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Abstract 
In this paper, we propose a partial differential equation based method to segment image objects, which have a 

given parametric shape based on energy functional. The energy functional is composed of a term that detects 
object boundaries and a term that constrains the contour to find a shape compatible with the parametric shape. 
While the shape constraints guiding the PDE may be determined from object's shape statistical models, we 
demonstrate the proposed approach on the extraction of objects with explicit shape parameterization, such as 
linear image segments. Several experiments are reported on synthetic and real images to evaluate our approach. 
We also demonstrate the successful application of the proposed method to the problem of removing camera lens 
distortion, which can be significant in medium to wide-angle lenses.  
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1 Introduction 

Variational methods and partial differential equations (PDEs) are more and more being used to analyze, 
understand and exploit properties of images in order to design powerful application techniques, see for 
example [15, 16, 17]. Variational methods formulate an image processing or computer vision problem as an 
optimization problem depending on the unknown variables (which are functions) of the problem. When the 
optimization functional is differentiable, the calculus of variations provides a tool to find the extremum of 
the functional leading to a PDE whose steady state gives the solution of the imaging or vision problem. A 
very attractive property of these mathematical frameworks is to state well-posed problems to guarantee 
existence, uniqueness and regularity of solutions [16]. More recently, implicit level set based representations 
of a contour [9] have become a popular framework for image segmentation [10, 11, 1]. 

The integration of shape priors into PDE based segmentation methods has been a focus of research in past 
years [2, 3, 4, 5, 6, 7, 8, 12, 13, 14]. Almost all of these variational approaches address the segmentation of 
non-parametric shapes in images. They use training sets to introduce the shape prior to the problem 
formulation in such a way that only familiar structures of one given object can be recovered. They typically 
do not permit the segmentation of several instances of the given object. This may be attributed to the fact that 
a level set function is restricted to the separation of two regions. As soon as more than two regions are 
considered, the level set idea looses parts of its attractiveness. These level-set methods find their largest area 
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of application in the segmentation of medical images. After all, none can expect to find two instances of a 
human heart in a patient's scanned chest images!  

On the other hand, extracting image parametric shapes and their parameters is an important problem in 
several computer vision applications. For example, extraction of a line is a crucial problem in calculating 
lens distortion and matching in stereo pairs [18]. As such, our research has addressed the application of 
variational methods and PDEs to the extraction of linear shapes from images. To the best of our knowledge, 
we are not aware of any efforts, other than ours, in that regard. Towards this end, we associate the parameters 
of the linear shape within the energy functional of an evolving level set. While existing approaches do not 
consider the extraction of more than one object instance in an image, the case where they would fail, our 
formulation allows the segmentation of multiple linear objects from an image.  

The basic idea of this paper is inspired by a level set formulation of Chan-Vese [1]. We introduce line 
parameters into a level set formulation of a Chan-Vese like functional in a way that permits the simultaneous 
segmentation of several lines in an image. The parameters of the line are not specified beforehand, they 
rather evolve in an unsupervised manner in order to automatically select the image regions that are linear and 
the parameters of each line are calculated. In particular, we will show that this approach allows detecting 
image linear segments while ignoring other objects. This simple, easy-to-implement method provides noise-
robust results because it relies on a region-based driving flow. 

Moreover we apply the proposed PDE-based level set method to the calibration and removal of camera 
lens distortion, which can be significant in medium to wide-angle lenses. Applications that require 3-D 
modelling of large scenes typically use cameras with such wide fields of view [18]. In such instances, the 
camera distortion effect has to be removed by calibrating the camera’s lens distortion and subsequently 
undistorting the input image. One key feature of our method is that it integrates the extraction of image 
features needed for calibration and the computation of distortion parameters within one energy functional, 
which is minimized during level set evolution. Thus our approach, unlike most other nonmetric calibration 
methods [21, 22, 23], avoids the propagation of errors in feature extraction onto the computation stage. This 
results in a more robust computation even at high noise levels. 

The organization of this paper is as follows: In Section 2, we briefly review a level set formulation of the 
piecewise-constant Mumford-Shah functional, as proposed in [1]. In Section 3, we augment this variational 
framework by a parametric term that affects the evolution of the level set function globally for one object in 
the image. In Section 4, we extend this in order to handle more than one parametric object. In Section 5 we 
describe several experiments to evaluate the proposed method. We apply this method to lens distortion 
removal in Section 6. The conclusions are presented in Section 7. 

2 Region-Based Segmentation with Level Sets and PDEs 

In [1] Chan and Vese detailed a level set implementation of the Mumford-Shah functional, which is based 
on the use of the Heaviside function as an indicator function for the separate phases. The Chan-Vese method 
used a piecewise-constant, region-based formulation of the functional, which allows the contour to converge 
to the final segmentation over fairly large distances, while local edge and corner information is well 
preserved. It can detect cognitive contours (which are not defined by gradients), and contours in noisy 
images. 

According to the level-set framework a contour, C , is embedded in a single level set function 
 :φ Ω→ℜ   such that:  

{( , ) : ( , ) 0},
( ) {( , ) : ( , ) 0},
( ) {( , ) : ( , ) 0}.

C x y x y
inside C x y x y
outside C x y x y

φ
φ
φ

= ∈Ω =⎧
⎪ = ∈Ω >⎨
⎪ = ∈Ω <⎩

     (1) 

In the Mumford-shah model, a piecewise constant segmentation of an input image f is given by [1]: 

1 2

2 2
1 1 2 2

( , , ) ( ) ( )

( ) (1 ( )) ,

segE c c H d xdy v H dxdy

f c H dxdy f c H dxdy

ε ε

ε ε

φ μ φ φ

λ φ λ φ
Ω Ω

Ω Ω
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∫ ∫
∫ ∫
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where 1c  and 2c are the mean values of the image f  inside and outside the curve defined as the zero-level 
set of φ , respectively, and 1 2, , ,vμ λ λ  are regularizing parameters to be estimated or chosen a priori. H ε  is 
the regularized Heaviside function defined as [1]  

1 2( ) 1 arctan
2

sH sε π ε
⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
.     (3) 

 so  

2 2

1( )
dH

s
ds s

ε
ε

εδ
π ε

= =
+

.      (4) 

The regularized H ε  and εδ  having a discretization with a support larger than zero permit the detection of 
interior contours – for example if one wants to segment a ring-like structure, starting from an initial contour 
located outside the ring. 

The Euler-Lagrange equation for this functional is implemented in [1] by the following gradient descent: 

( )2 2
1 1 2 2( ) ( ) ,div v f c f c

t ε
φ φδ φ μ λ λ

φ

⎡ ⎤⎛ ⎞∂ ∇
= − − − + −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∇⎢ ⎥⎝ ⎠⎣ ⎦

    (5) 

where the scalars 1c  and 2c  are updated with the level set evolution and given by:  

1

( , ) ( )

( )

f x y H dxdy
c

H dxdy
ε

ε

φ

φ
= ∫

∫
,      (6) 

2

( , )(1 ( ))

(1 ( ))

f x y H dxdy
c

H dxdy
ε

ε

φ

φ

−
=

−
∫
∫

 .     (7) 

Figure 1 illustrates the main advantages of this level set method. Minimization of the functional (2) is 
done by alternating the two steps of iterating the gradient descent for the level set function φ  as given by (5) 
and updating the mean gray values for the two phases, as given in equations (6, 7). Implicit representation 
allows the boundary to perform splitting and merging. 

3 PDE Method for Line Segmentation 

Our goal here is to extend the energy functional (2) in order to force the level set to segment only the 
linear shapes. This is done by adding a term LineE  that measures how well the level set represents the line. 
The new energy functional becomes: 

Seg LineE E Eα= + .       (8) 

To derive LineE  the line is represented by its polar coordinates: 

cos sinx yρ θ θ= + ,     (9) 

where θ  is the orientation of the normal to the line with the x  axis, and ρ is the distance of the line from 
the origin. The square distance, 2r , of a point ( )1 1,x y  from the line is obtained by plugging the coordinates 
of the point into (9): 

2 2
1 1( cos sin )r x yθ θ ρ= + − .    (10) 

So we can express  LineE  which minimizes the sum of distances between the points inside the zero level set 
and a line with parameters ( , )ρ θ : 
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Figure 1. Evolution of the boundary for the Chan-Vese level set (with a single level set function). Due to the 
implicit level set representation, the topology is not constrained, which allows for splitting and merging of 
the boundary. 

( )
2

( , , ) cos sin ( ) .LineE x y H dxdyερ θ φ ρ θ θ φ
Ω

= − −∫   (11) 

If the points inside the zero level set represent a line, LineE will tend to be zero.  

Keeping ρ and θ  constant and minimizing this energy functional (11) with respect to φ , we deduce the 
associated Euler-Lagrange equation forφ  as 

2( ) ( cos sin ) .LineE
x yεδ φ ρ θ θ

φ
∂

⎡ ⎤= − −⎣ ⎦∂
    (12) 

Keeping φ  fixed and setting 0,LineE
ρ

∂
=

∂
  and 0LineE

θ
∂

=
∂

, it is straightforward to solve for the line’s ρ and 

θ  parameters as:  

cos sinx yρ θ θ= + ,     (13) 

where x  and y  represent the centroid of the region inside the zero level set and given by [26, 27]: 

( ) ( )
,

( ) ( )

x H dxdy yH dxdy
x y

H dxdy H dxdy
ε ε

ε ε

φ φ

φ φ
Ω Ω

Ω Ω

= =∫ ∫
∫ ∫

,    (14) 

and   

2

1 3

1 arctan
2

a
a a

θ
⎛ ⎞

= ⎜ ⎟−⎝ ⎠
,     (15) 

where 1a , 2a  and 3a  are given by [26] 

2
1 ( ) ( )a x x H dxdyε φΩ
= −∫ ,     (16) 

2 2 ( )( ) ( )a x x y y H dxdyε φΩ
= − −∫ ,    (17) 

2
3 ( ) ( )a y y H dxdyε φΩ
= −∫ .     (18) 

The Euler-Lagrange equation for the total functional (8) can now be implemented by the following gradient 
descent:  

],)sincos()()()()( 22
22

2
11 θθραλλ

φ
φμφδφ

ε yxcfcfvdiv
t

−−−−+−−−
⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∇
∇

=
∂
∂  (19) 

where the scalars 1c , 2c , ρ , andθ  are updated with the level set evolution according to Eqs. (6,7,13-18).  
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The weights 1λ and 2λ can be used to speed up the evolution towards the object boundaries, while μ  and 
v  regulate the zero level set. For example μ  has a scaling role [1]; if we have to detect all or as many 
objects as possible and of any size, then μ  should be small. If we have to detect only larger objects, and not 
to detect smaller objects (like points, due to the noise), then μ has to be larger. The weight α  controls the 
emphasize on the required object shape. 

It has been observed in our experiments that for sufficiently large α , the final shape of the zero level set 
for a nonlinear object will be the axis of second moment (axis of elongation) for the object as illustrated in 
Fig.2. To get around this, the weight of the area term, v , in (2), and consequently (8), is increased. This 
causes the minimum of the energy functional (8) to occur when 0φ < all over the image, thus ignoring the 
undesired object. 

4 Multi-Object Segmentation 

The previous method works only if there is one object in the image. If this object is linear, it will be 
detected, whereas other shapes are ignored. If there are more than one object, ( )H φ  will represent all those 
objects and Equations (13-18) will not be applicable. In this section we extend our method in order to 
perform multiple region segmentation based on fuzzy memberships that are computed by a Fuzzy C-mean 
algorithm (FCM) [19]. 

4.1 The Fuzzy C-mean Algorithm 

The (FCM) generalizes the hard k-means algorithm to allow a point to partially belong to multiple 
clusters. Therefore, it produces a soft partition for a given dataset. If we assumed that [ ]U c n×  is a 
membership matrix which contains the degree of membership for each cluster. Here, n  denotes the number 
of patterns and c  the number of clusters. In general the elements iku  of the matrix U  are in the interval 
[0,1]  and denote the degree of membership of the pattern kx  to the cluster .ic  The following condition must 
be satisfied 

1
1, 1 .

c

ik
i

u k n
=

= ∀ ≤ ≤∑      (20) 

 
Also if we assumed that 1 2( , , , )c=V v v vK   is a vector of cluster centre to be identified. The (FCM) 

attempts to cluster feature vectors by searching for local minima of the following objective function [19]: 

1 1
( , ) ( ) ,

c n
m

m ik ik
i k

J U u D
= =

=∑∑v      (21) 

where the real number [0, )m ∈ ∞  is a weighting exponent on each fuzzy membership (typically taken equal 
to 2), ikD  is some measure of similarity between iv  and kx  or the attribute vectors and the cluster centers of 
each region. Minimization of mJ  is based on the suitable selection of U  and V  using an iterative process 
through the following equations: 

12
( 1)
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, ,
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ik

ik
j jk

DU i k
D

−

−
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⎛ ⎞
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∑      (22) 
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∑
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v       (23) 

 
The algorithm stops when ( ) ( 1) ,ik iku uα α ε−− <  or the maximum number of iteration has been reached. The 

(FCM) has several advantages. 1) It is unsupervised, 2) it can be used with any number of features and any  
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Figure 2. Evolution of the boundary for the level set under the functional (8). Due to the LineE  term, the 
final shape of the boundary is the second moment axis of the object. Increasing v  causes smaller part of 
the object axis be detected.  Further increase in v  leaves the nonlinear object undetected. 

number of classes and 3) it distributes the membership values in a normalized fashion. However, being 
unsupervised, it is not possible to predict ahead of time what type of clusters will emerge from the FCM. 

4.2 Handling Multiple Objects 

The FCM algorithm provides an initial segmentation of the image into a given number N  of clusters. Let 
( , )iu x y  denotes the membership of the pixel ( , )x y  in the i-th cluster. A level-set function, iφ , is 

associated with each cluster, except for the cluster with largest number of pixels as it is assumed to be the 
background. Each iφ  is initialized such that: 

0, ( , ) { ( , ) 0.5}
0,

i i

i

x y u x y
Otherwise

φ
φ

> ∀ ∈ ≥⎧
⎨ <⎩

     (24) 

The term LineE  of the energy functional (8) is still given by (11), whereas the term segE  is now based on 

minimizing several level set functions{ }iφ : 

[ ]
1

1
( ) (1 ) ( ) (1 ( )) ( ) ( ) ,

N

seg i i i i i i
i

E u H u H dx H dx v H dxε ε ε εφ λ φ φ μ φ φ
−

= Ω Ω Ω

⎡ ⎤
= − + − + ∇ +⎢ ⎥

⎣ ⎦
∑ ∫ ∫ ∫  (25) 

which can be simplified to 

1

1
( ) (1 2 ) ( ) ( ) ( ) ,

N

seg i i i i
i

E u H dx H dx v H dxε ε εφ λ φ μ φ φ
−

= Ω Ω Ω

⎡ ⎤
= − + ∇ +⎢ ⎥

⎣ ⎦
∑ ∫ ∫ ∫   (26) 

where ,μ λ  are  regularizing parameters to be estimated or chosen a priori. The functional (26) aims to 
maximize the total membership inside the isocontour of the zero level-set. 

The Euler-Lagrange PDE for the new energy functional can now be implemented by the following 
gradient descent for each level set: 

2( ) ( ) (1 2 ) ( cos sin ) ,i i
i i i i

i

div v u x y
t ε
φ φδ φ μ λ α ρ θ θ

φ

⎡ ⎤⎛ ⎞∂ ∇
= − − − − − −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∇⎢ ⎥⎝ ⎠⎣ ⎦

  (27) 

where the scalars iρ , and iθ  are updated with the level set evolution according to (13)-(18). The overall level 
set representation is eventually obtained from the final { }iφ  as max( )iφ , for all i. 

One problem however may arise if multiple disjoint objects belong to the same cluster (e.g., if they have 
the same color). Therefore after the initial clustering by the FCM algorithm, connected-component labeling 
is carried out on a hardened version of the result so objects within the same cluster are separated. Each object 
part is represented by an image that contains the membership information but with other twin object replaced 
by 0 . Note that N  in (26) will thus be increased accordingly. 

 
We summarize the above scheme by the following algorithm outline: 
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• The input image is initially segmented into a number of clusters based on the FCM algorithm. 

• Connected-component labelling is carried out on hardened version of each cluster, except the 
background, to separate the objects in that cluster. 

• Construct an image for each initially detected object, this image contains the membership 
information of that object. 

• Initial level-set is imposed for each object according to (24). 

• Each level set is evolved based on (27). If the object is not linear, the isocontour of the zero level-set 
associated with this object will vanish. 

• At the end of evolution, the final level set equals max{ }iφ φ= , for all i. The remaining level 
sets,{ }iφ , represent the linear objects. The parameters of the linear objects have been already 
calculated during the evolution according to (13)-(18). 

 
This algorithm presents a simple, yet effective method to handle multiple objects in images. This is in 

contrast to existing methods that mostly did not consider this case. One of the few reported techniques that 
did consider it is the one by Brox et al. [25]. However, their method is rather complicated and not straight-
forward to implement because they employed the combination of several ideas from multi-scale basis, a 
divide-and-conquer strategy, expectation-maximization principle and nonparametric Parzen density 
estimation. 

5 Experimental Results 

In order to evaluate the performance of the proposed technique on line segmentation, several experiments 
using synthetic and real images have been carried out. In the experiments, we choose the regularizing 
parameters as follows:  1α = , 10λ = , 0.5μ = , and 10v = . As our method is region-based segmentation it is 
robust in noisy images. This is demonstrated in Fig. 3. All lines have been successfully extracted from an 
image artificially corrupted with high noise with standard deviation 45σ = . Note that due to the shape 
constraints, our method again extracts only the lines and ignores other objects. For the sake of comparison, 
the result of the classical Hough transform applied to the same test image without noise, is shown in 
Fig. 3(c). Apparently, the level set method extracts only linear objects in the image, whereas Hough 
transform can also detect linear boundaries of objects (e.g., the box).  However once the noise level in the 
image increases, Hough transform will face some problems. This is, because it depends largely on edge 
detection, it is sensitive to image noise, which may result in missing legitimate image lines when applied to 
the image in Fig. 3(a), as shown in Fig. 3(d).  

We use the proposed method to extract intersected lines that have different colors; as shown in Fig. 4, 
which is a difficult problem for almost all existing level-set-based methods. Because of the lines 
intersections, the three lines could be treated as one object that would not become linear anymore. The initial 
level-sets based on the FCM output according to (24) are imposed on the image in Fig. 4(b). As shown in 
Fig.  4(c), the proposed method successfully segmented the lines, in spite of their intersections, and because 
of the shape-based term, other objects were discarded.  

An example of a real image is illustrated in Fig. 5. The FCM output, shown in Fig. 5(b), treats lines and 
birds as the same object. This is clear in Fig. 5(c) where the initial level sets take the lines and birds as one 
object. The level sets correct this and successfully extract only the lines in Fig. 5(d), even in spite of the birds 
touching the lines. Another real example is considered in Fig. 6. The initial level set based on the FCM 
algorithm is shown in Fig. 6(b). The final result in Fig. 6(c) shows how our algorithm can extract only the 
linear objects and discard the others. 
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         (a)              (b)                 (c)                     (d) 

Figure 3. Extracted lines from highly noisy image (noise standard deviation = 45), (a) Input image, (b) The 
final result using our method, (c) Result of Hough transform on the noise-free image, (d) Result of Hough 
transform on the noisy image. 

    

             
          (a)          (b)        (c) 

Figure 4. Extraction of intersected lines with different intensities. (a) The input image, (b) Initial level set 
based on FCM clustering , (c) Final result. 

 

     
(a)       (b) 

     
      (c)       (d) 

Figure 5. A real image "Birds on power lines". (a) Input image, (b) Hardened output of FCM algorithm, 
(c) Initial level set based on the output of FCM algorithm, (d) Final level set showed how our method 
excluded the birds. 
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(a)                                                                            (b) 

 
(c) 

Figure 6. A real image "A running track". (a) Input image, (b) Initial level set based on the output of FCM 
algorithm, (c) The final level set imposed on the image. 

6 Application: Lens Distortion Removal 

In this section we apply the variational-based method in the previous sections to calibrate lens distortion. 
We will focus in this section on recovering the radial component of lens distortion, as it is often the most 
prominent in images. Our approach is based on the analysis of distorted images of straight lines. We use a 
PDE-based level set method to find the lens distortion parameters that straighten these lines. One key 
advantage of this method is that it integrates the extraction of image distorted lines and the computation of 
distortion parameters within one energy functional which is minimized during level set evolution. Thus our 
approach, unlike most other nonmetric calibration methods [21, 22, 23], avoids the propagation of errors in 
feature extraction onto the computation stage. This results in a more robust computation even at high noise 
levels. 

The closest work to ours is that of Kang [24]. He used the traditional snake to calculate the radial lens 
distortion parameters. However, his method is sensitive to the location of the initial contour, so the user 
should specify the position of the initial contour. In contrast, our level-set based method has some global 
convergence property that makes it not sensitive to the initial level set.  

We start by giving briefly a standard model for lens distortion in camera lenses, and then we formulate 
our approach. 

6.1 Camera Distortion Model 

The standard model for the radial and decentering distortion [20, 21, 28] is mapping from the observable, 
distorted image coordinates, ( , )x y , to the unobservable, undistorted image plan coordinates, ( , )u ux y . 
Neglecting all coefficients other than the first radial distortion term, the model becomes: 

2

2

( ),

( ),

u

u

x x x r

y y y r

κ

κ

= +

= +

)

)       (28) 
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2 2 2, , ,x yx x c y y c r x y= − = − = +) ) ) ) and κ  is the coefficient of radial distortion. r  is the radius of an 
image point from the distortion center, defined as ( , )x yc c  above. The distortion centre is quite often located 
near the image centre [20, 22, 28]. Following pervious works [24, 28] we assume the distortion centre to be 
the image centre. We thus seek to recover, κ , as it has the most dominating effect. So the distortion model 
becomes: 

6.2 Our Approach 

Our goal here is to use the energy functional (8) in order to force the level set to segment linear, or 
should-to-be-linear, objects from the image and simultaneously solve for the lens distortion parameter. The 
algorithm outlined in Section 4 is used here. However the LineE term of the energy functional becomes 

( )2
( , , ) cos sin ( )u u

Line i i i i i i iE x y H dxdyρ θ φ ρ θ θ φ
Ω

= − −∫ ,    (29) 

which measures how well a level set presents a line in the undistorted image coordinates ( , )u ux y , with iθ  
being the orientation of the normal to the line, and iρ being the distance to the line from the origin. Note that 
the undistorted coordinates are related to the given distorted image coordinates ( , )x y via the distortion 
parameter κ  as in (28). As for κ  that minimizes the total energy functional E, we start with an initial guess 

0κ (in our implementation, we take it 0). Introducing an artificial time, t , κ  is then updated according to the 

gradient decent rule E
t
κ

κ
∂ ∂

= −
∂ ∂

, where 

]
1

2 2

1

2 ( cos sin ) ( ) cos ( ) sin ( )
N

u u
i i i x i y i i

i

E x y x c r y c r H dx dyα θ θ ρ θ θ φ
κ

−

Ω
=

∂ ⎡= + − − + −⎣∂ ∑∫ .     (30) 

Note that κ  is updated based on all level sets, but on the other hand each level set is updated by deducing 
the associated Euler-Lagrange equation for iφ : 
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  (31) 

where the scalars iρ , iθ , and κ  are updated with the level set evolution according to (13, 15, 31). In the 
steady state the value of κ  is the required lens distortion coefficient. 

6.3 Experimental Results 

The approach is applied to real images acquired by a cheap BenQ camera. To calibrate the radial lens 
distortion coefficient, we captured an image of a group of straight lines on a white paper; see Fig. 7(a). Such 
a calibration pattern is easily prepared (e.g., with just a printer) without any special construction overhead. 
Another sample image captured by the same camera is shown in Fig. 7(b). Both acquired images are 
160×120 and have noticeable lens distortion. Our approach is then applied to the calibration image to recover 
the value of lens distortion parameter. Figs. 7(c-d) show the initial and final zero-level sets, respectively. Our 
method took less than a minute on P4 2.8GHz pc. The estimated κ  is employed to remove the distortion 
from the original images taken by the camera, see Fig. 7(e-f). Clearly the should-to-be image lines are indeed 
mapped to straight lines in the resultant images. One may notice some artifacts (left intentionally) with the 
undistorted images due to the inverse mapping of the distortion model in (28), which can be fairly fixed, if 
desired, by doing some post-processing. Further experiments on synthetic data, [29], have shown that the 
accuracy of our proposed method remains within 0.1 pixels up to a high noise level of 35σ ≅ . 
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           (a)              (b)             (c) 

         
           (d)               (e)              (f) 

Figure 7. Lens distortion removal from a real images: (a) The calibration image which is used to get κ , 
(b) An input distorted image, (c) Initial zero level set, (d) Final zero level set (e) Calibration image 
undistorted, (f) Image in (b)  undistorted using the obtained κ .   

7 Conclusions 

We have presented a new variational approach to integrate parametric shapes into level set-based 
segmentation. In particular, we addressed the problem of extracting linear image objects, selectively, while 
other image objects are ignored. Our method is inspired by ideas introduced by Chan and Vese by 
formulating a new energy functional taking into account the line parameters. By simultaneously minimizing 
the proposed energy functional with respect to the level set function and the line parameters, the linear 
shapes are detected while the line parameters are obtained. This method is extended using Fuzzy 
memberships to segment simultaneous lines of different intensities. This method is shown experimentally to 
segment simultaneous lines of different intensities, even in images of large noise. 

We have also applied the proposed approach to calibrate camera lens distortion. In order to achieve this, 
the formulated energy functional depends on the parameters of lens distortion parameters as well. By 
evolving the level functions minimizing that energy functional, the image lines and lens distortion 
parameters are obtained.  All this approach needs is an image captured by the camera for a group of straight 
lines on a white paper. Such a calibration pattern is easily prepared (e.g., with just a printer) without any 
special construction overhead. One key advantage of our method is that it integrates the extraction of image 
features needed for calibration and the computation of distortion parameters; thus avoiding, unlike most 
other nonmetric calibration methods, the propagation of errors in feature extraction onto the computation 
stage.  

Our future research is directed towards the segmentation of other parametric shapes from images, e.g., 
conics, which are of special importance in geometric computer vision. In addition, it is directed to 
incorporating more lens distortion parameters in order to be able to remove the distortion from severely-
distorted images, such as in very-wide-view cameras, and to achieve more accurate calibration. 
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