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Abstract

Fractal image compression gives some desirable properties like resolution independence, fast decoding, and very
competitive rate-distortion curves. But still suffers from a (sometimes very) high encoding time, depending on the
approach being used. This paper presents a method to reduce the encoding time of this technique by reducing the size of
the domain pool based on the Entropy value of each domain block. Experimental results on standard images show that
the proposed method yields superior performance over conventional fractal encoding.
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1 Introduction

With the ever increasing demand for images, sound, video sequences, computer animations and volume
visualization, data compression remains a critical issue regarding the cost of data storage and transmission
times. While JPEG currently provides the industry standard for still image compression, there is ongoing
research in alternative methods. Fractal image compression [1,2] is one of them. It has generated much
interest due to its promise of high compression ratios at good decompression quality and it enjoys the
advantage of very fast decompression. Another advantage of fractal image compression is its multi-
resolution property, i.e. an image can be decoded at higher or lower resolutions than the original, and it is
possible to "zoom-in" on sections of the image. These properties made it a very attractive method for
applications in multimedia: it was adopted by Microsoft for compressing thousands of images in its Encarta
multimedia encyclopaedia [3].

Despite of all the above properties of fractal image compression, the long computing in the encoding step
still remains the main drawback of this technique. Because good approximations are obtained when many
domain blocks are allowed, searching the pool of domain blocks is time consuming. In other word, consider

an N x N image and n x n range blocks. The number of range blocks is (N / n)*, while the number of the
domain blocks is (N —2n +1)*. The computation of best match between a range block and a domain block

is O(n”) . Considering n to be constant, the computation of complexity search is O(N *) .
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Several methods have been proposed to overcome this problem. The most common approach for reducing
the computational complexity is the classification scheme. In this scheme range and domain blocks are
grouped in classes according to their common characteristics. In the encoding phase, only blocks belonging
to the same class are compared, thus saving a lot of computation while keeping the performance in terms of
image quality quite close to that of exhaustive search. Jacquin [2] proposed a discrete feature classification
scheme based on Ramamurthi and Gersho approach [4]. The domain blocks are classified according to their
perceptual geometric features. Only three major types of block are differentiated: shade blocks, edge blocks,
and midrange blocks. In the Fisher’s classification method [5], a given image block is divided into four
quadrants. For each quadrant, the average and the variance are computed. According to certain combination
of these values, 72 classes are constructed. This method reduces the searching space efficiently. However, it
required large amount of computations and, the arrangement of these 72 classes is complicated.

In clustering methods [6,7] the domain blocks are classified by clustering their feature vectors in Voronoi
cells whose centers are designed from the test image or from a set of training images. For each range block,
matches are sought in the neighboring classes only. Another discrete feature classification based on mean
was proposed by Hurtgen and Stiller [8]. The feature vector is constructed by comparing the sub-block mean
of each quadrant to the block’s mean. In this approach the search area for a domain block is restricted to a
neighborhood of the current range. All the above approaches can only reduce the factor of proportionality in
O(N) the time complexity for a search in the domain pool, where N is the size of the domain pool.

A different approach is to organize the domain blocks into a tree- structure, which could admit faster
searching over the linear search. This approach is able to reduce the order of complexity from O(N) to
O(log N). The idea of tree-structured search to speed up encoding has long been used in the related technique
of Vector Quantization [9]. Caso et al. [10] and Bani-Eqgbal [11] have proposed formulations of tree-search
for fractal encoding.

In the feature vector approach introduced by Saupe in [12,13] a small set of d real-valued keys is devised
for each domain which make up a d-dimensional feature vector. These keys are carefully constructed such
that searching in the domain pool can be restricted to the nearest neighbors of a query point, i.e., the feature
vector of the current range. Thus the sequential search in the domain pool is replaced by multi-dimensional
nearest neighbor searching, which can be run in logarithmic time. Unfortunately, the feature vector
dimension is very high, i.e. equal to the number of pixels in the blocks. This limits the performance of this
approach as the multi-dimensionality search algorithms. Moreover large amounts of memory are required.
Some attempts to solve this problem are presented in [14].

Complexity reduction methods that are somewhat different in character are based on reducing the size of
the domain pool. Jacobs et al.’s method uses skipping adjacent domain blocks [15]. Monro [16] localizes the
domain pool relative to a given range based on the assumption that domain blocks close to range block are
well suited to match the given range block. Saupe’s Lean Domain Pool method discards a fraction of domain
blocks with the smallest variance [17]. The latest survey on the literature may be found in [18-20].

In this paper a new method to reduce the encoding time of fractal image compression is proposed. This

method is based on removing the domain block with high entropy, € from the domain pool. In this way, all
the useless domains will be removed from the pool achieving a more productive domain pool. The proposed
method can be extended to speed up the hybrid fractal coders and improve their performance.

The rest of this paper is organized as follows. Section 2, briefly describes fractal image coding and the
baseline algorithm. In Section 3, definition of entropy and using it in the proposed method to reduce the
encoding time of fractal image compression is presented, followed by experimental results and discussion in
Section 4. The conclusions of the present work are summarized in Section 5.

2 Fractal Image Coding

2.1 Principle of Fractal Coding

In the encoding phase of fractal image compression, the image of size N x N is first partitioned into non-
overlapping range blocks R;, { R, R,,...R, } of a predefined size BxB. Then, a search codebook (domain
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pool Q) is created from the image taking all the square blocks (domain blocks) D, { D,,D,,...D, } of size

2Bx2B, with integer step L in horizontal or vertical directions. To enlarge the variation, each domain is
expanded with the eight basic square block orientations by rotating 90 degrees clockwise the original and the
mirror domain block. The range-domain matching process initially consists of a shrinking operation in each
domain block that averages its pixel intensities forming a block of size BxB.

For a given range R, the encoder must search the domain pool € for best affine transformation w,,

which minimizes the distance between the image R ; and the image w, (D), (i.e. w,(D ;)= R ). The distance

is taken in the luminance dimension not the spatial dimensions. Such a distance can be defined in various
ways, but to simplify the computations it is convenient to use the Root Mean Square RMS metric. For a

range block with n pixels, each with intensity r; and a decimated domain block with n pixels, each with

intensity d; the objective is to minimize the quality
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Which occurs when the partial derivatives with respect to s and o are zero. Solving the resulting equations
will give the best coefficients s and o [5].
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The parameters that need to be placed in the encoded bit stream are S ; , O; | index of the best matching
domain, and rotation index. The range index i can be predicted from the decoder if the range blocks are
coded sequentially. The coefficient s, represents a contrast factor, with |5, I<1.0, to make sure that the
transformation is contractive in the luminance dimension, while the coefficient o, represents brightness

offset.

At decoding phase, Fisher [5] has shown that if the transforms are performed iteratively, beginning from
an arbitrary image of equal size, the result will be an attractor resembling the original image at the chosen
resolution.

2.2 Baseline fractal image coding algorithm

The main steps of the encoding algorithm of fractal image compression based on quadtree partition [5]
can be summarized as follows:
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Step 1: Initialization (domain pool construction)
Divide the input image into N domains, D ;
For (j=1;j < N;j++)
Push D onto domain pool stack €2
Step 2: Choose a tolerance level /. ;
Step 3: Search for best matches between range and domain blocks
For(i=1;i < num_range ;i++) {
min_error = £ ;
For (j=1;j < num_domain;j++) {
Compute s, 0;
If (0 < s< 1.0)
If (E(R,,D ;) < min_error) {

min_error = E(R;, D, );

best_domain[i] =j ; }
}

If (min_error== ¢_)

Set R ; uncovered and partition it into 4 smaller blocks;

Else
Save_coefficients(best_domain, s, 0);

In this algorithm, parameter /. settles the fidelity of the decoded image and the compression ratio. By

using different fidelity tolerances for the collage error, one obtains a series of encodings of varying
compression ratios and fidelities. For a range block if /. is violated for all the domain blocks, that is the

range block is uncovered, the range block is divided into four smaller range blocks, and one can search for

the best match domains for these smaller range blocks. At the end of step 1 the domain pool Qhas N
domain (i.e. all domains).

3  The Proposed Method

3.1 Entropy

Assume that there exists a set of events S={ x,, X, ,... x, }, with the probability of occurrence of each

event p(x;)= p,. These probabilities, P={ p,, p,,... p, }, are such that each p, =20, and Z; p; =1.
The function,

I(x;) =~log p, o)

is called the amount of self-information associated with event Xx;. This function is a measure of

occurrence of the event x;. The function / focuses on one event at a time. In most situations, however, and
certainly in the context of data compression, one has to look at the entire set of all possible events to measure
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content over the entire set. An important concept introduced by Shannon is entropy associated with a set of
events, which takes the form:

H(p,, pyrp,)=H(s)==)" p,logp, 6)

Entropy can be defined as the average self-information that is, the mean (expected or average) amount of
information for an occurrence of an event X;. In the context of coding a message, entropy represents the

lower bound on the average number of bits per input value. The function H has the following lower and the
upper limits:

11 1
0=H(1,00,.0)< H(p,p,...p,) < H(—,—,..—) =logn %)
nn n

In other words, if the events are equally likely, the uncertainty is the highest since the choice of an event
is not obvious. If one event has probability 1 and the others probability of 0, the choice is always the same,
and all uncertainly disappears.

3.2 The Entropy Based Encoded Algorithm

Eq. (1) is a full search problem and as mentioned previously is computationally intensive. One of the
simplest ways to decrease encoding time of this full search problem is to decrease the size of the domain
pool in order to decrease the number of domains to be searched. The proposed method reduces the encoding
time of fractal image compression by performing less searches as opposed to doing a faster search, by
excluding many of domain blocks from the domain pool. This idea is based on the observation that many
domains are never used in a typical fractal encoding, and only a fraction of this large domain pool is actually
used in the fractal coding. The collection of used domains is localized in regions with high degree of
structure [17]. Figure (1) shows the domain blocks of size 8x8 that are actually used in the fractal code of
Lena image. As expected the indicated domains are located mostly along edges and in the regions of high
contrast of the image.

Fig. (1): Domains of size 8x8 that are used for fractal coding of 512x512 Lena are shown in black.

Analyzing the domain pool, there is a very large set of domain blocks in the pool with high entropy,
which are not used in the fractal code. Thus, it is possible to reduce the search time by discarding a large
fraction of high entropy blocks, which affect only a few ranges. For these ranges a sub-optimal domains
with smaller entropy may be found. In this way, the domain pool is constructed from blocks with the lowest
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entropy instead of all domains. In this case, the encoding time is heavily reduced by a priori discarding those
domains from the pool, which are unlikely to be chosen for the fractal coding. Eq. (6) is used to calculate the
entropy value for each domain block. According to this value a decision is taken to determine if this domain

can become a part of the domain pool or not. A parameter € will control the domain entropy value in the

implementation, with E being a quality parameter since it determines the size of the domain pool. The
proposed method can only reduce the factor of proportionality in the O(N) complexity, where N is the
domain pool size. But one can use the Tree approach [21] on the resulting efficient domain pool after
removing all useless domain blocks, which is able to fundamentally reduce the order of encoding time from
O(N) to O(log N).

The baseline algorithm mentioned above is modified in such a way that the domain pool 2 contains only
domain blocks which have a certain entropy value. The main steps of the modified encoder algorithm of
fractal image compression can be summarized as follows:

Step 1: Initialization (domain pool construction)
Choose parameter E ;
Divide the input image into N domains, D ;
For(=1;j < N;j++) {
Ent =entropy (D, );
If Ent < &)
Push D; onto domain pool stack € }

Step 2: Choose a tolerance levels /. ;
Step 3: Search for best matches between range and domain blocks
For (i=1;i1 £ num_range;i++) {
min_error = £ . ;
For (j=1;j £ num_domain;j++) {
Compute s, 0;
If (0 <s<1.0)
If (E(R, ,Dj ) < min_error) {

min_error = E(R;, D));

best_domain[i] =j ; }
}

If (min_error== /)

Set R ; uncovered and partition it into 4 smaller blocks;

Else
Save_coefficients(best_domain, s, 0);

}

At the end of step 1 the domain pool has num_domain domain according to € value.

4  Experimental Results and Conclusions

This section presents experimental results showing the efficiency of the proposed method. The
performance tests carried out for a diverse set of well-known images of size 512x512 gray levels with 8bpp,
on a PC with Intel Pentium III 750 MHz CPU and 128MB memory under windows 98 operating system
using Visual C++6.0 programming language and the time is measured in seconds. Moreover, The scaling
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coefficient (contrast) restricted to values between 0 and 1 in order to avoid searching domain pool twice (i.e.
allowed only positive scaling factors in the gray level transformation). To ensure a compact encoding of the
affine transformation, the value of contrast and brightness are quantized using 4 and 6 bits for contrast and
brightness, respectively, hence the compression ratio is 95% and 89% for fixed range size and quadtree
partitions respectively. This study focuses on the implementation issues and presents the first empirical
experiments analyzing the performance of benefits of entropy approach to fractal image compression. First,
the performance of the proposed method with fixed range size partition is examined. The size of the range
block is set to be 8x8 pixel, and hence the domain size is 16x16, with domains overlapping i.e. the domain
step L (distance between two consecutive domains) is divided by 4. The result is shown in table (1). Second,
the same experiment is carried out with well-known technique of quadtree partitioning, allowing up to three
quadtree levels. The average tolerated error between the original image and its uncompressed version is set

to be £ . =2.0. The results are shown in table (2).

The results in tables (1) and (2) show that the encoding time scales linearly with E . This is expected
since the major computation effort in the encoding lies in the linear search through the domain pool. For the

case without domain pool reduction € =0 (full search) there is no savings in the encoding time as shown in
Fig. (2). Also, in the case of fixed range size partition the loss in quality of the encoding in terms of fidelity
is larger than for quadtree partition. This is caused by the fact that some larger range can be covered well by

some domains, which are removed from the domain pool at larger values of E (e.g. € >25). As a
consequence some of these ranges are subdivided and their quadrants may be covered better by smaller
domains than the larger range.

This simple entropy approach leads to very significant savings in encoding time and is similar to the
approach used in [5]. With fixed range size partition, it causes only negligible or no loss in the equality of

image, thereby reducing by 2 the encoding time (at € =2.5). In the quadtree case, when € =38 the encoding
time of Hill image is 80.03 sec while the PSNR is 38.63 dB. For comparison, the baseline (full search)
required 1304.45 sec and the PSNR achieved is 39.14 dB. This represented a speed up factor of over 16 at
the expense of a slight drop of PSNR of 0.51 dB. Generally, the speed-up in terms of actual encoding time is
almost 7 times while the loss in quality of the image is almost 0.83 dB. This compares well with Saupe’s
Lean Domain Pool Method, which achieved comparable speedup of 8.9 at the expense of a drop of 1.7dB for
Lena image [18]. Also, with Chong Sze [22], which achieved a speed-up of 9.3 with 0.87 dB loss for the
same image. Figures (3), and (4) show examples of reconstructed images, which were encoded using the
entropy method with fixed range size and quadtree partitions.

Finally, the proposed method seems to be applicable in situations where extremely fast encodings are
desired and some quality degradation can be tolerated (e.g. by choosing € >3238). For example, Fig. (5)
shows that the Peppers image is coded in 2.93s with a quality of 33.56 dB (while the full search encoding

time is 749.63s with a quality of 40.50 dB). This means that the image fidelity is still acceptable at least for
some applications where high fidelity is not an absolute requirement.

Time/ seconds

o 0.5 1 1.5 2 2.5 3 3.5 4
Parameter £

Fig. (2): Encoding time versus epsilon for Lena 512x512 image.
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Table 1: Performance of fixed range size coding of four test images.

E Lena Peppers Boat Hill
Time | PSNR | Time |PSNR | Time | PSNR | Time |PSNR
0 124.99] 36.34 |119.65| 37.51 |122.59| 28.31 |119. 56|34. 93
106.41] 36.34 |111.81| 37.49 1100.20]| 28.28 | 115.86|34.93
1.2 |100.34] 36.32 1110.08] 37.46 | 92.26 | 28.25 | 105.86]34.92
1.5 87.68 | 36.30 | 98.37 | 37.39 | 79.04 | 28.18 | 86.06 |34.86
1.8 | 76.02] 36.23 | 86.54 | 37.34 | 64.06 | 27.99 | 65.67 |34.78
2 68.56 ] 36.12 | 74.99 | 37.29 | 58.77 | 27.98 | 51.77 |34.65
2.5 |50.36]35.98 | 55.01 | 37.23 | 45.42 | 27.76 | 21.67 |34.37
2.8 |40.45]35.95|40.03 |37.08 | 39.55|27.73 | 12.38 |34.23
3 32.89 | 35.73 1 31.99 | 36.98 | 3550 | 27.62 | 8.67 |33.89
3.5 18.26 | 35.36 | 13.69 | 36.56 | 22.86 | 27.38 | 5.38 |33.46
3.8 10.82 ] 34.83 | 6.03 |35.59 | 1593 | 27.22 | 4.52 |33.16
4 5.80 | 34.39 | 3.01 |34.50 | 11.56 | 26.89 | 4.16 |33.15

Table 2: Performance of quadtree partition coding of four test images.

E Lena Peppers Boat Hill

Time | PSNR| Time | PSNR | Time |PSNR| Time |PSNR
0 ]797.78] 40.66 | 749.63 | 40.50 |1151.26] 34.23 11304.45] 39.14
1 ]760.91| 40.65 | 745.91 | 40.51 |1144.31] 34.12 |1323.31| 39.12
1.2 |753.86] 40.65 | 743.14 | 40.52 |1201.96| 34.27 | 1313.14] 39.12
1.5 |712.72]1 40.64 | 746.93 | 40.51 |1180.62| 34.23 | 1318.08] 39.09
1.8 |647.72| 40.59 | 736.98 | 40.50 | 981.00 | 34.2 |1192.09( 39.09
2 |601.98] 40.56 | 629.49 | 40.49 | 880.75 | 34.27 | 1062.43 | 39.05
2.5 ]489.06| 40.48 | 553.58 | 40.45 | 632.66 | 34.28 | 677.08 | 38.96
2.8 |417.90] 40.39 | 477.20 | 40.49 | 541.81 | 34.17 | 442.98 | 38.85
3 |367.91]40.36 | 398.01 | 40.43 | 494.21 | 34.11 | 317.13 | 38.75
3.5 |246.4|40.12 | 236.96 | 40.32 | 408.76 | 33.79 | 121.95 | 38.69
3.8 |174.00| 39.88 | 127.97 | 39.98 | 327.58 | 33.71 | 80.03 | 38.63
4 1120.18] 39.83 | 64.09 | 39.71 | 25091 | 33.53 | 65.82 | 38.51

37
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Fixed range size partition Quadtree partition
Encoding time: 5.8s. Encoding time: 120.18s.
Quality: 34.39dB Quality:39.83 dB.

Fig. (3): Lena 512x512 image.

Fixed range size partition Quadtree partition
Encoding time: 3.01s. Encoding time: 64.09s.
Quality: 34.50dB Quality:39.71dB.

Fig. (4): Peppers 512x512 image.

Fig. (5): Peppers 512x512 image encoded in 2.93s by the proposed method and the PSNR of the
reconstructed image is 33.56dB.
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Conclusions

In this paper a parameterized and non-adaptive version of domain pool reduction is proposed, by allowing
an adjustable number of domains to be excluded from the domain pool based on the entropy value of the
domain block, which in turn reduced the encoding time. Experimental results on standard images showed
that removing domains with high entropy from the domain pool has little effect on the image quality while
significantly reduces the encoding time. The proposed method is highly comparable to other acceleration
techniques. Next step in our research is to use the proposed method to improve the speed of hybrid coders
(gaining better results than JPEG) that are based on fractal coders and transform coders so as to improve
their performance.
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