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Abstract

This paper describes two innovations that improve the efficiency and effectiveness of a genetic program-

ming approach to object detection problems. The approach uses genetic programming to construct object

detection programs that are applied, in a moving window fashion, to the large images to locate the objects

of interest. The first innovation is to break the GP search into two phases with the first phase applied to a

selected subset of the training data, and a simplified fitness function. The second phase is initialised with

the programs from the first phase, and uses the full set of training data with a complete fitness function

to construct the final detection programs. The second innovation is to add a program size component to

the fitness function. This approach is examined and compared with a neural network approach on three

object detection problems of increasing difficulty. The results suggest that the innovations increase both

the effectiveness and the efficiency of the genetic programming search, and also that the genetic program-

ming approach outperforms a neural network approach for the most difficult data set in terms of the object

detection accuracy.

Key Words: Artificial Intelligence approaches to Computer Vision, Object Recognition, Image Analysis,

Genetic Programming, Neural Networks.

1 Introduction

Object detection and recognition tasks arise in a very wide range of applications [1, 2, 3, 4, 5, 6, 7], such as

detecting faces from video images, finding tumours in a database of x-ray images, and detecting cyclones in

a database of satellite images. In many cases, people (possibly highly trained experts) are able to perform the

classification task well, but there is either a shortage of such experts, or the cost of people is too high. Given the

amount of data that needs to be detected, automated object detection systems are highly desirable. However,

creating such automated systems that have sufficient accuracy and reliability turns out to be very difficult.

Genetic programming (GP) is a relatively recent and fast developing approach to automatic programming [8,

9]. In GP, solutions to a problem are represented as computer programs. Darwinian principles of natural

selection and recombination are used to evolve a population of programs towards an effective solution to specific

problems. The flexibility and expressiveness of computer program representation, combined with the powerful

capabilities of evolutionary search, makes GP an exciting new method to solve a great variety of problems.
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28 Mengjie Zhang et al. / Electronic Letters on Computer Vision and Image Analysis 6(1):27-43, 2007

There have been a number of reports on the use of genetic programming in object detection [10, 11, 12, 13,

14, 15, 16]. The approach we have used in previous work [15, 16] is to use a single stage approach (referred

to as the basic GP approach here), where the GP is directly applied to the large images in a moving window

fashion to locate the objects of interest. Past work has demonstrated the effectiveness of this approach on

several object detection tasks.

While showing promise, this genetic programming approach still has some problems. One problem is that

the training time was often very long, even for relatively simple object detection problems. A second problem

is that the evolved programs are often hard to understand or interpret. We have identified two causes of these

problems: the programs are usually quite large and contain much redundancy, and the cost of the fitness function

is high. We believe that the size and redundancy of the programs contributes to the long training times and may

also reduce the quality of the resulting detectors by unnecessarily increasing the size of the search space and

reducing the probability of finding an optimal detector program. Evaluating the fitness of a candidate detector

program in the basic GP approach involves applying the program to each possible position of a window on

all the training images, which is quite expensive. An obvious solution is to apply the program to only a small

subset of the possible window positions, but it is not obvious how to choose the subset. A poor choice could

bias the evolution towards programs that are sub-optimal on the real data.

The goal of this paper is to investigate a study on improving GP techniques for object detection (rather than

investigate an application of GP for object detection). Specifically, we investigate two innovations on the basic

GP approach to address the problems described above. The first is to split the GP evolution into two phases,

using a different fitness function and just a subset of the training data in the first phase. The second is to

augment the fitness function in the second phase by a component that biases the evolution towards smaller, less

redundant programs. We consider the effectiveness and efficiency of this approach by comparing it with the

basic GP approach. We also examine the comprehensibility of the evolved genetic programs.

The rest of the paper is organised as follows. Section 2 gives some essential background of object detection

and recognition and GP related work to object detection. Section 3 describes the main aspects of this approach.

Section 4 describes the three image data sets and section 5 presents the experimental results. Section 6 draws

the conclusions and gives future directions.

2 Background

This section provides some essential background, including a brief overview of the object recognition and

detection with related methods, and a brief overview of related work in GP to object detection and recognition

and image analysis.

2.1 Object Detection/Recognition and Related Methods

The term object detection here refers to the detection of small objects in large images. This includes both object

classification and object localisation. Object classification refers to the task of discriminating between images

of different kinds of objects, where each image contains only one of the objects of interest. Object localisation

refers to the task of identifying the positions of all objects of interest in a large image. The object detection

problem is similar to the commonly used terms automatic target recognition and automatic object recognition.

Traditionally, most research on object recognition involves four stages: preprocessing, segmentation, feature

extraction and classification [17, 18]. The preprocessing stage aims to remove noise or enhance edges. In the

segmentation stage, a number of coherent regions and “suspicious” regions which might contain objects are

usually located and separated from the entire images. The feature extraction stage extracts domain specific

features from the segmented regions. Finally, the classification stage uses these features to distinguish the

classes of the objects of interest. The features extracted from the images and objects are generally domain

specific such as high level relational image features. Data mining and machine learning algorithms are usually

applied to object classification.
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Object detection and recognition has been of tremendous importance in many application domains. These

domains include military applications [19, 20, 10], shape matching [2], human face and visual recognition

[1, 5, 21, 22], natural scene recognition [4], agricultural product classification [23], handwritten character

recognition [24, 25], medical image analysis [26], postal code recognition [27, 28], and texture classification

[29].

Since the 1990s, many methods have been employed for object recognition. These include different kinds

of neural networks [30, 31, 28, 32, 33], genetic algorithms [34, 35], decision trees [36], statistical methods

such as Gaussian models and Naive Bayes [37, 36], support vector machines [37, 36], genetic programming

[38, 13, 22, 39], and hybrid methods [40, 41, 42].

2.1.1 Performance Evaluation

Object detection performance is usually measured by detection rate and false alarm rate. The detection rate

(DR) refers to the number of small objects correctly reported by a detection system as a percentage of the total

number of actual objects in the image(s). The false alarm rate (FAR), also called false alarms per object [43],

refers to the number of non-objects incorrectly reported as objects by a detection system as a percentage of the

total number of actual objects in the image(s). Note that the detection rate is between 0 and 100%, while the

false alarm rate may be greater than 100% for difficult object detection problems.

2.2 GP Main Characteristics: GP vs GAs

GP is an approach to automatic programming, in which a computer can construct and refine its own programs

to solve specific tasks. First popularised by Koza [9] in 1992, GP has become another main genetic paradigm

in evolutionary computation (EC) in addition to the well known genetic algorithms (GAs).

Compared with GAs, GP has a number of characteristics. While the standard GAs use bit strings to represent

solutions, the forms evolved by GP are generally trees or tree-like structures. The standard GA bit strings use a

fixed length representation while the GP trees can vary in length. While the GAs use a binary alphabet to form

the bit strings, the GP uses alphabets of various sizes and content depending on the problem domain. These

trees are made up of internal nodes and leaf nodes, which have been drawn from a set of primitive elements

that are relevant to the problem domain. Compared with a bit string to represent a given problem, the trees can

be much more flexible.

2.3 GP Related Work to Object Detection

Since the early 1990s, there has been only a small amount of work on applying genetic programming techniques

to object classification, object detection and other image recognition problems. This in part reflects the fact

that genetic programming is a relatively young discipline compared with, say, neural networks and genetic

algorithms.

In terms of the number of classes in object classification, there are two categories: binary classification

problems, where there are only two classes of objects to be classified, and multi-class classification problems,

where more than two classes of images are involved. While GP has been widely applied to binary classification

problems [38, 44, 10, 45], it has also been applied to multi-class classification problems [46, 22, 47, 16, 15, 48].

In terms of the representation of genetic programs, different forms of genetic programs have been developed

in GP systems for object classification and image recognition. The main program representation forms include

tree or tree-like or numeric expression programs [8, 49, 46, 48], graph based programs [8], linear GP [50],

linear-graph GP [51], and grammar based GP [52].

The use of GP in object/image recognition and detection has also been investigated in a variety of application

domains. These domains include military applications [10, 45], English letter recognition [24], face/eye detec-

tion and recognition [53, 22, 39], vehicle detection [38, 13] and other vision and image processing problems

[12, 54, 9, 14, 55, 56].
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Since the work to be presented in this paper focuses on the use of genetic programming techniques for object

detection, table 1 lists the recent research to overview the GP related work based on the applications and the

first authors.

Problems Applications Authors Source

Orthodontic landmark detection Ciesielski et al. [63]

Object Ship detection Howard et al. [38]

Mouth detection Isaka [64]

Detection Small target detection Benson [11]

Vehicle detection Howard et al. [13]

Medical object detection Zhang et al. [48, 15]

Tank detection Tackett [10, 45]

Letter recognition Andre [24]

Object Koza [49]

Face recognition Teller et al. [22]

Classification Small target classification Stanhope et al. [57]

Winkeler et al. [39]

Shape recognition Teller 7et al. [47]

Eye recognition Robinson et al. [53]

Texture classification Song et al. [58, 59,

60, 44, 29]

Medical object classification Loveard et al. [61, 46]

Shape and coin recognition Zhang et al. [62]

Edge detection Lucier et al. [65]

Other Vision San Mateo trail Koza [9]

Problems problem Koza [66]

Image analysis Howard et al. [54]

Poli [67]

Model Interpretation Lindblad et al. [14]

Stereoscopic Vision Graae et al. [12]

Image compression Nordin et al. [55]

Table 1: Object recognition and detection related work based on genetic programming.

3 The Approach

3.1 Overview of the approach

Figure 1 shows an overview of this approach, which has two phases of learning and a testing procedure. In the

first learning phase, the evolved genetic programs were initialised randomly and trained on object examples cut

out from the large images in the training set. This is just an object classification task, which is simpler than the

full object detection task. This phase therefore uses a fitness function which maximises classification accuracy

on the object cutouts.

In the second phase, a second GP process is initialised with the programs generated by the first phase, and

trained on the full images in the training set by applying the programs to a square input field (“window”) that

was moved across the images to detect the objects of interest. This phase uses a fitness function that maximises

detection performance on the large images in the training set. In the test procedure, the best refined genetic

program is then applied to the entire images in the test set to measure object detection performance. The process

of the second phase and the GP testing procedure are shown in figure 2.

Because the object classification task is simpler than the object detection task, we expect the first phase to

be able to find good genetic programs much more rapidly and effectively than the second phase. Also, the
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Figure 1: An overview of the two phase GP approach.
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Figure 2: The second phase of GP training (GP-refine) and the GP testing procedure.

fitness function is much easier to evaluate, so that a more extensive evolution can be performed in the same

time. Although simpler, the object classification task is closely related to the detection task, so we believe that

the genetic programs generated by the first phase are likely to be very good starting points for the second phase,

allowing the more expensive evolutionary process to concentrate its effort in the more optimal part of the search

space.

Since the number of possible programs increases exponentially with the size of the programs, the difficulty

of finding an optimal program also increases with the size of the programs. In the second phase, we added a

program size component to the fitness function to bias the search towards simpler functions, which we expected

would increase both the efficiency and the effectiveness of the evolutionary search. It will also have a tendency

to remove redundancy (since a program with redundancy will be less fit than an equivalent program with the

redundancy removed), making the programs more comprehensible.
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3.2 Terminal set and function set

For object detection problems, terminals generally correspond to image features. Instead of using global fea-

tures of an entire input image window, we used a number of statistical properties of local square and circular

region features as terminals, as shown in figure 3. The first terminal set consists of the means and standard

deviations of a series of concentric square regions centred in the input image window, which was used in the

shape data set (see section 4). The second terminal set consists of the means and standard deviations of a series

of concentric circular regions, which was used in the two coin data sets. For each terminal set, we also used a

random constant as an additional terminal.
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Figure 3: Local square and circular features as terminals.

Notice that these features are certainly not the best for these particular problems. However, our goal is to

investigate the two-phase and the program size ideas rather than finding good features for a particular task,

which is beyond the scope of this paper. Accordingly, instead of using some complex features such as the SIFT

features [68, 7], haar wavelets and orientation histogram features [1], we used these simple features to keep the

problem complexity low.

In the function set, the four standard arithmetic operators and a conditional operator were used to form the

non-terminal nodes:

FuncSet = {+,−, ∗, /, if}

The +, −, and ∗ operators have their usual meanings — addition, subtraction and multiplication, while /

represents “protected” division which is the usual division operator except that a divide by zero gives a result of

zero. Each of these functions takes two arguments. The if function takes three arguments. The first argument,

which can be any expression, constitutes the condition. If the first argument is positive, the if function returns

its second argument; otherwise, it returns its third argument. The if function allows a program to contain a

different expression in different regions of the feature space, and allows discontinuous programs, rather than

insisting on smooth functions.

3.3 Object classification strategy

The output of a genetic program is a floating point number. Generally genetic programs can perform one

class object detection tasks quite well where the division between positive and negative numbers of a genetic

program output corresponds to the separation of the objects of interest (of a single class) from the background

(non-objects). However, for multiple class object detection problems, where three or more classes of objects

of interest are involved, the standard genetic programming classification strategy mentioned above cannot be

directly applied.

In this approach, we used a different strategy called program classification map, as shown in equation 1, for

the multiple class object detection problems [48]. Based on the output of an evolved genetic program, this map

can identify which class of the object located in the current input field belongs to. In this map, m refers to the

number of object classes of interest, v is the output value of the evolved program and T is a constant defined by

the user, which plays a role of a threshold.
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background, v ≤ 0
class 1, 0 < v ≤ T
class 2, T < v ≤ 2T

· · · · · ·
class i, (i − 1) × T < v ≤ i × T

· · · · · ·
class m, v > (m − 1) × T

(1)

3.4 Fitness functions

We used two fitness functions for the two learning phases. In the first phase, we used the classification accuracy

directly as the fitness function to maximise object classification accuracy. In the second phase, we used a more

complex fitness function to be described below to maximise object detection accuracy.

The goal of object detection is to achieve both a high detection rate and a low false alarm rate. In genetic

programming, this typically needs either a multi-objective fitness function or a single-objective fitness function

that can integrate the effects of the multiple objectives.

While a real multi-objective fitness function can be used for object detection as in [69], the GP community

typically takes the latter approach — usually uses a single-objective fitness function that can reflect the effects

of the multiple objectives for a particular problem such as object detection [13, 38, 16, 70]. An example

existing fitness function of this kind used in our previous work [16] (and similar ideas also used in other work

[13, 38, 70]) is:

fitness(DR, FAR) = Wd ∗ (1 − DR) + Wf ∗ FAR (2)

where DR is the Detection Rate (the number of small objects correctly reported by a detection system as a

percentage of the total number of actual objects in the images) and FAR is the False Alarm Rate (also called

false alarms per object, the number of non-objects incorrectly reported as objects by a detection system as a

percentage of the total number of actual objects in the images). The parameters Wd, Wf reflect the relative

importance between the detection rate and the false alarm rate.

Although such a fitness function accurately reflects the performance measure of an object detection system,

it is not smooth. In particular, small improvements in an evolved genetic program may not be reflected in any

change to the fitness function. The reason is the clustering process that is essential for the object detection —

as the sliding window is moved over a true object, the program will generally identify an object at a cluster

of window locations where the object is approximately centered in the window. It is important that the set of

positions is clustered into the identification of a single object rather than the identification of a set of objects on

top of each other.

Suppose we obtained two genetic programs from the population. Program 1 incorrectly identified a large

cluster of locations as an object and Program 2 identified a smaller cluster of locations (as shown in figures 4

(b) and (c)). In terms of object detection, the program 2 was clearly better than program 1 since program 2

only produced six false alarm pixels but program 1 produced 18 false alarm pixels. However, the above fitness

function grouped the two clusters of different numbers of false alarm pixels as the same number (which is two)

of false positives for both programs. Thus the two programs have exactly the same FAR since both of them have

two false positives. Accordingly, a fitness function based solely on DR and FAR cannot correctly rank these

two programs, which means that the evolutionary process will have difficulty for selecting better programs.

To deal with this problem, the False Alarm Area (FAA, the number of false alarm pixels which are not object

centres but are incorrectly reported as object centres before clustering) was added to the fitness function.

Another problem of using this fitness function is that some genetic programs evolved are very long. When a

short program and a long program produce the same detection rate and the same false alarm rate, the GP system

will randomly choose one for reproduction, mutation or crossover during the evolutionary process. If the long
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(a) (c)(b)

Figure 4: Sample object detection maps. (a) Original image; (b) Detection map produced by Program 1; (c)

Detection map produced by program 2.

programs are selected, the evolution for the rest of the learning process will be slow. More importantly, the

good building blocks in these long programs will have a much greater chance to be destroyed than in the short

programs (Gedanken experiment in GP [8]), which could lead to poor solutions by the evolutionary process.

This is mainly because this fitness function does not include any hints about the size of programs.

3.4.1 The new fitness function

To smooth the fitness function so that small improvement in genetic programs could be reflected and to consider

the effect of program size, we added two measures, false alarm area and program size to the fitness function.

The new fitness of a genetic program is calculated as follows.

1. Apply the program as a moving n×n window template (n is the size of the input image window) to

each of the training images and obtain the output value of the program at each possible window position,

as shown in Figure 2. Label each window position with the ‘detected’ object according to the object

classification strategy. Call this data structure a detection map.

2. Find the centres of objects of interest only by the following clustering process:

• Scan the detection map from the up-left corner “pixel by pixel” for detected objects of interest (those

“pixels” marked as the “background” class are skipped). When an object of a class of interest at

a particular location is encountered, mark that location point as the centre of the object and skip

pixels in n/2× n/2 square to right and below this location. In this way, all the locations (“pixels”)

considered “detected objects” by the genetic program within the square of then n/2×n/2 size will

be “clustered” as a single object. The square size n/2 × n/2 was chosen as half of the moving

sweeping window size in order not to miss any detected object. This process will continue in the

right cross and down directions until all the locations in the detection map are scanned or skipped.

The locations marked by this process are considered the centres of the objects for the classes of

interest detected by the genetic program.

3. Match these detected objects with the known locations of each of the desired/target objects and their

classes. Here, we allow location error of TOLERANCE pixels in the x and y directions. We have used

a value of 2 for TOLERANCE. For example, if the coordinates of a known object centre are (21, 19)

and the coordinates of a detected object centre are (22, 21), we consider that the object has been correctly

located.

4. Calculate the detection rate DR, the false alarm rate FAR, and the false alarm position FAA of the

evolved program.
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5. Count the size of the program by adding the number of terminals and the number of functions in the

program.

6. Compute the fitness of the program according to equation 3.

fitness = K1 · (1 − DR) + K2 · FAR + K3 · FAP + K4 · ProgSize (3)

where K1, K2, K3, and K4 are constant weighting parameters which reflect the relative importance be-

tween detection rate, false alarm rate, false alarm area, and program size.

We expect that the new fitness function can reflect both small and large improvement in genetic programs

and can bias the search towards simpler functions. We also expected this would increase both the efficiency

and the effectiveness of the evolutionary search. It will also have a tendency to reduce redundancy, making the

programs more comprehensible.

Notice that adding the program size constrain to the fitness function is a kind of parsimony pressure technique

[71, 72, 73]. Early work on this issue resulted in diverse opinions: some researchers think using parsimony

pressure could improve performance [72], while some others thinks this could lead to premature convergence

[73]. Although our approach is different from the early work, it might still face a risk of early convergence.

Therefore, we used a very small weight (K4) for the program size in our fitness function relative to K1 and K2

(see table 2).

3.5 Parameters and termination criteria

In this system, we used tree structures and Lisp S-expressions to represent genetic programs [9]. The ramped

half-and-half method [8, 9] was used for generating the programs in the initial population and for the mutation

operator. The proportional selection mechanism and the reproduction [48], crossover and mutation operators [8]

were used in the learning process.

Important parameter values used in the experiments are shown in table 2. These parameter values were

obtained using the existing heuristics in GP plus some minor effort on empirical search via experiments.

Parameter Kind Parameter Name Shape Coins Heads/tails

population-size 800 1000 1600

Search initial-max-depth 2 2 5

max-depth 6 7 8

Parameters max-generations 50 150 200

input-size 20×20 72×72 62×62

reproduction-rate 2% 2% 2%

Genetic cross-rate 70% 70% 70%

Parameters mutation-rate 28% 28% 28%

T 100 80 80

Fitness K1 5000 5000 5000

K2 100 100 100

Parameters K3 10 10 10

K4 1 1 1

Table 2: Parameters used for GP training for the three databases.

The learning/evolutionary process is run for a fixed number (max-generations) of generations, unless it finds

a program that solves the problem perfectly (100% detection rate and no false alarms), or there is no increase

in the fitness for 10 generations, at which point the evolution is terminated early.
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4 Image Data Sets

No. of images: 10 No. of images: 20 No. of images: 20

Object size:18×18 Object size:70× 70 Object size:60×60

(Shape) (Coins) (Heads/tails)

Figure 5: Object detection problems.

We used three data sets in the experiments. Example images are given in figure 5. These data sets provide

object detection problems of increasing difficulty. Data set 1 (Shape) was generated to give well defined objects

against a uniform background. The pixels of the objects were generated using a Gaussian generator with

different means and variances for different classes. There are two classes of small objects of interest in this

database: circles and squares. Data set 2 (Coins) was intended to be somewhat harder and consists of scanned

images of New Zealand coins. There are two object classes of interest: the 5-cent coins and 10-cent coins.

These coins are a mixture of head up or tail up and accordingly has a greater variance than data set 1. The

objects in each class have a similar size but are located at arbitrary positions and with different rotations. Since

the sizes of the two classes (5-cent coins vs 10-cent coins) are quite different, it should not be very difficult to

distinguish between the two classes. Data set 3 (Heads/tails) also contains two object classes of interest, but

the detection task is significantly more difficult. The task is detecting the head side and the tail side of New

Zealand 5 cent coins. The coins are placed in different locations with significantly different orientations. In

addition, the background was generated using a Gaussian generator with the same mean (100) but a very large

standard deviation (120), making the background more complex. Given the low resolution (75pt) of the images,

this detection task is actually very difficult — even humans cannot distinguish the classes perfectly.

In the experiments, we used one, three, and five images as the training set and used five, ten and ten images

as the test set for the Shape, Coins, and Heads/tails data sets, respectively. To avoid the “lucky partitioning” of

the these data set, the partitioning process of training and test sets was randomly repeated ten times for each of

the three data sets and the average results are reported in the next section.

5 Results and discussion

5.1 Object detection results

The detection results of the two phase GP approach for the three image data sets are shown in table 3. These

results are compared with the basic GP approach [15, 74] and a neural network approach [75, 76] using the same

set of features. The basic GP approach is similar to the new GP approach described in this paper, except that it

uses the old fitness function without considering the program size and false alarm areas (equation 2) and that

genetic programs are learned from the full training images directly, which is a single stage approach[15, 74].

In the neural network approach[75, 76], a three layered feed forward neural network is trained by the back

propagation algorithm [77] without momentum using an online learning scheme and fan-in factors [78]. For all
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the three approaches, the experiments are repeated 50 times and the average results on the test set are presented

in this section.

Image Data Set Shape Coins Heads/tails

heads tails

Best Detection Rate(%) 100 100 100 100

Best Two-phase GP Approach 0 0 0 55

False Alarm Basic GP Approach 0 0 0 100

Rate (%) Neural Networks 0 0 9.4 134.1

Table 3: Object detection results achieved by different approaches.

As can be seen from table 3, all the three approaches achieved ideal results for the shape and the Coins

data sets, reflecting the fact that the detection problems in the two data sets are relatively easy and that the two

terminal sets are appropriate for the two data sets (note that other terminal sets did not achieve ideal results

[74], but this is beyond the scope of this paper). For the difficult Heads/tails data set, none of the three methods

resulted in ideal performance. However, the two phase GP approach described in this paper achieved the best

performance.

Notice also that both GP approaches achieved better results than the neural network approach on this data set

using the same set of features. However, this might be partially because the features used here carried intrinsic

bias towards the neural network approach and/or partially because the neural networks were not tuned, pruned

or optimised [30, 69]. While further discussion here on this topic is beyond the goal of this paper, we are

interested in carrying out further investigation in the future.

5.2 Training Time and Program Size

Although both of the GP approaches achieved better results than the neural networks overall, the time spent

on the training/refining process are quite different. For the Coins data set, for example, the basic GP approach

used 17 hours on average to find a good genetic program, whereas the two phase GP approach used only 11

hours on average. For the Heads/tails data set, the two phase GP approach found good programs after 23 hours

on average (of which the first phase only took only two to three minutes). The basic GP approach, on the other

hand, took an average of 45 hours. The first phase is so fast because the size of the training data set is small, and

the task of discriminating the classes of objects (when centered in the input window) is quite simple. However,

the programs it finds appear to be very good starting points for the more expensive second phase, which enables

the evolution in the second phase to concentrate its search in a much more promising part of the search space.

In addition, the sizes of the programs (the number of terminals plus the number of functions in a program)

evolved by the two phase GP approach were also found to be shorter than those evolved by the basic GP

approach. For the Coins data set, for example, the program size in the two phase GP approach averages 56

nodes, in contrast to 107 nodes for the basic GP approach. Both the good initial programs and the bias towards

smaller programs would contribute to this result; we will investigate which of the factors is the most important

for object detection in the future.

5.3 Comprehensibility of Genetic Programs

To check the effectiveness of the new fitness function at improving the comprehensibility of the programs, an

evolved genetic program in the shape data set is shown below:

(/ (if (/ (- F4µ T) F4µ) F3µ (* (- F4µ F2µ) F1σ)) (/ F4µ F4µ))

This program detector can be simplified as follows:
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(if (- F4µ T) F3µ (* (- F4µ F2µ) F1σ))

where Fiµ and Fiσ are the mean and standard deviation of region i (see figure 3, left) of the window, respec-
tively, and T is a predefined threshold. This program can be translated into the following rule:

if (F4µ > T) then

value = F3µ;

else

value = (F4µ - F2µ) * F1σ;

If the sweeping window is over the background only, F4µ would be smaller than the threshold (100 here), the

program would execute the “else” part. Since F4µ is equal to F2µ in this case, the program output will be zero.

According to the classification strategy — object classification map, this case would be correctly classified as

background. If the input window contains a portion of an object of interest and some background, F4µ would

be smaller than F2µ, which results in a negative program output, corresponding to class background. If F4µ is

greater than the threshold T, then the input window must contain an object of interest, either for class1 or for

class2, depending the value of F3µ.

While this program detector can be relatively easily interpreted and understood, the programs obtained using

the old fitness function are generally hard to interpret due to the length of the programs and the redundancy. By

carefully designing the fitness function to constrain the program size, the evolved genetic programs appear to

be more comprehensible.

6 Conclusions

Rather than investigating an application of GP for object detection, the goal of this paper is to investigate a study

on improving GP techniques for object detection. The goal has been successfully achieved by developing a two

phase GP approach and a new fitness function with constraints on program size. We investigated the effective-

ness and efficiency of the two phase GP approach and the comprehensibility of genetic programs evolved using

the new fitness function. The approach was tested on three object detection problems of increasing difficulty

and achieved good results.

We developed a two phase approach to object detection using genetic programming. Our results suggest that

the two phase approach is more effective and more efficient than the basic GP approach. The new GP approach

also achieved better detection accuracy than a neural network approach on the second coin data set using the

same set of features. While a detailed comparison between the two approaches is beyond the goal of this paper,

we are interested in doing further investigation in the future.

We modified the fitness function by including a measure of program size. This resulted in genetic program

detectors that were better quality and more comprehensible. It also reduced the search computation time.

Although this approach considerably shortens the training times, the training process is still relatively long.

We intend to explore better classification strategies and add more heuristics to the genetic beam search to the

evolutionary process.

While the programs evolved by the two phase GP approach with the new fitness function are considerably

shorter than the basic GP approach, they usually still contain some redundancy. Although we suspect that

this redundancy reduces the efficiency and the effectiveness of the evolutionary search, it is also possible that

redundancy plays an important role in the search. We are experimenting with simplification of the programs

during the evolutionary process to remove the redundancy, and will be exploring whether it reduces training

speed and improves program quality.

This paper was focused on improving GP techniques rather than investigating applications of GP on object

detection. However, it would be interesting to test the new GP approach developed in this paper on some more

difficult, real world object detection tasks such as those in the Caltech 101 data set and the retina data set in the

future.
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