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Abstract

CCTV surveillance systems have long been promoted as bdiectiee in improving public safety.
However due to the amount of cameras installed, many sitesdizandoned expensive human monitoring
and only record video for forensic purposes. One of the spafijbr capabilities of an automated surveil-
lance system is “face in the crowd” recognition, in publiasgs such as mass transit centres. Apart from
accuracy and robustness to nuisance factors such as pas@wver, in such surveillance situations the other
important factors are scalability and fast performance.ewsduate recent approaches to the recognition of
faces at large pose angles from a gallery of frontal imagdspaopose novel adaptations as well as mod-
ifications. We compare and contrast the accuracy, robustred speed of an Active Appearance Model
(AAM) based method (where realistic frontal faces are sgsited from non-frontal probe faces) against
bag-of-features methods. We show a novel approach whergetfiermance of the AAM based technique
is increased by side-stepping the image synthesis stepredslting in a considerable speedup. Addition-
ally, we adapt a histogram-based bag-of-features teckrtmface classification and contrast its properties
to a previously proposed direct bag-of-features method.filther show that the two bag-of-features ap-
proaches can be considerably sped up, without a loss irfatatisn accuracy, via an approximation of the
exponential function. Experiments on the FERET and PIEk#as suggest that the bag-of-features tech-
niques generally attain better performance, with signifigalower computational loads. The histogram-
based bag-of-features technique is capable of achievirayarage recognition accuracy of 89% for pose
angles of around 25 degrees. Finally, we provide a discngsiamplementation as well as legal challenges
surrounding research on automated surveillance.
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1 Introduction

In response to global terrorism, usage and interest in Gi@ecuit Television (CCTV) for surveillance and

protection of public spaces (such as mass transit fasjii® growing at a considerable rate. A similar esca-
lation of the installed CCTV base occurred in London laté ¢@mtury in response to the continual bombings
linked to the conflict in Northern Ireland. Based on the numddeCCTV cameras on Putney High Street, it is
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“guesstimated” [15] that there are around 500,000 CCTV camin the London area and 4,000,000 cameras
in the UK. This suggests that in the UK there is approximatalg camera for every 14 people. However,
whilst it is relatively easy, albeit expensive, to instaltieasing numbers of cameras, it is quite another issue to
adequately monitor the video feeds with security guardsiddethe trend has been to record the CCTV feeds
without monitoring and to use the video merely for a forensicreactive, response to crime and terrorism,
often detected by other means.

In minor crimes such as assault and robbery, surveillandeovis very effective in helping to find and
successfully prosecute perpetrators. Thus one would expetcsurveillance video would act as a deterrent to
crime. Recently the immense cost of successful terrotiatkd on soft targets such as mass transport systems
has indicated that forensic analysis of video after the eigesimply not an adequate response. Indeed, in the
case of suicide bombings there is simply no possibility afspcution after the event and thus no deterrent
effect. A pressing need is emerging to monitor all survedia cameras in an attempt to detect events and
persons-of-interest.

One important issue is the fact that human monitoring regugr large number of people, resulting in high
ongoing costs. Furthermore, such a personnel intensiveraysas questionable reliability due to the attention
span of humans decreasing rapidly when performing suchusdasks. A solution may be found in advanced
surveillance systems employing computer monitoring ofigikéo feeds, delivering the alerts to human respon-
ders for triage. Indeed such systems may assist in maintathe high level of vigilance required over many
years to detect the rare events associated with terrorismwelledesigned computer system is never caught
“off guard”. Because of this, there has been a significartt mboth the industry and the research community
to develop advanced surveillance systems, sometimes dasbimtelligent CCTV (ICCTV). In particular, de-
veloping total solutions for protecting critical infrastiture has been on the forefront of R&D activities in this
field [9, 10, 27].

Amongst the various biometric techniques for person ifieation, recognition via gait and faces appears to
be the most useful in the context of CCTV. Our starting parthie robust identification of persons of interest,
which is motivated by problems encountered in our initial+weorld trials of face recognition technologies in
public railway stations using existing cameras.

While automatic face recognition of cooperative subjeetsdrchieved good results in controlled applications
such as passport control, CCTV conditions are considerabhg challenging. Nuisance factors such as varying
illumination, expression, and pose can greatly affectgaitmn performance. According to Philligs al. head
pose is believed to be the hardest factor to model [17]. Insn@msport systems, surveillance cameras are
often mounted in the ceiling in places such as railway ptatkand passenger trains. Since the subjects are
generally not posing for the camera, it is rare to obtain @ frantal face image. As it is infeasible to consider
remounting all the cameras (in our case more than 6000) tmwegdace recognition performance, any practical
system must have effective pose compensation or be spéyifiesigned to handle pose variations. Examples
of real life CCTV conditions are shown in Figure 1.

A further complication is that we generally only have onenfed gallery image of each person-of-interest
(e.g. a passport photograph or a mugshot). In addition tostoless and accuracy, scalability and fast perfor-
mance are also of prime importance for surveillance. A facegnition system should be able to handle large
volumes of people (e.g. peak hour at a railway station), iplysprocessing hundreds of video streams. While
it is possible to setup elaborate parallel computation rima&sh there are always cost considerations limiting the
number of CPUs available for processing. In this contexéca fecognition algorithm should be able to run in
real-time or better, which necessarily limits complexity.

Previous approaches to addressing pose variation inchedsynthesis of new images at previously unseen
views [1, 22], direct synthesis of face model parameterfd8d local feature based representations [3, 14, 26].
We note in passing that while true 3D based approaches imtldow face matching at various poses, current
3D sensing hardware has too many limitations [2], includingt and range. Moreover unlike 2D recognition,
3D technology cannot be retrofitted to existing surveillasgstems.
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(b)

Figure 1: Several frames from CCTV cameras located at aagibtation in Brisbane (Australia), demonstrat-
ing some of the variabilities present in real-life condiso (a) varying face pose, (b) illumination from one
side, (c) varying size and pose.

In [22], Active Appearance Models (AAMs) were used to modsdleface, detecting the pose through a cor-
relation model. A frontal image could then be synthesizedadiy from a single non-frontal image without the
need to explicitly generate a 3D head model. While the AAMduhface synthesis allowed considerable im-
provements in recognition accuracy, the synthesized fa@es residual artefacts which may affect recognition
performance.

In [20], a “bag of features” approach was shown to performliethe presence of pose variations. It
is based on dividing the face into overlapping uniform-gifdocks, analysing each block with the Discrete
Cosine Transform (DCT) and modelling the resultant set afuiees via a Gaussian Mixture Model (GMM).
The robustness to pose change was attributed to an eff@asigasitivity to the topology of the face. We shall
refer to this method as thdirect bag-of-features

Inspired by text classification techniques from the fieldshatural language processing and information
retrieval, alternative forms of the “bag of features” agmio are used for image categorisation in [7, 24, 16].
Rather than directly calculating the likelihood as in [2Bistograms of occurrences of “visual words” (also
known as “keypoints”) are first built, followed by histograsomparison. We shall refer to this approach as the
histogram-based bag-of-features

The research reported in this paper has four main a{ihgo evaluate the effectiveness of a novel modifi-
cation of the AAM-based method, where we explicitly remdwe éffect of pose from the face model creating
pose-robust features. The modification allows the use ofhibdel's parameters directly for classification,
thereby skipping the computationally intensive and adefsoducing image synthesis stefi) To adapt the
histogram-based bag-of-features approach to face ctad®in and contrast its properties to the direct bag-of-
features method(iii) To evaluate the extent of speedup possible in the both bégptires approaches via
an approximation of the exponential function, and whethehsapproximation affects recognition accuracy.
(iv) To compare the performance, robustness and speed of AAMI lzagEbag-of-features based methods in
the context of face classification under pose variations.

The balance of this paper is structured as follows. In Se@iae overview the two bag-of-features methods.
In Section 3 we overview the AAM-based synthesis techniquet @resent the modified form. Section 4 is
devoted to an evaluation of the techniques on the FERET dadi&tbhsets. A discussion of the results, as well
as implementation and legal issues surrounding researalitomated surveillance, is given in Section 5.
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2 Bag-of-Features Approaches

In this section we describe two local feature based appesackith both approaches sharing a block based
feature extraction method summarised in Section 2.1. Betthaas use Gaussian Mixture Models (GMMs) to
model distributions of features, but they differ in how thBIMs are applied. In the first approactirect bag-
of-features Section 2.2) the likelihood of a given face belonging to ec#fic person is calculated directly using
that person’s model. In the second approdtkt¢gram-based bag-of-featureSection 2.3), a generic model
(not specific to any person), representing “face words”,sisduto build histograms which are then compared
for recognition purposes. In Section 2.4 we describe how tethniques can be sped up.

2.1 Feature Extraction and I llumination Nor malisation

The face is described as a set of feature vectors, {x;,x2, - - ,xy }, Which are obtained by dividing the face
into small, uniformly sized, overlapping blocks and decosipg each blockvia the 2D DCT [11]. Typically
the first 15 to 21 DCT coefficients are retained (as they cortles vast majority of discriminatory information),
except for the 0-th coefficient which is the most affectedllyriination changes [3].

To achieve enhanced robustness to illumination variatimeshave incorporated additional processing prior
to 2D DCT decomposition. Assuming the illumination model éach pixel to b&y, ) = b+ ¢ Py,
wherep,. . is the “uncorrupted” pixel at locatio(w, y), b is a bias and a multiplier (indicating the contrast),
removing the O-th DCT coefficient only corrects for the bi&ie.achieve robustness to contrast variations, the
set of pixels within each block is normalised to have zeronmragal unit variance.

2.2 Bag-of-Featureswith Direct Likelihood Evaluation

By assuming the vectors are independent and identicaltyilalited (i.i.d.), the likelihood ofX belonging to
person; is found with:
N N G
PXIY) = T Peeald™) = TT Y- wlin (xnmg],zg]) 1)
n=1 n=1g=1

whereN (x|u, £) = (27) 2|Z|" 2 exp {—3(x — )= (x — 1)} is @ multi-variate Gaussian function [8], while
A = ! 1 2I1C | is the set of parameters for persorThe convex combination of Gaussians, with mix-
ing coefficientsw,, is typically referred to as a Gaussian Mixture Model (GMMg.parameters are optimised
via the Expectation Maximisation algorithm [8].

Due to the vectors being treated as i.i.d., information &lweitopology of the face is in effect lost. While
at first this may seem counter-productive, the loss of tapolo conjunction with overlapping blocks provides
a useful characteristic: the precise location of face pant® longer required. Previous research has suggested
that the method is effective for face classification whilingerobust to imperfect face detection as well as a
certain amount of in-plane and out-of-plane rotations £8,20].

The robustness to pose variations can be attributed to thieciexallowance for movement of face areas,
when comparing face images of a particular person at vaposes. Furthermore, significant changes of a
particular face component (e.g. the nose) due to pose iarsaaffect only the subset of face areas that cover
this particular component.

*While in this work we used the 2D DCT for describing each bl¢mkpatch), it is possible to use other descriptors, for edam
Gabor wavelets [13].
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2.3 Bag-of-Features with Histogram Matching

The technique presented in this section is an adaption oftbeal words” method used in image categorisa-

tion [7, 24, 16]. First, a training set of faces is used todbailgeneric model (not specific to any person). This
generic model represents a dictionary of “face words” — theamof each Gaussian can be thought of as a
particular “face word”. Once a set of feature vectors forvaegiface is obtained, a probabilistic histogram of

the occurrences of the “face words” is built:

P LIRS e (@) s wae () -~ wepc (%)
X=5 Z G ’Z G (fz_)""’z €]

i=1 Zg:l wepg (%) =3 g=1WgPyg i=1 Zgzl wepg (Zi)

wherewy, is the weight for Gaussiagpandp, () is the probability of vecto’ according to Gaussian
Comparison of two faces is then accomplished by comparieg torresponding histograms. This can
be done by the so-calleg? distance metric [25], or the simpler approach of summatibabsolute differ-

ences [12]: L G |2lg 7l
a(fiais) =32 [i 7| )

whereﬁ[j] is the g-th element ofia. As preliminary experiments suggested that there was liifference in
performance between the two metrics, we've elected to wskatter one.

Note that like in the direct method presented in the prevemetion, information about the topology of the
face is lost. However, the direct method requires that thefskeatures from a given probe face is processed
using all models of the persons in the gallery. As such, theusahof processing can quickly become prohibitive
as the gallery grows In contrast, the histogram-based approach requires thef $eatures to be processed
using only one model, potentially providing savings in terof storage and computational effort.

Another advantage of the histogram-based approach isthdate similarity measurement, via Eqn. (2), is
symmetric. This is not the case for the direct approach, esgpresentation of probe and gallery faces differs
— a probe face is represented by a set of features, while ergdéice is represented by a model of features
(the model, in this case, can be thought of as a compact appatien of the set of features from the gallery
face).

2.4 Speedup via Approximation

In practice the time taken by the 2D DCT feature extractiagats negligible and hence the bulk of processing
in the above two approaches is heavily concentrated in takiaion of the exponential function. As such,
a considerable speedup can be achieved through the use sf apfaroximation of this function [21]. A
brief overview follows: rather than using a lookup tableg tpproximation is accomplished by exploiting
the structure and encoding of a standard (IEEE-754) flogioigt representation. The given argument is
transformed and injected as an integer into the first 32 lhitkeo64 bit representation. Reading the resulting
floating point number provides the approximation. Experitaén Section 4 indicate that the approximation
does not affect recognition accuracy.

TFor example, assuming each model has 32 Gaussians, gomgtha gallery of 1000 people would require evaluating 32000
Gaussians. Assuming 784 vectors are extracted from eaehtfecnumber of exp() evaluations is around 25 million.
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3 Active Appearance Models

In this section we describe face modelling based on defdermabdels popularised by Cootes et al., namely
Active Shape Models (ASMs) [5] and Active Appearance ModalsMs) [4]. We first provide a brief descrip-
tion of the two models, followed by pose estimation via a elation model and finally frontal view synthesis.
We also show that the synthesis step can be omitted by ginextioving the effect of the pose from the model
of the face, resulting in (theoretically) pose independeatures.

3.1 FaceModdling

Let us describe a face by a setdflandmark points, where the location of each point is tuplgy). A face
can hence be represented b¥/a dimensional vector:

f:[wth,”',.Z'N, ylay27”'7yN]T' (3)

In ASM, a face shape is represented by:
f=T+P,b, (4)

wheref is the mean face vectoP, is a matrix containing thé eigenvectors with largest eigenvalues (of a
training dataset), and, is a weight vector. In a similar manner, the texture varigioan be represented by:

g=g+ Pgbg (5)

whereg is the mean appearance vectBy, is a matrix describing the texture variations learned froaming
sets, andy is the texture weighting vector.

The shape and appearance paraméigandb, can be used to describe the shape and appearance of any
face. As there are correlations between the shape and appeasf the same person, let us first represent both
aspects as:

Wb, WP (f —f)
o= | = e ] ©
whereW; is a diagonal matrix which represents the change betweqresinad texture. Through Principal
Component Analysis (PCA) [8] we can represbrds:

b=P.c (7)

whereP,. are eigenvectors; is a vector of appearance parameters controlling both shagdexture of the
model, andb can be shown to have zero mean. Shéypad texturez can then be represented by:

f = f+Qsc (8)
g = g8+Qc 9)
where
Qs = PW.'P, (10)
Q, = P,P, (11)

In the aboveQ, andQ, are matrices describing the shape and texture variatidmg ® ., andP, are shape
and texture components B, respectively, i.e.:

PCS
P, - [ b ] (12)

The process of “interpretation” of faces is hence compridihding a set of model parameters which contain
information about the shape, orientation, scale, positoal texture.
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3.2 Pose Estimation

Following [6], let us assume that the model parametir approximately related to the viewing angle by a
correlation model:

¢~ ¢ + c.cos(f) + cssin(h) (13)

wherecy, c. andc; are vectors which are learned from the training data. (Hereansider only head turning.
Head nodding can be dealt with in a similar way).

For each face from a training s& indicated by superscrigi] with associated posé’l, we perform an
AAM search to find the best fitting model parametefs. The parameters, c. andc, can be learned via
regression fromfcl), il and ([1, cos(0), sin(0)]). _, o Where|Q| indicates the cardinality aP.

Given a new face image with parametef&™!, we can estimate its orientation as follows. We first reayean
clrewl = ¢ + ¢, cos(A")) + ¢, sin(A*e¥)) to:

T
cl"vl e =[ce ey {COS(H["G“J]) sin(glmev) } . (14)
Let R, ! be the left pseudo-inverse of the matfix. ¢, ]. Eqn. (14) can then be rewritten as:
T
R (] ) = [ cos(0) (o)) | (15)
Let[ 2o ya | = R (c¥] — ¢g). Then the best estimate of the orientatiodi§*! = tan=" (y,/z,). Note

that the estimation of["¢*/ may not be accurate due to land mark annotation errors oessign learning
errors.

3.3 Frontal View Synthesis

After the estimation of["*] we can use the model to synthesize frontal face viewscletbe the residual
vector which is not explained by the correlation model:

Cres = clmev] — (co + ¢, cos(H[”ew}) + ¢y sin(H[”ew])) (16)
To reconstruct at an alternate angl&!l, we can add the residual vector to the mean face for that angle
cll = ¢ .o + (Co + ¢, cos(ﬂ[alﬂ) + ¢ sin(H[alt])) a7
To synthesize the frontal view facl®! is set to zero. Eqn. (17) hence simplifies to:
cl = ¢ s + co + . (18)
Based on Eqgns. (8) and (9), the shape and texture for thaafraetv can then be calculated by:

flefl = F + Quel (19)
g[alt] — §+Q9C[alt] (20)

Examples of synthesized faces are shown in Fig. 2. Eachesiathd face can then be processed via the standard
Principal Component Analysis (PCA) technique to produeguiees which are used for classification [22].
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3.4 Direct Pose-Robust Features

The bracketed term in Eqn. (16) can be interpreted as the faearfor angled"*!. The difference between
cl*v] (which represents the given face at the estimated afigfé¢!) and the bracketed term can hence be
interpreted as removing the effect of the angle, resultirey(theoretically) pose independent representation. As
such,c,.s can be used directly for classification, providing consitdée computational savings — the process
of face synthesis and PCA feature extraction is omitted.aBse of this, we're avoiding the introduction of
imaging artefacts (due to synthesis) and information lassed by PCA-based feature extraction. As such, the
pose-robust features should represent the faces moreasalguteading to better discrimination performance.
We shall refer to this approach as these-robust featuramethod.

4 Evaluation

We are currently in the process of creating a suitable dafeséace classification in CCTV conditions (part
of a separately funded project). As such, in these expetsnga instead used subsets of the PIE dataset [23]
(using faces at-22.5°, 0° and+22.5°) as well as the FERET dataset [18] (using faces2i°, —15°, 0°, +15°
and+25°).

To train the AAM based approach, we first pooled face images 0 FERET individuals at15°, 0°,
+15°. Each face image was labelled with 58 points around thergd#éatures (the eyes, mouth, nose, eyebrows
and chin). The resulting model was used to automatically iredfacial features (via an AAM search) for
the remainder of the FERET subset. A new dataset was fornoejsting of 305 images from 61 persons
with successful AAM search results. This dataset was usdrhio the correlation model and evaluate the
performances of all presented algorithms. In a similar regrannew dataset was formed from the PIE subset,
consisting of images for 53 persons.

For the synthesis based approach, the last stage (PCA beastedlef extraction from synthesized images)
produced 36 dimensional vectors. The PCA subsystem wasettaas per [22]. The pose-robust features
approach produced 43 dimensional vectors for each facéhdtbrof the AAM-based techniques, Mahalanobis
distance was used for classification [8].

For the bag-of-features approaches, in a similar mann&Q)p yve used face images with a size ofx@#
pixels, blocks with a size of 88 pixels and an overlap of 6 pixels. This resulted in 784 feattectors per
face. The number of retained DCT coefficients was set to Balfieg in 14 dimensional feature vectors, as the
0-th coefficient was discarded). The faces were normalissizé so that the distance between the eyes was 32
pixels and the eyes were in approximately the same posiioaksimages.

Figure 2: Top row: frontal view and its AAM-based synthedizepresentation. Bottom row: non-frontal view
as well as its AAM-based synthesized representation atiggal angle and!! = 0 (i.e. synthesized frontal
view).
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Pose
Method —25° | —15° [ F15° | +25°
PCA 23.0 54.0 49.0 36.0
Synthesis + PCA 50.0 71.0 67.4 42.0

pose-robust features 85.6 88.2 88.1 66.8
Direct bag-of-features 83.6 93.4 100.0 72.1
Histogram bag-of-features 83.6 100.0 96.7 73.7

Table 1: Recognition performance on the FERET pose subset.

Pose
Method —22.5° | 1225°
PCA 13.0 8.0
Synthesis + PCA 60.0 56.0
pose-robust features 83.3 80.6
Direct bag-of-features 100.0 90.6
Histogram bag-of-featureg  100.0 100.0

Table 2: Recognition performance on PIE.

For the direct bag-of-features approach, the number of &aus per model was set to 32. Preliminary
experiments indicated that accuracy for faces at ar@ifigpeaked at 32 Gaussians, while using more than 32
Gaussians provided little gain in accuracy at the expensenger processing times.

For the histogram-based bag-of-features method, the nuofiligaussians for the generic model was set to
1024, following the same reasoning as above. The generiehfiegpresenting “face words”) was trained on
FERETbadata (frontal faces), excluding the 61 persons describdigiea

Tables 1 and 2 show the recognition rates on the FERET and &Hsets, respectively. The AAM-derived
pose-robust features approach obtains performance whiocbnisiderably better than the circuitous approach
based on image synthesis. However, the two bag-of-featnetkods generally obtain better performance on
both FERET and PIE, with the histogram-based approachrobtpthe best overall performance. Averaging
across the high pose angles25° on FERET andt22.5° on PIE), the histogram-based method achieves an
average accuracy of 89%.

Table 3 shows the time taken to classify one probe face byrésepted techniques (except for PCA). The
experiments were performed on a Pentium-M machine runrtidighbaGHz. All methods were implemented in
C++. The time taken is divided into two components: (1) offezost per probe face, and (2) comparison of
one probe face with one gallery face.

The one-off cost is the time required to convert a given fate & format which will be used for matching.
For the synthesis approach this involves an AAM search, em®agthesis and PCA based feature extraction.
For the pose-robust features method, in contrast, thistefédy involves only an AAM search. For the bag-
of-features approaches, the one-off cost is the 2D DCT featraction, with the histogram-based approach
additionally requiring the generation of the “face wordsstbgram.

The second component, for the case of the direct bag-afffesimethod, involves calculating the likelihood
using Eqgn. (1), while for the histogram-based approachitiislves just the sum of absolute differences be-
tween two histograms (Egn. (2)). For the two AAM-based mes#hthe second component is the time taken to
evaluate the Mahalanobis distance.

As expected, the pose-robust features approach has a spemtamge over the synthesis based approach,
being about 50% faster. However, both of the bag-of-featanethods are many times faster, in terms of the
first component — the histogram-based approach is aboutestiaster than the pose-robust features method.
While the one-off cost for the direct bag-of-features apptois much lower than for the histogram-based
method, the time required for the second component (cosmanmf faces after conversion) is considerably
higher, and might be a limiting factor when dealing with ay&aset of gallery faces (i.e. a scalability issue).
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Approximatetime taken (sec)
Method One-off cost | Comparison of one probe
per probe face| face with one gallery face|
Synthesis + PCA 1.493 < 0.001
pose-robust features 0.978 < 0.001
Direct bag-of-features 0.006 0.006
Histogram bag-of-features 0.141 < 0.001

Table 3: Average time taken for two stages of processingcdmyersion of a probe face from image to format
used for matching (one-off cost per probe face), (2) corspardf one probe face with one gallery face, after
conversion.

When using the fast approximation of the exponential fuumgtthe time required by the histogram-based
method (in the first component) is reduced by approximat@®s 8 0.096, with no loss in recognition accuracy.
This makes it over 10 times faster than the pose-robust festmnethod and over 15 times faster than the
synthesis based technique. In a similar vein, the time télkethe second component of the direct bag-of-
features approach is also reduced by approximately 30%,neiloss in recognition accuracy.

5 Discussion

With an aim towards improving intelligent surveillance t&yss, in this paper we have made several contribu-
tions. We proposed a novel approach to Active AppearanceeMmabed face classification, where pose-robust
features are obtained without the computationally expensiage synthesis step. Furthermore, we've adapted
a histogram-based bag-of-featureechnique (previously employed in image categorisatiorfate classifica-
tion, and contrasted its properties to a previously propagect bag-of-featuresnethod. We have also shown
that the two bag-of-features approaches, both based orsiaaudixture Models, can be considerably sped up
without a loss in classification accuracy via an approxiorabf the exponential function.

In the context of pose mismatches between probe and galiepsf experiments on the FERET and PIE
databases suggest that while there is merit in the AAM basdtads, the bag-of-features techniques generally
attain better performance, with the histogram-based ndedicbieving an average recognition rate of 89% for
pose angles of around 25 degrees. Furthermore, the baaptfrés approaches are considerably faster, with the
histogram-based method (using the fast exponential fmmcbeing over 10 times quicker than the pose-robust
features method.

We note that apart from pose variations, imperfect facelilsstgon [19] is also an important issue in a real
life surveillance system. Imperfect localisations reguttanslations as well as scale changes, which adversely
affect recognition performance. To that end, we are cuyenttending the histogram-based bag-of-features
approach to also deal with scale variations.

As mentioned in the introduction, the research presenteel isemotivated by application to real-life con-
ditions. One of our “test-beds” intended for field trials igalway station in Brisbane (Australia), which
provides us with implementation and installation issues tan be expected to arise in similar mass-transport
facilities. Capturing the video feed in a real-world sitaatcan be problematic, as there should be no disruption
in operational capability of existing security systems.e dptimal approach would be to simply use Internet
Protocol (IP) camera feeds, however, in many existing silamee systems the cameras are analogue and often
their streams are fed to relatively old digital recordinglipment. Limitations of such systems can include low
resolution, recording only a few frames per second, nofeumi time delay between frames, and proprietary
codecs. To avoid disruption while at the same time obtainidgo streams which are more appropriate for an
intelligent surveillance system, it is useful to tap dikgdbto the analogue video feeds and process them via
dedicated analogue-to-digital video matrix switches.
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The face recognition techniques were implemented with amtaibe fast as well as integrable into larger
commercial intelligent surveillance systems. This neitatesl the conversion of Matlab code into C++, which
was non-trivial. Certain parts of the original code relied edlaborate functions and toolkits included with
Matlab, which we had to re-implement. Furthermore, our eégpee also shows that while research code
written by scientists/engineers (who are not necessartfepsional programmers) might be sufficient to obtain
experimental results which can be published, more effogdsired to ensure the code is in a maintainable state
as well as to guarantee that the underlying algorithm implatation is stable.

Apart from the technical challenges, issues in many otherailes may also arise. Privacy laws or policies at
the national, state, municipal or organisational level mpegvent surveillance footage being used for research
even if the video is already being used for security momtpr— the primary purpose of the data collection
is the main issue here. Moreover, without careful congaotiadnd/or explanation, privacy groups as well as
the general public can become uncomfortable with secueisgarch. Some people may simply wish not to
be recorded as they have no desire in having photos or viddbemselves being viewable by other people.
Plaques and warning signs indicating that surveillancerdigs are being gathered for research purposes
may allow people to consciously avoid monitored areas,iblysgvalidating results. Nevertheless, it is our
experience that it is possible to negotiate a satisfyingllrlgmework within which real-life trials of intelligent
surveillance systems can take place.

6 Acknowledgements

NICTA is funded by the Australian GovernmenBacking Australia’s Abilityinitiative, in part through the
Australian Research Council. This project is supported gsaat from the Australian Government Department
of the Prime Minister and Cabinet.

References

[1] V. Blanz, P. Grother, P. Phillips, and T. Vetter. Faceoggution based on frontal views generated from
non-frontal images. IiProc. IEEE Int. Conf. Computer Vision and Pattern Recognijtvolume 2, pages
454-461, 2005.

[2] K. Bowyer, K. Chang, and P. Flynn. A survey of approached ahallenges in 3D and multi-modal
3D+2D face recognitionComputer Vision and Image Understandii®1(1):1-15, 2006.

[3] F. Cardinaux, C. Sanderson, and S. Bengio. User auttaiun via adapted statistical models of face
images.IEEE Trans. Signal Processing4(1):361-373, 2006.

[4] T. Cootes, G. Edwards, and C. Taylor. Active appearancdeis.IEEE Transactions on Pattern Analysis
and Machine Intelligence23(6):681-685, 2001.

[5] T. Cootes and C. Taylor. Active shape models - ‘smart ssakn Proceedings of British Machine Vision
Conferencepages 267-275, 1992.

[6] T. Cootes, K. Walker, and C. Taylor. View-based activpegrance models. IRroceedings of 4th IEEE
International Conference on Automatic Face and GestureoBation pages 227-232, 2000.

[7] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Braisudl cetegorization with bags of keypoints.
In Workshop on Statistical Learning in Computer Vision (injoostion with ECCV’04,)2004.

[8] R. Duda, P. Hart, and D. StorlRattern ClassificationWiley, 2nd edition, 2001.

[9] G. Francisco, S. Roberts, K. Hanna, J.S., and Heubuschtical infrastructure security confidence
through automated thermal imaging.lihfrared Technology and Applications XXX¥blume SPIE 6206,
2006.



Sanderson et al. / Electronic Letters on Computer Vision lamaje Analysis 6(3):30-41, 2007 41

[10] L. Fuentes and S. Velastin. From tracking to advancededilance. InProceedings of International
Conference on Image Processing Conference (ICIP 20@s)yme 3, pages Il 1214, 2003.

[11] R. Gonzales and R. WoodBigital Image ProcessingAddison-Wesley, 1992.

[12] T. Kadir and M. Brady. Saliency, scale and image desonp International Journal of Computer Vision
45(2):83-105, 2001.

[13] T. S. Lee. Image representation using 2D Gabor wavel@EE Trans. Pattern Analysis and Machine
Intelligence 18(10):959-971, 1996.

[14] S. Lucey and T. Chen. Learning patch dependencies fprdawed pose mismatched face verification. In
IEEE Conf. Computer Vision and Pattern Recognitieolume 1, pages 909-915, 2006.

[15] M. McCahill and C. Norris.Urbaneye: CCTV in LondonCentre for Criminology and Criminal Justice,
University of Hull, UK, 2002.

[16] E. Nowak, F. Jurie, and B. Triggs. Sampling strategmsbiag-of-features image classification. Ha-
ropean Conference on Computer Vision (ECCV), Part 1V, LrecNiotes in Computer Science (LNCS)
volume 3954, pages 490-503, 2006.

[17] P. Phillips, P. Grother, R. Micheals, D. Blackburn, Bbé@ssi, and M. Bone. Face recognition vendor test
2002. InProceedings of Analysis and Modeling of Faces and Gestpazge 44, 2003.

[18] P. Phillips, H. Moon, S. Rizvi, and P. Rauss. The FEREal@ation methodology for face-recognition
algorithms.IEEE Trans. Pattern Analysis and Machine Intelligen22(10):1090-1104, 2000.

[19] Y. Rodriguez, F. Cardinaux, S. Bengio, and J. Mariethdeasuring the performance of face localization
systemslmage and Vision Computing4:882—893, 2006.

[20] C. Sanderson, S. Bengio, and Y. Gao. On transformirtgstal models for non-frontal face verification.
Pattern Recognition39(2):288-302, 2006.

[21] N. Schraudolph. A fast, compact approximation of th@amential function. Neural Computation
11:853-862, 1999.

[22] T. Shan, B. Lovell, and S. Chen. Face recognition robus$tead pose from one sample image Phoc.
18th Int. Conf. Pattern Recognition (ICPRplume 1, pages 515-518, 2006.

[23] T. Sim, S. Baker, and M. Bsat. The CMU pose, illuminatiamd expression databastEEE. Trans.
Pattern Analysis and Machine Intelligenc&s(12):1615-1618, 2003.

[24] J. Sivic and A. Zisserman. Video google: A text retriempproach to object matching in videos. In
Proceedings of 9th International Conference on Computsio¥i (ICCV) volume 2, pages 1470-1477,
2003.

[25] C. Wallraven, B. Caputo, and A. Graf. Recognition wititdl features: the kernel recipe. Bmoc. 9th
International Conference on Computer Vision (ICC¥lume 1, pages 257-264, 2003.

[26] L. Wiskott, J. Fellous, N. Kuiger, and C. V. Malsburg. dearecognition by elastic bunch graph matching.
IEEE Trans. Pattern Analysis and Machine Intelligent®(7):775-779, 1997.

[27] F. Ziliani, S. Velastin, F. Porikli, L. Marcenaro, T. Kider, A. Cavallaro, and P. Bruneaut. Performance
evaluation of event detection solutions: the creds expeeie InProceedings of IEEE Conference on
Advanced Video and Signal Based Surveillaqpages 201-206, 2005.



