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Abstract

We have recently developed in our lab a text recognizer felirmntexts written on a touch-terminal.
We present in this paper several strategies to adapt thognéer in a self-supervised way to a given writer
and compare them to the supervised adaptation scheme. $hbnigasystem is based on the activation-
verification cognitive model. We have designed this recoginto be writer-independent but it may be
adapted to be writer-dependent in order to increase thgnétan speed and rate. The classification expert
can be iteratively modified in order to learn the partictiesiof a writer. The best self-supervised adaptation
strategy is called prototype dynamic management and getd gesults, close to those of the supervised
methods. The combination of supervised and self-supahgsategies increases accuracy again. Results,
presented on a large database of 90 texts (5,400 wordsgmvhit 38 different writers are very encouraging
with an error rate lower than 10 %.

Key Words handwriting recognition, supervised adaptation, seffesvised adaptation, model-based classi-
fier.

1 Introduction

Recently, handheld devices like PDAs, mobiles phones,aisor tablet PC have became very popular. In
opposition to classical personal computers, they are skelboard-less and mouse-less. Therefore, electronic
pen is very attractive as pointing and handwriting deviagchsa device is at the frontier of two research fields:
man-machine interface and handwriting recognition.

In this paper, we focus on the problem of handwriting rectigmifor handheld devices with large screen
on which we can write texts. For such an application, redagniate should be very high otherwise it should
discourage all the possible users. With the last handwritetognizers on the market (Microsoft Windows
XP Tablet Edition, Apple Ink, myScript. .. ,) the recogniticate has became acceptable but is not high enough.
The major problem for these recognizers is the vast vanatipersonal writing style. Updating the parameters
of a writer-independent recognizer to transform it into @evrdependent recognizer with a higher accuracy
can solve this difficulty. The systems listed above are nt¢ & adapt themselves to a given writer. We
can get better recognition rates if we adapt a writer-inddpat recognizer with an adequate architecture and
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transform it quickly in a writer-dependent system. Howeiteshould not be forgotten that the use of a pen as
input modality has to be user friendly. So, the training stagst be as shorter as possible or - better - totally
hidden for the user.

Traditional adaptation technics require the writer inégmion (the so-called supervised adaptation). We pro-
pose in this article several self-supervised adaptatibaree that we compare to the already existing techniques
like supervised adaptation.

The article is organized as follows. In section 2, we preserdview of the various techniques of adapta-
tion. In section 3, we describe the writer-independent Ibsssystem. In section 4, we describe the different
adaptation strategies. In section 5, we present a combinbgtween self-supervised and supervised methods
to achieve very good results. Finally, conclusions andgeots are given in section 6.

2 Literature review

The idea of writer adaptation was revealed by researchdseifli¢ld of perceptive psychology. It has been
shown that, in the case of a hardly readable writer, it isezasi read a word if we have already read other
words written by the same person. This phenomenon is cdiledtaphemic priming effect [13]. Thus, we
learn the user writing characteristics from the words werean, and then, we use this new knowledge to read
the remaining words.

In the literature, we consider two adaptation strategigstesns where the adaptation step takes place once
first before use (called off-line) and systems with contimiadaptation (on-line).

Most systems [5, 12, 1, 2] using an off-line adaptation saheeed a labeled database of the writer. These
examples are use to make a supervised training of the sy$taums, the system learns the characteristics of this
particular writer before being used.

On the other hand, the following systems evolve contingodsting use.

The on-line handwriting recognition and adaptation sysbéfi0] uses a supervised incremental adaptation
strategy. The baseline system uses a single MLP with 72 tu{p@ letters and 10 punctuation marks). An
adaptation module, at the output of the MLP modifies its autfmetor. This adaptation module is a RBF
(Radial Basis Functionnetwork. The user informs the system of the classificatiooregiving the letter label,
and the RBF is re-trained (modification of the existing késroe addition of a new one).

Two other systems use a TDNNifhe Delay Neural Netwojlas classifier instead of the MLP. This TDNN
is trained on an omni-writer database and the output laydri®hetwork is replaced either bykann classifier
in [3] or by a discriminating classifier in [6]. During the gutation step, the TDNN is fixed and the output
classifier is trained, in order to learn mis-recognized atigrs.

The system described in [15] is very close to our system higdicated to isolated alphanumeric character
recognition. Thek-nn classifier uses the Dynamic Time Warping algorithm to gara the unknown characters
to a prototype database. The writer adaptation consistddimg the mis-classified characters in this database.
Moreover, useless prototypes can be removed from the dagtdbavoid an excessive growth of this latter.

There are also a lot of works on adaptation in off-line chi@apecognition and other pattern recognition
fields including speech recognition [16]. For example, ih][Xhe authors adapt the Hidden Markov Models
(HMM) first trained on a large database with a small databagieegparticular writer.

Based on the results of all these studies, we can notice tbdelrbased classifier (MBC) like-nn have
better ability to learn particular patterns than machirarag classifier (MLC) like HMM, MLP or GMM
(Gaussian Mixture Model). MBC need very few samples to lemmew pattern (sometime one sample is
enough) and, as this learning consists in adding the newlsamphe classifier database, they are not time
consuming. But the database size tends to increase sigtiicao the classification time and the memory
needed, increase linearly with this size. On the other hishhd; need more samples and are time consuming
to re-estimate their parameters. But after the training sthe and the classification time remain the same.
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3 Writer independent baseline system

For the experiments, we collected a large text databaseewiity 38 different writers. Each writer wrote an
average of 150 words for a total of 5,400 words and 26,008rkettA human expert labeled all the texts. We
present in this paper some iterative adaptation stratetfiegperformances of the system improve continuously
with the amount of data. Thus, we will study the evolutionhaf tecognition rate on three ranges corresponding
respectively to 50, 100 and 150 words used for the adaptaBome other writers who have written less than
50 words are kept to constitute the text training databasthéotuning of the writer independent system [8].

We use for adaptation a lexicon containing the 8,000 mosfufrat words of the French language. Our
system is also able to handle very large lexicons (some B0@@rds) as shown in the following. The complete
analysis speed is about 6 words per second (P4 1,8GHz Mattabj small amount of memory is required
(about 500Ko including the system program, the 8K lexicod e database).
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Figure 1: Baseline system.

The writer independent baseline system is presented inefigurt is based on the activation-verification
cognitive model described by Paap in 1982 [9]. The systensistsof a set of three neural encoding experts
[8] that extract geometrical and morphological informagian the input datai.€. strokes)

The first expert gives informations about thleapeof the strokes (size of ascender and descender...). We
compare the bounding box of the stroke with the estimateghth@ind positioning of medium letters in the line.

The second expert gives gsegmentationinformations like between-letter, within-letter and wittword
separation between two consecutive strokes. The inpukeaidlral network is a 32 features vector composed
of absolute and relative measurement of the two strokes. Seaforward backward sequential selection
(FBSS algorithm described in [7]) to keep the most relevaatures.

The last expert is theharacter classifier. Itis ak-nn classifier and it uses an omni-writer prototype database
This database was created by using an automatic clustdgagthm [11] starting from the 60,000 samples of
UNIPEN database [4] (corpus Train-R01/V07). This algaritis well fitted to heterogeneous character classes
with highly variable densities. It overcomes the classmralblems of clustering (prototype optimal number,
initialization ...). It works on labeled examples of a givetass and try to optimize the within-class variance by
combining two stages: a sub-optimal unsupervised resedmmototypes followed by an adaptation stage using
vector quantization. After clustering, the prototype tatse contains some 3,000 stroke prototypes for the 62
classes (26 upper-case letters, 26 lower-case letters@Gdiits). Each sample represents a given character
allograph (for single-stroke characters) or a part of thegahph (for multi-stroke characters). An allograph
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is a specific handwriting feature. It includes on the one hetmatacters with the same static representation
(i.e. the same image) but written with variable dynamicgaribar of strokes, senses, direction ...) and on the
other hand, the different handwriting model for a given elsger : cursive, hand-printed, mixed ... When an
unknown character has to be classified, it is first divided sitokes. Then, each stroke is compared with a
prototype subset producing a distance vector. The distahttee unknown data to each character class is the
sum of all the distance vectors (over the number of strokElsg nearest-neighbor criterion is then applied to
find the winning class.

All these experts provide probabilistic information at t#teoke level. For each expert, we also compute
a confusion matrix on the training data, in order to evalymater probabilities. We use the Bayesian rule to
re-estimate posterior probabilities by combining thisdiatvith prior knowledge. The segmentation probabil-
ities are used to construct the smallest and most relevgmesgation tree of a line of text. The classifier
probabilities are used to activate a list of hypotheticatdgan the lexicon for each segmentation in the tree.
A probabilistic engine that combines all the available pituilities evaluates the likelihood of each hypothetic
word in this list. We call this information thprobability of lexical reliability (PLR). We used dynamic pro-
gramming in the segmentation tree where each node has a Phfdanto get the best re-transcription of the
line.

We evaluate this lexicon driven recognizer on differentlyiton size on the whole text database used for
adaptation (figure 2, graph Omni). We also add some allogsfriom the text database into the classifier pro-
totype database to turn the system into a multi-writer raczag (figure 2, graph Multi). Even if the recognition
rate is not so high, we can notice the very good ability to malaite very big lexicon. We loose less than 5 %
of the recognition rate when we use a 187,000 words lexicampeoing with a 400 words lexicon (4675 times

smaller). Finally, we achieve a word error rate of 25 % in atewrindependent frame with a 8,0000 words
lexicon.
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Figure 2: Recognition rate vs lexicon size.

4 Writer adaptation strategies

The baseline system recognition is writer-independestpribtotype dataset (the so-called WI database) should
cover all the writing styles. Each prototype corresponds particular shape of a whole lettere( allograph).
Experimental results show that it covers at least the mastnoon writing styles. We also remark that stor-
ing character samples taken from the text database in thetypes database (multi-writer system) improves
greatly the recognition rate. There are, at least, two titns that reduce the recognition rate.
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e Missing allograph: the allograph is missing in the protetygatabase and it must be stored (added) in
this set.

e Confusing allograph: for a given writer, the prototype isiftsing or erroneous and it must be removed
from the prototype database.

Model-based classifier can be adapted very easily and guizklew writing styles, just by storing new char-
acter samples in the writer dependent (WD) database (wheese tatter miss) and, if needed, by inactivating
existing prototypes (when they are confusing). The systeecialization on a given user — by registration of
his personal features — makes it writer-dependent andédeegeits accuracy. The comparison of classification
hypothesis with either the labeled data (supervised atiap}ar the lexical hypothesis (self-supervised adap-
tation) detects classification errors. The misclassifieatatters can be stored in the writer-dependent (WD)
database, using the lexical hypothesis as a label.

4.1 Supervised adaptation

Before comparing the accuracy of self-supervised adaptatirategies, we start by studying supervised tech-
nics. We use the labels of the text database and the realegxtesitation to carry out supervised adaptation.
Note that when we know the text segmentation, our writegfghdent recognizer does not have to build a
segmentation tree and so the word error rate is about 5 %. Ufiedsed adaptation acts as follow. Characters
of the text are classified one after the other. The classiicditypothesis (the best answatp,, of the character
classifier) is compared with the label. If they do not mattie, mis-recognized character is stored in the user
personal database (figure 3). We consider two approachetexttapproach where the characters are added at
the end of the analysis of the text and time approach where the characters are added at the end of tlysianal
of each line. The results (table 1) show the improvement efrétognition rate due to the writer adaptation
of the handwriting recognition system when the segmentatiothe text in words and letters is known. We
present the word error rate (WER) after 50, 100, and 150 aedlyords.

de Ceconnacssaince

Classification :
te neconnaissar ce

hypothesis
Label de r econnaissance

Prototypes | ynipEN
database

Figure 3: Supervised addition of prototypes in the userliete.

As we know the labels and the text segmentation (it is notsté@just an interesting case study), we achieve
an awesome word recognition rate of 99 % that proves the siége$ applying adaptation strategies to recog-
nition systems. The WDDBS show the amount of prototypes cdu¢he WD database regarding to the WI
database size. ThHime approach allows a faster improvement of the recognitiom aat adds fewer prototypes
to the user database than tesxt approach. When we add characters after a full text analyssgcan add
several similar prototypes (and the average number of agid#dtypes increases). On the other handitie
approach, adds the first prototype of a mis-recognized ctaraThanks to this new sample, the following
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WER WDDBS
Words| 50 | 100 | 150
Baseline systen 5% 100 %

Text appr.: min| 0% 0% 0% +3 %
mean| 1.3% | 1.1% | 0.6% | +6%

max| 10% | 51% | 45% | +9%

Line Appr.: min| 0% 0% 0% +2 %
mean| 1.1% | 0.7% | 04% | +4%

max| 6.2% | 52% | 3.7% | +8%

Table 1: Supervised adaptation: Word error rate WER and WBbdae size WDDBS (known segmentation).
minis the result on the best writamaxis the result on the worst writer andeanis the result on the overall
text database (8k lexicon).

similar characters are correctly classified, so they do metirio be stored in the prototypes database. So, the
number of added prototypes is smaller in thme approach than in theext approach and we select the first
strategy for the following works. Due to the architecturegha recognition system, it is not possible to study
aword approach, where we made the adaptation after each analyaets.wit seems logical to think that a
word approach should perform better than line approach but the difference should not be enough to change
completely the results obtained with tliree approach.

From a perceptive point of view, the prototype storing ingita— at the letter level — the priming repetition
effect noticed at the word level: the initial presentatidraeovord reduces the amount of information necessary
to its future identification and this identification is parfted faster. Nevertheless, activating WD prototypes is
not sufficient to perform perfect classification, even witfreat amount of labeled data. Some added characters
will generate mis-classification and new errors will appdiaseems necessary to inactivate — or even delete —
some WI prototypes.

4.2 Self-supervised adaptation

In self-supervised adaptation, we use the recognizer irabfreamework,i.e. the data labels and the text

segmentation are not known (our reference system achiewedaesror rate of 25 % on a 8,000 words lexicon,
see figure 2). Moreover, self-supervised adaptation musbbwletely hidden to the writer which should not

be solicited by the system. Now, the classifier hypothedistlam lexical hypothesis are compared to find which
prototypes must be stored in the user database.
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Figure 4: Self-Supervised adaptation method. Additionrofgtypes in the user database.
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4.2.1 Systematical activation (SA)

In the systematical activation strategy, we consider thatléxical analyzer is “perfect’. Therefore, when
an error (difference between the classification hypothasisthe lexical hypothesis) occurs, the correspond-
ing character is stored in the user personal database. Dihe texical analyzer errors cumulated with the
segmentation errors, some prototypes are stored in baskslg¢Bgure 4). These errors introduce many new
classification errors. The performances of the recogniigsiem after adaptation is just a little bit better than
those of the baseline system (table 2).

4.2.2 Conditional activation (CA)

As the previous strategy is not really accurate, it seemessaey to study the behavior of the lexical analyzer in
order to store only useful prototypes. We saw that the reiiogrengine estimates for each worgbability

of lexical reliability (PLR, section 3) This PLR reflects the probability of error of the lexical baar for
this word. The conditional activation strategy is desdilie the following. If, for a given word, the PLR is
greater thany (i.e. we have good confidence in this word), then the mis-classtiredacters of this word are
added to the user database. We determinedvtharameter on the text training database by minimizing the
Bayesian error between the PLR distributions of well-octed words and words which were not well corrected
by lexical analysis. We obtained anof 0.015 and we show in table 2 the result of the conditionaVaiion.

WER WDDBS
Words| 50 | 100 | 150
Baseline systen 25% 100 %

SA strategy: minf 0% | 1.9%| 2% +2 %
mean| 25% | 23% | 23% | +6%
max| 53% | 73% | 51% | +14%
CAstrategy: minf 0% | 0% | 2% +1 %
mean | 22% | 20% | 17% | +2%

max| 71% | 58% | 43% | +3%

Table 2: Systematic and conditional activation: Word eraie WER and WD database size WDDBS (8k
lexicon).

The CA strategy is more accurate than the SA strategy as licesdconsiderably the false additions of
prototypes (see the small growth of the user database).dverewith the CA strategy the error rate decreases
continuously over the time. After 150 words of adaptatitw e¢rror rate decreases of about 8 %.

4.2.3 Dynamic management (DM)

This method has two goals. As seen previously, using lexigabthesis as a reference may add confusing or
erroneous prototypes, even when conditional activaticapjgied. Dynamic management is used to recover
from those prototypes that contribute more often to inadrtlean correct classifications. Inactivation methods
are also used to prune the prototype set and speed-up te#ick®n [15]. Each prototype (of the WI database
as of the WD database) has an initial adequdgy € 1000). This adequacy is modified during the recognition
of the text according to the usefulness of the prototype éncthssification process, by comparing the classifi-
cation hypothesis and the lexical hypothesis. Let us censite prototypé of the classj, three parameters are
necessary for the dynamic management:

e G :Rewards (+) the prototypewhen it performgGood classification (classification and lexical hypothe-
ses are the same).
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e M : Penalizes (-) the prototypevhen it performsviis-classification (classification and lexical hypotheses
are different).

e U : Penalizes (-) for all th&Jseless prototypes of the clags

The three parameters act differently. Tligparameter is used to reduce the adequacy of the useless proto
types for a given writer. As the baseline recognizer is wiiteependent, it needs many prototypes (an average
of 40 prototypes per class) to model a character class byteofdw ones will be useful for a given user. This
parameter eliminates the prototypes that are not usedglationg time. The value df defines this life “time”.
The M parameter is used to penalize strongly erroneous protetyfiee value of this parameter must be bigger
than the value of/ because erroneous prototypes are much more troublesomeigbéess prototypes. By
preserving only these two parameters, all the prototypesldidisappear. Thus, it is necessary to reward good
prototypes. To achieve it, th@ parameter is used to increase the adequacy of any prototyipatad during
the classification and validated by the lexical analyzere @guation (1) describes the evolution of the proto-
type adequacy. WherE; is the frequency of the clagsin the French language. These three parameters are
mutually exclusivd.e. on each occurrence, only one parameter is activated. V@@eﬁ 0, the prototype is
removed from the database. If these parameters are finag tthe system should inactivate quickly erroneous
prototypes while preserving only the useful writer propey. After an exhaustive search of the paramet@rs (
M, U) the optimal triplet is (30, 200, 8) and does not depend ofekieon size used for the lexical analysis.
Moreover, we can change their values H20 % without changing the results. A complete analysis o$d¢he
three parameters can be found on [7].

Qj(n +1) = Q5(n) +[G(n) — M(n) — U(n)]/F; 1)

The dynamic management combined with the conditional aiitin strategy is very efficient as it greatly
reduces the size of the database while preserving the rigiomgrate of the conditional activation strategy
(table 3). Even with a very large lexicon of more than 187,@0@0ds, this self-supervised adaptation technique
is very accurate and allows us to increase the recognitienofaabout 7 %.

WER WDDBS
8k words | 187k words
Baseline system 25 % 28 % 100 %
DM strategy 17 % 21 % -80 %

Table 3: Dynamic management: Word error rate WER and WD datakize WDDBS after 150 adaptation
words for two different lexicon sizes.
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Figure 5: Best recognition rate writer (99 %) and worst wr{i®0 %).

Now, let us focus on the evolution of the adequacy of someoprpes (figure 6). For some writers, the
WI prototypes are sufficient. For the class ‘a’, 2 prototypes used and thus the adequacy of the 45 others
decreases. For the class ‘s’, 4 prototypes are useful (therdas probably an unstable writing, see figure 5)
and the 36 others are inactivated. For another writer (¢tassd ‘e’), WD prototypes (in bold) are necessary.
For the class 's’, at the beginning, a WI prototype is used aftet some 15 occurrences, a WD prototype is
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added (the writer gets familiar with the handheld device #redpen). Another WD prototype is stored after
some 35 occurrences (the user writes faster perhaps andezhais way of writing). After 150 adaptation
words, the size of the prototype database was reduced by 80 %.

Classe a: 47 protos Classe s: 36 protos
3000 3000
(>; >
& 2000 S 2000
> >
o [on
S S
© 1000 © 1000
0 0
0 10 20 0 50 100
occurence occurence
Classe s: 38 protos Classe e: 45 protos
3000 3000
3 3
T 2000 T 2000
o [on
(0] (]
kS B
1000 1000 T~
0 0
0 20 40 0 50 100
occurence occurence

Figure 6: Prototypes adequacy evolution vs. occurrencén lirtes are WI prototypes and bold lines are WD
prototypes.

5 Supervised / self-supervised combination

We can simulate a perfect adaptation strategy if we use titetgpe database determined in a supervised way
in paragraph 4.1 in the reference system without knowingekesegmentation. In this case, the word error
rate after 150 words of CA adaptation reaches 12 %. We justlsawhe performances of the recognizer with a
self-supervised CA adaptation are not far from the perfdaptation (17 % against 12 %). It seems interesting
to introduce some labelled datiae( soliciting the user to enter the real word) in the self-suiged adaptation
scheme to achieve better results. So, it becomes a conthinattisupervised and self-supervised adaptation
called semi-supervised strategy.

Soliciting the user for writing 150 words is much too constirggy. On the other hand, asking him (her) to
write some words is acceptable, especially if the recagmitate is largely improved. This last combination
consists in carrying out a supervised adaptation of theesysin some known words and then uses the self-
supervised dynamic management adaptation strategy @pnbkesking the user to write a sentence of 30 words
decreases the error rate to 10 % which is even better thamvisgek adaptation performed alone (12 %)! We
guess these very interesting results are due to the faciriratpervised adaptation, we do not use the dynamic
management of the prototypes.

6 Conclusions & Future works

In this paper, we have shown that model-based classifiersame to adapt. Thanks to their structure, they
can learn new writings styles, by activating new prototyped inactivating erroneous ones. We first present
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Words for supervised adapt. WER
After supervised adapt. After 100 words more (DM)
0 25 % 20 %
10 24 % 17 %
20 24 % 12 %
30 24 % 10 %
50 23 % 9%

Table 4: Word error rate (WER) in semi-supervised adaptatio

a supervised adaptation strategy. It is very accurate butiser-friendly as it needs to be supervised by the
writer. Then we try to hide the adaptation process and pteseeral self-supervised strategies. The condi-
tional activation scheme is the more accurate as it focusa®l@ble words alone. The prototype dynamic
management increases both recognition rate (from 75 % to Barh classification speed (close to twice).
This process automatically transforms a writer-indepandatabase into a writer-dependent database of very
high quality and compactness. Finally, combining supexviand self-supervised improves again the system
accuracy (more than 90

It would be interesting to evaluate a semi-supervisedegiyatvhere the user is solicited only in the ambigu-
ous cases. We have also to adapt the parameters of the satjoreakpert, which actually is the biggest source
of error.
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