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Abstract

In this paper we present a variational technique for thensizaction of 3D cylindrical surfaces. Roughly
speaking by a cylindrical surface we mean a surface that egmabameterized using the projection on a
cylinder in terms of two coordinate§,, 6), representing the displacement and angle in a cylindrioai-c
dinate system respectively. The starting point for our roétis a set of different views of a cylindrical
surface, as well as a precomputed disparity map estimagbmden pair of images. The proposed varia-
tional technique is based on an energy minimization wherbal@nce on the one hand the regularity of the
cylindrical function given by the distance of the surfacénp®to cylinder axis, and on the other hand, the
distance between the projection of the surface points omthges and the expected location following the
precomputed disparity map estimation between pair of ima@me interesting advantage of this approach
is that we regularize the 3D surface by means of a bi-dimeasiminimization problem. We show some
experimental results for large stereo sequences.
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1 Introduction

The problem of 3D geometry reconstruction from multiplewsenas received much attention during the last
years. It is straight forward to recover a 3D surface fromeaesiscopic pair of images since the pixel grid
makes it easy to establish the relation between the poirggeftheless when we have more than two or three
images and try to recover the original scene, the problenorhes much more complex. There have been
different strategies to overcome this problem.

The most traditional approach is to first obtain a set of soadk points and try to find the surface that best
fits the set like the one proposed by Hong-Kai et al. in [11]evehauthors propose a technique to find out a
surface from an unorganized set of points. In [3] the authospose a volumetric method where the 3D surface
is an isosurface of the volumetric grid. Another approachthe particle-based methods like in [26] and [9]

Correspondence to: jsanchez@dis.ulpgc.es

Recommended for acceptance by Jon Sporring
ELCVIA ISSN:1577-5097
Published by Computer Vision Center / Universitat Autorode Barcelona, Barcelona, Spain



L. Alvarez et al. / Electronic Letters on Computer Vision andde Analysis 6(2):54-66, 2008 55

in where the points have attraction and repulse forcesviatip the Newtonian dynamics. Kanade et al. [18]
proposed a deformable mesh representation to match neuttgsise depth stereo data.

More recent methods like [15] combines the 3D and 2D imag@inétion and in [20] the authors propose a
method for uncalibrated cameras that combines differgrads from projective reconstruction, self-calibration
and dense depth estimation. Some new energy minimizatamigues have been proposed in the literature
like the one proposed by Faugeras and Keriven in [6, 7] whéeeel set approach is proposed to minimize a
surface energy. Other energy minimization methods ared@d][13] which utilize graph cuts to minimize the
energy functional.

Normally after reconstruction the 3D surface is noisy. Thevjmus approaches consider implicit or explicitly
some regularizing means to reduce the surface noise. Treetedcaniques that focus only on the regularization
of the mesh. In papers like [24, 25, 12] the authors proposshramoothing techniques that in the case of the
last two ones there is a mechanism of feature preserving laysnef anisotropic diffusion.

In this paper we propose a different approach which is alsedban a variational formulation but only using
disparity map estimations between pair of images. We asshateéhe 3D surface we want to recover has a
cylindrical geometry, that is, it can be expressed as anicgjgn S : (I,0) — R3, where(l, ) represents
a cylindrical parameterization of the 3D surface. Of couthés is an important limitation in terms of the
surface geometry, but it simplifies in a strong way the comipleof the problem and it can be applied in a lot
of situations like, for instance, human face reconstructibhere is an important reduction on the complexity
since it is easier to estimate a unique 3D surface by progdhe 3D points in a cylindrical structure than
directly from a cloud of scattered 3D points. We will alsowase that the cameras are calibrated (see [5], [8] or
[10] for more details). In the last years, very accurate heplres to estimate the disparity map in a stereo pair
of images have been proposed. To extend these techniquesdade of multiple views is not a trivial problem.

The main contribution we propose in this paper is a variafiomodel to recover the 3D geometry of a cylin-
drical surface. This variational model is based on the miration of an objective function. The proposed
objective function is a balance between 2 terms. In the frshtwe minimize the distance between the pro-
jection of the3D surface points in the image sequence and the expectedolodatiowing a precomputed
disparity estimation between pair of images. In the secena,twe regularize the cylindrical function given
by the distance between the cylinder axis and the surfacgsoi

This objective function also enables regularization byspreing discontinuities on the cylindrical function.
The regularizing term is similar to the terms used in othdddidéike stereoscopic reconstruction [1] or optical
flow estimation [2].

The associated Euler-Lagrange equation of this objectimetfon yields to a nonlinear partial differential
equation that is then embedded into a gradient descend chithaok for the solution. We develop an explicit
numerical scheme based on finite differences to implementthod.

We also present some experimental results to evaluate tticheThe first experiment is composed of 36
images taken around a synthetic cylinder. For the secondriexent we use a large sequence of 47 cameras
located around a woman bust.

The organization of the paper is as follows: In section 2 weduce the cylindrical coordinate system
necessary for the representation of the cylindrical fumctind the relation with the projective camera model.
We also introduce the disparity map technique we use to asiie disparity between pair of images. In
section 3 we present the variational model, and we compatagbociated Euler-Lagrange equations. In section
3.2 we introduce an explicit numerical scheme to discrdétizanodel. In section 4 we present the experimental
results for synthetic and real image stereo sequences ag fimsection 5 the conclusions.
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Figure 1: Cylindrical and Cartesian coordinate systems

2 TheCylinder Structure and Disparity Map Estimation

2.1 TheCylindrical Coordinate System and the Projective Camera

Using the notation represented in Fig. 1 we notéNby N, andN3 the orthogonal coordinate system and by
Qo the origin of the systemIN; denotes the cylindrical axis. The cylindrical coordinates expressed by
means of a list of three coordinatésé, ) wherel is the displacement on the cylindrical a®¥§, ¢ is an angle
(as itis outlined in Fig. 1) and is the distance from a 3D point I¥;. A cylindrical surfaceS(l, 6, r) will be
given by a cylindrical functionr(i, #) in the following way :

S(,0,r) = Qo+ INy +r(l,0) (Nycosd + Nssinf) . 1)

S(l,0,r) is a function that transforms a cylindrical functiori/, #) to a surface in the Cartesian coordinate
system.

We will see below that our method makes use of disparity mapspated between pairs of stereoscopic
images to constraint the regularization of the cylindritaiction. The disparity maps are expressed in image
coordinates associated to every camera. We assume thetiwmj@model for the cameras. In our problem we
have N, different projective cameras and every camera is repreddiy a projection matri®,. of dimensions
3z4 that projects 3D points into the image plane. In projectiverdinates the points in the cylindrical surface
are projected onto the image plane as:

Ihc(l79) =P, (S(l,@,?"),l)t . (2)
To obtain the image coordinates associated to the 3D poindiwide by the third component of vector
me(l,0).
2.2 Disparity Map Estimation between Pair of Images

In order to estimate disparity maps between pair of imagegsedahe technique explained in [1]. In this paper
the disparity map is parameterized by a scalar functigrthat represents the displacement on the epipolar
lines. The solution fon is obtained through the minimization of the following oljee function:

BQ) = | (hla.y) = L@+ u(A@p)+o\@.p)? dedy
+ C / VA'D (VI) VA dx dy 3)
Q
where (u,v)! are the components of the optical flow between the left artat figages and depend on the

function. Q is the image domainC is a positive constant, afd\'D(V1;)V \ determines the regularization
term.
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D(.) is aregularized projection matrix in the direction pergeatdr to VI and was first proposed by Nagel
and Enkelmann in the context of optical flow estimation tda6, 17]. The shape of this matrix is

1 en gt

In this formulation,Id denotes the identity matrix.
When derived, we obtain a partial differential equation @Ehat is then solved by means of a gradient
descend method. To recover large disparities the methadbgeded into a linear scale—space strategy.

3 TheVariational Method to Recover 3D Cylindrical Surfaces

The method we propose is based on the minimization of an tlaeftinction that depends on the cylindrical
function. It is minimized to obtain the Euler-Lagrange eitss and a gradient descend approach is then
developed in order to solve the system. This gradient deseerthod is finally implemented by means of an
explicit numerical scheme.

3.1 Minimization of the Objective Function

The regularization of the cylindrical functior(, #) is equivalent to regularize the cylindrical surfag€, 0).
We propose a variational formulation to look for the regked solution. This solution is the result of a
minimization problem. Our model is composed of two termsatismchment term that makes use of the disparity
maps to constraint the process; and a regularizing termgheged to obtain a smooth solution. This term is
designed to regularize the surface by preserving the discoties of the cylindrical function which are related
to the varying depth of the 3D surface.

The objective function proposed is

N
E(r) = (Z//Hmc—i—l (1,0) — m, (1,0) — h%. (m,)|| dide
c=1

N
m. (1,0) — me.q (1,0) — h° (m, 2dld0>
#3 [ [l .0~ mecs 4.0) = (mes)]
+a//¢(HVrH) dlde . 5)

m.;1 (1, 0) is the image coordinate for camera- 1 denoted by (2) andn. (I, 0) is the correspondent for
Uy (me)
vy/—(me)
c. Sign+ corresponds to the optical flow from camert ¢ + 1 and sign— to the optical flow from camera
to camera: — 1. We use a balance parameter,In the first term, the surface is constraint with the infotioa
supplied by the original optical flows in both senses. Th@sdderm is the regularizing term. The purpose
of this term is to find a smooth solution respecting the cyital function discontinuities. This kind of term
has been extensively used in other related subjects likeabfitow estimation, stereoscopic vision or image
restoration. In papers [4, 14] there is a discussion abawtion ¢ (|| Vr||) and some references to other related
works.

A functional variation of this energy leads to the EulerHaamge equation that is given by the following
PDE:

camera. Vectorsh’ , (m.) =

Ay ) represent the optical flow estimations for pixel on camera
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In order to search for the solution we implement a gradiesteled method in the wagg = ——5,~, thus
having an equation in the form:

or (¢ (IVr]) )
T a-dw( e Vr

Ne t
- <Z ((me = ey = b am)

c=1

om, _ aInc—i—l . c+1 amc—i—l))
< or or Jh- or

N¢
+Z ((mc-l-l — m. — h?{—(mc))t
c=1

8mc+1 8mc c 8n’lc
( or  or - Jhy or ))) ' (7)

In this case the divergence term is well known and acts likifasibn scheme. If we expand the divergence

expression we obtain
(& vrl) ) oAVl
div <7w = UV g (V) ®)
[Vl Ivr "
wheren = % and¢ = 7 are the unitary vectors in the directions parallel and padjmailar to the gradient,
respectively.
Playing with functione (s) it is possible to achieve an anisotropic diffusion at corgoT he first in propos-
ing this kind of diffusion equation were Perona and Malik][itBwhere they introduced a decreasing function
to avoid diffusion at contours. Other related works havesappd and some of them have addressed the problem
of regularizing along the isophotes. Our objective is ndy ¢a diffuse isotropically at homogeneous regions
but also to diffuse along the contours. We can get this behawiy adapting the coefficients of; andr,,,. The

first allows the diffusion to be carried out along the isogisaind the second in the direction of the gradient.

3.2 Numerical Scheme

In this section we study how to implement an explicit numedrischeme for this method. We deri\?§
analytically from (2). Regarding (8) the divergence is ded in two terms and the values for both of them are
given by the following expressions:
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The first and second derivatives srandy are approximated by finite differences as

Titl,j — Ti—1
2 )
Tij+l — Tij—1
2 Y
Tigl,j — 275 + Tie15,

3
12

12

Tyy = Tig+l = 20ij +Tij-1,

Titlj+1 +Ti-1,5-1 — Ti-1,541 — Titl,j-1
o i+1,5+ 1—1,j i—1,7+ i+1,7 ) (10)
Y 4

12

~ The derivatives of the components of the optical &, g—g, g andg—z, have also been approximated by
finite differences.
The final numerical scheme is implemented by means of anaixptiheme in the following way:

rev1 = re+dt (a(ree + g (IVrl) )

Ne t
_ (Z ((mc — Mg — hc—+1(mc+1))

c=1

om, B 6mc+1 _ c+1 8mc+1))
( or or Jh= or

Nc
+ Z ((mc+1 — m, — hi—(mc))t
c=1

' (8mc+1 _ome e 3mc) ) ) . (11)

or or T or

Functiong (s) is a decreasing function that disables isotropic diffugmmbig values of the gradient. This
function depends on a parameter callethat represents the value from where the gradient is comside be
a contour. This parameter is estimated by means of an igofraption s that states the value of the gradient
from a percentage (see [1] for more details).

The image coordinatesn, are computed from the cylindrical coordinates) andi. For this we have to
know from what cameras the values of the cylindrical functig6,/) were obtained.

3.3 SurfaceInitialization. Building the I nitial Cylindrical Function

In the proposed numerical scheme, we need to provide aaligiiiess for the 3D-cylindrical surface. We will
use a simple technique based on the 3D surface reconsiruai@ined using pair of images. Initially, we
have as many 3D surfaces as cameras are there in the systewill Ynsform the 3D surfaces into a unique
cylindrical function that will be used in the method. Givére tset of 3D surfaces the main steps for computing
the initial cylindrical function are:

1. EstimateQq, N1, N, andN3. This step depends on the position and orientation of thiaciron the
scene. For instance if we assume that the image sequenctiseubby turning a camera around the
object in a orthogonal plane to the cylinder axis, then weeazsily compute the cylinder parameters as
it is explained below.
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Figure 2: Views 0, 4, 28 and 32 of the synthetic cylinder segae

2. Built the cylindrical image. The cylindrical function Wbe represented through an image. This is what
we call the cylindrical image. The rows and columns of thigg®a are given by th&N; axis and the
angle,d, respectively. The bigger this image is the more accurdkedy8D surface is represented.

3. Create the cylindrical functiom(6,7). We project all 3D surfaces obtained from each camera in the
cylindrical image. We merge the information of all the 3Dfages by computing the mean for all
coincident 3D points that are projected on one pixel of tHadyical image. We also keep track of the
cameras from where the 3D points are seen.

The first step is to estimate the positic®) = (g0, q1,42)" , and axis,N; = (n11,n12,n13)" ,Ny =

(ng1,m92,n23)" andNg = (n31,n32, n33)” , of the cylindrical coordinate system. We have supposedtieat

camera configuration system is cylindrical in the sensedhdhe cameras are situated around the scene and

looking at the centre. We also suppose that the foci of theecasnare situated close to a common plaRg.

is estimated as the average of the 3D points of all surfabgsis the cylindrical axis and is computed as the

orthogonal direction to the plane where the camera focilNy,is the unitary vector in the camera focuses

plane that points from the cylindrical axis to the focus @& finst camera ani\; is orthogonal tdN; andNN,, .

In the second step we are concerned with the problem of reptiag the cylindrical function through a
bi-dimensional image. We have to compute the dimensionsidimage that will allocate the values of the
3D points in cylindrical coordinates. To calculate the nembf rows the lowest and highest 3D points in
the N; component are computed. The difference between them ddfiaesize of the cylindrical axis. The
number of columns is estimated knowing tRatr - radius is the length for the cylinder. We adapt the value
of radius in order to obtain an image with regular pixels (same pixémeand width). This value depends on
the dimension of the image in th€; axis. This image represents th@, [) function.

The last step consists of assigning a value to every pixelhenirhage. This process is carried out by
representing the 3D points in cylindrical coordinates amhjputing a mean for coincident points on a pixel.
There may be some locations where no 3D point is projectes pest-processing to fill these gaps is necessary.
These are filled from the values of the surrounding pixelsthatsame time that we compute a value for every
pixel we keep the information of the cameras from where tipesets were obtained. This will be necessary
for the resolution of the method.

Finally what we obtain is an image that for every pixel pasitthere is a value for(6,1). This is the way
we simplify the set of 3D surfaces into a cylindrical functithat we use as an initial guest in the proposed
numerical scheme.

4 Experimental Results

In this section we show the results of reconstructing andlaeing a synthetic cylinder and a bust sequence.
In the web page "http://serdis.dis.ulpgc.es/"jsanclese@rch/demos” the reader can find more details on the
numerical experiments we present here. In particular youioa vrml models of the 3D reconstruction.

In Fig. 2 we show several views of the cylinder. This sequescemposed of 36 images around the figure.
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Figure 3: Different views of the 3D reconstruction of theiggier. Front view, upper view, and view from the
bottom.

Figure 4: Regularization of the synthetic cylinder wih= 0, 1.

We first compute the disparity maps between every pair of@mrisz’e images, then we obtain a 3D surface
from every disparity map and finally we build the cylindriéahction. In Fig. 3 we show the final 3D cylindrical
surface. In this figure we show three views: a front view, apanview and a view from the bottom. We may
appreciate that the surface is not regular.

In Figs. 4 and 5 we show different regularizations. For thet fixample we have used a value foof 0.1
and for the second a value @f. The 3D model obtained for the second is more regular. Thétrssn both
cases a surface with less noise.

Next we show a real sequence of a bust. A lot of research hasds®ted to human body reconstruction
from image sequences (see for instance [22]). In this cassethuence is composed of 47 images taken around
a bust. Figure 6 shows the configuration of this sequenceth&tiprojection planes of the cameras.

In Fig. 7 we show different views of the sequence. The Busitr@duced in a platform with some squares
and little labels on them. These labels were introducedItbrate the cameras.

From Figs. 10, 11 and 12 we may appreciate several reguiarizafor different values of ands.

Figure 5: Regularization of the synthetic cylinder wih= 0, 5.
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Figure 6: Bust configuration: This figure shows the 3D reaoiestd bust and the distribution of the projection
planes corresponding to the 47 cameras

Figure 7: Images 0, 12, 20 and 32 of the Bust sequence

5 Conclusions

In this paper we have presented a novel method for the recatisn and regularization of cylindrical surfaces.
This kind of surfaces allows us to develop specific techréqukich are simpler and easier to implement than
other more general methods.

In particular we have considerably simplified the proces8freconstruction from multiple views. First,
we obtain a set of 3D points for each pair of stereoscopic ¥igsing a previous technique. Then, all the 3D
points are merged in a common cylindrical function, which ls-dimensional array, in a very simple way and
it is very fast since the operations involved are projectiand averaging of the 3D points. This avoids the
burden of determining the 3D geometry directly from the $&® points.

We have taken advantage of the simplicity of cylindrical rctiwates to represent the set of 3D points. Once
the cylindrical function is built the problem of surface oastruction and regularization is reduced to a 2D

Figure 8: The left image represents the texture of the Bugtesgce projected on a cylindrical image. The right
image is the cylindrical function represented in grey ls\{gie white colour is associated to the highest values)
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Figure 9: Different views of the Bust reconstruction

problem of recovering and regularizing a bi-dimensionailction.

We have established an energy in a traditional attachmegniarizing couple of terms. In the attachment
term we have used the disparity maps between pair of imagaslar to minimize the difference between the
surface point projection on the images and the expectedidocasing the precomputed disparity map. The
regularizing term allows for anisotropic diffusion by peegng the discontinuities of the cylindrical function.
From this we have derived a diffusion-reaction PDE and usadignt descend approach to reach the solution.

We have shown in the experiments that varying dhgarameter results in a more regular set of points and
varying the) parameter implies a more regular set of points by presetviegylindrical function discontinu-
ities as we have expected from the results obtained in ottlesfiThe use o and A parameters are somehow
simple. « refers to the smoothness of the final set of points.anefers to the way the regularization is carried
out at the contours. Varying these parameters is intuiix@n )\ is computed from an isotropy fractierwhich
is delimited between 0 and 1.
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