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Wavelets and partial differential equations for image denoising
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Abstract

In this paper a wavelet based model for image de-noising is presented. Wavelet coefficients are modelled
as waves that grow while dilating along scales. The model establishes a precise link between corresponding
modulus maxima in the wavelet domain and then allows to predict wavelet coefficients at each scale from
the first one. This property combined with the theoretical results about the characterization of singularities
in the wavelet domain enables to discard noise. Significant structures of the image are well recovered while
some annoying artifacts along image edges are reduced. Someexperimental results show that the proposed
approach outperforms the most recent and effective waveletbased denoising schemes.
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1 Introduction

Denoising represents a stimulating challenge in image processing, as proved by the amount of proposals for
its solution — see for instance [4, 5, 9, 14, 16, 21, 26, 29, 30,33, 39]. The main goal consists of recovering a
signalf from its noisy observationg, corrupted by an additive zero-mean Gaussian noiseν with varianceσ2,
i.e.

g(t) = f(t) + ν(t), t ∈ R. (1)

One of the objectives of de-noising is the preservation of the main features of the original signal. Following this
philosophy, a lot of researchers devoted their study to the construction of more or less sophisticated bases able
to catch and well represent image correlations with few coefficients. The better the compaction of the basis,
the simpler the restoration strategy — significant coefficients can be retained using a thresholding operation.
Nonetheless, it is difficult to detect the significant structures of a signal without having additional information
about it. The search of singularities and irregular points is then crucial since they characterize the signal —
peaks and jump discontinuities in 1D signals, edges and objects contours in images. The main strategies for
providing solutions can be coarsely split into two broad classes:

1. scale space analysis, which exploits the fact that the irregular structures are visible at different resolutions;

2. approximation theory, i.e. the construction of a suitable expansion basis which provides few coefficients
with great amplitude in correspondence to singularity points and nearly zero coefficients, in correspon-
dence to flat or regular regions.
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The former gives rise to linear and non linear scale space approaches [18, 26, 31, 35, 38], while the latter to
linear and non linear approximations in orthonormal bases [6, 20, 23]. The main features of these approaches
are briefly described in the next section.

It is now worth observing that the wavelet transform embeds the basics of both scale space theory and
non linear approximation because of its intrinsic time-scale structure. In fact, there is a precise link between
coefficients at successive scales which is described by thepersistencyproperty: large/small values of wavelet
coefficients tend to propagate across scales [7]. However, amore theoretical contribution has been done by
investigating the wavelet transform of signals having singularities of different order. In fact, the decay of
modulus maxima of the wavelet transform gives a measure of the kind of signal singularity within a given
interval: thecone of influence[22].

Nonetheless, it is difficult to build the modulus maxima chains along scales in a deterministic way. In fact,
modulus maxima can change their locations and they can assume different appearance whenever the cones of
influence of two different singularities overlap. Hence, some empirical constraints have to be used for building
the chain, such as the persistency of the sign and the definition of one global maximum in the cone of influence
[22, 24] — see [19] for a similar approach in the time domain using the catastrophe theory. This leads to
some false alarms or the lack of some important information.A precise estimate of the location becomes more
important in case of noisy signals, as it will be clearer in Section 4, since the signal has to be reconstructed
from the detected modulus maxima.

The maxima projection algorithm proposed in [24] is useful but it presents three main drawbacks:

• it could not converge to the original signal (counterexample to Mallat conjecture in [20]);

• the convergence of the algorithm requires a minimum distance between two successive maxima [22];

• maxima chains are guaranteed for each scales only using wavelets which are derivative of a Gaussian
kernel (see Theorem 2 in Chapter 1 and Chapter VI of [23]).

These drawbacks can be solved by further characterizing each modulus maximum. A first attempt has been
done by Dragotti and Vetterli in [12], who tried to exactly model piecewise polynomial signals. Nonetheless,
the distance between two adjacent singularities becomes, again, crucial for distinguishing them. In other words,
footprintsare not able to discriminate two singularities when they interfere.

The main contribution of this paper consists of a theoretical model that allows to estimate the trajectories of
wavelet modulus maxima of a signalf . These trajectories model the evolution law of some predefined basic
atoms whose superimposition approximates the wavelet transformw(u, s) of the signalf . For each atom (see
Fig. 1), the significant maximum is the one having the greatest amplitude [2]. The latter does not disappear
along scales but it moves from its initial location wheneverits relative atom interferes with an adjacent one. In
the case of complete interference the two atoms can generatean only one maximum which takes into account
both contributions.

This representation preserves and exploits the singularity characterization of the wavelet transform, the clus-
tering property of wavelet coefficients and their parent-child relationships. Furthermore, it drastically reduces
the redundancy of the wavelet representation in correspondence to significant structures of the signal and avoids
particular requirements on the smoothness of the original signal. Experimental results show that these proper-
ties allow to achieve comparable results to the state of the art of wavelet based denoising approaches, just by
modeling images as 1D independent signals.

The paper is organized as follows. Section 2 gives a brief review about the main denoising strategies. Section
3 introduces the evolution law of wavelet atoms and yields their trajectories along scales. Section 4 shows how
these laws can be successfully used for de-noising. Some experimental results and comparative studies are then
given in Section 5. Finally, Section 6 draws the conclusions.
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2 A brief review of image de-noising approaches

Scale space analysis Scale space can be generated using linear and non linear schemes. The former have been
introduced by Koenderink [18] and Witkin [38]. They embed the original signalf in a family of functions
which are blurred versions of the original signal. More precisely,

{

Is = c∆I
I(t, 0) = f(t),

where∆ is the Laplacian operator andc is a constant (conductance term). It is a linear smoothing and
obeys to the heat equation. The unique kernel satisfying theequation is the Gaussian one. Moreover,
since the derivatives ofI satisfy the heat equation, also Gaussian derivatives generate a scale space.

Wavelets define a scale space since they provide a signal representation at different levels of resolution.
In particular, if they are derivative of a Gaussian kernel, they generate the heat flow (chap. VI of [23]).

Linear scale space is totally insensitive to the presence ofrelevant image features — for example edges.
Hence, even if it is able to suppress noise, it also destroys some geometrical information of the image.
Approaches based on non linear scale space try to retain these features by making the conductance term
non linear. In other words, they guide the smoothing: it is allowed in regular parts while it is inhibited
or reduced in correspondence to significant structures of the function. Different conduction terms imply
the preservation of specific structures∗ . For example, the anisotropic diffusion of Perona Malik [26]
consists of embedding an edge detection step in a partial differential equation (pde) model which forces
smoothing within homogeneous regions, letting their boundaries sharp. The pde which regulates this
process is

Is = div(υ(‖∇I‖)∇I),

whereυ is the edge detector function and corresponds to a thresholding operator on the gradient magni-
tude.

It is possible to mention various pdes having slightly different properties, such as themean curvatureor
the total variation flow[27]. Nonetheless, most of them share the fact that there is not a closed form
of their solution. Hence, they require numerical methods for being solved. Moreover, high and low
frequency components are not completely separated during anon linear diffusion scheme.

In a recent work [30], it has been shown that a discrete computation step in a non linear diffusion process
can be split into three stages: decomposition, regularization and reconstruction. The first and third
stages correspond to a two bands filtering system — a decomposition and reconstruction using a basis
of wavelets. It turns out that just the high frequency component is regularized by means of a diffusivity
function, while low frequency is preserved. This idea follows the same philosophy of the more recent
approach presented in [15], where the splitting into low andhigh pass components is achieved by using
the complex domain and combining the diffusion equation with the Schroedinger one. Furthermore, in
[37] the authors investigate the connections between 1D discrete schemes for non linear diffusion and
shift invariant Haar wavelet shrinkage. In particular, they prove that each diffusivity term corresponds a
single spatial level shrinkage function in the wavelet domain and viceversa.

Common drawbacks for these methods are the stopping time in the numerical solution of the pde and
the choice of the best diffusivity function for the analysedimage. In this paper we will show that it is
possible to avoid the direct solution of the pde exploiting asuitable representation of wavelet coefficients
and deriving an ordinary differential equation (ode) for describing maxima chains along scales.

∗It is similar to the choice of the number of vanishing momentsof a wavelet for processing 1D signals, or the choice of suitable 2D
basis that is able to preserve geometrical features of the image, as it will be clearer in the following.
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Linear and non linear approximation A linear approximation projectsf onN vectors, selected a priori, of
an orthonormal basisB. An example is the expansion in a Fourier basis when the firstN vectors are
used for recovering the signal. On the contrary, non linear approximations select theN vectors ofB
that better correlatef . More precisely, they are theN largest coefficients of the expansion. Non linear
approximations are equivalent to apply a thresholding operator to the sorted inner products. It is obvious
that the approximation error goes quickly to zero asN increases and if the sorted values have a fast
decay [6, 20, 23]. Therefore, the choice of the best expansion basis for a signal is strictly connected to
its smoothness.

The literature offers a variety of bases. The well known and widely used arewavelets[23], whose
expansion coefficients are characterized by theinter andintra-scaleproperties and are used for both 1D
and 2D signals. More recent 2D geometrical bases are also available, such as:curvelets[34], which give
an optimal approximation for 2D piecewise smooth functionshavingC2 discontinuity curves;contourlets
[8], that can be considered a flexible discrete evolution of the first ones;edgeprints[11], that are a 2D
extension offootprints and are able to represent 2D piecewise polynomial signals;bandlets[13], that
follow the geometric flowof the image, i.e. local directions in which the image grey levels have regular
variation; and the more recentdirectionlets[36], which are anisotropic basis functions with directional
vanishing moments.

The construction of these bases can often be complicated andcomputationally expensive. They are good
when denoising can be achieved through a simple thresholding operation by using, for example, the
pioneering Donohouniversal threshold[10]. Moreover, they lose their compaction ability whenever the
regularity of the curves in the analysed image does not matchwith the one they can well represent.

A valid alternative can be the use of simple and fast decomposition bases, like wavelets, and the process-
ing of the corresponding coefficients with more or less sophisticated methods. Most proposals are based
on:

• adaptive thresholdingof coefficients: the threshold is estimated according to signal statistics. For
example, in [4] a nearly optimal approximation of the best threshold is achieved by a pixel-wise
estimation of the signal variance by means ofcontext modelling†. Another example is in [1], where
two thresholds are used: one for the magnitude of coefficients and the other one for the amount of
clustering;

• adaptive shrinkage: coefficients are filtered by shrinking their value according to the signal to noise
ratio. For instance in [29], a certain Gaussian distribution of wavelet coefficients is assumed and
maximum likelihood is employed for getting correlation matrices; in [33] local statistics of the
signal are estimated using an adaptive window; or in [32], where a bivariate shrinkage rule using
the analysed coefficient, its parent and the local neighborhood is applied.

Previous strategies exploit some of the main three properties of the wavelet decomposition, i.e. amplitude
of coefficients, evolution across scales, spatial clustering near image edges. In [28] they are all embedded
in a Bayesian framework by further exploiting the characterization of singularities in the wavelet domain.
In fact, as proved in [22], the Lipschitz order of a singularity is connected to the decay of the modulus
maxima of the wavelet transform for increasing scales. Thisresult allows to discriminate between noise
and original signal since noise has negative Lipschitz order. It means that the corresponding coefficients
have an opposite behaviour along scales.

A good measure of Lipschitz exponents is related to the choice of the wavelet: the higher the vanishing
moments the better the decay estimation [23] and the prediction of modulus maxima chains along scales.

†Context modelling technique allows to group pixels of similar nature but not necessarily spatially adjacent, gathering image statis-
tical information from them.
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Dragotti and Vetterli[12] proposed to concentrate on a particular class of signals, the piecewise polyno-
mial functions, in order to exploit the time-scale correlation of the corresponding wavelet coefficients.
Nonetheless, their model requires a minimum distance between two singularities for getting a good esti-
mation of the original signal.

In this paper we overcome this drawback using a suitable representation of wavelet coefficients. Since it is
not possible to know the structure of the signal a priori, theidea is to fix a basis and a reference singularity
and then to approximate the analysed signal as superimposition of these basic singularities. This representation
preserves and exploits the singularity characterization,the clustering property (intra-scale) and parent child
relationships (inter-scale) of the wavelet transform. In fact, maxima chains corresponding to singularity points
can be built along scales by modelling the wavelet transformas a combination of interfering atoms, i.e. waves
obeying to a precise partial differential equation (pde).

3 Building maxima chains

As previously mentioned, it is important to model the evolution of the information along scale levels. It can be
done by characterizing the wavelet transform with its absolute maxima and deriving the maxima chains along
scales.

Letψ be a real and continuous wavelet and setψ(u, s)

ψ(u, s) =
1√
s
ψ

(

−u
s

)

, (2)

wheres ∈ R
+ is the scale variable andu ∈ R is the time variable. Since the wavelet transform of a function

f is

w(u, s) = f ∗ ψ(u, s),

using some algebraic computations [3], the following pde can be written

ws = −u
s
wu − 1

2s
w +

1

s
vu, (3)

wherev is the wavelet transform of the functiontf(t) — see [3] for details. This equation shows two
different effects. The first term of the second member guidesa sort of transport along the scales, while the
remaining ones guide the decay and the shape of the wavelet transform along scales.

Although the generality of the result, equation (3) is useless in this form since there is not a priori information
about the functionf .

On the contrary, if we approximate the wavelet transformw(u, s) as superimposition of basic atoms, the
equation becomes more manageable. In fact, let us define abasic atomat scales and centered at the location
t1, the one described by the following function

F (t1, u, s) = s
√
s

(

∫ b

t1−u

s

tψ(t)dt − t1 − u

s

∫ b

t1−u

s

ψ(t)dt

)

. (4)

It corresponds to the wavelet transform of an infinite ramp signal having the singularity located att1 with slope
α1 = 1. The shape of the atom depends on the adopted wavelet. For simplicity we will use a biorthogonal
wavelet which yields the atom as in Fig. 1. The adopted wavelet is nice thanks to its symmetry, its analytical
formulation and allows a simple algorithm, as it will be clearer later.

Therefore, if

∀ s > 0, w(u, s) ∼
N
∑

k=1

αkF (tk, u, s), (5)
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Figure 1: Plot of a basic atom corresponding to a ramp signal —a spline biorthogonal wavelet 3/9 has been
used.

whereαk andtk are respectively the slope and the location of each of theN atoms of the representation, (3)
becomes

ws =
t− u

s
wu +

3

2s
w +

1

s

N
∑

k=1

[

αkdk

∫ +∞

(

tk−u

s

)

ψ(y)dy

]

, (6)

with t =

∑

N

k=1
tk

N and dk = tk − t. The transport term is equal to the one in eq. (3) while the source
term explicitly reveals its influence on the locations of critical points. It is worth noticing that equation (5) is
an equality for piecewise linear signals. In the other cases, it can be simply proved that it corresponds to a
piecewise approximation through hat functions in the time domain — see [3] for details.

From equation (6) it is not difficult to get modulus maxima trajectories. In fact, we can compute the derivative
with respect tou of (6), evaluate it atu = u(s) and combine it with

wus + u̇wuu = 0,

whereu(s) is the analysed maximum chain.
Hence, it results

u̇ = − t− u

s
− 1

s

∑N
k=1 αkdkψ

(

tk−u
s

)

∑N
k=1 αkψ

(

tk−u
s

) , (7)

whereu̇ is the derivative ofu(s) with respect tos.
The equation describes the trajectory for each maximum point of w(u, s) corresponding to a basic atom at

scales = 1 centered at locationth, i.e.u(1) = th, h = 1, . . . , N . In particular, if the analysed atom does not
interfere with other atoms, i.e. its cone of influence does not intersect the others at scales, it does not change
its initial location. In fact, the last term of the second member of the equation isdh/s, sinceψ

(

tk−u
s

)

= 0 if u
does not belong to the support of the wavelet centered attk, and then (7) becomes

u̇ = − th − u

s
,
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whose solution is
u(s) = th − (th − u(1))s,

i.e.
u(s) = th.

On the contrary, when two or more atoms interfere, the location of their maximum changes according to
the amplitude of each maximumαk and their mutual distancedk. In particular, the greater atom moves from
its location slower than the smaller one. In Fig. 2 there is anexample of maxima trajectories of a piecewise
constant signal. It can be observed that adjacent atoms withdifferent sign show a repulsion while atoms having
the same sign show attraction till they become an only atom, i.e. they completely interfere.

The model can be generalized by introducing a decay exponentin the equation of the basic atom, i.e.

G(u, s) = α1s
γ−1F (t1, u, s). (8)

This way, the atom amplitude is modulated in agreement with the decay of the analyzed singularity while its
shape is approximated with eq. (4).

Even in this form, the atom obeys to a precise evolution law from which it is possible to derive maxima
trajectories. Hence, forN interfering atoms located attk with growing exponentsγk, w(u, s) satisfies the
following pde

∂

∂s
w =

t− u

s

∂

∂u
w +

γ + 1/2

s
w +

1

s

N
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∫ +∞
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s

)
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]

+
1

s

N
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[

αkγks
γk−1F (tk, u, s)

]

, (9)

while atoms trajectories are the solution of the following ode:

u̇ = − t− u

s
− 1

s

∑N
k=1 dkαks

γkψ
(

tk−u
s

)

∑N
k=1 αksγkψ

(

tk−u
s

) +

−1

s

∑N
k=1 γkαks

γk

∫+∞
tk−u

s

ψ(y)dy

∑N
k=1 αksγkψ

(

tk−u
s

) . (10)

3.1 Parameters estimation

The solution of the ODE (10) is determined by the initial conditions {tk, αk, γk}1≤k≤N , which respectively are
the locations, the slopes and the decay exponents of atoms ats = 1.

Hence, the knowledge of{tk, αk, γk}1≤k≤N allows to predict wavelet coefficients at all successive scale
levels.
αk andtk can be estimated ats = 1 using the atoms estimation algorithm in [2]. Briefly speaking, atoms

slopes are estimated at each scale using a greedy algorithm on the amplitude of modulus maxima, i.e.

αk =
< Rk(u, s), F (tk, u, s) >

‖F (tk, u, s)‖2

whereRk(u, s) = w(u, s) −∑k−1
h=1Rh(u, s).

The decay exponents can be estimated by solving (9) in a suitable interval[1, 1 + ∆s]. ∆s has to be quite
small for guaranteeing that the interference between atomsdoes not still affect the locations of their maxima.
Under this assumption, each atom can be considered isolatedand then the equation (9) can be solved for each
of them, yielding

w(k)
s =

γk + 1/2

s
w(k),
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Figure 2: Piecewise constant signal having three jump discontinuities (topleft) . Each of them is composed of
two atoms having different sign. Trajectories along scales(topright) of atoms modulus maxima of its wavelet
transform(bottom)computed at scaless = 1, 2, 4, 6, 8, 10, 12, 16, 22. Notice that the six initial atoms interfere
and produce four atoms at the coarsest considered scale.
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Figure 3:Topleft)Portion of piecewise polinomial signal.Top-bottom left-rightWavelet details up to third scale
level reconstructed using atoms evolution law. The recovered signal gives PSNR = 60.41db.

with the following initial conditionw(k)(u(1), 1) = αkF (t1, t1, 1). Hence,w(k) = C0s
γk+1/2, that is

αk(s)s
√
s = αk(1)s

γk+1/2, and then

γk = logs(αk(s)/αk(1)) + 1. (11)

It is worth outlining that the estimation ofγk depends on the precision of the estimation of the corresponding
slopeαk. We can then iterate the algorithm used for slopes estimation — see [3] for details.

In Figs. 3 and 4 it is possible to see the reconstruction of thewavelet coefficients of two signals using the
model. Notice that for a piecewise constant signal, the reconstruction is somewhat perfect — the recovered co-
efficients (dashed line) are covered by the original ones (solid line). On the other hand, for a more complicated
signal like that in Fig. 4, the estimated coefficients give a quite faithful recovering of the original ones.

4 Denoising

It is worth spending some words about the importance of maxima chains in denoising. Fig. 5 depicts the noisy
wavelet transform of a simple ramp signal. Noise makes various ambiguous maxima points around the atom
location in the wavelet domain. It turns out that an acceptable recovering of clean coefficients requires the selec-
tion of the right maximum (indicated by the arrow) for estimating its contribution (slope) in the corresponding
domain (cone of influence)— in Fig. 5, a wrong estimation would give an atom having a sign opposite to the
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Figure 4:Topleft)Portion of row no. 100 of lena image.Top-bottom left-rightWavelet details up to third scale
level reconstructed using atoms evolution law. The recovered signal gives PSNR = 45.57 db.
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Figure 5: Wavelet transform of a noisy infinite ramp signal (solid line). The arrow indicates the correct location
of atom maximum corresponding to the signal singularity. The wavelet transform of the clean signal is depicted
with a dashed line while the estimated atom using the proposed model is indicated by a dotted line.

original one. Equations (9) and (10) allow us to predict the contribution of the adopted atoms in their cone of
influence at different scales, even when they completely interfere. Equation (11) provides a faithful estimation
of the decay exponentsγk and allows to discard the noisy initial conditions, i.e. atoms having negative decay.

Using the preserved atoms, the location of their modulus maxima at successive scales can be estimated and
the corresponding slope value can be refined. In fact, at coarser scales the noise flattens while the estimation
domains become wider, since the dilation property of the wavelet transform. It turns out that the least squares
used for slopes estimation are more precise. Atoms slopes are estimated at each scale using a greedy algorithm
on the amplitude of modulus maxima (from the highest to the smallest), i.e.

αk =
< Rk(u, s), F (tk, u, s) >

‖F (tk, u, s)‖2

whereRk(u, s) = Wg(u, s) −∑k−1
h=1Rh(u, s) andWg is the wavelet transform of the noisy signal. It corre-

sponds to a least squares estimation in a suitable domain by imposing a function model and then providing a
regularization of the noisy data (see Fig.5 and [2] for details).

It is worth noticing that the atomic representation, as in eq. (5), intrinsically preserves the correlation between
adjacent coefficients of the wavelet decomposition. This property also allows the recovering of coefficients
under threshold and avoids artifacts due to the rough cut offof information in the selection based approaches.

4.1 The Algorithm

Let us consider an overcomplete wavelet decomposition [23]of g. The overcomplete representation is em-
ployed to avoid the distortion of atom shape caused by the decimation. Images are considered as independent
1D signals. It is just a first attempt to directly apply the results to signals in more than one dimension. Moreover,
any 2D structure has been imposed but only a local modelling of the image is given.

In the following, the mono dimensional denoising algorithmis described.
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1. Perform the undecimated wavelet transform ofg up toJ th scale level.

2. Perform the continuous wavelet transform ong at scaless ∈ [1, 2] using the step∆s = .05.

3. Estimate the parameters{tk, αk, γk} using WISDOW [2] slope estimation algorithm three times for
gettingαk, andtk at scales = 1 and (11) for estimatingγk.

4. Eliminate atoms havingγk < 0.

5. Compute atoms trajectories by solving (10) using a4th order Runge Kutta method and extract the solution
at dyadic scaless = 2j , j = 1, . . . , J .

6. At scales = 2j , j = 1, . . . , J , sort selected maxima in decreasing order with respect to their ab-
solute value and estimate the corresponding slopeαk. The data to use in the least squares estimation
are weighted proportionally to the ratio between the analysed maximum and the ones in its cones of
influence, which have been predicted by the law (eq. (10)).

7. Invert the undecimated wavelet transform using the recovered detail bands.

5 Experimental Results

Many experiments have been done for testing the performances of the proposed model. Both 1D signals and
images have been processed having different kinds of smoothness. A biorthogonal wavelet 3/9 associated to an
over-complete multi-resolution decomposition computed up to3rd scale has been adopted in all tests, while the
integration steph for solving the ode in the step 5 of the denoising algorithm, has been set to0.05.

Images are split into independent 1D signals. As mentioned above, it is just a first attempt to use the evolution
laws for images and a significant test for measuring the potentialities of the model. In fact, experimental results
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Figure 7:Left) Noisy wavelet coefficients (σ = 5) at3rd scale level of the piecewise polynomial signal in Fig.
3. Right)Recovered coefficients using the proposed model (dotted line). They are compared with the original
one (solid line).
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Figure 8:Left)Noisy row no. 100 of Lena image (PSNR = 22.06 db).Right)Denoised signal (solid line) using
the proposed approach (PSNR = 32.75 db). The original signalis the dotted line.
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Figure 9: Denoised Lena image using the proposed approach (Noisy image (PSNR = 22.06 db) Recovered
PSNR = 32.75 db).

Figure 10: Denoised Barbara image using the proposed approach (Noisy image (PSNR = 20.10 db) Recovered
PSNR = 28.40 db).
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Figure 11: Zoom of the denoised pictures in Figs. 9 and 10.

show that the proposed denoising algorithm gives performances comparable to the most effective wavelet based
denoising approaches even though just one direction has been used for image analysis.

In particular, Fig. 6 compares the proposed model with the Gaussian mixture estimator presented in [29],
the adaptive Bayesian thresholding using context modelling contained in [4], the local Wiener filtering using
elliptic directional windows for different subbands in [33], the bivariate shrinkage rule in [32] using the complex
wavelet transform and the adaptive regularization algorithm with patch-based weights and variable window
sizes in [17]. The latter work is not wavelet based. Nonetheless, it has been considered for comparisons since
it simulates a multiscale approach. The512 × 512 × 8bits Lena test image has been used for comparisons,
while four levels of noise have been considered —σ = 10, 15, 20, 25. Presented results derive from the ability
of the evolution law in establishing a precise link between corresponding coefficients at different scales and in
modelling the interference between singularities even at coarser scales (spatial correlation). This guarantees
an almost faithful reconstruction of the original signal, avoiding constraints on the minimum distance between
them, as in [12], or thresholds tuning.

Fig. 7 shows the recovered wavelet details of the piecewise polynomial signal of Fig. 3, while Fig. 8 depicts
the estimation for the row no. 100 of Lena image.

For a visual evaluation of the results, in Figs. 9 and 10 the denoised512 × 512 × 8 Lena and Barbara
test images are depicted (PSNR = 32.75 and PSNR = 28.40) — the noise standard deviations respectively are
σ = 20 (PSNR = 22.06) andσ = 25 (PSNR = 20.14). It is worth noticing that edges are well recovered with
a drastic reduction of both ringing effects around edges andisolated spikes. To better appreciate the results, a
zoom of the recovered images is also shown in Fig. 11.

As regards the computational effort of the algorithm, it is linear with respect to the number of atoms used
for the approximation, while it requires additional computations for the solution of the ode in (10). In fact, the
integration steph has to be lower than 0.1 for getting good prediction for atomslocations at dyadic scales.

6 Conclusions

In this paper a wavelet based model for image denoising has been presented. It describes the wavelet transform
of a generic signal as superimposition of predefined basic atoms, whose evolution law along scale can be mod-
elled. This law allows to build modulus maxima chains of the wavelet transform and then to faithfully estimate
the contribution of each atom at each scale. We have shown an application to image denoising but the model
can be successfully exploited also in image compression or image segmentation, while a possible application to
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super-resolution is under investigation. The results achieved in denoising are satisfying in terms of both mean
square error and visual quality — edges and image contours are well recovered without introducing ringing
artifacts.

Future research will be oriented to the reduction of the computational cost along with the 2D extension of
the definition of a basic atom.
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