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Abstract

We present an efficient method to determine the optimal nradcbf two patch-based image object
representations under rotation, scaling, and translgdR&T). This use of patches is equivalent to a fully-
connected part-based model, for which the presented agipofters an efficient procedure to determine the
best fit. While other approaches that use fully connectedatsdtave a high complexity in the number of
parts used, we achieve linear complexity in that varialdeabise we only allow RST-matchings.

The presented approach is used for object recognition imésiaby matching images that contain
certain objects to a test image, we can detect whether thimtage contains an object of that class or not.
We evaluate this approach on the Caltech data and obtairceenpetitive results.

Key Words object recognition, registration and matching

1 Introduction

We describe a new method for detecting the presence of actdbjan image. This decision problem has
applications for instance in the automatic indexing of ¢éaingage and video databases and forms one of the
basic problems of computer vision and pattern recognititime contribution of this paper is to show that we
can use a fully-connected part-based model to efficientiyesthis problem. We evaluate the approach on the
well known Caltech database [1] and achieve competitiver eates.

Today, many successful approaches that address the probtpgmeral object detection use a representation
of the image objects by a collection of local descriptorshefitmage content. Commonly, SIFT features [2] or
just square subimages, called patches, are used to repitles@arts. This paradigm has the advantage of being
robust with respect to occlusions and background cluttémizges. Changes of the relative position of the
patches to each other can be handled in different ways argkqaently various methods have been proposed
in the literature.

A simple but nevertheless effective method is to disredgaedelative position of the parts completelyl(]B, 4].
Doing so, however, has the possible disadvantage that namation about the localization of the object is
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obtained. Other approaches use models in which the pasitibiine parts depend on oné[[5, 6] or up to tivo [7]
root positions. These models allow efficient determinatibthe maximum likelihood position of the object in
the image.

Note that [5] states that detection for a fully-connectet-pased model has exponential complexity in the
number of parts, while the method presented in this papes theloptimal match of such a model in titreear
in the number of parts considered. This is possible, bectugssearch is organized over the transformation
parameter space and simultaneously considers all part¢e tNat this search organization is only feasible
because we implicitly factor the dependencies betweenadtetibns of the parts in the image into the four
componentg-translation,y-translation, rotation, and scale. If we wanted to includlgeneral dependencies,
the algorithm would effectively become exponential ag@decause of the exponential growth of the search
space with the number of parameters.

2 Outline of the Method

We first give an overview of the proposed method and discussl¢isign decisions taken. The two following
sections then describe the feature extraction and the gaommatching in more detail. Figuld 1 shows an
illustration of the method.

We propose to directly match the parts distributed in a ezfee image that contains the object to those
extracted in atestimage. The RAST (Recognition by Adag@kdivision of Transformation Space) algorithm
[8l €] is able to determine the optimal matching under rotatiscaling, and translation efficiently. In the
experiments, the matching between a pair ofimages waswieted in one second on the average (on a standard
PC with 1.8GHz clock cycle running Linux). According 1d [8Ising the RAST approach is several orders of
magnitudes faster than an equivalent exhaustive searehRAST method permits globally optimal geometric
matching. It demonstrably yields geometric matches thaateast as good as the Hough transfdrm [10] or
pose clustering [11], and performs better in practicalrsgdtbecause it permits the incorporation of additional
constraints.

Among the various possibilities for representing the impggs, we choose to extract PCA transformed
patches, which are extracted using a wavelet-based ihtmied detectorl[12], we choose a vector quantization
into 2048 clusters obtained by a Linde-Buzo-Gray styletehisg [13] using the Euclidean distance on the
PCA-transformed patches. This number of clusters was foorie a good compromise between computing
time and accuracy iri.[3] and was not changed during the exigetis performed here. Here, we do not focus
on feature extraction but focus on the proposed model. Tdrergve choose features that were used in previous
experiments, in which the patch position was not taken intmant [3/14] and have shown to work reasonably
well. In [3], patches are extracted from the images, Ganddiixtures are estimated for vector quantization
and all information about the patches except their clodaster identifiers are discarded. Then, a histogram of
of the patches is created to represent the images. This thithmproved to be more robust wrt. brightness
and scale changes in14] by improving the feature extragiimcess. Thus, here the patch representation was
not optimized for the method proposed here. In the matchimgonly consider patches to match if they occur
on the same scale and are assigned the same identifier byctioe geantizer.

By using the RAST algorithm, we are able to find the optimal ahietg for the equivalent of a fully-
connected patch-based model. Note that in this work our igaadt to learn a model for each object, which
however would be possible. Instead, we match all givenitrgiimages that contain the object of interest to the
test image. This approach is analogous to nearest neighdssifcation, using the RAST score as a similarity
measure. This procedure has the additional advantage thaletermine the best-matching training image,
which directly allows the use of the method in an object-Has®age retrieval scenario.

In the matching, we allow for a displacement of the patchtmos by a predetermined number of pixels
(four in the experiments). The score we use to describe thétyjof a resulting matching is the number of
patches that have been correctly matched.
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Figure 1: lllustration of the presented approach: top baatection of interest points; extraction of patches
in multiple scales and scaling to a common size. Then, theeteid patches are replaced by the identifiers
of their closest clusters . In the bottom box, the interesttgp represented by vectors of cluster identifiers,
are matched to interest points, represented equally, deeeree image. Corresponding cluster identifiers are
printed in red, bold letters. The optimal matching and theoeding transformation parameters are obtained
by applying the RAST algorithm. The final image shows theresfee image overlaid on the best matching
database image transformed according to the obtaineddraretion parameters.



D. Keysers et al. / Electronic Letters on Computer Vision Bndge Analysis 6(1):44-54, 2007 47

We are aware that the design decisions described in theopieydaragraphs have alternatives that may
also result in a good performance. However, no optimizatibpatch representation or other parameters has
been done for the experiments presented in this work. Talawatr-fitting to the test data, we used the same
parameters that were found to work wellin[L4, 3]. This makekely that the matching method could perform
even better if more tuning would be applied.

Note that the proposed method does not need any segmerdtiainput data in contrast to e.@. |15, 6]. It
is likely, though, that the method would benefit from suchgnsentation.

3 Patch Extraction

To extract the image patches, first, all images are convantedyray scale and scaled to a common height of
225 pixels. The scaling is applied because in the databassevier evaluation, the Caltech database, the back-
ground images are smaller than the training images, whighaithsome classifier§|[3]. Given an image, we
extract patches of multiple sizesX7, 11x11, 21x 21, 31x 31 pixels) around up to 500 interest points obtained
using the method proposed by Loupias etlall [12]. The use tohpa of different sizes increases robustness
to image scaling and allows to use visual clues that occuiffaet@ht scales simultaneously. This procedure
yields up to 2000 patches per image, 1730 on the average.altiegs are allowed to extend beyond the image
border, in which case the part of the patch falling outsideiniage is padded with zeroes. After the patches are
extracted, they are scaled to a common size ofliBpixels to be able to determine a common code book for all
extracted patches and to capture patch similarities asoads. A PCA dimensionality reduction is then applied
to reduce the dimensionality of the data, keeping 40 coefitsi The first of these coefficients is discarded to
achieve brightness normalization as it mainly encodes ¥eeati image brightnes$ [14]. The patches from all
training images are then jointly clustered with a Linde-8«@ray algorithm using the Euclidean distance such
that 2048 clusters are obtained. Then we discard all infoomdor each patch except its closest corresponding
cluster center identifier. For the test data, this identiieletermined by evaluating the Euclidean distance to all
cluster centers for each patch. Thus, the clustering assigtuster label(p) € {1,... L} to each image patch

p and allows to define a similarity of patches based on thearudéntifiers. For the matching, it is allowed to
match two patcheg andp’ only if [(p) = I(p’). In principle, it is possible to represent each extractedtphy
scores to all cluster centers and thus reducing the amountosfation loss by vector quantization, however
this would incur much higher costs for finding correspondiints in the final matching algorithm and thus
would lead to strongly increased runtimes while not exjpgcé big gain in accuracy.

4 Determining the Optimal Matching

We now outline the RAST algorithm [1L5] 9] that we use for théedmination of the optimal matching of the
patch sets obtained from two images. Assume as input thefsestchesR for the reference anf for the test
image. Each patch = (z,,yp, () is a triple ofz-position,y-position, and label, where the label here consists
of the vector quantizer output and the scale at which thehpats extracted.

We are interested in finding the best transformation of tfereace image to explain the patches observed
in the test image. Here, we only consider the transformatioanslation, rotation, and scaling, although it
is straightforward to use other sets of transformationse ffansformations are characterized by a set of four
parameter® € T, i.e. translation inc- andy-direction, rotation angle, and scale factor. Hérés the set of all
possible initial parameter combinations as detailed heWfrfind the maximizing set of parameters

A~

(R, S) := arg max Q(, R, S)
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where the total quality)(J, R, S) of a parameter set is defined as the sum of local qualities

QW,R,S) = Y q(¥,p,9)

pPER

1 if Ip'eS:l,=1, Nd,p,p')<d
q(0,p,S) = o ( J<do
0 otherwise

whereq(¥, p, S) evaluates the goodness of fit for a given patciind a set of parametetsto the patches in
S by assigning a one in case of a match within a distafycthat was set taly = 4 pixels in the experiments.
The Euclidean distance between the position of patthnsformed using the parametérand the position of
patchp’ is denoted byi(¥, p, p’) here. Note that other local quality functions that correspe.g. to Gaussian
distributions rather than to bounded error can easily bediiced into the algorithm.

This maximization will be a complex task for most functiodatms of Q. In many applications, such
fits of parameters are carried out iteratively and heug8tic which involves the risk that the results found
are only locally optimal solutions. Other methods includedomized approaches like e.g. random sample
consensus [17].

We employ a branch-and-bound technigule [8] to perform theimmaation. This algorithm guarantees to
find the globally optimal parameter set by recursively suditig the parameter space and processing the
resulting parameter hyper-rectangles in the order givearbypper bound on the total quality. Moreover, with
small modifications, the algorithm allows us to efficientgtermine theé: best matches, not only the best match.
Figurel2 shows an illustration of a subdivision of the transfation space and Figure 3 shows the subdivisions
occurring during an actual run of the algorithm.

We determine an upper bound on the quality of parameters yparirectangular regiof’ using

<
max Q(¥, R, ) < ;%rggg q(9,p, S)

wheremaxycr (9, p, S) is straightforward to compute.
We can now organize the search as follows:

1. Pick an initial region of parameter valu€scontaining all the parameters that we are interested ir. (Fo
the experiments we used the following settingstranslation+200 pixels,y-translation+100 pixels,
angle+0.1 radians, scale factor in [0.8,1.2].)

2. Maintain a priority queue of regioris, where we use as the priority the upper bound on the possible
values of the global quality functio for parameters < T;.

3. Remove a regioff; from the priority queue; if the upper bound of the quality ¢tion associated with
the region is too small to be of interest, terminate. (Whenupper bound of the quality is smaller than
the value we are willing to accept as a match, we can be surethaatch that reaches this minimum
quality can be reached and can therefore end the algorithm.)

4. If the region is small enough to satisfy our accuracy neguéents, accept it as a solution.

5. Otherwise, split regioff; along the dimension furthest from satisfying our accuramystraints and insert
the subregions into the priority queue; continue at Step 3.

This algorithm will return the maximum quality match. To neatke approach practical and avoid duplicate
computations, we use a matchlist representation [16]. iBhatith each region kept in the priority queue in the
algorithm, we maintain a list (the matchlist) of all and ottipse patches that have the possibility to contribute
with a positive local quality to the global quality. We maiimt the list for each patch in the reference image.
These matchlists will shrink quickly with decreasing sidethe regionsT;. It is easy to see that the upper
bound of a parameter space regibnis also an upper bound for all subsetsiof When we split a region in
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Figure 2: lllustration of the subdivision step within the RRalgorithm. (a),(c) show the region of the search
space that is considered and (b),(d) show possible mateloing model to points in the image for transforma-
tions with parameters contained in the region. (Note thedetare not computed explicitly in the algorithm, but
an upper bound of the quality for all possible matches isrdeted instead.) After splitting the region (c),(d),
fewer transformations are possible and the upper boundhéoquiality of a match is recomputed accordingly.
This process is repeated for each of the subregions.

.
%

0

Figure 3: lllustration of the explored space during an dctua of the RAST algorithm. The two matched
images are the ones shown in Figlite 1. For the visualizat®nly searched for the translation component
while keeping scale and angle fixed. We can observe how ttdissibns that occurred during the exploration

of search space center around the final solution (-15.4) 26:d how large parts of the search space need not
be explored in detail at all.
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Step[®, we therefore never have to reconsider patches irhtligen that have already failed to contribute to
the quality computation in the parent and thus the matehtiah be reused in the children.
The running time of the algorithm is largely determined by fiactors:

e The time necessary to determinexxycr Q(J, R, S). This time is bounded by the product of the sizes
of the setsk and.S and therefore linear in the number of patches in the modeleagioned above. Note
that, due to the use of matchlists as discussed above, tregaveumber of comparisons is much smaller
in each step. All other computations that are necessarydh sabdivision step are much simpler and
dominated by the determination of the upper bound.

e The number of times the initial region is split before a solutis reported. The interactions between the
following variables influence this number:

— The dimensionality of the search space: the number of gglitds to grow approximately expo-
nentially with the dimensionality. However, in the apptioa presented here, this dimensionality
is always fixed at four.

— The distribution of the patches in the images: the numbepliatdends to decrease strongly if good
matches are present.

— The number of matching labels betweRmandS: fewer matches allow to reduce the matchlists and
to find the solution with fewer splits.

— The accuracy constraints imposed: if a more precise saligimeeded, the number of splits in-
creases.

5 Experiments and Results

The proposed method was evaluated on the Caltech data@duioéd by Fergus et all[1]. The task is to deter-
mine whether an object is present in a given image or not. lisiplurpose, several sets of images containing
certain objects (airplanes, faces, and motorbikes) and af éackground images not containing any of these
objects are availabl. The images are of various sizes and for the experimentswieey converted to gray
scale. The airplanes and the motorbikes task consist off@dtirtg and 800 test images each, the faces task
consists of 436 training and 434 test images. For each oéttasks, exactly half of the images contain the
object of interest. Here, we only used the training imagastbntain an object.

In the experiments, the decision if a test image belongs a@ootiject or background class was based on
the following decision rule: decide for class ‘object’ ifettaverage total quality for the best-fitting half of the
training images is larger than a given threshold, otherd@zde for class ‘background’. The threshold is the
parameter that is used to evaluate the results along the R®@.c The motivation for this approach is to
counteract the effect that one well-matching referenceyareas on the decision, because one such match often
exists for the background class as well, but in much fewegs#tsere exist multiple good matches.

Table[l shows the results obtained on the three Caltech e@tanscomparison to those published by other
groups. We give the equal error rate for each task for ourcambr. We observe that the error rates obtained
are competitive, especially for the motorbikes set, evengh the detection method was not tuned to the data
set. The higher error rates for the airplanes tasks in casgato the two other tasks may be partly caused
by disregarding parts of the homogeneous background (sky)df in many images of the object class here
due to the use of the interest point extractor. Another redsothe decreased accuracy on the airplanes task
might be that airplanes landing or taking off show a highegrde of rotation than can be observed in the
faces and motorbikes tasks and the lack of rotational iaxag in the feature extraction. As mentioned above,
the features used for the experiments were not optimizedthig particular method and we assume that a
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Table 1. Comparison of experimental results on the Caltata @rror rates [%0]).

method airp. | faces| mot.
constellation model [18] 32.0| 6.0| 16.0
automatic segmentation [15] 2.2 0.1| 10.4
texture feature combination [“[19] 0.8 16| 85
constellation model [20] 98| 36| 7.5
PCA SIFT features [21] 2.1 0.3| 5.0
discrim. salient patches, SVM[R2] 7.0 28| 3.8
spatial part-based model [ 6.7 18| 3.0
constellation model [5] 6.3| 9.7| 2.7
patch histograms [3] 3.8 71| 25
feat. inspired by visual cortex_[23] 3.3 18| 2.0
patch histograms+ [14] 1.4 3.7 11
this work 4.8 28| 13

performance increase could be obtained using better &gtarg. the improvements obtained(inl[14] oVér [3]
are only due to improved feature extraction. Another improent might be obtained by enriching the matching
features by additional information about other clusteteenthan the best matching one (cp. Sedfion 3).

Figure[4 shows example results of the matching algorithnecéit that the matching uses gray value infor-
mation only.) We show some good matches for the object ankigoaend class for all three tasks. Note that
in some cases the matching recognizes the backgrounddrstéize object, as in example (b). This may seem
to not be the intended behavior, but because the system do&saw the position of the objects in the train-
ing image and no object model is explicitly learned, the radtborrectly retrieves the best match among the
training images showing the same airport from a slightljtetlipoint of view. For the face images, in almost
all the ‘object’ cases an image of the same person is chosie & st-matching reference, in spite of changes
in scale and lighting. This interesting behavior is howesierplified by the fact that all images of one person
seem to have been taken on the same day. Example (i) showsial glase, in which the background image
also occurs as background in the reference image. Note hewaimples (d,e,j,n) a part of the background test
image is explained by a similar structure in the chosen eefar image.

6 Conclusion

We presented a method to efficiently (i.e. in time linear mtlnmber of patches) determine the optimal match-
ing between two image objects based on the equivalent ofyadaohnected patch-based model. The approach
was evaluated on the Caltech data set using an appropricigiaterule based on the obtained matchings to the
reference object data. The obtained quantitative resuigest that the method is well-suited for the task of
matching image objects.
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Figure 4: Examples of matching results. Each triple of insagfeows (top row) the test image, the matched
reference image, and the reference overlaid on the teseiaidey application of the determined transformation
(bottom row). The crosses show the position of the matchéchpa. Note that we only match to reference
images showing an object of the category and decide abosgece or not using the average matching scores.
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Figure[4 continued
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