NOISE REDUCTION ON MAMMOGRAPHIC PHANTOM IMAGES

Mouloud Adel^{*}, Daniel Zuwala⁺, Monique Rasigni⁺, Salah Bourennane^{*}

*Institut Fresnel, UMR-CNRS 6133 Equipe GSM +Interface Physique-Biologie-Médecine, case EC1 Domaine Universitaire de Saint-Jérôme 13397 Marseille Cedex 20 FRANCE

Nowadays 1 woman out of 10 is affected In a near future 1 woman out of 8 will be affected

Extensive means devoted to tackling this flail were unsuccessful

Early detection

Mammography

High quality mammograms is required

Quality control of mammographic facilities

Description of the studied phantom

- M_i : microcalcification groups C_1, C_2 : contrast areas
- N_i : masses
- F_i : fibres
- control

- H : horizontal spatial resolution scales
- V : vertical spatial resolution scales
- B : balls for X-ray alignment Z : reference optical density measurement area

Digitized image of the studied phantom

CONTRAST MODIFCATION FUNCTION CHOICE

Case of a piecewise linear in the range [0,1] $\Psi(x)=\alpha_i$ if x is in the interval h_i

COMPUTER SIMULATED IMAGES

RESULTS ON COMPUTER SIMULATED IMAGES

Mass noise-free image F

(a) Noisy image I with SNR=21 dB

(b) Noisy image I with SNR=15 dB

(c) Noisy image I with SNR=9 dB

Noise reduction result on image (a)

Noise reduction result on image (b)

Noise reduction result on image (c)

RESULTS ON COMPUTER SIMULATED IMAGES

Fibre noise-free image F

Fibre noisy image I with SNR=21 dB

Fibre noisy image I with SNR=15 dB

Fibre noisy image I with SNR=9 dB

Noise reduction result on image (d)

Noise reduction result on image (e)

Noise reduction result on image (f)

RESULTS ON REAL PHANTOM IMAGES

Real fibre images

Real mass images

Resulting denoised images

Resulting denoised images

CONCLUSIONS

- Function Ψ is found to be linear.
- Good results are obtained on both mass and fiber images.

- This method appears to be a good image preprocessing for automating quality control in mammographic facilities.