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Abstract

In this paper a wavelet based model for image de-noisingeisguted. Wavelet coefficients are modelled
as waves that grow while dilating along scales. The modabéishes a precise link between corresponding
modulus maxima in the wavelet domain and then allows to ptedivelet coefficients at each scale from
the first one. This property combined with the theoreticalites about the characterization of singularities
in the wavelet domain enables to discard noise. Signifidamttsires of the image are well recovered while
some annoying artifacts along image edges are reduced. &geemental results show that the proposed
approach outperforms the most recent and effective walbaksd denoising schemes.
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1 Introduction

Denoising represents a stimulating challenge in imagegsging, as proved by the amount of proposals for
its solution — see for instance [4, 5, 9, 14, 16, 21, 26, 29330,39]. The main goal consists of recovering a
signal f from its noisy observatiog, corrupted by an additive zero-mean Gaussian neiséth variances?,
ie.

gt)y=f(t)+v(t), teR. 1)
One of the objectives of de-noising is the preservation @htlain features of the original signal. Following this
philosophy, a lot of researchers devoted their study to éimstcuction of more or less sophisticated bases able
to catch and well represent image correlations with fewfaoehts. The better the compaction of the basis,
the simpler the restoration strategy — significant coeffitiecan be retained using a thresholding operation.
Nonetheless, it is difficult to detect the significant stawes of a signal without having additional information
about it. The search of singularities and irregular poiatthen crucial since they characterize the signal —
peaks and jump discontinuities in 1D signals, edges anccbgmntours in images. The main strategies for
providing solutions can be coarsely split into two broacdsés:

1. scale space analysis, which exploits the fact that teguttar structures are visible at different resolutions;

2. approximation theory, i.e. the construction of a sugabtpansion basis which provides few coefficients
with great amplitude in correspondence to singularity {oand nearly zero coefficients, in correspon-
dence to flat or regular regions.
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The former gives rise to linear and non linear scale spacmappes [18, 26, 31, 35, 38], while the latter to
linear and non linear approximations in orthonormal baée2(Q, 23]. The main features of these approaches
are briefly described in the next section.

It is now worth observing that the wavelet transform embédus liasics of both scale space theory and
non linear approximation because of its intrinsic timelsatructure. In fact, there is a precise link between
coefficients at successive scales which is described bgdtsistencyproperty: large/small values of wavelet
coefficients tend to propagate across scales [7]. Howevegra theoretical contribution has been done by
investigating the wavelet transform of signals having slagties of different order. In fact, the decay of
modulus maxima of the wavelet transform gives a measureekitd of signal singularity within a given
interval: thecone of influenc§?2].

Nonetheless, it is difficult to build the modulus maxima cisaalong scales in a deterministic way. In fact,
modulus maxima can change their locations and they can a&sdiffarent appearance whenever the cones of
influence of two different singularities overlap. Hencengoempirical constraints have to be used for building
the chain, such as the persistency of the sign and the defiifione global maximum in the cone of influence
[22, 24] — see [19] for a similar approach in the time domaimgsghe catastrophe theory. This leads to
some false alarms or the lack of some important informatfoprecise estimate of the location becomes more
important in case of noisy signals, as it will be clearer itidm 4, since the signal has to be reconstructed
from the detected modulus maxima.

The maxima projection algorithm proposed in [24] is usefutlibpresents three main drawbacks:
e it could not converge to the original signal (counterexaeripl Mallat conjecture in [20]);
¢ the convergence of the algorithm requires a minimum digtdoetween two successive maxima [22];

e maxima chains are guaranteed for each sgalaly using wavelets which are derivative of a Gaussian
kernel (see Theorem 2 in Chapter 1 and Chapter VI of [23]).

These drawbacks can be solved by further characterizing madulus maximum. A first attempt has been
done by Dragotti and Vetterli in [12], who tried to exactly deb piecewise polynomial signals. Nonetheless,
the distance between two adjacent singularities becorgas,arucial for distinguishing them. In other words,
footprintsare not able to discriminate two singularities when thegriigtre.

The main contribution of this paper consists of a theoretivadel that allows to estimate the trajectories of
wavelet modulus maxima of a signél These trajectories model the evolution law of some predéflyasic
atoms whose superimposition approximates the waveletfoan w(u, s) of the signalf. For each atom (see
Fig. 1), the significant maximum is the one having the greéasewmplitude [2]. The latter does not disappear
along scales but it moves from its initial location wheneit®relative atom interferes with an adjacent one. In
the case of complete interference the two atoms can gereraigly one maximum which takes into account
both contributions.

This representation preserves and exploits the singyletndracterization of the wavelet transform, the clus-
tering property of wavelet coefficients and their pareritecrelationships. Furthermore, it drastically reduces
the redundancy of the wavelet representation in correspurglto significant structures of the signal and avoids
particular requirements on the smoothness of the origigabt Experimental results show that these proper-
ties allow to achieve comparable results to the state of thef avavelet based denoising approaches, just by
modeling images as 1D independent signals.

The paper is organized as follows. Section 2 gives a briééwegabout the main denoising strategies. Section
3 introduces the evolution law of wavelet atoms and yields thajectories along scales. Section 4 shows how
these laws can be successfully used for de-noising. Sonegimental results and comparative studies are then
given in Section 5. Finally, Section 6 draws the conclusions
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2 A brief review of image de-noising approaches

Scale space analysis Scale space can be generated using linear and non lineanassh&he former have been
introduced by Koenderink [18] and Witkin [38]. They embed triginal signalf in a family of functions
which are blurred versions of the original signal. More |Bely,

I, = cAl
[(t,O) = f(t)7
whereA is the Laplacian operator ands a constantqonductance terin It is a linear smoothing and

obeys to the heat equation. The unique kernel satisfyingtpation is the Gaussian one. Moreover,
since the derivatives df satisfy the heat equation, also Gaussian derivatives genarscale space.

Wavelets define a scale space since they provide a signakexgation at different levels of resolution.
In particular, if they are derivative of a Gaussian kerrtakytgenerate the heat flow (chap. VI of [23]).

Linear scale space is totally insensitive to the presencelevant image features — for example edges.
Hence, even if it is able to suppress noise, it also destroyeeggeometrical information of the image.
Approaches based on non linear scale space try to retaie thatires by making the conductance term
non linear. In other words, they guide the smoothing: it isveéd in regular parts while it is inhibited
or reduced in correspondence to significant structureseofuthction. Different conduction terms imply
the preservation of specific structuresFor example, the anisotropic diffusion of Perona Malik][26
consists of embedding an edge detection step in a partfateiittial equation (pde) model which forces
smoothing within homogeneous regions, letting their beuwied sharp. The pde which regulates this
process is

I = div(v([ VI V),

wherew is the edge detector function and corresponds to a thraslgadgherator on the gradient magni-
tude.

It is possible to mention various pdes having slightly defe properties, such as theean curvaturer
the total variation flow[27]. Nonetheless, most of them share the fact that theretisrclosed form
of their solution. Hence, they require numerical methodsbiing solved. Moreover, high and low
frequency components are not completely separated duriog énear diffusion scheme.

In a recent work [30], it has been shown that a discrete coatipatstep in a non linear diffusion process
can be split into three stages: decomposition, regulaoizadnd reconstruction. The first and third

stages correspond to a two bands filtering system — a decdtiopognd reconstruction using a basis

of wavelets. It turns out that just the high frequency congmins regularized by means of a diffusivity

function, while low frequency is preserved. This idea faldothe same philosophy of the more recent
approach presented in [15], where the splitting into low higgh pass components is achieved by using
the complex domain and combining the diffusion equatiorhhie Schroedinger one. Furthermore, in
[37] the authors investigate the connections between 1&ratis schemes for non linear diffusion and
shift invariant Haar wavelet shrinkage. In particularipeove that each diffusivity term corresponds a
single spatial level shrinkage function in the wavelet dionaand viceversa.

Common drawbacks for these methods are the stopping tinteeimnumerical solution of the pde and
the choice of the best diffusivity function for the analysethge. In this paper we will show that it is
possible to avoid the direct solution of the pde exploitirguaable representation of wavelet coefficients
and deriving an ordinary differential equation (ode) foschbing maxima chains along scales.

*It is similar to the choice of the number of vanishing momenita wavelet for processing 1D signals, or the choice of bigtaD
basis that is able to preserve geometrical features of thgémmas it will be clearer in the following.
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Linear and non linear approximation A linear approximation projectg§ on N vectors, selected a priori, of
an orthonormal basi®. An example is the expansion in a Fourier basis when the firsectors are
used for recovering the signal. On the contrary, non linggar@imations select th&’ vectors of B
that better correlat¢. More precisely, they are th& largest coefficients of the expansion. Non linear
approximations are equivalent to apply a thresholding aipetto the sorted inner products. It is obvious
that the approximation error goes quickly to zeroMsncreases and if the sorted values have a fast
decay [6, 20, 23]. Therefore, the choice of the best expansisis for a signal is strictly connected to
its smoothness.

The literature offers a variety of bases. The well known andely used arevavelets[23], whose
expansion coefficients are characterized byitiber andintra-scaleproperties and are used for both 1D
and 2D signals. More recent 2D geometrical bases are aldalzleasuch ascurvelet§34], which give
an optimal approximation for 2D piecewise smooth functioagingC? discontinuity curvesgontourlets
[8], that can be considered a flexible discrete evolutiorheffirst onesgdgeprints[11], that are a 2D
extension offootprints and are able to represent 2D piecewise polynomial sigfasdlets[13], that
follow the geometric flonof the image, i.e. local directions in which the image gresels have regular
variation; and the more recedirectionlets[36], which are anisotropic basis functions with direcibn
vanishing moments.

The construction of these bases can often be complicatedanputationally expensive. They are good
when denoising can be achieved through a simple threshpldieration by using, for example, the
pioneering Donohainiversal threshold10]. Moreover, they lose their compaction ability whenethe
regularity of the curves in the analysed image does not maitththe one they can well represent.

A valid alternative can be the use of simple and fast decoitipo®ases, like wavelets, and the process-
ing of the corresponding coefficients with more or less sstpfated methods. Most proposals are based
on:

e adaptive thresholdingf coefficients: the threshold is estimated according toaigtatistics. For
example, in [4] a nearly optimal approximation of the beseshold is achieved by a pixel-wise
estimation of the signal variance by meansofitext modelling Another example is in [1], where
two thresholds are used: one for the magnitude of coeffigiant the other one for the amount of
clustering;

e adaptive shrinkagecoefficients are filtered by shrinking their value accogdio the signal to noise
ratio. For instance in [29], a certain Gaussian distributid wavelet coefficients is assumed and
maximum likelihood is employed for getting correlation mads; in [33] local statistics of the
signal are estimated using an adaptive window; or in [32Jenela bivariate shrinkage rule using
the analysed coefficient, its parent and the local neighdmathis applied.

Previous strategies exploit some of the main three pragseofithe wavelet decomposition, i.e. amplitude
of coefficients, evolution across scales, spatial clusgemiear image edges. In [28] they are all embedded
in a Bayesian framework by further exploiting the chardaz#gion of singularities in the wavelet domain.
In fact, as proved in [22], the Lipschitz order of a singulais connected to the decay of the modulus
maxima of the wavelet transform for increasing scales. Tésslt allows to discriminate between noise
and original signal since noise has negative Lipschitzrodtieneans that the corresponding coefficients
have an opposite behaviour along scales.

A good measure of Lipschitz exponents is related to the ehoiche wavelet: the higher the vanishing
moments the better the decay estimation [23] and the prediof modulus maxima chains along scales.

TContext modelling technique allows to group pixels of samitature but not necessarily spatially adjacent, gathémiage statis-
tical information from them.
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Dragotti and Vetterli[12] proposed to concentrate on aipaldr class of signals, the piecewise polyno-
mial functions, in order to exploit the time-scale corriglatof the corresponding wavelet coefficients.
Nonetheless, their model requires a minimum distance ltwego singularities for getting a good esti-
mation of the original signal.

In this paper we overcome this drawback using a suitableesgmtation of wavelet coefficients. Since it is
not possible to know the structure of the signal a priori, ittea is to fix a basis and a reference singularity
and then to approximate the analysed signal as superirigrositthese basic singularities. This representation
preserves and exploits the singularity characterizatibae,clustering property (intra-scale) and parent child
relationships (inter-scale) of the wavelet transform.dctf maxima chains corresponding to singularity points
can be built along scales by modelling the wavelet transfasra combination of interfering atoms, i.e. waves
obeying to a precise partial differential equation (pde).

3 Building maxima chains

As previously mentioned, it is important to model the eviglntof the information along scale levels. It can be
done by characterizing the wavelet transform with its altsoinaxima and deriving the maxima chains along
scales.

Let+ be a real and continuous wavelet andiggt, s)

W) = v (). @

wheres € Rt is the scale variable ande R is the time variable. Since the wavelet transform of a fuoncti

fis
w(u,s) = f *(u, ),
using some algebraic computations [3], the following pde lva written

U 1
Wg = —— Wy — w + —Vu, (3)
s 2s s

wherew is the wavelet transform of the functiarf (t) — see [3] for details. This equation shows two
different effects. The first term of the second member gualssrt of transport along the scalewhile the
remaining ones guide the decay and the shape of the wawatstdrm along scales.

Although the generality of the result, equation (3) is usela this form since there is not a priori information
about the functiory.

On the contrary, if we approximate the wavelet transfaru, s) as superimposition of basic atoms, the
equation becomes more manageable. In fact, let us defiasia atomat scales and centered at the location
t1, the one described by the following function

b t—u b
F(ti,u,s) =sys (Au t(t)dt — . /tru zp(t)dt> ) 4)
It corresponds to the wavelet transform of an infinite rangpai having the singularity located @twith slope
a1 = 1. The shape of the atom depends on the adopted wavelet. Fplicsiynwe will use a biorthogonal
wavelet which yields the atom as in Fig. 1. The adopted waigleice thanks to its symmetry, its analytical
formulation and allows a simple algorithm, as it will be cleralater.

Therefore, if
N

Vs>0, wus)~ Z arF (tg, u, s), (5)
k=1
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Wi(u,s)

Figure 1. Plot of a basic atom corresponding to a ramp signal spline biorthogonal wavelet 3/9 has been
used.

whereq;, andty are respectively the slope and the location of each of\fhetoms of the representation, (3)
becomes

In N
t—u 3 1
“’S—Twu*wtkzzl

[akdk /(i) w<y>dy] , ©

N
with ¢ = # andd, = tp — t. The transport term is equal to the one in eq. (3) while thecsou
term explicitly reveals its influence on the locations ofical points. It is worth noticing that equation (5) is
an equality for piecewise linear signals. In the other cagesn be simply proved that it corresponds to a
piecewise approximation through hat functions in the timedin — see [3] for details.
From equation (6) it is not difficult to get modulus maximgerories. In fact, we can compute the derivative
with respect ta: of (6), evaluate it at: = u(s) and combine it with

Wys + uwuu = O,

whereu(s) is the analysed maximum chain.
Hence, it results

Fou 150 ondit (B552)
IS e e

whereu is the derivative of(s) with respect tos.

The equation describes the trajectory for each maximumt pdim(u, s) corresponding to a basic atom at
scales = 1 centered at locatioty,, i.e. u(1) =t¢,, h=1,...,N. Inparticular, if the analysed atom does not
interfere with other atoms, i.e. its cone of influence dodsimtersect the others at scaleit does not change
its initial location. In fact, the last term of the second nimof the equation ig;, /s, sincey (t’ﬁT‘“) =0ifu
does not belong to the support of the wavelet centereg and then (7) becomes

i=—

; (7)

N———

th—u

9

S
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whose solution is
u(s) =ty — (t, —u(1))s,

u(s) = tp.

On the contrary, when two or more atoms interfere, the looatif their maximum changes according to
the amplitude of each maximumy, and their mutual distancé,.. In particular, the greater atom moves from
its location slower than the smaller one. In Fig. 2 there i&@ample of maxima trajectories of a piecewise
constant signal. It can be observed that adjacent atomaiffiinent sign show a repulsion while atoms having
the same sign show attraction till they become an only at@nthey completely interfere.

The model can be generalized by introducing a decay expaméme equation of the basic atom, i.e.

G(u,s) = a187  F(t1,u, s). (8)

This way, the atom amplitude is modulated in agreement \highdecay of the analyzed singularity while its
shape is approximated with eq. (4).

Even in this form, the atom obeys to a precise evolution lamnfrvhich it is possible to derive maxima
trajectories. Hence, foN interfering atoms located ajf, with growing exponentsy,, w(u, s) satisfies the
following pde

0 t-ud ’y+1/2 al e [T
%w— . %w—k Zlakdks /(kTu)

while atoms trajectories are the solution of the followirtdgo

1 N
; Z [ak’Yks’Yk_lF(tkaua 3)} ) (9)

t—u 1 Zi]@vzl dkaks'ﬂcw (tk—u)
° § SRy sV (tkT—U)
1 Zivﬂ Yo sTF fj;ﬁ W(y)dy
S SN sy (tks—u)

i = — +

(10)

3.1 Parametersestimation

The solution of the ODE (10) is determined by the initial ctiods {¢, o, Vi }1<k<n, Which respectively are
the locations, the slopes and the decay exponents of atogms at

Hence, the knowledge dftx, o, Vi }1<k<n allows to predict wavelet coefficients at all successivdesca
levels.

«y, andt, can be estimated at= 1 using the atoms estimation algorithm in [2]. Briefly speakiatoms
slopes are estimated at each scale using a greedy algorititihe @amplitude of modulus maxima, i.e.

< Ri(u,s), F(tk,u,s) >
| (te, u, s)||

. =

whereRy (u, s) = w(u, s) — V1 Ry (u, ).

The decay exponents can be estimated by solving (9) in abtwiitaterval[l, 1 + As]. As has to be quite
small for guaranteeing that the interference between atimas not still affect the locations of their maxima.
Under this assumption, each atom can be considered is@atethen the equation (9) can be solved for each
of them, yielding

Wk — T 1/2

- bl
5 s
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Figure 2: Piecewise constant signal having three jump disuaities (topleft). Each of them is composed of
two atoms having different sign. Trajectories along scéi@sright) of atoms modulus maxima of its wavelet
transform(bottom)computed at scales= 1, 2,4, 6, 8,10, 12, 16, 22. Notice that the six initial atoms interfere
and produce four atoms at the coarsest considered scale.
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Figure 3:Topleft)Portion of piecewise polinomial signalop-bottom left-righiVavelet details up to third scale
level reconstructed using atoms evolution law. The re@signal gives PSNR = 60.41db.

with the following initial conditionw®) (u(1),1) = axF(t1,t1,1). Henceaw®) = Cys7+1/2 that is
ai(s)sy/s = ap(1)s11/2 and then

e = log, (o (s)/ax(1)) + 1. (11)

It is worth outlining that the estimation ef, depends on the precision of the estimation of the correspgnd
slopeay. We can then iterate the algorithm used for slopes estimaticsee [3] for detalils.

In Figs. 3 and 4 it is possible to see the reconstruction ofséreelet coefficients of two signals using the
model. Notice that for a piecewise constant signal, thernsttoction is somewhat perfect — the recovered co-
efficients (dashed line) are covered by the original ondgi(Boe). On the other hand, for a more complicated
signal like that in Fig. 4, the estimated coefficients giveudeyfaithful recovering of the original ones.

4 Denoising

It is worth spending some words about the importance of maxhains in denoising. Fig. 5 depicts the noisy
wavelet transform of a simple ramp signal. Noise makes uarembiguous maxima points around the atom
location in the wavelet domain. It turns out that an accdptedrovering of clean coefficients requires the selec-
tion of the right maximum (indicated by the arrow) for estting its contribution (slope) in the corresponding
domain €one of influenge— in Fig. 5, a wrong estimation would give an atom having a sigposite to the
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Figure 4:Topleft)Portion of row no. 100 of lena imag&op-bottom left-rightVavelet details up to third scale

level reconstructed using atoms evolution law. The reavsignal gives PSNR = 45.57 db.
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Figure 5: Wavelet transform of a noisy infinite ramp signalitsline). The arrow indicates the correct location
of atom maximum corresponding to the signal singularitye Wavelet transform of the clean signal is depicted
with a dashed line while the estimated atom using the praposmel is indicated by a dotted line.

original one. Equations (9) and (10) allow us to predict thetdbution of the adopted atoms in their cone of
influence at different scales, even when they completegriiste. Equation (11) provides a faithful estimation
of the decay exponents. and allows to discard the noisy initial conditions, i.e.ratohaving negative decay.
Using the preserved atoms, the location of their modulusimmavat successive scales can be estimated and
the corresponding slope value can be refined. In fact, asepacales the noise flattens while the estimation
domains become wider, since the dilation property of thealsransform. It turns out that the least squares

used for slopes estimation are more precise. Atoms slopesstimated at each scale using a greedy algorithm
on the amplitude of modulus maxima (from the highest to thellast), i.e.

N < Ri(u, ), F(tk,u,s) >
k =
HF(tk>u7 8)H2

whereRy(u, s) = Wg(u, s) — Z;} Ry (u, s) andW g is the wavelet transform of the noisy signal. It corre-
sponds to a least squares estimation in a suitable domaimgxysing a function model and then providing a
regularization of the noisy data (see Fig.5 and [2] for d&Xai

Itis worth noticing that the atomic representation, as in(BY intrinsically preserves the correlation between
adjacent coefficients of the wavelet decomposition. Thaperty also allows the recovering of coefficients
under threshold and avoids artifacts due to the rough cufaffformation in the selection based approaches.

4.1 TheAlgorithm

Let us consider an overcomplete wavelet decomposition §23] The overcomplete representation is em-
ployed to avoid the distortion of atom shape caused by thendg#ion. Images are considered as independent
1D signals. Itis just a first attempt to directly apply theulesto signals in more than one dimension. Moreover,
any 2D structure has been imposed but only a local modelfitigecimage is given.

In the following, the mono dimensional denoising algoritlindescribed.
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Figure 6: Comparisons in terms of PSNR between the proposedirand the models proposed in [29, 4, 33,
32, 17]. The test image is Lena and the noise standard dewatespectively are = 10, 15, 20, 25.

1. Perform the undecimated wavelet transforng ap to J*" scale level.
2. Perform the continuous wavelet transformgosit scales € [1, 2] using the steg\s = .05.

3. Estimate the parametef$;, ax, v} using WISDOW [2] slope estimation algorithm three times for
gettingay, andt at scales = 1 and (11) for estimatingy.

4. Eliminate atoms having; < 0.

5. Compute atoms trajectories by solving (10) usidg’arder Runge Kutta method and extract the solution
at dyadic scales =27, j=1,...,J.

6. At scales = 2/, j = 1,...,J, sort selected maxima in decreasing order with respecteio &b-
solute value and estimate the corresponding slgpe The data to use in the least squares estimation
are weighted proportionally to the ratio between the amalymaximum and the ones in its cones of
influence, which have been predicted by the law (eq. (10)).

7. Invert the undecimated wavelet transform using the re@ml/detail bands.

5 Experimental Results

Many experiments have been done for testing the perfornsapiche proposed model. Both 1D signals and
images have been processed having different kinds of smesgh A biorthogonal wavelet 3/9 associated to an
over-complete multi-resolution decomposition computpda™ scale has been adopted in all tests, while the
integration stefh for solving the ode in the step 5 of the denoising algorithes been set t0.05.

Images are split into independent 1D signals. As mentiobete it is just a first attempt to use the evolution
laws for images and a significant test for measuring the piatéies of the model. In fact, experimental results
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Figure 7:Left) Noisy wavelet coefficientss( = 5) at 37 scale level of the piecewise polynomial signal in Fig.
3. Right) Recovered coefficients using the proposed model (dottedl lithey are compared with the original
one (solid line).
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Figure 8:Left) Noisy row no. 100 of Lena image (PSNR = 22.06 dRjght) Denoised signal (solid line) using
the proposed approach (PSNR = 32.75 db). The original sigiia¢ dotted line.
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Figure 9: Denoised Lena image using the proposed approagisy(fnage (PSNR = 22.06 db) Recovered
PSNR = 32.75 db).

Figure 10: Denoised Barbara image using the proposed agp(bisy image (PSNR = 20.10 db) Recovered
PSNR = 28.40 db).
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Figure 11: Zoom of the denoised pictures in Figs. 9 and 10.

show that the proposed denoising algorithm gives perfoo@moomparable to the most effective wavelet based
denoising approaches even though just one direction hasuseel for image analysis.

In particular, Fig. 6 compares the proposed model with thesSian mixture estimator presented in [29],
the adaptive Bayesian thresholding using context modgtiintained in [4], the local Wiener filtering using
elliptic directional windows for different subbands in [3the bivariate shrinkage rule in [32] using the complex
wavelet transform and the adaptive regularization algoritvith patch-based weights and variable window
sizes in [17]. The latter work is not wavelet based. Nonet®lit has been considered for comparisons since
it simulates a multiscale approach. ThE2 x 512 x 8bits Lena test image has been used for comparisons,
while four levels of noise have been consideredr— 10, 15, 20, 25. Presented results derive from the ability
of the evolution law in establishing a precise link betweenresponding coefficients at different scales and in
modelling the interference between singularities everpatser scales (spatial correlation). This guarantees
an almost faithful reconstruction of the original signaloigling constraints on the minimum distance between
them, as in [12], or thresholds tuning.

Fig. 7 shows the recovered wavelet details of the piecevasmpmial signal of Fig. 3, while Fig. 8 depicts
the estimation for the row no. 100 of Lena image.

For a visual evaluation of the results, in Figs. 9 and 10 theoided512 x 512 x 8 Lena and Barbara
test images are depicted (PSNR = 32.75 and PSNR = 28.40) —eibe standard deviations respectively are
o = 20 (PSNR = 22.06) and = 25 (PSNR = 20.14). It is worth noticing that edges are well reced with
a drastic reduction of both ringing effects around edgesiswoldted spikes. To better appreciate the results, a
zoom of the recovered images is also shown in Fig. 11.

As regards the computational effort of the algorithm, itimear with respect to the number of atoms used
for the approximation, while it requires additional comgdidns for the solution of the ode in (10). In fact, the
integration step has to be lower than 0.1 for getting good prediction for attnations at dyadic scales.

6 Conclusions

In this paper a wavelet based model for image denoising rexs fiesented. It describes the wavelet transform
of a generic signal as superimposition of predefined basiositwhose evolution law along scale can be mod-
elled. This law allows to build modulus maxima chains of trevelet transform and then to faithfully estimate
the contribution of each atom at each scale. We have showpgitation to image denoising but the model
can be successfully exploited also in image compressiomagé segmentation, while a possible application to
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super-resolution is under investigation. The resultseaad in denoising are satisfying in terms of both mean
square error and visual quality — edges and image contoersvell recovered without introducing ringing
artifacts.

Future research will be oriented to the reduction of the agatjpnal cost along with the 2D extension of
the definition of a basic atom.
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