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Abstract

A method is proposed for the construction of descent directions for the minimization of energy func-
tionals defined for plane curves. The method is potentially useful in a number of image analysis problems,
such as image registration and shape warping, where the standard gradient descent curve evolutions are not
always feasible. The descent direction is constructed by taking a weighted average of the three components
of the gradient corresponding to translation, rotation, and deformation. Our approach differs from previous
work in the field by the use of implicit representation of curves and the notion of normal velocity of a curve
evolution. Thus our theory is morphological and well suited for implementation in the level set framework.
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1 Introduction

Gradient descent curve evolutions occur frequently in image analysis applications. One popular example is
the geodesic active contours [2]. Geodesic active contours is an exangslapd optimizatiomhere curves

are evolved to fit some form of data such as, for instance, image edges. Other examplegparanalysis
applications such as shape warping and shape statistics. Shape statistics is often used as prior information in
e.g. segmentation, cf. [10, 6].

Traditionally, shape analysis has been performed by studying the variation of landmarks on the curves, cf.
e.g. [5]. The drawback of this approach is that landmarks are often very hard to find automatically. Performing
analysis directly on the continuous curve overcomes this problem, but then registration of the shapes becomes
much harder. Here we propose a method that has the potential of solving this registration problem. Also, a
correct warping between shapes has the potential of solving the difficult “landmark correspondence” problem.
In Section 4 we successfully apply the proposed method to both these problems.

In this paper we introduce a geometric procedure for decomposing any curve evolutigrairgiation,
rotation and deformationThis is useful for many applications and gives a way of modifying gradient flows.

The decomposition is achieved by introducing orthogonal projections of the normal velocity of the evolution
onto the subspaces generated by translations and rotations. Our investigation is inspired by the work in [4],
where this type of decompositions were first studied. However, our method differs from theirs in that we use
normal velocitieswhich gives a geometric theory well suited for level set implementation, whereas [4] use
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vector-valued velocities allowing for tangential re-parametrization. This may seem like a small difference, but
it turns out that the actual projections used are very different. We also show that the projected evolution still
gives descent directions for the energy functional. It should be noted that similar questions have already been
considered for deformable models working with elastic energy expressions for parametrized curves, surfaces,
and bodies, see e.g., [12]. However, here we focus on methods that can be incorporated into the level set
framework.

The present paper is an extended version of an earlier work [8] which has been presented at the 18th Inter-
national Conference on Pattern Recognition in Hong Kong, August 2006.

2 Level Sets, Normal Velocity, andL?-Gradient Descent
A simple closed curvé& can be represented as the zero level set of a fung¢tioR? — R as
I ={xeR?; ¢(x) =0} . (1)

The setN™ = {x; ¢(x) < 0} andQ®™ = {x; ¢(x) > 0} are called thénterior and theexterior of T,
respectively. Geometric quantities such as the outward unit nairaad the curvature can be expressed in

terms of¢ as
Vo Vo

b vl Vol -
The functiong is usually called the level set function by cf. e.g. [7].
A curve evolution, that is, a time dependent cutve: I'(¢), can be represented by a time dependent level
set functiong : R? x R — R asl'(t) = {x € R?; ¢(x,t) = 0}. Let us consider the kinematics of curve
evolutions. In the implicit representation, it does not make sense to “track” points on an evolving curve, as there
is no way of knowing the tangential motion of points Bft). The important notion is instead that mbérmal
velocity The normal velocity of a curve evolutian— T'(¢) is the scalar function defined by

and k=V (2)

B i .__8¢(X,t)/8t
Y= = T 9,0

o dt
The normal velocity is independent of the curve representation (and the choice of level set fuhetiwhis
therefore a geometric quantity of the evolution. The set of normal velocitiEdsaa linear space. It can be
endowed with a natural scalar product and a corresponding norm, cf. [11],

(x e T(t)) . (3)

<v,w>p:/rv(x)w(x) do and HUH% = (v,v)r , 4)

wherev, w are normal velocities andb is the curve length element. In the following we therefore denote the
linear space of normal velocities Btoy L?(T").
The scalar product (4) is important in the constructiograidient descent flowsr functionalst'(I") defined
on a “manifold” M of admissible curveE. Let the Giteaux derivative of/(I") atI" is denoted byl E(T")v, for
any normal velocity, and suppose that there exists a ve8I@#(I') € L?(T") such that

dE(T)v = (VE(T),v)r forallve L*(T) . (5)

ThenVE(T) is called theL?-gradientof E atT". We make two remarks concerning this notion. First of all,
not every functionall = E(I") has anL2-gradient, not even when thed@aux derivative exists. A concrete
example is the Kimmel-Bruckstein functionél(I') = [ |w - n|do, for the optimal alignment of a curyéto

a given vector fieldv = w(x) : R? — R2. It was shown in [9] that this functional has a well-define@t&ux
derivative, however this derivative contains terms with Dis&which cannot be expressed using the scalar
product defined in (4). Secondly, if ti€-gradient does exist, then it is uniquely determined. This is essentially
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a consequence of the fact that any smooth functioh® — R may be considered to be the normal velocity of
some curve evolution which passes throligatt = 0, see [11, Lemma 2], so that>*(T") is dense in.%(T).
Then, if VE(T) is “another” gradient foiZ at T, then(VE — VE,v)r = 0 for all normal velocities, by the
definition of the gradient in (5), hence for alle L2(T") by density. In particular, we can take= VE — VE
so that|| VE — VE||2 = 0, which proves the uniqueness assertion.

The gradient descent flow for the problem of minimiziAgl') is defined as the solution of the following

initial value problem

d

ZL(t) = ~VE(L(t),  T(0)=Tu, (6)
wherel'y is an initial contour specified by the user.

Let us mention that in [4] the kinematic entity corresponding to our normal velecity(3) is a vector

valued functionv : I' — R? given byv = vn. Consequently thé?-scalar product used there is defined,
via the Euclidean scalar productR?, as(v,w)r = [ vI'wdo. While (v,w)r = (v, w)r, for any pair of
normal velocities, the difference in choice of scalar products actually makes a difference when rigid motions
are considered, as we shall in the following sections.

3 Decomposition of Evolutions

Let E(T") be an energy functional defined on the manifdldbf admissible curves. Again, we want to minimize
E(I"). Instead of using the gradient descent evolution defined by (6), we search along the path of another
evolutiont — T'(¢) defined by

d
HF )=o),  T(0) =T, (7)

where the normal velocity = v(T") is a descent direction faE (I"). The construction of(T") is based on
an idea presented in [4]. The?-gradientVE = VE(I'), is decomposed into three componehtsV E,
IIrVE, andlIpVE. Herell;VE andIIzVE are the orthogonal projections ®FE onto the subspaces of
normal velocities af’ generated by translations and rotations, respectiiélyV E is defined as the residual
IIpVE = VE — TI'VE — IIxVE. The right-hand side in (7) is defined as a convex combination of these
components,

v=—(mlrVE + p2lIgVE + p3lIpVE ), (8)

where the weightgy, p2, 13 > 0 satisfypy + po + pg = 1.

Note that if we choos@s = 0 in (8), then the curve evolution (7) becomes a rigid motion; it changes the
position and orientation of the initial contolly without changing its shape. Hence the residual component
IIpVE may be interpreted as the part\6# responsible for theeformationof the contour shape. Also, note
that if 41 = po = pg = 1/3, thenv = —%VE, so, apart from a time scaling, we recover the original gradient
descent evolution (6).

3.1 The Projection onto Translations

We now show how the projectiod$; is constructed. Le be a fixed contouty € R? an arbitrary vector, and
define a curve evolutioh— I'(¢) as the translation df,

I'(t)={x+tv;xeTl}. 9)
It is easy to see that the normal velocity of the evolution in (9) is given by
vr =n'v. (10)
Inspired by this we define the following subspacd.6fT):
Ly = Ly(T) :== {v € L*(T"); v = n’ v for somev € R?}. (11)
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The elements ol are exactly the the normal velocities which come from pure translation motions. Notice
thatdim Ly = 2, becausd. has the normal velocitiess = n” v, v, = n”v, as a basis, whenevef, v, is
a basis foR2. Now, definell; = I11(T") as the orthogonal projection i?(I") onto L. Clearly, the identity

HT’UT = Ur (12)

holds becauser, given by (10), belongs téd . We can use this identity to find an explicit formula fid-.
Multiply vr by n and integrate over, then (10) implies that

/F vrndo = /F (nTv)ndo = [ /F nn’ da]v. (13)

We call the matrix§ := fr nn” do appearing on the right-hand side tteucture tensofor the curvel'. S is
clearly positive semi-definite;

wlSw = / winn’wdo = /(nTw)2 do >0, (14)
r r

for anyw € R2. However, more is true:
Proposition 1 The structure tensa$ is positive definite, in particulaf is invertible.
Proof: Supposew( Swq = 0 for somew, € R?, then it follows from (14) that/..(n”wo)? do = 0, so that
n’'w( = 0 identically onI". This implies thah is constant alond, which is clearly impossible iF is a closed
curve. This contradiction shows théitmust be positive definite. O
We remark that the above results is invalid for one-dimensional curves in three of more space dimensions.
In fact, the above proof breaks down of we consider a planar curve in three dimensions awg tedenal to
the plane in question.
By the proposition and (13) the translation vectocorresponding to the normal velocity: can be recon-
structed:v = [ [ nn” do | - Jrvrndo. Using (10) we then get

—1
vp=nlv=n’ {/ nn’ do] / vrndo . (15)
r r
Comparing this identity to (12) suggests tiigt is given by
-1
7o =nTv =nT [/ nn” da] / vndo (16)
r I

for all normal velocitiesy € L?(I'). This is indeed true, as it is easily checked that the opefatefined by
the right hand-side of (16) is self-adjoi{ = II) and idempotentI{*> = II), hence an orthogonal projection.
Moreover, (15) shows thdt; is contained in the range @f, and since the dimension oFs range is two, it
follows thatIl = II as claimed in (16).

3.2 The Projection onto Rotations

Next, we derive a formula for the projectidhi. Consider rotations in the plane; the rotatiod'aibout a point
xo € R? with angular velocityw is given by

I'(t) ={R(t)(x —x0) +x0 : x € '}, 17)

whereR(t) = [COS(W) ~sin(wt) |. The corresponding normal velocityfat= 0 is given by

sin(wt) cos(wt)

vp =wnl (X —%y) (xeT). (18)
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Here we have defined = [{ ' |x = R'(0)x. Now, set
Lp = {ve L*I');v = wn’ (% — %) for somew € R}.
Clearlydim L = 1 for any fixedxq. The orthogonal projection ontby, is given by the formula

n’(x — %x¢) [pvn” (X — %0) do
Jr InT (% — %¢)|? do

IMrv = (19)

Again it is easy to check that}, = I1z andIl% = 1.

The pointxg in (19) is chosen such that the two subspatgsand L are orthogonal, or equivalently,
IrIlr = Izl = 0. Using (16) and (19) it is easy to see tkgtmust satisfy the following vector relation
Jr [0 (% — %X0)|ndo = 0, hence

X = { /F nn’ da} o /F (nT%)n do, (20)

where the structure tensor fBrappears again. Sinder andL r are now orthogonal, it follows that the residual
IIp = I — IIy — IIg (I denoting the identity operator) is also an orthogonal projection. The rangde a$
interpreted as the space of normal velocities which are responsible for deformations of the initial contour.

We end this section with some two important observations. The first observation implies that the normal
velocity constructed in (8) is in fact a descent direction for the functiéial).
Proposition 2 If IT is an orthogonal projection ir.?(I"), and the normal velocity(I') = —IIVE(T) is not
identically zero or1". Thenv(T") is a descent direction faE/(T").
Proof: Lett — I'(¢) be the curve evolution which solves (7) witkl") given by the formula in the proposition,
then the claim follows from the following simple calculation:

d
£ B(D) = (VE(T), o(D)r
= (VE(T), -IIVE(D))r = —[OVE(D)||? <0,
where we have used thBE = TI, IT* = II, andv(T") # 0. O

The second observation is related to the fact that the projection methods described above can be applied to
any energy functionakll with a well-definedL?-gradientV E. For instance we may apply the method to the
arc length andenclosed arefunctionals:

E,(T) ::/Fda , and E.(T):= /Qint dx

respectively. Since the values Bf (I") and E,(I") are invariant under translation and rotation, we would not
expect these functionals to generate any rigid motion at all. In other words we expect the orthogonal projections
onto Ly(T") and Lz(T") of the L2-gradients

VE,(I')=k, and VE,(I')=1,
to be zero. This expectation is easily verified by substituting the above gradients into the formulas (16) and (19)

for the projectiondI; andIlg, and use the basic identitigs knds = 0, [, nds = 0, and the definition (20)
of the centre of rotatiomy.
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Figure 1: The figure shows the contours of two copies of the same pigeonsyhimaetric differencef the
interiors of these contours is the shaded region, i.e., the set of points belonging to exactly one of the interiors.

4 Experiments

In this section we apply the method of projections, introduced above, to some concrete examples. We consider
two applications within shape analysis of curves: Continuous shape warping and registration of continuous
shapes. All curves are represented implicitly as described in Section 2. The shapes are taken from the Kimia
shape database [1].

We will use the the gradient flow associated with #rea of symmetric differencef. [3], between two
shaped’ = {x € R?: ¢(x) = 0} andl'y = {x € R? : ¢y(x) = 0} defined as

1 . .
Esp(T) = Esp(T,T) = §area(Q'”tAQb”t) : (21)

where AA B denotes thaymmetric difference ol and B, defined as the set of points which is contained in
exactly one of the setd of B, cf. Figure 1. To find the gradient of the function&@}p, we introduce the
characteristic functiongint andxﬂim of the interiors ofl” andI'y respectively, and rewrit& as,

0

1 ) 1 ) ,
Bl =3 /R (aint = Xgjp)" dx = 5 /R Oxgine = 2Xgintxgipt + Xjne) A
1 1
=5 - (XQint - 2XQintXQi0nt + XQiOnt) dx = Qint(§ — XQE)m) dx + const

since the target contoli is held fixed. It is now easy to see that the correspondigradient is given by the
normal velocityV Egp (') = % — Xgint defined onl". In practice the characteristic functions are represented
0

using continuous approximations of the Heaviside function, cf. e.g. [3].

4.1 Continuous Shape Warping

Here we show that the standard evolution from the symmetric difference gives a very un-intuitive motion when
continuous shapes are warped from one shape to another. This has also been noted for the case of using
approximate Hausdorff distance in [4]. If the shapes are not perfectly aligned, the evolution will remove details

of the initial shape to a smooth shape and then grow new details corresponding to the target shape. This
gives practically useless intermediate shapes. If we instead partition the flow as in (8) and weight rotation and
translation higher than deformation, we obtain a much more intuitive flow with the desired intermediate shapes.
We illustrate this in Figure 2. For each example the top row corresponds to the evolution where rigid motion
projection is weighted higher than deformation and the bottom row is the unchanged symmetric difference flow.

4.2 Registration of Continuous Shapes

Another important application is shape registration. Shape registration implies the alignment of shapes and is
a crucial step if one is interested in computing shape statistics and analyze shape variation. In this case we turn
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Figure 2: Examples of shape warping generated by minimizing the area of the symmetric difference between
an evolving shape and the fixed target shape. The evolving shape is the black curve and the red curve is the
target shape. The evolution is from left to right with the initial curve to the far left and the final curve to the far
right. For each example, the top row corresponds to the evolution where the rigid motion projection is weighted
higher than the deformation and the bottom row is the standard gradient descent flow. Notice that with the
standard gradient descent flow, the intermediate shapes bear little or no resemblance to neither the initial nor
the target shape. This problem can be solved using the weighted projected motion. The parameters used were
(1, p2, ) = (0.3,0.7,0), initially, switching to(u1, u2, #3) = (0.1,0.1,0.8) at the end of the evolution.

off the deformation part entirely and simply use the normal velocity
’U(F) = —(MHTVESD(F) + MQHRVESD<F>) . (22)

Figure 3 shows some examples of this procedure where one curve is chosen as the target shape and all other
shapes are evolved towards this curve using (22).

5 Conclusions

We have presented a method for decomposingcurve evolution into rigid motion and deformation. The
method is applied to shape warping and registration problems with satisfying results. The theory is developed
for use in the level set framework and is simple to implement. It is our opinion that problems of shape analysis,
shape statistics and shape optimization should be studied in the continuum framework using the language of
geometry and mathematical analysis. Many vision problems can then be formulated as variational problems,
which are usually easy to interpret, and discretizations are introduced only at the point where the numerical so-
lution of the derived equations are computed. This will facilitate the understanding and comparison of different
methods in the field. The aim of this paper was to try to apply level set methods to standard problems in shape
analysis of curves. Although the method presented here is far from perfect, and certainly not competitive with



62 N. Chr. Overgaard and J. E. Solem / Electronic Letters on Computer Vision and Image Analysis 6(1):55-62, 2007

Figure 3: Registration using the rigid part of the evolution. The initial shdp#$, Shapes registereddght).

standard tools in the field, it may still be regarded as a small step in the direction of a continuum formulation
of shape analysis.

References

[1] The Kimia Shape Database. URMttp://www.lems.brown.edu/vision/software/
[2] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contdutrsJournal of Computer Visigri997.

[3] T.F. Chanand W. Zhu. Level set based prior segmentation. Technical Report UCLA CAM Report 03-66,
University of California at Los Angeles, 2003.

[4] G. Charpiat, R. Keriven, J-P. Pons, and O. Faugeras. Designing spatially coherent minimizing flows for
variational problems based on active contourdd@V, Beijing, China2005.

[5] T. Cootes, C. Taylor, D. Cooper, and J. Graham. Active shape models — their training and application.
Computer Vision and Image Understandijed.(1):38-59, 1995.

[6] D.Cremers and S. Soatto. A pseudo-distance for shape priors in level set segment#igE& Workshop,
Variational, Geometric and Level Set Methods in Computer Vjs2603.

[7] S.J. Osher and R. P. Fedkilevel Set Methods and Dynamic Implicit Surfacepringer Verlag, 2002.

[8] N. Chr. Overgaard and J. E. Solem. Separating rigid motion for continuous shape evolutiyoc.lint.
Conf. on Pattern Recognitiosupplemental volume, pages 1-4, Hong Kong, 2006.

[9] N. Chr. Overgaard and J. E. Solem. An analysis of variational alignment of curves in imag8salén
Space 2005LNCS 3459, pages 480-491, Springer-Verlag 2005.

[10] M. Rousson and N. Paragios. Shape priors for level set representatiofsoclnEuropean Conf. on
Computer VisionSpringer, 2002.

[11] J. E. Solem and N. Chr. Overgaard. A geometric formulation of gradient descent for variational problems
with moving surfaces. Ii5cale Space 2005NCS 3459, pages 419-430, Springer-Verlag 2005.

[12] D. Terzopoulos and A. Witkin. Physically based models with rigid and deformable componEgHis.
Comput, Graph. Appl8(6):41-51, 1998.



