for each
line segment. The algorithm outputs a new line segment when the area deviation per unit length of the current
approximating segment exceeds a prescribed threshold. Provision for simplifying the associated computations
is there, e.g., by replacing

√
x2 + y2 with (|x| + |y|) or max{|x|, |y|}. However, the algorithm lacks the

scope of producing the desired result for (self-)intersecting or branching curves when the input set of points
constituting the curve-set is not given in the order that defines the curve.

Another procedure proposed by Teh and Chin [41] detects the dominant points in a closed digital curve,
given in the chain-coded representation as input. A dominant point corresponds to curvature maxima in the
local neighborhood of the concerned curve. The procedure first determines the region of support for each point
based on its local properties, computes measures of relative significance (e.g., cosine curvature, k curvature,
1 curvature, etc.) of each point, and finally detects dominant points by non-maxima suppression. However, since
the procedure resorts to trigonometric functions for curvature finding and performs non-maxima suppression in
multiple iterations (4 passes), its runtime is quite high.

Later, the concept of perceptual organization was introduced by Hu and Yan [24], which attempts to match
the human performance. The approximation process is divided into three stages. In the first stage, points are
grouped together using a linking-merging approach based on the principles of proximity, similarity, and sym-
metry. In the second stage, the linked curve is smoothed so as to suppress noise and delete visually insignificant
points. Finally, a rule-based strategy is applied to preserve the feature points while reducing the number of seg-
ments in the approximated polygon. The procedural complexity and the runtime are high due to three stages,
each using multiplications for the entire set of points on the curve.

Another method of polygonal approximation using ant colony search technique is proposed by Yin [47]. A
directed graph is used to represent the problem with the objective of finding the shortest closed circuit on the
graph under the problem-specific constraints. A number of artificial ants are distributed on the graph, which
communicate with one another through the pheromone trails as a long-term memory guiding the future ex-
ploration of the graph through certain node transition rules and pheromone updating rules. The procedural
complexity is very high due to its inherent recursive nature and complex calculations, one of which is exponen-
tiation in selection problem of a node.

A comparative study of the above algorithms can be found in some of the recent papers [8, 46]. Since most
of these algorithms require intensive floating-point operations in order to analyze the discrete curvature [2, 17,
20, 41, 44], their runtime for a complex digital curve is quite high. For other details, the related procedures
in several other works [6, 15, 30, 42, 43, 35, 41, 47, 48] may be looked at. Further, for thick, rough, and
weakly disconnected digital curves (which are usually representatives of the corresponding real-world objects),
the algorithms are susceptible to produce unexpected results. On the contrary, the algorithm proposed by us
can deal with such non-ideal curves, and and yields a suboptimal solution of polygonal approximation uses
primitive integer operations only.
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2 Cellular Envelope

If C be a given DC, and G = (H,V, g) be a set of uniformly spaced horizontal grid lines (H) and vertical grid
lines (V) with spacing g, then the cellular envelope of C, corresponding to the cellular plane defined by G, is
given by

E(C,G) = Eout(C,G)r Ein(C,G) if C is closed or contains a closed part,
= Eout(C,G) if C is open,

(1)

where Eout(C,G) and Ein(C,G) represent the respective outer and inner envelopes corresponding to C w.r.t. G,
such that

– each point p ∈ C should lie inside Eout(C,G) and outside Ein(C,G);
– each vertex of E(C,G) (and of Eout(C,G) and Ein(C,G), thereof) is in G;
– area of E(C,G) is minimized.

The cellular envelope of a DC (curve-shaped object) C, which is rough, not irreducible, and disconnected
(since it has uneven thickness and stray pixels) has been shown in Fig. 1. Note that, the cellular envelope
E(C,G) shown in this figure is for cell size g = 8, and the envelope “tightly encloses” all the points of C with
no points lying outside E(C,G).

2.1 Combinatorial Properties of a Cellular Envelope

Let I be the 2D image plane having height h and width w, and containing the entire object C. Let α(i, j) be
the point of intersection of the horizontal grid line lH : x = i ∈ H and the vertical grid line lV : y = j ∈ V .
Let SLT, SRT, SLB, and SRB be the respective left-top, right-top, left-bottom, and right-bottom square cells
with the common grid point α(i, j), and let α′(i, j + g) and α′′(i + g, j) be the respective grid points lying
immediate right and lying immediate below α, as shown in Fig. 2.

We construct a binary matrix Ae (edge matrix) that contains
(
(w/g)(h/g +1)

)× (
(h/g)(w/g +1)

)
entries,

each entry being in one-to-one correspondence with a particular edge of a particular cell. If an edge e(α, β)
connecting two neighbor grid points α and β is intersected by the object C, then the corresponding entry in Ae

is ‘1’, otherwise ‘0’.
Now, from Ae, we construct another binary matrix Ac (cell matrix) of size (h/g) × (w/g), in which each

entry corresponds to a unique cell — the entry is ‘1’ if at least one of the four edges of the concerned cell
is intersected by the object C, and is ‘0’ otherwise — which is checked from the correspondence of its edge
information in Ae.

Next, the candidature of α as a vertex of the (inner or outer) envelope is checked by looking at the combina-
torial arrangements (w.r.t. object containments) of the four cells having common vertex α. There exist 24 = 16
different arrangements of these 4 cells, since each cell has 2 possibilities (‘0’/‘1’). These 16 arrangements can
be further reduced to 5 cases, where, a particular case Cq, q = 0, 1, . . . , 4, includes all the arrangements where
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Figure 2: Four cells with common vertex α.
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exactly q out of these 4 squares has/have object containments (i.e., contain(s) parts of the object C), and the
remaining (i.e., 4 − q) ones have not. That is, the case in which the sum of the 4 bits in the corresponding
entries in Ac is equal to q is represented by Cq. Further, out of these 5 cases, cases C1 and C3 always and case
C2 conditionally produce vertices of the inner/outer envelope, as explained below (also see Fig. 3).
Case C1.

(
4
1

)
= 4 arrangements (one shown in Fig. 3) are possible where only one cell with vertex α contains

C, i.e., exactly one of the corresponding four entries in Ac is ‘1’ and each other is ‘0’. The envelope will have
its one edge ending at α and the next edge starting from α, (shown by the respective arrows in Fig. 3). Hence, if
α lies inside C, then it is a 2700 vertex of Ein(C,G), and if α lies outside C, then it is a 900 vertex of Eout(C,G)
(the angle 900/2700 of a vertex means its internal angle in the corresponding envelope).
Case C2.

(
4
2

)
= 6 arrangements (Fig. 3) are possible in which exactly two of the four cells contain C. If the

cells containing C are diagonally opposite (2 out of 6 arrangements), then α is a vertex (900 for Ein(C,G) and
2700 for Eout(C,G)); otherwise α is an ordinary point on the envelope perimeter. It should be noticed in Fig. 3
that two different styles of arrow heads indicate the two possibilities of formation of the envelope edges, since
α may be visited along either of the two possible paths during traversal, and only the traversed one is required
for defining the envelope.
Case C3.

(
4
3

)
= 4 arrangements (Fig. 3) are possible for q = 3, where, out of the four cells, only one cell is

free. In each such arrangement, α would be a 900 vertex for Ein(C,G)) and a 2700 vertex for Eout(C,G)).
For case C0:

(
4
0

)
= 1 arrangement, α is just an ordinary grid point lying outside Eout(C,G) or inside Ein(C,G)),

whereas for case C4:
(
4
4

)
= 1 arrangement, α is a grid point included in C (since no two traversable edges are

incident on it).

3 Cellular Straight Segments

There exist several works on constructs, properties, and applications of cell complexes and cellular straight
segments (CSS) in which the primal as well as many alternative definitions of CSS are found [16, 21, 26, 29, 27].
For example, as indicated in [29], a CSS C can be defined as the minimal set of cells c specified by a straight
line segment L ∈ R2 such that

L ∩ c 6= ∅, ∀ c ∈ C; (2)

and L ⊂ C, (3)

which makes its primal definition.
Another definition of CSS involving the Euclidean metric space is given in [16], in which it has been shown

that a cellular curve C is a CSS if and only if there exists a direction θ and a pair of (parallel) lines in R2

(tangential to and) containing C, such that the distance between, and measured in the direction (say, θ⊥) per-
pendicular to, this pair of lines does not exceed the distance (along θ⊥) between the closest pair of parallel lines
containing the square formed by (2× 2 =) 4 cells sharing a common vertex.

In a recent work [21], an Euclidean-free definition of CSS has been given in terms of “fully partitioned
(finite) strings” (S(0)) and “higher order derived strings” (S(j) : j ≥ 1), the latter being derived iteratively from
the preceding string (i.e., S(j−1)) by replacing the majority symbol substrings of S(j−1) by its length, and by
deleting the minority symbols of S(j−1). Subsequently, it has been shown that a string S (= S(0)) represents a
CSS, provided the jth order derived string of S exists for all j ≥ 0.

Alternatively, in the perspective of digital straightness, if we consider the center points of these edge-
connected cells as grid points, then it follows that a family of cells is edge-connected if and only if the set
of center points of these cells is 4-connected. Thus CSS provides a suitable option — apart from that provided
by digital straight line segments (DSS) [32] — for adjudging the straightness of a curve in the digital plane, as
indicated in a contemporary work [29]. A linear off-line algorithm for CSS recognition, based on convex hull
construction, is briefly sketched in [26]. In our work, we have designed an on-line algorithm to derive the set
of CSS’s from the cellular envelope (Sec. 2) of a curve-shaped object, which cannot be subject to direct DSS
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case

no. of
arrange-
ments/
subcases an instance with brief explanation

C0 1

S S

SS RB

RTLT

LB

α

None of the four cells, namely SLT, SRT, SLB, and SRB, contains
any part of C, whereby α is not a vertex of Ein(C,G) or Eout(C,G),
and so not a vertex of E(C,G).
Note that, the containment of curve by a cell with vertex α is
checked from the cell matrix Ac, which, in turn, is checked from
the edge matrix Ae, as explained in Sec. 2.

C1 4

S S

SS RB

RTLT

LB

α

One of the (22 − 1 =)3 possible sub-subcases in which C inter-
sects the left edge and the top edge of SLT corresponding to the
subcase of SLT containing C. The other two sub-subcases are:
one when only the left edge, and one when only the top edge of
SLT is intersected by C. The edges (right edge and bottom edge of
SLT), which would belong to either Ein(C,G) or Eout(C,G), have
been highlighted and directed to show their directions of traversal
with C lying at the left.

C2 6

S S

SS RB

RTLT

LB

α

An instance of one of the two possible subcases (out of 6 sub-
cases) for which α is a vertex of Ein(C,G) or Eout(C,G), since
here the cells with object containments are diagonally opposite.
For each of the other four subcases, the cells would be adjacent
to each other with one edge in common, thereby making α as an
ordinary edge point of Ein(C,G) or Eout(C,G).

C3 4

S S

SS RB

RTLT

LB

α
One of the four possible subcases for which α is a 900 vertex of
Ein(C,G) or a 2700 vertex of Eout(C,G).

C4 1

S S

SS RB

RTLT

LB

α

In this case, since α has all the four adjacent cells occupied by
the curve, there is no free path (consisting of two edges — one
incoming and the other outgoing) through α. Hence, α is neither
a vertex of Ein(C,G) nor a vertex of Eout(C,G).

Figure 3: Typical instances of five combinatorial cases. See text for more explanation.
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(a) (b) (c)

Figure 4: Examples of cellular curves explaining the significance of straightness properties (R1)–(R4). Note
that the directed black path that traces the ordered set of centers of the cells shows the digital curve (DC)
corresponding to a cellular curve. The curves in (a) and (b) are CSS’s (the corresponding real lines being
shown in blue); but the curve in (c) is not, since there does not exist any real line that can pass through the set
of cells defining this curve (see text for explanation).

extraction/polygonal approximation due to its inherent nature of possessing varying thickness, as mentioned in
Sec. 1.

We have considered the center of each cell for extracting the longest line segment iteratively in (a part of) a
cellular envelope E(C,G) corresponding to the given curve C and given cell size g imposed by the grid G. We
have used some digital geometric properties of DSS formulated and explained in [29, 32]. Before explaining our
algorithm, the DSS properties (defined w.r.t. chain codes [18, 19]) relevant to our work, which were established
in [32], and later (see [29]) correlated with the other straightness options such as cellular straightness, are
mentioned below‡.

(R1) The runs have at most two directions, differing by 900, and for one of these directions, the run length
must be 1.

(R2) The runs can have only two lengths, which are consecutive integers.
(R3) One of the run lengths can occur only once at a time.
(R4) For the run length that occurs in runs, these runs can themselves have only two lengths, which are con-

secutive integers; and so on.

Few examples of cellular curves/envelopes are shown in Fig. 4 to explain the significance of properties
(R1)–(R4). For the curve in (a), if we consider the center of each cell as a grid point, as mentioned earlier,
then its chain code is 000200020002000 = 03203203203, which consists of codes 0 and 2 only, and contains
consecutive 0’s but no two consecutive 2’s, thereby satisfying property (R1). Regarding (R2), (R3), and (R4),
since there is only one run length (of 0’s), this curve trivially satisfies these three properties, and becomes a
CSS. Similarly, since the curve in (b) has chain code 03203203202, which obeys (R1)–(R4), it is a CSS. On
the contrary, the curve in (c) has chain code 03203205201, which satisfies (R1), but violates (R2) as 0 has
non-consecutive run lengths (3 and 5) — even if we do not consider the leftmost and the rightmost run lengths
(which are 3 and 1, respectively), and so it is not a CSS.

In our method for extraction of CSS from the cellular envelope E(C,G), we have adhered to the properties
(R1–R4). In addition, we have considered that also the leftmost and the rightmost run lengths of a CSS should
follow property (R2) (which is not mandatory as suggested in [32]).

4 Polygonal Approximation Using Cellular Envelope

The method on finding the (cellular) polygonal approximation of a curve-shaped object C consists of two stages,
namely stage I and stage II. In stage I, we construct the cellular envelope E(C,G) based on the novel concept of
combinatorial arrangement of the cells containing C, as explained in Sec. 2. In stage II, we analyze the cells of

‡In our work, we have considered 4-connectivity of a DSS, i.e., having chain codes lying in the set {0, 2, 4, 6}, since the cells in the
cellular envelope E(C,G) obtained for the curve C (Sec. 2) are connected in 4-neighborhood. In a DSS with 8-connectivity, however,
the runs would have directions differing by 450 as stated in [32].
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STEP 1. Initialize each entry in Ae and each entry in Ac with ‘0’.
STEP 2. DFS-VISIT on C starting from p using 8-connectivity to reach the nearest cell edge ep of G.
STEP 3. DFS-VISIT on Ae starting from the entry Ae(ep) corresponding to ep in Ae using 4-connectivity (of ‘1’s

in Ae) to assign:
‘1’ to the entry in Ae corresponding to each cell edge e intersected by C, and
‘1’ to the entry in Ac corresponding to each of the two cells with e as the common edge.

STEP 4. DFS-VISIT on Ac starting from some cell (e.g., cp, the left adjacent cell of ep) of the cellular envelope
formed by the ‘1’s obtained in step 3 using 4-connectivity (of ‘1’s in Ac); and check whether the entry
Ac(c) corresponding to the cell c currently under DFS-VISIT satisfies at least one of the following two
conditions:
(i) both the left and the right adjacent entries of Ac(c) are ‘1’s;
(ii) both the bottom and the top adjacent entries of Ac(c) are ‘1’s.
If (i) or/and (ii) is/are true, then terminate the DFS-VISIT, since the current cell c lies either on a
horizontal edge/part (when (i) satisfies) or on a vertical edge/part (when (ii) satisfies) of the cellular
envelope of C; and declare c as the seed cell c0 for stage II.

STEP 5. If no seed cell c0 is found in step 4, then the cell size is not sufficiently large compared to the (mini-
mum) thickness of the input curve C. Hence the user may be asked to increase the cell size (i.e., grid
separation g); alternatively, an arbitrary cell of the envelope may be considered to be the seed cell c0.

Figure 5: Algorithm FIND-CELLULAR-ENVELOPE (C,G, p) in stage I.

E(C,G) to extract the straight pieces from E(C,G), considering the center of each cell of E(C,G) as a grid point
and using the properties (R1)–(R4), as mentioned and explained in Sec. 3. We have designed and implemented
two algorithms, one for each stage, which are briefed up next.

4.1 Stage I: Finding the Cellular Envelope

We consider any point p ∈ C as the start point defining the object C. For the time being, consider that C is
connected in 8-neighborhood. Then using DFS-VISIT (Depth First Search algorithm [14]), we can reach the
nearest edge ep of a cell that intersects C. Starting from ep, using DFS-VISIT on the edges of the cells, we
visit those cell edges that are intersected by E ; this procedure helps us in constructing the edge matrix Ae and
the cell matrix Ac (Sec. 2), which are finally used to obtain E(C,G). The major steps of the algorithm FIND-
CELLULAR-ENVELOPE (C,G, p) to find the cellular envelope of a connected (and of uniform or non-uniform
thickness) object C w.r.t. the cellular array imposed by the grid G is given in Fig. 5.

In case C has some missing points/pixels, i.e., possesses disconnectedness, then it may happen that none
of the edges of a cell is intersected by C, although C is contained in that cell. To circumvent this problem,
we have to directly construct the cell matrix Ac, without constructing Ae, which would, however, increase the
time complexity (and the run time, thereof) of stage I. It may be noted that, if the curve possesses too much
gap/disconnectedness, so that the gap is even larger than the cell size, then this gap may result to gap (in
the edge-connectivity) of the cells constituting the envelope E(C,G), which gets fragmented into two or more
pieces, thereby producing faulty results. Choosing an appropriate cell size is, therefore, necessary to obtain the
desired cellular envelope of a disconnected DC in stage I.

4.2 Stage II: Finding the Cellular Straight Segments

In stage II, the algorithm FIND-CSS (E , c0)§, given in Fig. 6, extracts the ordered set of CSS’s from the cellular
envelope E as follows. W.l.o.g., since in stage I, the seed cell c0 lies on a horizontal part (or on a vertical part,
or on a thick part) of E , we negotiate two traversals (STEP 1) — one towards left and the other towards right
of (center point of) c0 — to obtain two CSS’s with complying (cellular) straightness such that the sum of their

§Now onwards, we denote the cellular envelope of C by E for simplicity.
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STEP 1. Traverse (cell-wise) towards left and towards right from c0 to extract all possible pairs of CSS starting
from c0, such that
(i) the chain code of each CSS, and
(ii) the combined chain code of the two CSS’s
in each pair are in conformity with properties (R1)–(R4);

STEP 2. Find a/the pair of CSS that has maximum sum of lengths;
merge this pair into a single CSS, namely C1;
declare c0 and c1 as the left and the right terminal cells of C1;
store (the centers of) c0 and c1 in the ordered set T .

STEP 3. Start from c1 to extract the next (longest) CSS, C2 := (c1, c2), with terminal cells c1 and c2;
store c2 in T; and mark the cells defining C2 as VISITED.

STEP 4. Repeat STEP 3 starting from the last entry (i.e., terminal cell) in T to get the CSS’s defining E until all
cells of E are VISITED (using DFS-VISIT).
Note: (i) If a CSS has both its terminal cells in the 4-neighborhood of another (longer) CSS, then the
former (shorter) CSS is not included in T (Fig. 7(a)). (ii) For a bifurcating/branching CSS, we store
both its terminal cells in T (Fig. 7(b)).

STEP 5. Declare T as the polygonal approximation of the cellular envelope E .

Figure 6: Algorithm FIND-CSS (E , c0) in stage II.

c’

longer  CSS

shorter  CSS

c

(a) A short CSS with each of its terminal
cells lying at 4-N of a longer CSS is
not considered as a valid CSS (Note (i)
of STEP 4 in Fig. 6).

c’

c"

C ’CSS:

CSS: C "

c

(b) For a branching CSS, C ′′, each of its
terminal cells (one is c′′ and the other
not shown) is stored in T (Note (ii) of
STEP 4 in Fig. 6).

Figure 7: Inclusion and exclusion of terminal cell(s) of CSS in T .

lengths is maximal, and merge these two to get the first CSS, C1, to be included in the ordered set T of terminal
cells (STEP 2). The starting cell for extracting the next CSS (STEP 3) from the cellular envelope is, therefore,
considered to be the right terminal cell c1 of C1. We use the algorithm DFS-VISIT [14] to explore the cells
constituting the envelope and to extract the CSSs, whose terminal cells are finally reported in T .

Time complexity. If N be the number of points defining the curve C, then its envelope E consists of O(N/g)
cells. Due to DFS-VISITs, therefore, the time complexity in stage I is bounded by O(N/g). In stage II,
extraction of each CSS Ci takes O(|Ci|) time, where |Ci| is the number of cells defining Ci. Hence, the time
complexity to extract all CSS’s in step II is O (

∑ |Ci|) = O(N/g), which gives the total time complexity of
PACE as O(N/g).

4.3 Efficiency of the Algorithm

The deviation of the approximate polygon(s) (or polychain(s)) from the input set of digital curves determines
the efficiency of a polygonal-approximation algorithm. Two such measures to assess the quality of approxima-
tion corresponding to a curve C are (i) compression ratio CR = N/M and (ii) the integral square error (ISE)
between C and P , N being the number of points in the (thinned) curve C and M being the number of vertices in
the approximate polygon P . It may be noted that there is always a trade-off between CR and ISE [23, 36, 37].
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The proposed algorithm is not constrained by the number of vertices of the output polygon. Hence, we cannot
use a measure of approximation with M as an input parameter. Since the precision of the cellular envelope E
corresponding to C depends on the cell size, namely g, which, in turn, decides the quality of approximation,
the approximation parameter of our algorithm is considered as g, depending on which M would change. A
high value of g is likely to produce a slacked approximation, whereby M decreases accordingly, whereas a low
value of g is expected to output a tight approximation requiring a higher number of vertices to constitute P .
Thus, the number of vertices, M , is a measure of the quality of approximation for a given grid size, g. Hence,
we measure the efficiency of our algorithm using the compression ratio (CR) versus g.

As stated earlier, only CR does not reflect the overall efficiency of approximation, since a trade-off lies
between CR and ISE. Hence, apart from CR, we also find the deviation, d⊥(p → p′) := max{|x−x′|, |y−y′|},
of each point p(x, y) ∈ C to its corresponding (nearest) point p′(x′, y′) ∈ P for the chosen grid size, g. For
all points in C, the overall error of approximation is measured by the frequency f(d⊥) of the number of points
having deviation d⊥ versus d⊥. Further, since d⊥ depends on g in our algorithm, the fraction of the number of
points in C with deviation d⊥ varies with g. Hence, for a given value of g, the error frequency is estimated as

f(δ) =
1
N

∣∣{p ∈ C : d⊥(p → p′) = δ}∣∣ . (4)

The variation of f(d⊥) versus d⊥, considering the given value of g, acts as the second measure that provides
the error distribution for the polygonal approximation of C. The related plots on (i) CR versus g and (ii) f(d⊥)
versus d⊥ on polygonal approximation of some real-world digital curves are given in Sec. 5.

5 Experiments and Results

We have implemented the two algorithms, namely FIND-CELLULAR-ENVELOPE and FIND-CSS, that make
the proposed method PACE for polygonal approximation of an arbitrarily thick DC, in C in SunOS Release 5.7
Generic of Sun Ultra 5 10, Sparc, 233 MHz. We have tested the algorithms on various digital curves of arbitrary
shape, changing thickness, and irregular connectedness, some of which are presented in this paper. It may be
mentioned here that, since the concept of a cellular polygon introduced in this work is entirely new, and no
other work on cellular polygon exists at present, we could not have a comparative study of our method with any
thinning-free method. However, to demonstrate the strength and efficiency of our algorithm, we have given the
results of polygonal approximation (on thinned curves) by a couple of existing methods [41, 42]. In order to do
this, we have first applied the thinning procedure [33] on a thick curve (or a set of curves) so that the thinned
curve can be used as input in these existing algorithms (Fig. 11).

The result for an (non-thinned) edge map of a “duck” is shown in Fig. 8, which testifies the elegance of
PACE in deriving the cellular polygon corresponding to a DC. It may may be noticed in this figure that, some
of the cells in the envelope E have not been included in any CSS; because in the algorithm FIND-CSS, we
have considered the (terminal cells of) each locally longest CSS to be included in P (see the Note in STEP 4).
But when there is a bifurcation/self-intersection (e.g., in and around the root of its tail) or a sharp bend (e.g.,
at the tip of its beak), the cellular envelope (Fig. 8(b)) contains several cells across its thickness, which may
cause error in the polygonal approximation as manifested in Fig. 8(d) in the part of the polygon corresponding
to the region in and around the tail root. Hence a proper value of the cell size, g, is mandatory to ensure a good
cellular envelope corresponding to a DC, and a good polygonal approximation thereof.

To exhibit the role and significance of g, few other results on the image “duck” have been given in Fig. 9.
It is evident from this figure that, for g = 8, the approximation deteriorates relative to the one corresponding
to g = 4 (Fig. 8), owing to the fact that a larger value of g imparts a greater tolerance of approximation by
slackening the cellular envelope corresponding to the digital curve. A larger value of g is advantageous when
fewer vertices are desired in order to reduce the output complexity, by compromising with a lower quality of
approximation. For example, the number of output vertices corresponding to the image “duck” for g = 8 is
M(g = 8) = 19 (Fig. 9), which is significantly less than that corresponding to g = 4, i.e., M(g = 4) = 34



86 Bhowmick et al. / Electronic Letters on Computer Vision and Image Analysis 7(2):76-95, 2008

(a) A curve-shaped digital object C of nonuni-
form thickness representing the edge map of
a “duck” image. Note that, since the curve
is not one-pixel thick, the conventional algo-
rithms on polygonal approximation cannot be
applied on this curve.

(b) Cellular envelope E(C,G) obtained in stage I
of the algorithm PACE. Note that, the
cells of the envelope are connected in 4-
neighborhood, which are, therefore, 4-cells.

(c) The set of CSS’s extracted in stage II of the
algorithm PACE from the envelope E(C,G)
shown in (b). The CSS’s have been alternately
colored in blue and green with the terminal
cell of each CSS shown in red.

(d) Final polygonal approximation (in thin black
lines) superimposed on the (faded) cellular
envelope E(C,G).

Figure 8: Results of algorithm PACE for cell size g = 4 on “duck”.
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(Fig. 8) — a fact that certifies the desired behavior of a polygonal-approximation algorithm [8, 35]. For g = 2,
the quality of approximation (measured in terms of the deviation of an approximate polygon from the original
curve) improves relative to that corresponding to g = 4; and for g = 1, the quality of an approximate polygon
improves further. However, as evident from Fig. 9, the number of vertices (M(g = 2) = 45,M(g = 1) = 63)
of the approximate polygon also increases with its improving quality.

Cellular envelopes of the set of thick curves (Fig. 11) representing the image “duck”.

Figure 9: Polygonal approximation of the image “duck” for few other grid sizes (g = 8, 2, 1 from left to right)
shows how the quality of the output polygon goes on improving with decreasing grid size, although at the cost
of increasing number of vertices of the polygon. Note that the vertices of a polygon are highlighted as a red
square, the square-size being g, and the edges are shown in blue.

Result-wise comparisons of the algorithm PACE with two well-known algorithms, namely AD based on
area deviation [42] and CM based on curvature maxima [41], are presented in Fig. 11 and in Table 1. Since
these algorithms need irreducible/thinned digital curves as input, a thinning algorithm [33] is applied on the
set of thick curves constituting the image “duck” as shown in the figure. The set of thinned curves are then
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Figure 10: Plots on quality of approximation for the images “duck”, “diver”, and “boat”. The top set of plots
shows three histogram profiles on the compression ratio, CR = N/M , versus the approximation parameter/cell
size, g. The bottom set is made of the histograms on the error frequency f(d⊥) versus the error of approxima-
tion, d⊥, for g = 1, 2, 4.

considered as input to these algorithms. It is evident from this figure and Fig. 9 that for a high value of g
(e.g., 4), the approximate polygons produced by the algorithm PACE are qualitatively inferior to those by
area deviation and by curvature maxima. However, the quality of the approximate polygons by the proposed
algorithm improves on lowering the value of g. In particular, for g = 1 the resultant polygons are qualitatively
comparable with the ones by the two other algorithms, as evident from Fig. 11.

The efficiency of approximation is measured in terms of the compression ratio and the error frequency as
explained in Sec. 4.3. The related plots in the form of two sets of histograms for the image “duck” and two
other real-world thick curve sets, namely the images “diver” and “boat”, are shown in Fig. 10. The respective
results of polygonal approximation on “diver” and “boat” are presented in Fig. 13 and Fig. 14 to demonstrate the
goodness and efficiency of the algorithm in case of digital curves with varying thickness and arbitrary intersec-
tions. For each of the three curve sets, the trade-off between the compression ratio (CR) and the approximation
parameter (i.e., the grid size, g) is evident from the set of plots on CR versus g. The set of histograms on the
error frequency f(d⊥) versus the error/deviation d⊥ corresponding to a digital curve C depict that majority
of the erroneous points (with d⊥ > 0) have their errors/deviations in the lower range of [0, g], indicating that
the approximate polygon lies close to the original (thinned) curve. A relatively much smaller fraction of these
erroneous points have high deviations, i.e., deviations nearing g. For example, the polygonal approximation of
the image “duck” for g = 1 produces f(d⊥ = 0) = 89% (no error), f(d⊥ = 1) = 11%, and f(d⊥ > 1) = 0%;
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Set of thick curves: Usually a
point has more than two points
in its 8-neighborhood (8N).

Thinning algorithm: Red
points are retained and black
points are dropped.

Set of thin curves: A point hav-
ing more than two points in its
8N indicates a branching.

Magnified views of thinning results corresponding to seven portions (colored yellow) of the curve set.

area deviation (Wall & Daniel-
sson [42]): M = 47.

curvature maxima (Teh & Chin
[41]): M = 64.

thinning-free method (propo-
sed): M(g = 1) = 63.

Figure 11: Result-wise comparison of the proposed thinning-free method with the existing thinning-based
methods for “duck” image.
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g = 1 g = 2

g = 4 g = 4

Figure 12: Polygonal approximation of the image “duck” after being injected by salt-and-pepper noise. For a
small grid size (g = 1 or 2), the resultant cellular envelope cannot cover the underlying object, which is no
longer a single connected component. For an appropriately large value of g, however, the object lies entirely in
the cellular envelope, thereby making it suitable for polygonal approximation by the proposed method.

for g = 2, the corresponding error frequencies are f(d⊥ = 0) = 72%, f(d⊥ = 1) = 26%, f(d⊥ = 2) = 2%,
and f(d⊥ > 2) = 0%; and so forth (Fig. 10). More importantly, this is true for each of the three images, which
characterizes the independency of the algorithm with the structure and composition of the set of input curves.

One of the salient features of the algorithm PACE is its ability to produce effective polygonal approximation
even for a noisy digital curve, which, being affected by noise, are likely to be disconnected. A noisy curve can
be thought of as a pattern of points located densely along a curve, which are usually disconnected at irregular
intervals, although giving the impression of a curve-like pattern due to distribution of the constituting points
on or near the actual (noise-free) curve. The existing algorithms of polygonal approximation do not have the
provision of working with such noisy curves as input. The set of noisy curves corresponding to the image
“duck” and the results of polygonal approximation on it are shown in Fig. 5. Since, for a small value of g
(e.g., g = 1 or 2), the resultant polygonal envelopes are likely to possess small polygons, which contain the
noisy/spurious points of the curve as evident from the figure, a proper value of g is required for applying the
proposed algorithm. For example, for g = 4, the corresponding polygonal envelope successfully covers all
points of the noisy curve, including the spurious points, which enables the algorithm to derive the polygonal
approximation to the desired level of precision.

Another feature of the proposed method is the inherent nature of Euclidean-free metrics and operations
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Table 1: Comparison of the proposed algorithm PACE with the algorithms AD using area deviation [42] and
CM using curvature maxima [41].

Image name
& size

|C| =
# points

|P | = # vertices Total CPU time (secs.)

AD CM PACE ADa CMa PACEb

thick thin g = 1 g = 2 g = 4 g = 1 g = 2 g = 4

duck
145×227

1267 944 47 64 63 45 34 2.717 4.201 0.493 0.283 0.163

diver
333×224

1789 1336 69 82 87 63 46 3.733 5.557 0.552 0.328 0.192

boat
364×133

3319 2565 97 114 121 92 69 5.470 7.539 0.892 0.507 0.297

india
245×276

1471 1173 116 132 137 96 71 5.882 8.421 0.863 0.541 0.300

pyramid
480×198

2361 1795 63 67 74 57 43 3.980 4.955 0.672 0.370 0.285

aTotal CPU time includes the time required for thinning the original curve plus the time required for
polygonal approximation of the thinned curve.
bTotal CPU time includes the time for computing the cellular envelope plus the time required for
polygonal approximation the cellular envelope.

involved in both the stages. This imparts high execution speed to the implementation of PACE, which is
reflected in the respective CPU times shown in Table 1. As evident from this table, the algorithms AD and
CM are considerably slower than PACE owing to the usage of only primitive integer operations (comparison,
addition, and increment) in the latter. On the contrary, the former algorithms use more complex operations, e.g.,
multiplication and division, which needs computation in the real domain, for realization of certain geometric
and trigonometric concepts as explained in Sec. 1.1. Further, with increase in the cell size g, the number of
output vertices of PACE decreases significantly. As a result, the compression ratio (CR) improves consistently,
but the quality of approximation deteriorates, as evidenced by the quality measures in Fig. 10. As stated earlier,
this indicates that the cell size g should be suitably chosen to get an acceptable tradeoff in the approximation.

6 Concluding Remarks

We have presented here the novel concept of approximating a curve-shaped digital object by a cellular enve-
lope. The algorithm is marked by its (i) indifference to change in thickness of the input DC, (ii) innovative
combinatorial approach to construct the optimum cellular envelope for the given DC, (iii) use of straightness
properties inherited from digital geometry, (iv) independency to Euclidean paradigm, and (v) realization with-
out any floating point operation, which collectively make it robust, speedy, and efficient.

Although the cellular envelope does not remain entirely unaltered with a different registration of the curve
C w.r.t. the grid (translation), the cellular polygon produced by the subsequent CSS extraction process remains
almost invariant. Experimenting on the nature of variation of the cellular envelope and the resulting polygon of
a DC with its registration (both translation and rotation) w.r.t. the underlying grid, therefore, stands a possible
extension of this work. Placement of a DC with proper orientation w.r.t. the grid in order to obtain its optimal
cellular envelope is really a challenging problem, which is not yet addressed. The anisotropic nature of the
digital plane, and the apparently unpredictable behavior of the cellular envelope for a shifting/rotating object,
calls for innovative digital-geometric techniques to solve this problem.
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Figure 13: Results on “diver” for g = 4. See text and Fig. 8 for explanation.

Figure 14: Results on “boat” for g = 4. See text and Fig. 8 for explanation.
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