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Abstract

In this paper, we discuss common colour models for background subtraction and problems related to
their utilisation are discussed. A novel approach to represent chrominance information more suitable for
robust background modelling and shadow suppression is proposed. Our method relies on the ability to rep-
resent colours in terms of a 3D-polar coordinate system having saturation independent of the brightness
function; specifically, we build upon an Improved Hue, Luminance, and Saturation space (IHLS). The addi-
tional peculiarity of the approach is that we deal with the problem of unstable hue values at low saturation
by modelling the hue-saturation relationship using saturation-weighted hue statistics. The effectiveness of
the proposed method is shown in an experimental comparison with approaches based on RGB, Normalised
RGB and HSV.
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1 Introduction

The underlying step of visual surveillance applications like target tracking and scene understanding is the
detection of moving objects. Background subtraction algorithms are commonly applied to detect these objects
of interest by the use of statistical colour background models. Many present systems exploit the properties of
the Normalised RGB to achieve a certain degree of insensitivity with respect to changes in scene illumination.

Hong and Woo [1] apply the Normalised RGB space in their background segmentation system. McKenna
et al. [2] use this colour space in addition to gradient information for their adaptive background subtraction.
The AVITRACK project [3] utilises Normalised RGB for changedetection and adopts the shadow detection
proposed by Horprasert et al. [4].

Beside Normalised RGB, representations of the RGB colour space in terms of 3D-polar coordinates (hue,
saturation, and brightness) are used for change detection and shadow suppresion in surveillance applications.
François and Medioni [5] suggest the application of HSV forbackground modelling for real-time video segmen-
tation. In their work, a complex set of rules is introduced toreflect the relevance of observed and background
colour information during change detection and model update. Cucchiara et al. [6] propose a RGB-based
background model which they transform to the HSV representation in order to utilise the properties of HSV
chrominance information for shadow suppression.
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Our approach differs from the aforementioned in the way thatwe build upon the IHLS colour space, which
is more suitable for background subtraction. Additionally, we propose the application of saturation-weighted
hue statistics [7] to deal with unstable hue values at weaklysaturated colours. Also, a technique to efficiently
classify changes in scene illumination (e.g. shadows), modelling the relationship between saturation and hue
has been devised.

The remainder of this paper is organised as follows: Section2 reviews the Normalised RGB and the Improved
Hue, Luminance and Saturation (IHLS) colour space. Furthermore it gives a short overview over circular colour
statistics, which have to be applied on the hue as angular value. Section 3 presents how these statistics can
be applied in order to model the background in image sequences. In Section 4 we describe metrics for the
performance evaluation of our motion segmentation. The conducted experiments and their results are presented
in Section 5. Section 6 concludes this paper and gives an outlook.

2 Colour Spaces

In this section, the Normalised RGB and IHLS colour spaces used in this paper are described. It also gives a
short overview over circular colour statistics and a reviewof saturation weighted hue statistics.

2.1 Normalised RGB

The Normalised RGB space aims to separate the chromatic components from the brightness component. The
red, green and blue channel can be transformed to their normalised counterpart by using the formulae

l = R + G + B, r = R/l, g = G/l, b = B/l (1)

if l 6= 0 andr = g = b = 0 otherwise [8]. One of these normalised channels is redundant, since by definition
r, g, andb sum up to1.

Therefore, the Normalised RGB space is sufficiently represented by two chromatic components (e.g.r and
g) and a brightness componentl. From Kender [9] it is known that the practical application of Normalised RGB
suffers from a problem inherent to the normalisation; namely, that noise (such as, e.g. sensor or compression
noise) at low intensities results in unstable chromatic components. For an example see Figure 1. Note the
artefacts in dark regions such as the bushes (top left) and the shadowed areas of the cars (bottom right).

Figure 1: Examples of chromatic components. Lexicographically ordered - Image from thePETS2001dataset,
it’s normalised blue componentb, normalised saturation (cylindrical HSV), IHLS saturation.
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2.2 IHLS Space

The Improved Hue, Luminance and Saturation (IHLS) colour space was introduced in [10]. It is obtained
by placing anachromatic axisthrough all the grey (R = G = B) points in the RGB colour cube, and then
specifying the coordinates of each point in terms of position on the achromatic axis (brightness), distance from
the axis (saturations) and angle with respect to pure red (hueθH). The IHLS model is improved with respect
to the similar colour spaces (HLS, HSI, HSV, etc.) by removing the normalisation of the saturation by the
brightness. This has the following advantages: (a) the saturation of achromatic pixels is always low and (b) the
saturation is independent of the brightness function used.One may therefore choose any function ofR, G and
B to calculate the brightness.

It is interesting that this normalisation of the saturationby the brightness, which results in the colour space
having the shape of a cylinder instead of a cone or double-cone, is usually implicitly part of the transformation
equations from RGB to a 3D-polar coordinate space. This is mentioned in one of the first papers on this
type of transformation [11], but often in the literature theequations for a cylindrically-shaped space (i.e. with
normalised saturation) are shown along with a diagram of a cone or double-cone (for example in [12, 13]).
Figure 1 shows a comparison of the different formulations ofsaturation. The undesirable effects created by
saturation normalisation are easily perceivable, as some dark, colourless regions (eg., the bushes and the side
window of the driving car) reach higher saturation values than their more colourfull surroundings. Also, note
the artefacts resulting from the singularity of the saturation at the black vertex of the RGB-cube (again, the
bushes and the two bottom right cars).

The following formulae are used for the conversion from RGB to hueθH , luminancey and saturations of
the IHLS space:

s = max(R,G,B) − min(R,G,B)

y = 0.2125R + 0.7154G + 0.0721B

crx = R − G + B
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wherecrx andcry denote the chrominance coordinates andcr ∈ [0, 1] the chroma. The saturation assumes
values in the range[0, 1] independent of the hue angle (the maximum saturation valuesare shown by the circle
on the chromatic plane in Figure 2). The chroma has the maximum values shown by the dotted hexagon in
Figure 2. When using this representation, it is important toremember that the hue is undefined ifs = 0, and
that it does not contain much useable information whens is low (i.e. near to the achromatic axis).

2.3 Hue statistics

In a 3D-polar coordinate space, standard (linear) statistical formulae can be utilised to calculate statistical
descriptors for brightness and saturation coordinates. The hue, however, is an angular value, and consequently
the appropriate methods from circular statistics are to be used.

Now, let θH
i , i = 1, . . . , n ben observations sampled from a population of angular hue values. Then, the

vectorhi pointing fromO = (0, 0)T to the point on the circumference of the unit circle, corresponding toθH
i ,

is given by the Cartesian coordinates(cos θH
i , sin θH

i )T . ∗

∗Note that, when using the IHLS space (Eq. 3), no costly trigonometric functions are involved in the calculation ofhi, since
cos(θH

i ) = crx/cr andsin(θH
i ) = −cry/cr.
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Figure 2: The chromatic plane of the IHLS color space.

The mean directionθ
H

is defined to be the direction of the resultant of the unit vectorsh1, . . . ,hn having
directionsθH

i . That is, we have

θ
H

= arctan2 (S, C) , (3)

where

C =

n
∑

i=1

cos θH
i , S =

n
∑

i=1

sin θH
i (4)

andarctan2(y, x) is the four-quadrant inverse tangent function.
The mean length of the resultant vector

R =

√
C2 + S2

n
. (5)

is an indicator of the dispersion of the observed data. If then observed directionsθH
i cluster tightly about the

mean directionθ
H

thenR will approach1. Conversely, if the angular values are widely dispersedR will be
close to0. Thecircular varianceis defined as

V = 1 −R (6)

While the circular variance differs from the linear statistical variance in being limited to the range[0, 1], it is
similar in the way that lower values represent less dispersed data. Further measures of circular data distribution
are given in [14].

2.4 Saturation-weighted hue statistics

The use of statistics solely based on the hue has the disadvantage of ignoring the tight relationship between the
chrominance components hue and saturation. For weakly saturated colours the hue channel is unimportant and
behaves unpredictably in the presence of colour changes induced by image noise. In fact, for colours with zero
saturation the hue is undefined.

As one can see in Figure 2, the chromatic components may be represented by means of Cartesian coordinate
vectorsci with direction and length given by hue and saturation respectively. Using this natural approach, we
introduce the aforementioned relationship into the hue statistics by weighting the unit hue vectorshi by their
corresponding saturationssi.

Now, let(θH
i , si), i = 1, . . . , n ben pairs of observations sampled from a population of hue values and asso-

ciated saturation values. We proceed as described in Section 2.3, with the difference that instead of calculating
the resultant of unit vectors, the vectorsci, which we will dubchrominance vectorsthroughout this paper, have
lengthsi.
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That is, we weight the vector components in Eq. 4 by their saturationssi

Cs =

n
∑

i=1

si cos θH
i , Ss =

n
∑

i=1

si sin θH
i , (7)

and choose the mean resultant length of the chrominance vectors (for other possible formulations see, e.g. [7])
to be

Rn =

√

C2
s + S2

s

n
. (8)

Consequently, for the mean resultant chrominance vector weget

cn = (Cs/n,Ss/n)T . (9)

Here, the length of the resultant is compared to the length obtained if all vectors had the same direction and
maximum saturation. Hence,Rn gives an indication of the saturations of the vectors which gave rise to the
mean of the chrominance vector, as well as an indication of the angular dispersion of the vectors. To test if a
mean chrominance vectorcn is similar to a newly observed chrominance vector, we use theEuclidean distance
in the chromatic plane:

D =
√

(cn − co)T (cn − co), (10)

with co = soho. Here,ho andso denote the observed hue vector and saturation respectively.

3 The IHLS Background Model

With the foundations laid out in Section 2.4 we proceed with devising a simple background subtraction algo-
rithm based on the IHLS colour model and saturation-weighted hue statistics. Specifically, each background
pixel is modelled by its mean luminanceµy and associated standard deviationσy, together with the mean
chrominance vectorcn and the mean Euclidean distanceσD betweencn and the observed chrominance vectors
(see Eq. 10).

On observing the luminanceyo, saturationso, and a Cartesian hue vectorho for each pixel in a newly
acquired image, the pixel is classified as foreground if:

|(yo − µy)| > ασy ∨ ‖cn − soho‖ > ασD (11)

whereα is the foreground threshold, usually set between2 and3.5.
In order to decide whether a foreground detection was causedby a moving object or by its shadow cast

on the static background, we exploit the chrominance information of the IHLS space. A foreground pixel is
considered as shaded background if the following three conditions hold:

yo < µy ∧ |yo − µy| < βµy, (12)

so −Rn < τds (13)

‖hoRn − cn‖ < τh, (14)

whereRn = ‖cn‖ (see Eq. 8,).
These equations are designed to reflect the empirical observations that cast shadows cause a darkening of the

background and usually lower the saturation of a pixel, while having only limited influence on its hue. The first
condition (Eq. 12) works on the luminance component, using athresholdβ to take into account the strength of
the predominant light source. Eq. 13 performs a test for a lowering in saturation, as proposed by Cucchiara et
al. [6]. Finally, the lowering in saturation is compensatedby scaling the observed hue vectorho to the same
length as the mean chrominance vectorcn and the hue deviation is tested using the Euclidean distance(Eq. 14).
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This, in comparison to a check of angular deviation (see Eq. 31 or [6]), also takes into account the model’s
confidence in the learned chrominance vector. That is, usinga fixed thresholdτh on the Euclidean distance
relaxes the angular error-bound in favour of stronger hue deviations at lower model saturation valueRn, while
penalising hue deviations for high saturations (where the hue is usually more stable).

4 Metrics for Motion Segmentation

The quality of motion segmentation can in principle be described by two characteristics. Namely, the spatial
deviation from the reference segmentation, and the fluctuation of spatial deviation over time. In this work,
however, we concentrate on the evaluation of spatial segmentation characteristics. That is, we will investigate
the capability of the error metrics listed below, to describe the spatial accuracy of motion segmentations.

• Detection rate (DR) and false alarm rate (FR)

DR =
TP

FN + TP
(15)

FR =
FP

N − (FN + TP )
(16)

whereTP denotes the number of true positives,FN the number of false negatives,FP the number of
false positives, andN the total number of pixels in the image.

• Misclassification penalty (MP)
The obtained segmentation is compared to the reference maskon an object-by-object basis; misclassified
pixels are penalized by their distances from the reference objects border [15].

MP = MPfn + MPfp (17)

with

MPfn =

∑Nfn

j=1
dj

fn

D
(18)

MPfp =

∑Nfp

k=1
dk

fp

D
(19)

Here, dj
fn and dk

fp stand for the distances of thejth false negative andkth false positive pixel from
the contour of the reference segmentation. The normalised factorD is the sum of all pixel-to-contour
distances in a frame.

• Rate of misclassifications (RM)
The average normalised distance of detection errors from the contour of a reference object is calculated
using [16]:

RM = RMfn + RMfp (20)

with

RMfn =
1

Nfn

Nfn
∑

j=1

dj
fn

Ddiag

(21)

RMfp =
1

Nfp

Nfp
∑

k=1

dk
fp

Ddiag

(22)
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Nfn andNfp denote the number of false negative and false positive pixels respectively. qDdiag is the
diagonal distance within the frame.

• Weighted quality measure (QMS)
This measure quantifies the spatial discrepancy between estimated and reference segmentation as the sum
of weighted effects of false positive and false negative pixels [17].

QMS = QMSfn + QMSfp (23)

with

QMSfn =
1

N

Nfn
∑

j=1

wfn(dj
fn)dj

fn (24)

QMSfp =
1

N

Nfp
∑

k=1

wfp(d
k
fp)d

k
fp (25)

N is the area of the reference object in pixels. Following the argument that the visual importance of false
positives and false negatives is not the same, and thus they should be treated differently, the weighting
functionswfp andwfn were introduced:

wfp(dfp) = B1 +
B2

dfp + B3

(26)

wfn(dfn) = C · dfn (27)

In our work for a fair comparison of the change detection algorithms with regard to their various decision
parameters, receiver operating characteristics (ROC) based on detection rate (DR) and false alarm rate (FR)
were utilised.

5 Experiments and Results

We compared the proposed IHLS method with three different approaches from literature. Namely, a RGB
background model using either NRGB- (RGB+NRGB), or HSV-based (RGB+HSV) shadow detection, and a
method relying on NRGB for both background modelling and shadow detection (NRGB+NRGB).

All methods were implemented using theColour Mean and Varianceapproach to model the background [18].
A pixel is considered foreground if|co − µc| > ασc for any channelc, wherec ∈ {r, g, l} for the Normalised
RGB andc ∈ {R,G,B} for the RGB space respectively.oc denotes the observed value,µc its mean,σc the
standard deviation, andα the foreground threshold.

The tested background models are maintained by means of exponentially weighted averaging [18] using
different learning rates for background and foreground pixels. During the experiments the same learning and
update parameters were used for all background models, as well as the same number of training frames.

For Normalised RGB (RGB+NRGB, NRGB+NRGB), shadow suppression was implemented based on Hor-
prasert’s approach [3, 4]. Each foreground pixel is classified as shadow if:

lo < µl ∧ lo > βµl

|ro − µr| < τc ∧ |go − µg| < τc (28)

whereβ andτc denote thresholds for the maximum allowable change in the intensity and colour channels, so
that a pixel is considered as shaded background.
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In the HSV-based approach (RGB+HSV) the RGB background model is converted into HSV (specifically, the
reference luminanceµv, saturationµs, and hueµθ) before the following shadow tests are applied. A foreground
pixel is classified as shadow if:

β1 ≤ vo

µv

≤ β2 (29)

so − µs ≤ τs (30)

|θH
o − µθ| ≤ τθ (31)

The first condition tests the observed luminancevo for a significant darkening in the range defined byβ1 and
β2. On the saturationso a threshold on the difference is performed. Shadow lowers the saturation of points and
the difference between images and the reference is usually negative for shadow points. The last condition takes
into account the assumption that shading causes only small deviation of the hueθH

o [6].
For the evaluation of the algorithms, three video sequenceswere used. As an example for a typical indoor

sceneTest Sequence 1, recorded by an AXIS-211 network camera, shows a moving person in a stairway. For
this sequence, ground truth was generated manually for 35 frames. Test Sequence 2was recorded with the
same equipment and shows a person waving books in front of a coloured background. For this sequence 20
ground truth frames were provided. Furthermore inTest Sequence 3the approaches were tested on 25 ground
truth frames from thePETS2001dataset 1 (camera 2, testing sequence). Example pictures ofthe dataset can be
found in Figure 3.

(a) (b) (c)

Figure 3: Evaluation dataset:Test Sequence 1(a),Test Sequence 2(b), Test Sequence 3(c)

For a dense evaluation, we experimentaly determined suitable ranges for all parameters and sub-sampled
them in ten steps. Figure 7 shows the convex hulls of the points in ROC space obtained for all parameter com-
binations. We also want to point out thatRGB+HSVwas tested with unnormalised and normalised saturation;
however, since the normalised saturation consistently performed worse, we omit the results in the ROC for
clarity of presentation.

As one can see, our approach outperforms its competitors onTest Sequence 1. One reason for this is the
insensitivity of theRGB+NRGBandNRGB+NRGBw.r.t. small colour differences at light, weakly saturated
colours.RGB+HSV, however, suffered from the angular hue test reacting strongly to unstable hue values close
to the achromatic axis. For conservative thresholds (i.e. small values forτc or τθ) all three approaches either
detected shadows on the wall as foreground, or, for larger thresholds failed to classify the beige t-shirt of the
person as forground. Figure 4 shows output images fromTest Sequence 1. We present the source image (a), the
ground truth image (b), the resulting image from our approach (c), and the resulting images from the algorithms
we compared with. I.a. it is shown that the shirt of the personin image (c) is detected with higher precision as
in the images (d), (e), and (f), where it is mostly marked as shadow.

ForTest Sequence 2the advantageous behaviour of our approach is even more evident. Although the scene is
composed of highly saturated, stable colours,RGB+NRGBandNRGB+NRGBshow rather poor results, again
stemming from their insufficient sensitivity for bright colours. RGB+HSVgave better results, but could not
take full advantage of the colour information. Similar hue values for the books and the background resulted
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(a) (b) (c)

(d) (e) (f)

Figure 4: Output imagesTest Sequence 1: Source Image(a),Ground Truth(b), Our Approach(c), RGB+NRGB
(d), NRGB+NRGB(e),RGB+HSV(f)

in incorrectly classified shadow regions. Figure 5 shows output images fromTest Sequence 2. Especially the
lower left part of the images (c), (d), (e), and (f) visualizes a better performance of the IHLS approach.

(a) (b) (c)

(d) (e) (f)

Figure 5: Output imagesTest Sequence 2: Source Image(a),Ground Truth(b), Our Approach(c), RGB+NRGB
(d), NRGB+NRGB(e),RGB+HSV(f)

TheTest Sequence 3sequence shows the problems of background modelling using NRGB already mentioned
in Section 2. Due to the low brightness and the presence of noise in this scene, the chromatic components are
unstable and therefore the motion detection resulted in an significantly increased number of false positives.
RGB+NRGBand our approach exhibit similar performance (our approachhaving the slight edge), mostly
relying on brightness checks, since there was not much useable information in shadow regions.RGB+HSV
performed less well, having problems to cope with the unstable hue information in dark areas. Figure 6 shows
output imagesTest Sequence 3.



10 M. Kampel et al. / Electronic Letters on Computer Vision and Image Analysis 6(3):1-12, 2007

(a) (b) (c)

(d) (e) (f)

Figure 6: Output imagesTest Sequence 3: Source Image(a),Ground Truth(b), Our Approach(c), RGB+NRGB
(d), NRGB+NRGB(e),RGB+HSV(f)

6 Conclusion

We proposed the usage of the IHLS colour space for change detection and shadow suppression in visual surveil-
lance tasks. In the proposed framework, we advocate the application of saturation-weighted hue statistics to
deal with the problem of the unstable hue channel at weakly saturated colours.

We have shown that our approach outperforms the approaches using Normalised RGB or HSV in several
challenging sequences. Furthermore, our experiments haveshown that it is not advisable to use NRGB for
background modelling due to its unstable behaviour in dark areas.

One problem of our approach, however, is the fact that due to the use of saturation weighted hue statistics,
it is impossible to tell whether a short chrominance vector in the background model is the result of unstable
hue information or of a permanent low saturation. Although in the conducted experiments no impairments
were evident, it is subject of further research in which cases this shortcoming poses a problem. Other fields
of interest are the examination of alternatives to the Euclidean distance for the comparison of the chrominance
vectors and an experimental in-depth-investigation of theshadow classification.
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(a) (b)

(c)

Figure 7: Experimental results: ROCs forTest Sequence 1(a),Test Sequence 2(b), andTest Sequence 3(c).
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