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Abstract

A method is proposed for the construction of descent directions for the minimization of energy func-
tionals defined for plane curves. The method is potentially useful in a number of image analysis problems,
such as image registration and shape warping, where the standard gradient descent curve evolutions are not
always feasible. The descent direction is constructed by taking a weighted average of the three components
of the gradient corresponding to translation, rotation, and deformation. Our approach differs from previous
work in the field by the use of implicit representation of curves and the notion of normal velocity of a curve
evolution. Thus our theory is morphological and well suited for implementation in the level set framework.
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1 Introduction

Gradient descent curve evolutions occur frequently in image analysis applications. One popular example is
the geodesic active contours [2]. Geodesic active contours is an example ofshape optimizationwhere curves
are evolved to fit some form of data such as, for instance, image edges. Other examples areshape analysis
applications such as shape warping and shape statistics. Shape statistics is often used as prior information in
e.g. segmentation, cf. [10, 6].

Traditionally, shape analysis has been performed by studying the variation of landmarks on the curves, cf.
e.g. [5]. The drawback of this approach is that landmarks are often very hard to find automatically. Performing
analysis directly on the continuous curve overcomes this problem, but then registration of the shapes becomes
much harder. Here we propose a method that has the potential of solving this registration problem. Also, a
correct warping between shapes has the potential of solving the difficult “landmark correspondence” problem.
In Section 4 we successfully apply the proposed method to both these problems.

In this paper we introduce a geometric procedure for decomposing any curve evolution intotranslation,
rotation and deformation. This is useful for many applications and gives a way of modifying gradient flows.
The decomposition is achieved by introducing orthogonal projections of the normal velocity of the evolution
onto the subspaces generated by translations and rotations. Our investigation is inspired by the work in [4],
where this type of decompositions were first studied. However, our method differs from theirs in that we use
normal velocitieswhich gives a geometric theory well suited for level set implementation, whereas [4] use
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vector-valued velocities allowing for tangential re-param trization. This may seem like a small difference, but
it turns out that the actual projections used are very di rent. We also show that the projected evolution still
gives descent directions for the energy functional. It sh ld be noted that similar questions have already been
considered for deformable models working with elastic
and bodies, see e.g., [12]. However, here we focus
framework.

The present paper is an extended version of an earl
national Conference on Pattern Recognition in Hong K

2 Level Sets, Normal Velocity, andL2-Gr

A simple closed curveΓ can be represented as the zero

Γ = {x ∈ R2 ; φ(x

The setsΩint = {x ; φ(x) < 0} andΩext = {x ; φ(x) >
respectively. Geometric quantities such as the outward
terms ofφ as

n =
∇φ

|∇φ| and κ =

The functionφ is usually called the level set function forΓ,
A curve evolution, that is, a time dependent curvet 7→ Γ

set functionφ : R2 ×R → R asΓ(t) = {x ∈ R2 ; φ(x,
evolutions. In the implicit representation, it does not ma
is no way of knowing the tangential motion of points onΓ(
velocity. The normal velocity of a curve evolutiont 7→ Γ(t)

v(Γ) =
d

dt
Γ(t) := −∂φ(x, t)/

|∇φ(x, t

The normal velocity is independent of the curve repres
therefore a geometric quantity of the evolution. The se
endowed with a natural scalar product and a correspon

〈v, w〉Γ =
∫

Γ
v(x)w(x) dσ a

wherev, w are normal velocities anddσ is the curve lengt
linear space of normal velocities atΓ by L2(Γ).

The scalar product (4) is important in the constructiong
on a “manifold”M of admissible curvesΓ. Let the Ĝateau
any normal velocityv, and suppose that there exists a ve

dE(Γ)v = 〈∇E(Γ), v〉Γ f

Then∇E(Γ) is called theL2-gradientof E at Γ. We mak
not every functionalE = E(Γ) has anL2-gradient, not e
example is the Kimmel-Bruckstein functional,E(Γ) =

∫
Γ |w

a given vector fieldw = w(x) : R2 → R2. It was shown i
derivative, however this derivative contains terms with
product defined in (4). Secondly, if theL2-gradient does ex
s o

e
ffe
ou

energy expressions for parametrized curves, surfaces,

on methods that can be incorporated into the level set

ier work [8] which has been presented at the 18th Inter-
ong, August 2006.

adient Descent

level set of a functionφ : R2 → R as

) = 0} . (1)

0} are called theinterior and theexterior of Γ,
unit normaln and the curvatureκ can be expressed in

∇ · ∇φ

|∇φ| . (2)

cf. e.g. [7].
(t), can be represented by a time dependent level
t) = 0}. Let us consider the kinematics of curve

ke sense to “track” points on an evolving curve, as there
t). The important notion is instead that ofnormal
is the scalar function defined by

∂t

)| (x ∈ Γ(t)) . (3)

entation (and the choice of level set functionφ) and is
t of normal velocities atΓ is a linear space. It can be
ding norm, cf. [11],

nd ‖v‖2
Γ = 〈v, v〉Γ , (4)

h element. In the following we therefore denote the

ofradient descent flowsfor functionalsE(Γ) defined
x derivative ofE(Γ) atΓ is denoted bydE(Γ)v, for
ctor∇E(Γ) ∈ L2(Γ) such that

or all v ∈ L2(Γ) . (5)

e two remarks concerning this notion. First of all,
ven when the Gâteaux derivative exists. A concrete
·n| dσ, for the optimal alignment of a curveΓ to

n [9] that this functional has a well-defined Gâteaux
Diracδ’s which cannot be expressed using the scalar
ist, then it is uniquely determined. This is essentially
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a consequence of the fact that any smooth functionv : Γ → R may be considered to be the normal velocity of
some curve evolution which passes throughΓ at t = 0, see [11, Lemma 2], so thatC∞(Γ) is dense inL2(Γ).
Then, if ∇̃E(Γ) is “another” gradient forE at Γ, then〈∇̃E − ∇E, v〉Γ = 0 for all normal velocities, by the
definition of the gradient in (5), hence for allv ∈ L2(Γ) by density. In particular, we can takev = ∇̃E −∇E
so that‖∇̃E −∇E‖2

Γ = 0, which proves the uniqueness assertion.
The gradient descent flow for the problem of minimizingE(Γ) is defined as the solution of the following

initial value problem
d

dt
Γ(t) = −∇E(Γ(t)), Γ(0) = Γ0, (6)

whereΓ0 is an initial contour specified by the user.
Let us mention that in [4] the kinematic entity corresponding to our normal velocityv in (3) is a vector

valued functionv : Γ → R2 given byv = vn. Consequently theL2-scalar product used there is defined,
via the Euclidean scalar product inR2, as(v,w)Γ =

∫
Γ vTw dσ. While 〈v, w〉Γ = (v,w)Γ, for any pair of

normal velocities, the difference in choice of scalar products actually makes a difference when rigid motions
are considered, as we shall in the following sections.

3 Decomposition of Evolutions

LetE(Γ) be an energy functional defined on the manifoldM of admissible curves. Again, we want to minimize
E(Γ). Instead of using the gradient descent evolution defined by (6), we search along the path of another
evolutiont 7→ Γ(t) defined by

d

dt
Γ(t) = v(Γ(t)), Γ(0) = Γ0, (7)

where the normal velocityv = v(Γ) is a descent direction forE(Γ). The construction ofv(Γ) is based on
an idea presented in [4]. TheL2-gradient∇E = ∇E(Γ), is decomposed into three componentsΠT∇E,
ΠR∇E, andΠD∇E. HereΠT∇E andΠR∇E are the orthogonal projections of∇E onto the subspaces of
normal velocities atΓ generated by translations and rotations, respectively.ΠD∇E is defined as the residual
ΠD∇E = ∇E − ΠT∇E − ΠR∇E. The right-hand side in (7) is defined as a convex combination of these
components,

v = −( µ1ΠT∇E + µ2ΠR∇E + µ3ΠD∇E ), (8)

where the weightsµ1, µ2, µ3 ≥ 0 satisfyµ1 + µ2 + µ3 = 1.
Note that if we chooseµ3 = 0 in (8), then the curve evolution (7) becomes a rigid motion; it changes the

position and orientation of the initial contourΓ0 without changing its shape. Hence the residual component
ΠD∇E may be interpreted as the part of∇E responsible for thedeformationof the contour shape. Also, note
that if µ1 = µ2 = µ3 = 1/3, thenv = −1

3∇E, so, apart from a time scaling, we recover the original gradient
descent evolution (6).

3.1 The Projection onto Translations

We now show how the projectionsΠT is constructed. LetΓ be a fixed contour,v ∈ R2 an arbitrary vector, and
define a curve evolutiont 7→ Γ(t) as the translation ofΓ,

Γ(t) = {x + tv;x ∈ Γ}. (9)

It is easy to see that the normal velocity of the evolution in (9) is given by

vT = nTv. (10)

Inspired by this we define the following subspace ofL2(Γ):

LT = LT (Γ) := {v ∈ L2(Γ); v = nTv for somev ∈ R2}. (11)
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The elements ofLT are exactly the the normal velocities which come from pure translation motions. Notice
thatdimLT = 2, becauseLT has the normal velocitiesv1 = nTv1, v2 = nTv2 as a basis, wheneverv1,v2 is
a basis forR2. Now, defineΠT = ΠT (Γ) as the orthogonal projection inL2(Γ) ontoLT . Clearly, the identity

ΠT vT = vT (12)

holds becausevT , given by (10), belongs toLT . We can use this identity to find an explicit formula forΠT .
Multiply vT by n and integrate overΓ, then (10) implies that

∫

Γ
vTn dσ =

∫

Γ
(nTv)n dσ =

[ ∫

Γ
nnT dσ

]
v. (13)

We call the matrixS :=
∫
Γ nnT dσ appearing on the right-hand side thestructure tensorfor the curveΓ. S is

clearly positive semi-definite;

wT Sw =
∫

Γ
wTnnTw dσ =

∫

Γ
(nTw)2 dσ ≥ 0, (14)

for anyw ∈ R2. However, more is true:
Proposition 1The structure tensorS is positive definite, in particularS is invertible.
Proof: SupposewT

0 Sw0 = 0 for somew0 ∈ R2, then it follows from (14) that
∫
Γ(nTw0)2 dσ = 0, so that

nTw0 = 0 identically onΓ. This implies thatn is constant alongΓ, which is clearly impossible ifΓ is a closed
curve. This contradiction shows thatS must be positive definite. ¤

We remark that the above results is invalid for one-dimensional curves in three of more space dimensions.
In fact, the above proof breaks down of we consider a planar curve in three dimensions and takew0 normal to
the plane in question.

By the proposition and (13) the translation vectorv corresponding to the normal velocityvT can be recon-
structed:v =

[ ∫
Γ nnT dσ

]−1 ∫
Γ vTn dσ. Using (10) we then get

vT = nTv = nT

[ ∫

Γ
nnT dσ

]−1 ∫

Γ
vTn dσ . (15)

Comparing this identity to (12) suggests thatΠT is given by

ΠT v = nTv = nT

[ ∫

Γ
nnT dσ

]−1 ∫

Γ
vn dσ , (16)

for all normal velocitiesv ∈ L2(Γ). This is indeed true, as it is easily checked that the operatorΠ defined by
the right hand-side of (16) is self-adjoint (Π∗ = Π) and idempotent (Π2 = Π), hence an orthogonal projection.
Moreover, (15) shows thatLT is contained in the range ofΠ, and since the dimension ofΠ’s range is two, it
follows thatΠ = ΠT as claimed in (16).

3.2 The Projection onto Rotations

Next, we derive a formula for the projectionΠR. Consider rotations in the plane; the rotation ofΓ about a point
x0 ∈ R2 with angular velocityω is given by

Γ(t) = {R(t)(x− x0) + x0 : x ∈ Γ}, (17)

whereR(t) =
[ cos(ωt) − sin(ωt)

sin(ωt) cos(ωt)

]
. The corresponding normal velocity att = 0 is given by

vR = ωnT (x̂− x̂0) (x ∈ Γ) . (18)
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Here we have defined̂x =
[

0 −1
1 0

]
x = R′(0)x. Now, set

LR = {v ∈ L2(Γ); v = ωnT (x̂− x̂0) for someω ∈ R}.

ClearlydimLR = 1 for any fixedx0. The orthogonal projection ontoLR is given by the formula

ΠRv =
nT (x̂− x̂0)

∫
Γ vnT (x̂− x̂0) dσ∫

Γ |nT (x̂− x̂0)|2 dσ
. (19)

Again it is easy to check thatΠ∗R = ΠR andΠ2
R = ΠR.

The pointx0 in (19) is chosen such that the two subspacesLT andLR are orthogonal, or equivalently,
ΠT ΠR = ΠRΠT = 0. Using (16) and (19) it is easy to see thatx0 must satisfy the following vector relation∫
Γ

[
nT (x̂− x̂0)

]
n dσ = 0, hence

x̂0 =
[ ∫

Γ
nnT dσ

]−1 ∫

Γ
(nT x̂)n dσ, (20)

where the structure tensor forΓ appears again. SinceLT andLR are now orthogonal, it follows that the residual
ΠD = I − ΠT − ΠR (I denoting the identity operator) is also an orthogonal projection. The range ofΠD is
interpreted as the space of normal velocities which are responsible for deformations of the initial contour.

We end this section with some two important observations. The first observation implies that the normal
velocity constructed in (8) is in fact a descent direction for the functionalE(Γ).
Proposition 2 If Π is an orthogonal projection inL2(Γ), and the normal velocityv(Γ) = −Π∇E(Γ) is not
identically zero onΓ. Thenv(Γ) is a descent direction forE(Γ).
Proof: Let t 7→ Γ(t) be the curve evolution which solves (7) withv(Γ) given by the formula in the proposition,
then the claim follows from the following simple calculation:

d

dt
E(Γ) = 〈∇E(Γ), v(Γ)〉Γ

= 〈∇E(Γ),−Π∇E(Γ)〉Γ = −‖Π∇E(Γ)‖2
Γ < 0,

where we have used thatΠ2 = Π, Π∗ = Π, andv(Γ) 6= 0. ¤
The second observation is related to the fact that the projection methods described above can be applied to

any energy functionalE with a well-definedL2-gradient∇E. For instance we may apply the method to the
arc length- andenclosed areafunctionals:

E◦(Γ) :=
∫

Γ
dσ , and E•(Γ) :=

∫

Ωint
dx ,

respectively. Since the values ofE◦(Γ) andE•(Γ) are invariant under translation and rotation, we would not
expect these functionals to generate any rigid motion at all. In other words we expect the orthogonal projections
ontoLT (Γ) andLR(Γ) of theL2-gradients

∇E◦(Γ) = κ , and ∇E•(Γ) = 1 ,

to be zero. This expectation is easily verified by substituting the above gradients into the formulas (16) and (19)
for the projectionsΠT andΠR, and use the basic identities

∫
Γ κn ds = 0 ,

∫
Γ n ds = 0, and the definition (20)

of the centre of rotationx0.
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Figure 1: The figure shows the contours of two copies of the same pigeon. Thesymmetric differenceof the
interiors of these contours is the shaded region, i.e., the set of points belonging to exactly one of the interiors.

4 Experiments

In this section we apply the method of projections, introduced above, to some concrete examples. We consider
two applications within shape analysis of curves: Continuous shape warping and registration of continuous
shapes. All curves are represented implicitly as described in Section 2. The shapes are taken from the Kimia
shape database [1].

We will use the the gradient flow associated with thearea of symmetric difference, cf. [3], between two
shapesΓ = {x ∈ R2 : φ(x) = 0} andΓ0 = {x ∈ R2 : φ0(x) = 0} defined as

ESD(Γ) = ESD(Γ,Γ0) =
1
2

area(Ωint4Ωint
0 ) , (21)

whereA4B denotes thesymmetric difference ofA andB, defined as the set of points which is contained in
exactly one of the setsA of B, cf. Figure 1. To find the gradient of the functionalESD, we introduce the
characteristic functionsχΩint andχ

Ωint
0

of the interiors ofΓ andΓ0 respectively, and rewriteE as,

ESD(Γ) =
1
2

∫

R2

(χΩint − χ
Ωint

0
)2 dx =

1
2

∫

R2

(χ2
Ωint − 2χΩintχΩint

0
+ χ2

Ωint
0

) dx

=
1
2

∫

R2

(χΩint − 2χΩintχΩint
0

+ χ
Ωint

0
) dx =

∫

Ωint
(
1
2
− χ

Ωint
0

) dx + const,

since the target contourΓ0 is held fixed. It is now easy to see that the correspondingL2-gradient is given by the
normal velocity∇ESD(Γ) = 1

2 − χ
Ωint

0
defined onΓ. In practice the characteristic functions are represented

using continuous approximations of the Heaviside function, cf. e.g. [3].

4.1 Continuous Shape Warping

Here we show that the standard evolution from the symmetric difference gives a very un-intuitive motion when
continuous shapes are warped from one shape to another. This has also been noted for the case of using
approximate Hausdorff distance in [4]. If the shapes are not perfectly aligned, the evolution will remove details
of the initial shape to a smooth shape and then grow new details corresponding to the target shape. This
gives practically useless intermediate shapes. If we instead partition the flow as in (8) and weight rotation and
translation higher than deformation, we obtain a much more intuitive flow with the desired intermediate shapes.
We illustrate this in Figure 2. For each example the top row corresponds to the evolution where rigid motion
projection is weighted higher than deformation and the bottom row is the unchanged symmetric difference flow.

4.2 Registration of Continuous Shapes

Another important application is shape registration. Shape registration implies the alignment of shapes and is
a crucial step if one is interested in computing shape statistics and analyze shape variation. In this case we turn
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Figure 2: Examples of shape warping generated by minimizing the area of the symmetric difference between
an evolving shape and the fixed target shape. The evolving shape is the black curve and the red curve is the
target shape. The evolution is from left to right with the initial curve to the far left and the final curve to the far
right. For each example, the top row corresponds to the evolution where the rigid motion projection is weighted
higher than the deformation and the bottom row is the standard gradient descent flow. Notice that with the
standard gradient descent flow, the intermediate shapes bear little or no resemblance to neither the initial nor
the target shape. This problem can be solved using the weighted projected motion. The parameters used were
(µ1, µ2, µ3) = (0.3, 0.7, 0), initially, switching to(µ1, µ2, µ3) = (0.1, 0.1, 0.8) at the end of the evolution.

off the deformation part entirely and simply use the normal velocity

v(Γ) = −(µ1ΠT∇ESD(Γ) + µ2ΠR∇ESD(Γ)) . (22)

Figure 3 shows some examples of this procedure where one curve is chosen as the target shape and all other
shapes are evolved towards this curve using (22).

5 Conclusions

We have presented a method for decomposingany curve evolution into rigid motion and deformation. The
method is applied to shape warping and registration problems with satisfying results. The theory is developed
for use in the level set framework and is simple to implement. It is our opinion that problems of shape analysis,
shape statistics and shape optimization should be studied in the continuum framework using the language of
geometry and mathematical analysis. Many vision problems can then be formulated as variational problems,
which are usually easy to interpret, and discretizations are introduced only at the point where the numerical so-
lution of the derived equations are computed. This will facilitate the understanding and comparison of different
methods in the field. The aim of this paper was to try to apply level set methods to standard problems in shape
analysis of curves. Although the method presented here is far from perfect, and certainly not competitive with
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Figure 3: Registration using the rigid part of the evolution. The initial shapes (left), shapes registered (right ).

standard tools in the field, it may still be regarded as a small step in the direction of a continuum formulation
of shape analysis.
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