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Abstract

We propose a two-step method for detecting human heads with their orientations. In the first step, the
method employs an ellipse as the contour model of human-head appearances to deal with wide variety of
appearances. Our method then evaluates the ellipse to detect possible human heads. In the second step,
on the other hand, our method focuses on features inside the ellipse, such as eyes, the mouth or cheeks,
to model facial components. The method evaluates not only such components themselves but also their
geometric configuration to eliminate false positives in the first step and, at the same time, to estimate face
orientations. Our intensive experiments show that our method can correctly and stably detect human heads
with their orientations.
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1 Introduction

Automatically detecting and tracking people and their movements is important in many applications such as
in—and out-door surveillance, distance learning, or interfaces for human-computer interaction [2, 4, 6,7, 8, 9].
In particular, the human face is a key object of interest for visual discrimination and identification. A tremen-
dous amount of research has been made for detecting human heads/faces and for recognizing face orienta-
tions/expressions (see [3, 23] for surveys). Most existing methods in the literatures, however, focus on only
one of these two. Namely, methods to detect human heads/faces (see [1, 12, 19, 20, 24], for example) do not
estimate orientations of the detected heads/faces, and methods to recognize face orientations/expressions (see
[10, 14, 15, 18, 21], for example) assume that human faces in an image or an image sequence have been already
segmented. Recently, avisual object detection framework was proposed and applied to face detection[16, 17].
Though the framework is capable of processing images rapidly with achieving high detection rate, it focuses
on rapidly detecting human faces as rectangle regions and does not pay any attention to the contours of their
appearances.

To build afully automated system that recognizes human faces from images, it is essential to develop robust
and efficient algorithms to detect human heads and, at the same time, to identify face orientations. Given
a single image or a sequence of images, the goal of automatic human-face recognition is to detect human
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Figure 1. Geometric model of human head appearances.

heads/faces and estimate their orientations regardless of not only their positions, scales, orientations, poses, but
aso individual s, background changes and lighting conditions.

This paper proposes atwo-step method for detecting human heads and, at the same time, for estimating face
orientations by a monocular camera. In the both steps, we employ models of the human-head contour and face
orientations to enhance robustness and stableness in detection. We also introduce model evaluation with only
image-features robust against lighting conditions, i.e., the gradient of intensity and texture.

In the first step, our method employs an élipse as the contour model of human-head appearances to dea
with wide variety of appearances. The dlipse is generated from one dlipsoid based on the camera position
with its angle of depression in the environment. Our method then evaluates the ellipse over a given image to
detect possible human heads. In evaluation of an ellipse, two other ellipses are generated inside and outside of
the ellipse, and the gradient of intensity along the perimeter of the three ellipses is used for accurate detection
of human-head appearances.

In the second step, on the other hand, our method focuses on facial components such as eyes, the mouth or
cheeks to generate inner models for face-orientation estimation. Based on the camera position with its angle
of depression, our method projects the facial components on the ellipsoid onto the ellipse to generate inner
models of human-head appearances. Our method then evaluates not only such components themselves but
their geometric configuration to eliminate false positives in the first step and, at the same time, to estimate face
orientations. Here the Gabor-Wavelets filter, which is verified its robustness and stableness against changes in
scale, orientation and illumination, is used for detecting features representing the facial components.

Consequently, our method can correctly and stably detect human heads and estimate face orientations even
under environments such as illumination changes or face-orientation changes. Our intensive experiments using
aface-image database and real -situation images show the effectiveness of the proposed method.

2 Contour model for human-head appear ances

The model-based approach is inevitable to enhance stableness against environment changes. This is because
features detected from images without any models often generate false positivesin recognition.

2.1 Human head and its appearances

Human beings have ailmost the same contour in shape of the head and an ellipse approximates the appearance
of the contour. These observations remain invariant against changes in face orientation. We, therefore, model
the contour of human-head appearances by the elipse[1, 12, 19]. An ellipse has five parameters in the image
(Fig.1): the 2D coordinates (x,y) of the ellipse center, the length a of the semiminor axis, the oblateness r,
and the dlant ¢ of the ellipse.
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projection screen

Figure 3: Projection of the éllipsoid onto the
Figure 2: Human-head model. zz—plane.

These parameters of the elipse change depending on the angle of depression of a camera even though
human heads are in the same pose. In particular, the change in oblateness is outstanding. To investigate this
change in oblateness, we introduce an ellipsoid to the human-head model in 3D. We assume that the ellipsoid
is represented in the world coordinates by

2 2 2?
T

where » > 1. We then derive an dllipse as the contour model of human-head appearances depending on the
angle of depression of the camera (Fig. 2).

When we set up a camera with any angle of depression, the élipsoid (2.1) is observed as an €ellipse. The
length of the semiminor axis of the ellipse is always one. The length of the semimajor axis, on the other hand,
is between one and r depending on the angle of depression of the camera.

Now we determine the oblateness, v/ (1 < ' < r), of the ellipse observed by a camera with ¢ angle of
depression providing that the distance of the camera position from the ellipsoid is large enough. We consider
the ellipse obtained through the projection of (2.1) onto the zz—plane and its tangential line ¢ (Fig. 3). We see
that the ellipse, the projection of (2.1) onto the zz—plane, is represented by

2 2z
¥+ = L (2.2)
T

Let itstangential line with slant o from the x—axis be
z = sinpz + b, (2.3)

where b isthe z-intercept. Combining (2.2) and (2.3), we can compute b. We then have the coordinates of their

contact point, from which it follows that
, r4 4 tan2
roo= —_—
r2 4 tan?

Thisrelates ¢, i.e., the angle of depression of the camera, with 7/, i.e., the oblateness of the ellipse representing
the contour of human-head appearances. We dynamically compute the oblateness of the ellipse from the camera
position based on this relationship.

2.2 Evaluation of contour model

When we are given an ellipsein the image, how to evaluate the goodness of the ellipse to recognize as a human-
head appearance is a difficult problem. Employing image features invariant under changes in environment is
indispensable.
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Figure 4: The (red) ellipse representing a human-head appearance.

Color information is widely used there. Color information is robust against scale changes but sensitive to
changes in illumination. To overcome this problem, eliminating the luminance from color information and
evaluating chromaticity is proposed [1, 13, 19]. The effectiveness of this approach is, however, limited.

We employ, in this paper, the gradient of intensity in evaluating an ellipse to identify whether it isan applicant
of human-head appearances. Thisis because the gradient of intensity is robust against illumination changes.

When we fit an ellipse to the contour of a human-head appearance, we have the following observations

(Fig. 4):
e Great gradient magnitude of intensity at the ellipse perimeter.

e Continuous changes in intensity along the ellipse perimeter except for the boundary between hair and
sKin.

e Continuous changesin intensity from just inside the ellipse.

Wethus evaluate agiven ellipsein three different ways. Oneis evaluation on the gradient magnitude of intensity
at the perimeter of the ellipse. Another is evaluation on intensity changes along the perimeter of the ellipse and
the other is evaluation on intensity changes from the adjacent part inside the ellipse. Introducing these three
aspects in evaluation of an ellipse resultsin more accurately and more robustly obtaining applicants of human-
head appearances.

For evaluating an ellipse, we construct two other elipses (Fig.5). One is a smaller size dlipse with the
identical center and the other is alarger size ellipse with the identical center. In Fig. 5, the red élipse is to be
evaluated and the blue ellipse is the smaller size one and the green is the larger size one. We denote by orbit(i)
the intensity of the intersection point of the (red) ellipse to be evaluated and ray i whose end point is the ellipse
center. We remark that we have N rays with the same angle-interval and they are sorted by the angle from the
horizontal axisin theimage. outer(i) and inner(i) are defined in the same way for the cases of the larger size
elipse (green dlipse) and the smaller size ellipse (blue elipse), respectively.

We now have the following function evaluating the (red) ellipse.

N
fB) = kg D 1GG) - 06) ~ )}, 24
=1
where p is the parameter vector representing the red ellipse and
G(i) = |outer(i) — orbit(i)|, (2.5)
O(i) = lorbit(i) — orbit(i — 1)|, (2.6)
I(i) = |orbit(i) — inner(i)|. 2.7)

Note that % is the constant making the value dimensionless[1]. (2.5), (2.6), and (2.7) evaluate the gradient
magnitude of intensity at the elipse perimeter, intensity changes along the ellipse perimeter and intensity
changes from just inside the ellipse, respectively. Ellipses having a small value of (2.4) are then regarded as
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Figure 5: Evaluation of the ellipse (red: the ellipse to be evaluated).
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Figure 6: Textures around facial components.

applicants of human-head appearances. We remark that our ellipse evaluation is effective even if aface region
is darker than the surrounding background. This is because our evaluation is based on not intensity itself but
the gradient magnitude of intensity.

In the next section, we evaluate the applicants of human-head appearances based on features inherent in the
human face to recognize as a human-head appearance and, at the same time, to identify the face orientation.

3 Inner modelsfor face orientations

We investigate inside the ellipse in more detail to detect human heads and face orientations providing that
applicants of the human heads are already detected as ellipses. In detection, these pre-obtained applicants
facilitate determination of parameters such as scale or direction.

3.1 Facial components

Eyebrows, eyes, the mouth, the nose and cheeks are the features inherent in the human face. Here we focus on
eyes, the mouth and cheeks, and characterize textures around such facial components. We remark that textures
are robust against illumination changes.

Inoriental countries, we observe around eyes (1) adark areadue to eyebrows, (2) abright area dueto eyelids,
and (3) adark area due to the pupil (see Fig. 6 (a)). These are observations along the vertical direction of the
human face and these characterize the texture of an eye area. We aso observe that the eye area is symmetrical
with respect to the pupil. Asfor an area around the mouth, on the other hand, we observe (1) a bright area due
to the upper lip, (2) adark area due to the mouth, and (3) a bright area due to the lower lip (see Fig. 6 (b)). In
addition, the mouth areais also symmetrical with respect to the vertical center of the face. These observations
characterize the texture of a mouth area. We see no complex textures in a cheek area. These observations are
amost invariant and stable under changes in illumination, in face-orientation and in scale.
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Figure 7: Gabor kernels.

The geometric configuration of the facial components, i.e., the relative position between eyes, the mouth and
cheeksis also invariant. Combining the characteristic of textures of the facial components with their geometric
configuration enables us to stably recognize human heads/faces.

For each applicant of human-head appearances, we detect the facial components with their geometric con-
figuration to verify whether it is a human-head appearance. We remark that we can easily identify the scalein
detecting facial components since we have already obtained applicants of human-head appearances in terms of
ellipses.

3.2 Detecting facial componentsusing Gabor-Wavelets

In detecting facial feature points described in the previous section, the Gabor-Wavelets filter is most promising
in robustness and stableness against illumination changes[5, 11, 14, 15, 22]. We thus use Gabor-Wavel ets
to extract the facial feature points, eyes, the mouth and cheeks, as a set of multi-scale and multi-orientation
coefficients.

Applying the Gabor-Wavelets filter to apoint (z9, yo) of agiven image f(x,y) can be written as a convolu-
tion

7;[}(*/1707 Yo, 0, W, d)) = / dwdyf(a:, y)G('r —20,Y — Yo, 0, W, d))
with Gabor kernel G(x,y, o, w, ¢)swhere G isformulated [11] by
G(xayagawa(p) = Heﬁ(i‘g-i—ﬂz)ejwj'

Here

N

]:[cosé sinqﬁ][x}, nz#, = VI

—sing cos¢ Y

<

o,w, ¢ are the parameters representing the scale, frequency and orientation, respectively. Note that (z,9) is
obtained by rotating image point (z,y) by ¢.

Figure7 shows an example of a set of Gabor-Wavelets. (@) is the real part of the Gabor kernel with o =
3.0,w = 0.5°,¢ = 0°, and (b) isthe kernels with the same scale, different orientations and frequencies.

We can selectively apply the Gabor-Wavelets filter to particular locations. In addition, we can easily specify
scales, frequencies, and orientations in the application of the Gabor-Wavelets filter. In other words, we can
apply the Gabor-Wavelets filter to specific regions in the image, i.e., pre-obtained applicants of human-head
appearances, with selective parameters in scale, frequency, and orientation to extract a feature vector. Thisis
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because we have aready detected applicants of human-head appearances in terms of ellipses (we have already
roughly estimated a size of a human-head appearance). This reduces the computational cost in recognizing
human-head appearances in the practical sense.

We characterized in Section 3.1 textures around eyes and the mouth along the vertical direction of the human
face. To detect these textures we only have to select the parameters in the Gabor-Wavelets filter so that the
filter detects the textures along the semimajor axis of the ellipse. Points with maximal values in the response
ellipse-region can be eyes and those with minimal values can be a mouth. The area with no singularity, on the
other hand, can be cheeks.

3.3 Inner models of head appearances with facial components

We generate here inner models of human-head appearances based on the dlipsoid (2.1). As shown in Fig.2,
area R; on the ellipsoid denoting afacial component such as an eye or amouth is projected onto the plane when
it is viewed from the camera with direction (6, ¢), where 6 is the rotation angle toward the camera from the
front of the face and ¢ is the angle of depression of the camera. The projected area then enables us to identify
the location of the facial component in the human-head appearance. Hence, we can generate the inner models
of human-head appearances. We remark that we can measure ¢ in advance when we set up a camera in the
environment.

We consider plane S that goes though the origin and whose normal vector isidentical with the viewing line
of the camera (Fig.8). Let D = (k,I,m)" be the unit normal vector of plane S. S is then expressed by
kx 4+ ly +mz = 0. Itiseasy to seethat k,! and m are expressed in terms of # and (:

k = cosycosb,
[ = cospsinf,
m = sine.

Letting p be the foot of the perpendicular from a 3D point P onto S, we can easily relate P and p by

_ (X
» = (3)r

Here X {, Yg are the orthogonal unit vectorsin 3D representing the coordinatesin .S:

1 l m i
Xg=-—o | <k |, ve=—1| -

In this way, when depression angle ¢ and rotation angle 6 are specified, we can project afacial area of the
ellipsoid onto the image plane to obtain an inner model of the human-head appearance that represents the facial
components with their geometric configuration.

139



140 A. Sugimoto et al. / Electronic Letters on Computer Vision and Image Analysis 5(3):133-147, 2005

Figure 9: Inner models of human-head appearances with the facial components.

Figure9 shows the inner models of human-head appearances with ¢ = 0 (upper: 8 = ,30°,60°,90°,
lower: 6 = 180°,270°, 300°, 330°). R; and Ry denote the eye areas. R3 denotes the mouth area, and R, and
R5 denote the cheek areas.

To the response ellipse-region of the Gabor-Wavelets filter, we apply the inner model matching to detect
human-head appearances and face orientations. To be more concrete, if we find eyes, a mouth and cheeks in
aresponse elipse, we then identify that the ellipse is a human-head appearance and that the orientation of the
matched inner-model is the face orientation of the appearance. Otherwise, we identify that the ellipse is not a
human-head appearance and eliminate the ellipse.

4 Algorithm

Based on the discussion above, we describe here the algorithm for detecting human-head appearances with face
orientations.

To reduce the computational cost in generating applicants of human-head appearances, we introduce the
coarse-to-fine sampling of the parameters representing ellipses. Namely, we first coarsely sample pointsin the
parameter space for the ellipse and then minutely sample the area around the points that are selected based on
plausibility of the human-head appearance. Moreover, in the coarse sampling, we fixate parameters depending
only on poses of a human head to enhance position identification of the human head. In the fine sampling,
we sample all the parameters. The following agorithm effectively detects human heads and, at the same time,
estimates their orientations.

Step 1:  Capture an image.
Step 2:  Search applicants of human heads in the image.
2.1: (Coarse sampling): randomly sample position parameters, i.e., (z,y,a), in the parameter space

representing the ellipses that are generated from (2.1); let {p } be the sampled set.

2.2 Evaluate each entry of {p,} by (2.4); let {p,. } be the set of samples whose scoresof f in (2.4) are
less than a given threshold.

2.3: (Finesampling): more minutely sample pointsin the area around each entry of {p-. } (more specif-
ically, more minutely sample parameters (z, y, a,r,) around each entry of (z;+, y;+, a;+) where
(zi+, yir, a;+) is the position parameters of {p;. }); let {p} be the sampled set. (Note that {p;} is
applicants of human-head appearances.)

Step 3: To each entry of {p;}, generate inner models of human-head appearances.

Step 4. Apply the Gabor-Wavel ets filter to each entry of {p;f} to detect facial feature points.
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Figure 10: Parameters in obtai ning a face-image database.

Figure 11: Sample images of the face-image database (with (P of depression).

Step 5 To each p7, apply the matching with the corresponding inner models.

Step6: If p; matches one of its corresponding inner models with a high score, then recognize g as a
human-head appearance and the face orientation as that of the matched inner-model. If g does not
match any of its corresponding inner models with a high score, then eliminate g

We remark that iterating the steps above enables us to track human heads with their orientations. Though
introducing atransition model of motion to our detection algorithm leads to more effective tracking, it is beyond
the scope of this paper.

5 Experimental evaluation

5.1 Evaluation on face orientations using a face-image database

Wefirst evaluated our algorithm using aface-image database. The database contains face images of 300 persons
with the ages ranging uniformly from 15 to 65 years old including men and women. Each personistaken his/her
face images from different directions as shown in Fig. 10. To each face image in the database, attached is the
ground truth of the direction from which the image istaken.

We used 9600 (= 32 x 300) face images in the database where 32 directions are used in taking images of
each person: the angles of depression of the camera were o = @, 15°, 30°, 45° and the rotation angles with
respect to the horizontal axis, i.e., face orientations, were (, 30°, 60°, 90°, 180°, 270°, 300°, 330°. Fig.11
shows samples of the face images of one person in the database.
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Table 1: Recognition accuracy for different face orientations (%).

face orientations
0° | 30° | 60° | 90° | 180° | 270° | 300° | 330°

angles of depression

0° 84.71863|83.7|31L0| 970 | 347 | 80.0 | 79.3
15° 64.7 1863 | 753 | 27.7| 977 | 210 | 7.7 | 717
30° 237|753 | 703|140 990 | 100 | 51.0 | 51.7
45° 177|617 | 510|160 | 947 | 83 | 270 | 270

We applied our algorithm to the 9600 images to detect face orientations. Table 1 shows the recognition rates
of the estimated face-orientations.

Table 1 shows that face orientations are in general recognized with high scores. We see low accuracy in
orientations with 90° and 270°. This is because one eye and one cheek do not appear in the face with such
orientations and thus the inner model matching becomes unstable. We also see that accuracy becomes higher
as the angle of depression of the camera becomes smaller. The small angle of depression of the camera means
that the face is captured from the horizontal direction of the face and that the facial components clearly appear
in the image. It is understood that clearly appearing facial components improves the estimation accuracy of
face orientations. A large angle of depression, on the other hand, causes great changes not only in human-head
appearance but also in face appearance. Handling such great changes with our models has limitation. Thisis
because we generate a contour modd and inner models of human-head appearances from only one €ellipsoid.
On the other hand, we see that face images from the orientation with 18(°, back images of human heads, are
recognized stably and accurately independent of the change in angle of depression. Thisis due to stableness of
the Gabor-Wavelets filter in face-feature detection.

5.2 Evaluation in thereal situation

Secondly, we evaluated the performance of our method in the real situation. We conducted two kinds of
experiments here. One focused on human-head detection using real images and the other focused on ellipse
evaluation in human-head detection. In both cases, we found the robustness and the efficiency of our method.

5.2.1 Human-head detection in thereal situation

We here apply our method to real images to see its effectiveness.

We set up a camera with about 2m height and with about 2(° angle of depression. Then, under changing
lighting conditions one person turns round in front of the camera with changing his face orientations and walks
for about 10 seconds. The distance from the camerato the person was about 1.5m. To the 100 captured images,
we applied our method to detect human-head appearances and face orientations.

Figure 12 shows examples of the captured images with frame numbers. The ellipses detected as a human-
head appearance are superimposed on the frames where their colors denote face orientations. We see that
appearances of human heads are fairly large in the images.

We observed that human heads are incorrectly detected in several images. In such images, ellipses are
detected in the background. This is party because of existing objects in the background; in fact, ellipses are
easy to be detected in the background used in this experiment. Nevertheless, human-head appearances are
detected correctly and accurately in the rest of the all images.

To quantitatively evaluate the correctness in detection, we first manualy fitted an ellipse onto the head
appearance in each image to obtain the true €ellipse as the reference. We then computed the distance (the
position error) between the center of the detected ellipse and that of the true ellipse. We also computed the
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Figure 12: Images (with frame numbers) and detected human heads (colors means orientations).

ratio (the size error) of the semiminor length of the detected ellipse to that of the true ellipse. These results are
shown in Fig.13. The average and the standard deviation of errors in position were respectively, 8.85pixels and
22.4pixels. Those in size were, on the other hand, 0.0701 and 0.0485, respectively. Note that difference of the
size errors from 1.0 was employed in this computation.

We see that our method for detecting human heads and face orientations is practical overal in the rea
situation. An attached video sequence (video-1) demonstrates the performance of our method.

5.2.2 Effectiveness of human-head evaluation

We here focus on evaluation of ellipses in human-head detection and show effectiveness of our ellipse evalua-
tion.

We set up a camera with 1.8m height and with about (° angle of depression. We generated the situation
in which under changing lighting conditions one person walks around in front of the camera with distance
between about 2m and 4m for 20 seconds. 200 images were captured during the time. To the captured images,
we applied our method to detect human-head appearances and face orientations.

Figure 14 shows examples of the captured images with frame numbers. The ellipses detected as a human-
head appearance are superimposed on the frames. Colors of the ellipses denote face orientations. We see that
in this experiment appearances of human heads are small in the images.

We again verified that human-head appearances are detected almost correctly and accurately in all the images
in spite of changes in illumination. To see the performance of our method, we evaluated the accuracy of the
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Figure 13: Errorsin human-head detection.

detected human-head appearances. We first fitted an ellipse onto the head appearance in each image by hand to
obtain the true ellipse as the reference. Weintroduced two kinds of evaluation to the ellipse that was recognized
as the human-head appearance: one isthe accuracy of the center and the other is the accuracy of the semiminor
length. We computed the distance (the position error) between the center of the detected ellipse and that of the
true ellipse. We also computed the ratio (the size error) of the semiminor length of the detected ellipse to that of
the true ellipse. These results are shown in Figs. 15 and 16. We remark that the same evaluation was applied to
the method (called the simple-evaluation method (cf. [1, 19])) where the ellipse is evaluated only by (2.5), i.e.,
the gradient magnitude of intensity at the ellipse perimeter. For the position error and the difference of the size
error from 1.0, the average and standard deviation over the image sequence were calculated, which is shown in
Table 2.

Figures 15,16 and Table2 show the effectiveness of our method. Superiority of our method to the simple-
evaluation method indicates that introducing the smaller- and larger-size ellipses to ellipse evaluation improves
the accuracy in detecting the positions of human-head appearances. An attached video sequence (video-2)
demonstrates the performance comparison of our method and the simple-evaluation method (The right-hand
side is the result by the proposed method while the left-hand side is that by the simple evaluation method;
colors indicates orientations).

6 Conclusion

We proposed a two-step method for detecting human heads and estimating face orientations by a monocular
camera. In the both steps, we employ models of the human-head contour and face orientations to enhance
robustness and stableness in detection. We aso introduced model evaluation with only image-features robust
against lighting conditions.

Table 2: Errors in detecting the human head.

| error | | our method | simple evaluation |
mean [pixels 3.250 6.401
position || standard deviation [pixels] 1.950 4.386
mean 0.0762 0.0617
size standard deviation 0.04489 0.04877
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Figure 14: Examples of detected human heads (colors means orientations).

The first step employs an ellipse as the contour model of human-head appearances to deal with wide variety
of appearances. The dlipse was generated from one ellipsoid based on a camera position with its angle of
depression in the environment. We then evaluated the ellipse over a given image to detect possible human-head
appearances where we generated two other ellipses inside and outside of the ellipse to improve accuracy in
detection of human-head appearances.

The second step, on the other hand, focuses on facial components such as eyes, the mouth or cheeks to
generate inner models for face-orientation estimation. We evaluated not only such components themselves
but aso their geometric configuration to eliminate false positives in the first step and, at the same time, to
estimate face orientations. Here we used the Gabor-Wavelets filter in detecting features representing the facial
components because its robustness and stableness against changes in scale, orientation and illumination are
verified.

Consequently, our method can correctly and stably detect human heads and estimate face orientations even
under changes in face orientation and in illumination. Our intensive experiments showed the effectiveness of
the proposed method. Incorporating wider variety of face orientations into our method is left for future work.
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