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Abstract

In this paper, we discuss common colour models for backgt@ubtraction and problems related to
their utilisation are discussed. A novel approach to represhrominance information more suitable for
robust background modelling and shadow suppression iopeab Our method relies on the ability to rep-
resent colours in terms of a 3D-polar coordinate systemnigasaturation independent of the brightness
function; specifically, we build upon an Improved Hue, Luarice, and Saturation space (IHLS). The addi-
tional peculiarity of the approach is that we deal with thelgpem of unstable hue values at low saturation
by modelling the hue-saturation relationship using saimmaveighted hue statistics. The effectiveness of
the proposed method is shown in an experimental comparigbrapproaches based on RGB, Normalised
RGB and HSV.
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1 Introduction

The underlying step of visual surveillance applicatione ltarget tracking and scene understanding is the
detection of moving objects. Background subtraction dlljors are commonly applied to detect these objects
of interest by the use of statistical colour background noddany present systems exploit the properties of
the Normalised RGB to achieve a certain degree of inseitgitiith respect to changes in scene illumination.

Hong and Woo [1] apply the Normalised RGB space in their bemkgd segmentation system. McKenna
et al. [2] use this colour space in addition to gradient infation for their adaptive background subtraction.
The AVITRACK project [3] utilises Normalised RGB for changetection and adopts the shadow detection
proposed by Horprasert et al. [4].

Beside Normalised RGB, representations of the RGB coloacesjin terms of 3D-polar coordinates (hue,
saturation, and brightness) are used for change detedtisbisteadow suppresion in surveillance applications.
Francois and Medioni [5] suggest the application of HS\idackground modelling for real-time video segmen-
tation. In their work, a complex set of rules is introduceddfiect the relevance of observed and background
colour information during change detection and model updatucchiara et al. [6] propose a RGB-based
background model which they transform to the HSV represientan order to utilise the properties of HSV
chrominance information for shadow suppression.
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Our approach differs from the aforementioned in the way wWebuild upon the IHLS colour space, which
is more suitable for background subtraction. Additionaly propose the application of saturation-weighted
hue statistics [7] to deal with unstable hue values at wesdtyrated colours. Also, a technique to efficiently
classify changes in scene illumination (e.g. shadows),eattind the relationship between saturation and hue
has been devised.

The remainder of this paper is organised as follows: Seti@views the Normalised RGB and the Improved
Hue, Luminance and Saturation (IHLS) colour space. Funtloee it gives a short overview over circular colour
statistics, which have to be applied on the hue as angulaevabection 3 presents how these statistics can
be applied in order to model the background in image seqgenceSection 4 we describe metrics for the
performance evaluation of our motion segmentation. Thelected experiments and their results are presented
in Section 5. Section 6 concludes this paper and gives aaahutl

2 Colour Spaces

In this section, the Normalised RGB and IHLS colour spacesl uis this paper are described. It also gives a
short overview over circular colour statistics and a revifgaturation weighted hue statistics.

2.1 Normalised RGB

The Normalised RGB space aims to separate the chromaticamwnis from the brightness component. The
red, green and blue channel can be transformed to their tisadaounterpart by using the formulae

I=R+G+B, r=R/Jl, g=G/Jl, b=B/I (1)

if [ # 0andr = g = b = 0 otherwise [8]. One of these normalised channels is redundeate by definition
r, g, andb sum up tol.

Therefore, the Normalised RGB space is sufficiently reprieskby two chromatic components (ergand
g) and a brightness compondntrom Kender [9] it is known that the practical applicatidiNmrmalised RGB
suffers from a problem inherent to the normalisation; nairtblt noise (such as, e.g. sensor or compression
noise) at low intensities results in unstable chromatic ponents. For an example see Figure 1. Note the
artefacts in dark regions such as the bushes (top left) anshthdowed areas of the cars (bottom right).

Figure 1: Examples of chromatic components. Lexicograglyiordered - Image from theETS200dataset,
it's normalised blue component normalised saturation (cylindrical HSV), IHLS saturatio
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2.2 |HLS Space

The Improved Hue, Luminance and Saturation (IHLS) colowcspwas introduced in [10]. It is obtained
by placing anachromatic axighrough all the grey® = G = B) points in the RGB colour cube, and then
specifying the coordinates of each point in terms of pasitia the achromatic axis (brightness), distance from
the axis (saturatiom) and angle with respect to pure red (Hif€). The IHLS model is improved with respect
to the similar colour spaces (HLS, HSI, HSV, etc.) by remgvihe normalisation of the saturation by the
brightness. This has the following advantages: (a) theatidn of achromatic pixels is always low and (b) the
saturation is independent of the brightness function uSe: may therefore choose any function/®yfG and

B to calculate the brightness.

It is interesting that this normalisation of the saturatiynthe brightness, which results in the colour space
having the shape of a cylinder instead of a cone or doublesdsrusually implicitly part of the transformation
equations from RGB to a 3D-polar coordinate space. This istioreed in one of the first papers on this
type of transformation [11], but often in the literature #guations for a cylindrically-shaped space (i.e. with
normalised saturation) are shown along with a diagram ofree @ double-cone (for example in [12, 13]).
Figure 1 shows a comparison of the different formulationsaifiration. The undesirable effects created by
saturation normalisation are easily perceivable, as sarle dolourless regions (eg., the bushes and the side
window of the driving car) reach higher saturation valuesttheir more colourfull surroundings. Also, note
the artefacts resulting from the singularity of the saforagt the black vertex of the RGB-cube (again, the
bushes and the two bottom right cars).

The following formulae are used for the conversion from R@Bied”, luminancey and saturatiors of
the IHLS space:

s = max(R,G, B) —min(R,G, B)
y = 0.2125R + 0.7154G + 0.0721B

B
G_; ,cryzg(B—G)

cr = \Jeri4cr? (2)

undefined ifer=0

= arccos (CCT—;”) elseif cr, <0

360° — arccos (%) else

cr, = R-—

HH

wherecr, andcr, denote the chrominance coordinates and= [0, 1] the chroma. The saturation assumes
values in the rang@), 1] independent of the hue angle (the maximum saturation valtgeeshown by the circle
on the chromatic plane in Figure 2). The chroma has the mamivalues shown by the dotted hexagon in
Figure 2. When using this representation, it is importanetoember that the hue is undefined i= 0, and
that it does not contain much useable information whéenlow (i.e. near to the achromatic axis).

2.3 Huestatistics

In a 3D-polar coordinate space, standard (linear) stedisformulae can be utilised to calculate statistical
descriptors for brightness and saturation coordinates.hlie, however, is an angular value, and consequently
the appropriate methods from circular statistics are todselu

Now, let6/, i = 1,...,n ben observations sampled from a population of angular hue salTiéen, the
vectorh; pointing fromO = (0,0)7 to the point on the circumference of the unit circle, coroesping tod?,
is given by the Cartesian coordinatess 6/, sin 911)7, *

7

“Note that, when using the IHLS space (Eg. 3), no costly trgoetric functions are involved in the calculation lof, since
cos(0) = cry Jer andsin(0F) = —cry /cr.
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Figure 2: The chromatic plane of the IHLS color space.

The mean directiofi’” is defined to be the direction of the resultant of the uniteesdhy, ..., h, having
directions¢. That is, we have
8" — arctan2 (S,0), 3
where . .
C:ZCOSQiH, S:Zsin@H (4)
i=1 i=1

andarctan2(y, x) is the four-quadrant inverse tangent function.
The mean length of the resultant vector

e o

n

is an indicator of the dispersion of the observed data. Ifitlebserved directiong!” cluster tightly about the

mean directiord’ thenT will approachl. Conversely, if the angular values are widely disperBedill be
close to0. Thecircular varianceis defined as

V=1-R (6)

While the circular variance differs from the linear statiat variance in being limited to the rang@ 1], it is
similar in the way that lower values represent less disjgedsga. Further measures of circular data distribution
are given in [14].

2.4 Saturation-weighted hue statistics

The use of statistics solely based on the hue has the disadeaof ignoring the tight relationship between the
chrominance components hue and saturation. For weaklyasaducolours the hue channel is unimportant and
behaves unpredictably in the presence of colour changeseaaddoy image noise. In fact, for colours with zero
saturation the hue is undefined.

As one can see in Figure 2, the chromatic components may besmaged by means of Cartesian coordinate
vectorsc; with direction and length given by hue and saturation regayg. Using this natural approach, we
introduce the aforementioned relationship into the hutissitzs by weighting the unit hue vectols by their
corresponding saturations.

Now, let(67,s;),i = 1,...,n ben pairs of observations sampled from a population of hue sxel asso-
ciated saturation values. We proceed as described in 86tBowith the difference that instead of calculating
the resultant of unit vectors, the vecterswhich we will dubchrominance vectorthroughout this paper, have
lengths;.
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That is, we weight the vector components in Eq. 4 by theirragitinss;
Cszz:sicosHZH, Ss:Zsisin@H, (7
=1 =1

and choose the mean resultant length of the chrominancersgébr other possible formulations see, e.g. [7])

to be
2 2
7 VG
n

(8)

Consequently, for the mean resultant chrominance vectajewve
o = (Cs/n, Ss/n)". 9)

Here, the length of the resultant is compared to the lengthirdd if all vectors had the same direction and
maximum saturation. Henc&,, gives an indication of the saturations of the vectors whiategrise to the
mean of the chrominance vector, as well as an indicationeftigular dispersion of the vectors. To test if a
mean chrominance vectoy, is similar to a newly observed chrominance vector, we us&tlidean distance
in the chromatic plane:

D =/(@ —co)(En — co). (10)

with ¢, = s,h,. Here,h, ands, denote the observed hue vector and saturation respectively

3 ThelHLSBackground M odel

With the foundations laid out in Section 2.4 we proceed withising a simple background subtraction algo-
rithm based on the IHLS colour model and saturation-wejtee statistics. Specifically, each background
pixel is modelled by its mean luminangg, and associated standard deviatioy together with the mean
chrominance vectag,, and the mean Euclidean distancg betweert,, and the observed chrominance vectors
(see Eq. 10).

On observing the luminancg,, saturations,, and a Cartesian hue vecthy, for each pixel in a newly
acquired image, the pixel is classified as foreground if:

|(Yo — t1y)| > acy VvV |[€n — soh,|| > aop (11)

whereq is the foreground threshold, usually set betw2emd3.5.

In order to decide whether a foreground detection was cabgel moving object or by its shadow cast
on the static background, we exploit the chrominance in&tion of the IHLS space. A foreground pixel is
considered as shaded background if the following threeitond hold:

Yo < by N ’yo - ,Uy’ < 5,Uya (12)
So — ﬁn < Tds (13)
Hhoﬁn - En” < Th, (14)

whereR,, = ||c,|| (see Eq. 8,).

These equations are designed to reflect the empirical clismrs that cast shadows cause a darkening of the
background and usually lower the saturation of a pixel, &h#dving only limited influence on its hue. The first
condition (Eq. 12) works on the luminance component, usitigesholds to take into account the strength of
the predominant light source. Eq. 13 performs a test for @fow in saturation, as proposed by Cucchiara et
al. [6]. Finally, the lowering in saturation is compensabgdscaling the observed hue veclos to the same
length as the mean chrominance ve@gmand the hue deviation is tested using the Euclidean disi@upel4).
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This, in comparison to a check of angular deviation (see Eqr3d6]), also takes into account the model’'s
confidence in the learned chrominance vector. That is, usifiged thresholdr, on the Euclidean distance
relaxes the angular error-bound in favour of stronger hwéatiens at lower model saturation val@,, while
penalising hue deviations for high saturations (where theeit usually more stable).

4 Metricsfor Motion Segmentation

The quality of motion segmentation can in principle be désct by two characteristics. Namely, the spatial
deviation from the reference segmentation, and the fluotuatf spatial deviation over time. In this work,
however, we concentrate on the evaluation of spatial setti@m characteristics. That is, we will investigate
the capability of the error metrics listed below, to desetifve spatial accuracy of motion segmentations.

e Detection rate D R) and false alarm ratef(R)

TP

DR = FN 4+ TP (15)
FP

FR = (16)

N —(FN +TP)

whereT P denotes the number of true positivds)N the number of false negatives,P the number of
false positives, andV the total number of pixels in the image.

e Misclassification penaltyMP)
The obtained segmentation is compared to the reference onaak object-by-object basis; misclassified
pixels are penalized by their distances from the referebgects border [15].

MP = MPy, + MPy, a7
with N
Sl

MPy, = # (18)
o db

MPy, = —Tp (19)

Here,di;n and d}, stand for the distances of thé¢" false negative and"" false positive pixel from
the contour of the reference segmentation. The normalaseifD is the sum of all pixel-to-contour
distances in a frame.

e Rate of misclassification®k(V)
The average normalised distance of detection errors frencahtour of a reference object is calculated

using [16]:
RM = RMy, + RMy, (20)
with '
RM ! S dic" (22)
=N
an =1 Ddiag
Niyp dk:
RM;, — — Ip (22)

pr =1 Ddiag
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Ny, and Ny, denote the number of false negative and false positive pieslpectively. @4, is the
diagonal distance within the frame.

e Weighted quality measur®MS
This measure quantifies the spatial discrepancy betweiemadst and reference segmentation as the sum
of weighted effects of false positive and false negativelsix17].

QMS = QMS;, + QMSy, (23)
with
1 Nin o
QMSpn = + Zl wrn(d}, ), (24)
j:
1 Nyp " "
QMSyy = = > wrpldy,)dy, (25)
k=1

N is the area of the reference object in pixels. Following tigeiment that the visual importance of false
positives and false negatives is not the same, and thus tioeydsbe treated differently, the weighting
functionsw, andwy, were introduced:

By
wrp(dyp) = B1+ P (26)
wfn(dfn) = C . dfn (27)

In our work for a fair comparison of the change detection allgms with regard to their various decision
parameters, receiver operating characteristics (RO@dan detection rate (DR) and false alarm rate (FR)
were utilised.

5 Experimentsand Results

We compared the proposed IHLS method with three differepr@aches from literature. Namely, a RGB
background model using either NRGBRGB+NRGB, or HSV-based RGB+HS\) shadow detection, and a
method relying on NRGB for both background modelling anddsiradetection {RGB+NRGB.

All methods were implemented using t@elour Mean and Variancapproach to model the background [18].
A pixel is considered foreground i, — x| > «o,. for any channet, wherec € {r, g, 1} for the Normalised
RGB andc € {R, G, B} for the RGB space respectively,. denotes the observed valye, its mean,o. the
standard deviation, andthe foreground threshold.

The tested background models are maintained by means ohenjially weighted averaging [18] using
different learning rates for background and foregrouncklgix During the experiments the same learning and
update parameters were used for all background models,lbasthe same number of training frames.

For Normalised RGBRGB+NRGBNRGB+NRGB, shadow suppression was implemented based on Hor-
prasert’'s approach [3, 4]. Each foreground pixel is classiéis shadow if:

lo<p N lo> B
’To_,ur’<7'c A ’90_N9‘<Tc (28)

where and 7. denote thresholds for the maximum allowable change in ttemity and colour channels, so
that a pixel is considered as shaded background.
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Inthe HSV-based approacRGB+HS\) the RGB background model is converted into HSV (specifjcttie
reference luminance,, saturatiornu., and hueuy) before the following shadow tests are applied. A foregtbun
pixel is classified as shadow if:

Vo
pr < i < B (29)
So— s <X T (30)
1057 — ol < 7 (31)

The first condition tests the observed luminamgdor a significant darkening in the range defineddyand

(2. On the saturation, a threshold on the difference is performed. Shadow lowersdturation of points and
the difference between images and the reference is usiatine for shadow points. The last condition takes
into account the assumption that shading causes only smadtibn of the hué’’ [6].

For the evaluation of the algorithms, three video sequenege used. As an example for a typical indoor
sceneTlest Sequence, tecorded by an AXIS-211 network camera, shows a movingopersa stairway. For
this sequence, ground truth was generated manually fora3Befs. Test Sequence ®as recorded with the
same equipment and shows a person waving books in front olibared background. For this sequence 20
ground truth frames were provided. Furthermorda@st SequencetBe approaches were tested on 25 ground
truth frames from th&ETS200ataset 1 (camera 2, testing sequence). Example pictuties dataset can be
found in Figure 3.

(b)

Figure 3: Evaluation datasefest Sequence(h), Test Sequence(B), Test Sequence(8)

For a dense evaluation, we experimentaly determined s$aitalnges for all parameters and sub-sampled
them in ten steps. Figure 7 shows the convex hulls of the painfROC space obtained for all parameter com-
binations. We also want to point out trRGB+HSVwas tested with unnormalised and normalised saturation;
however, since the normalised saturation consistentlfopeed worse, we omit the results in the ROC for
clarity of presentation.

As one can see, our approach outperforms its competitoreesnSequence. 10ne reason for this is the
insensitivity of theRGB+NRGBandNRGB+NRGBw.r.t. small colour differences at light, weakly saturated
colours.RGB+HSV however, suffered from the angular hue test reacting glyao unstable hue values close
to the achromatic axis. For conservative thresholds (ineallsvalues forr, or 7y) all three approaches either
detected shadows on the wall as foreground, or, for largeskiolds failed to classify the beige t-shirt of the
person as forground. Figure 4 shows output images ffest Sequence We present the source image (a), the
ground truth image (b), the resulting image from our appnday, and the resulting images from the algorithms
we compared with. l.a. it is shown that the shirt of the perisdmage (c) is detected with higher precision as
in the images (d), (e), and (f), where it is mostly marked aslsiv.

ForTest SequencetBe advantageous behaviour of our approach is even morergviélithough the scene is
composed of highly saturated, stable coloR&B+NRGBandNRGB+NRGBshow rather poor results, again
stemming from their insufficient sensitivity for bright colrs. RGB+HSVgave better results, but could not
take full advantage of the colour information. Similar huues for the books and the background resulted
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(b)

@ | ©) 0

Figure 4: Output imageBest Sequence Source Imagéa), Ground Truth(b), Our Approach(c), RGB+NRGB
(d), NRGB+NRGHe), RGB+HSV(f)

in incorrectly classified shadow regions. Figure 5 showpuuimages fronTest Sequence Especially the
lower left part of the images (c), (d), (e), and (f) visuadizebetter performance of the IHLS approach.

Figure 5: Output imageBest Sequence Source Imagéa), Ground Truth(b), Our Approach(c), RGB+NRGB
(d), NRGB+NRGHEe), RGB+HSV(f)

TheTest Sequencesgquence shows the problems of background modelling udR@Balready mentioned
in Section 2. Due to the low brightness and the presence s€nnithis scene, the chromatic components are
unstable and therefore the motion detection resulted ingamfisantly increased number of false positives.
RGB+NRGBand our approach exhibit similar performance (our apprdaafing the slight edge), mostly
relying on brightness checks, since there was not much les@dbrmation in shadow regiondRGB+HSV
performed less well, having problems to cope with the ursthbe information in dark areas. Figure 6 shows
output imageJest Sequence 3
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(d) ) | 0

Figure 6: Output imageBest Sequence $ource Imagéa), Ground Truth(b), Our Approach(c), RGB+NRGB
(d), NRGB+NRGHe), RGB+HSV(f)

6 Conclusion

We proposed the usage of the IHLS colour space for changetet@nd shadow suppression in visual surveil-
lance tasks. In the proposed framework, we advocate thécapiph of saturation-weighted hue statistics to
deal with the problem of the unstable hue channel at weakiyad colours.

We have shown that our approach outperforms the approadi®eg Normalised RGB or HSV in several
challenging sequences. Furthermore, our experiments $tawen that it is not advisable to use NRGB for
background modelling due to its unstable behaviour in degks

One problem of our approach, however, is the fact that dubgase of saturation weighted hue statistics,
it is impossible to tell whether a short chrominance veatothie background model is the result of unstable
hue information or of a permanent low saturation. Althoughhe conducted experiments no impairments
were evident, it is subject of further research in which sabés shortcoming poses a problem. Other fields
of interest are the examination of alternatives to the Eeelh distance for the comparison of the chrominance
vectors and an experimental in-depth-investigation ostiedow classification.
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