
 
 Correspondence to: Ezzedine.Benbraiek@esstt.rnu.tn , cheriet@livia.etsmtl.ca  

 Recommended for acceptance by Josep LIadós 
 ELCVIA ISSN: 1577-5097 
 Published by Computer Vision Center / Universitat Autonoma de Barcelona, Barcelona, Spain 

Electronic Letters on Computer Vision and Image Analysis 5(1):14-29, 2005  

SKCS-A Separable Kernel Family with Compact Support to 
improve visual segmentation of handwritten data 

Ezzedine Ben Braiek* Mohamed Cheriet+and Vincent Doré+ 

* Department of Electrical Engeneering, CEREP , ESSTT: 5,Av. Taha Hussein,1008Tunis,Tunisia  

+ Department of GPA, LIVIA, ETS: 1100 Notre-Dame West, Montreal,Quebec,Canada H3C 1K3 
 

Received 22 December 2004; accepted 9 February 2005 

Abstract 

Extraction of pertinent data from noisy gray level document images with various and complex backgrounds 
such as mail envelopes, bank checks, business forms, etc...   remains a challenging problem in character recognition 
applications. It depends on the quality of the character segmentation process. Over the last few decades, 
mathematical tools have been developed for this purpose. Several authors show that the Gaussian kernel is unique 
and offers many beneficial properties. In their recent work Remaki and Cheriet proposed a new kernel family with 
compact supports (KCS) in scale space that achieved good performance in extracting data information with regard 
to the Gaussian kernel. In this paper, we focus in further improving the KCS efficiency by proposing a new 
separable version of kernel family namely (SKCS). This new kernel has also a compact support and preserves the 
most important properties of the Gaussian kernel in order to perform image segmentation efficiently and to make 
the recognizer task particularly easier. A practical comparison is  established between results obtained by using the 
KCS and the SKCS operators. Our comparison is based on the information loss and the gain in time processing. 
Experiments, on real life data, for extracting handwritten data, from noisy gray level images, show promising 
performance of the SKCS kernel, especially in reducing drastically the processing time with regard to the KCS. 

 
Key Words: Kernel with Compact Support, Separable Kernel, Multi-scale representation, Image 

segmentation, Handwritten data extraction. 
 

 

1 Introduction 

Most handwriting recognition systems can only read clearly written characters (black characters on a 
uniform white background or vice versa). However handwritten data contains characters of different sizes, 
with variable distances and its corresponding image intensity changes occur over a wide range of scales. 
Usually this data is decorated with uniformly distributed graphical symbols in their background. Examples 
can be found in mail pieces, bank checks, business forms …etc. When such a gray-scale image is processed, 
it is not simple for a computer to distinguish the pertinent data from the back ground symbols; consequently, 
there is a great information loss resulting in broken and touched characters with the presence of noise and 
unnecessary information. Over the last decades, handwriting segmentation has become the subject of 
intensive research. Various mathematical tools and large number of approaches have been developed. All 
these works aim to improve visual shapes of handwriting characters and to perform intelligent preprocessing 
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procedures in order to extract the pertinent information and to improve data quality [11,12],  before applying 
the recognition algorithm [14]. For dealing with this problem, scale-space representation has been developed 
by the computer vision community (in particular by Witkin [3], Koenderink [2], Yuille and Poggio [25] and 
Lindeberg [8]), because of its efficiency in describing the real-world structures. It has been shown that the 
concept of scale is of crucial importance when we aim to analyze and interpret the structure of images by 
automatic methods; as it is the case of our application.  

In multi-scale representation, the scale -space is usually generated by the Gaussian kernel where a 
convolution product is computed at each scale. It has been shown by Badaud et al. [7] that the Gaussian 
function is the only kernel in a broad class of functions which satisfies adequate scale -space conditions and 
offers many beneficial properties. Unfortunately, the Gaussian kernel has two practical limitations: 
information loss caused by the unavoidable Gaussian truncation and the prohibitive processing time due to 
the mask size. In a recent paper, Remaki and Cheriet [1] have proposed a new kernel family, with compact 
support in scale-space; which derived from the Gaussian; they called KCS (Kernel with Compact Support). 
This kernel is able to recover the information loss while reducing processing time. 

In this paper, we propose a separable version of the KCS. This new kernel denoted SKCS (Separable 
Kernel with Compact Support) has the capability to achieve accurate information extraction and the 
advantage to reduce the processing time. Experiments, on real life data, for extracting handwritten data, 
from noisy gray level images are presented. A practical comparison is established between results obtained 
by using the KCS and the SKCS operators. Our comparison is based on the information loss and the gain in 
time processing. 

2 Scale-space based approach 

To improve performances of handwriting recognition systems visual shapes are of outstanding 
importance. In gray-scale images, intensity occurs over a wide range of scales. When such image is 
binarized there is a significant information loss, resulting in broken characters, touched characters, with the 
presence of noise and undesirable information. To overcome this problem, we adopt the scale -space 
technique [5]. 

The main idea of scale -space representation is to embed the original image in a one-parameter family of 
derived images, in which the fine scale details are successively suppressed. It consists of using a convolution 
with a chosen kernel in the smoothing operation.  

 
2.1 The Laplacian of Gaussian Operator: a brief review 

The use of LoG convolution masks was first suggested by Marr and Heldreth [4]. Since the 
second derivatives of such a kernel are considered as a decision criteria in scale-space (to obtain 
visual segmentation of handwritten data), we start recalling the Laplacian of Gaussian operator 
[23]. 

If g (x,y)σ is the 2D symmetrical Gaussian distribution with standard deviation σ : 
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The LoG operator has been reported informally in [13, 4] and more details concerning this 
operator are given in [5, 9] and [20]. The different parameters of the operator are shown in figure 1 
whereω  represents the distance between the zero-crossings. 

                                

Figure 1:  The 1D and 2D dimensional profile of LoG 

 

2.2 Scale-space algorithm 

As we can see, the size of the mask depends on the value of σ . For the implementation of the operator 
(the LoG kernel in this case), the general scale -space algorithm may be presented as follows: 

a- For each pixel of the input Gray-level image, apply the LoG kernel with a step scale σ . Begin with 
a step scale σ =σ max sufficiently high to extract a minimum amount of information, free of noise.  

b- Threshold the output image by turning off pixels with positive or null values and turning on those 
with negative values.  

c- Turn on the neighbours of pixels, output image of the step (b). 
d- Decrease the step scale σ . 
e- Apply the LoG kernel to the original image, with the step scale σ , only on pixels being turned on in 

the previous step. 
f- Threshold the image as in step (b). The output image constitutes the desired result at the scale-

spaceσ . 
g- Repeat the process, on the output image obtained at step (f), from step (c) to step (g), until 

σ =σ min. Obtain the desired fine image. 
 

2.3 Limitations of the Gaussian kernel and The KCS as a solution 

The algorithm has been implemented with the objective to perform image segmentation efficiently. The 
problem with natural images is that they are noisy and vary in contrast. By observing the algorithm 
behaviour on different data qualities; we have noticed a sensitive degradation on the segmented images 
leading to broken characters when contrast is sufficiently low and variable [1]. The computation accuracy 
depends on the mask size. Wide masks give more precise computation, but they increase the cost of 
processing time. Smaller mask sizes decrease the processing time but the accuracy is sometimes severely 
diminished, which induces information loss. To cope with these problems, without contradicting the 
uniqueness of the Gaussian kernel and by preserving the most important and useful Gaussian properties, 
required to perform image segmentation properly, Remaki and Cheriet [1] proposed a new kernel with 
Compact Support (KCS). This kernel, derived from the Gaussian, has been introduced in order to recover 
the information loss and to reduce the prohibitive time processing when Gaussian Kernel is used in scale -
space representation [2, 3]. With the KCS there is no need to cut off the kernel while the processing time is 
controlled because the mask is the support of the kernel itself. The KCS is obtained by performing a 
topological transformation of the 2ℜ  space into a unit ball through a change of variables. This 
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transformation packs all the information in the unit ball. With the new variables, the Gaussian is extended 
over all the 2ℜ  space by taking zero values outside the unit sphere. Therefore, the mask dimension is 
considerably reduced, from 11.32σ  for the Gaussian to only 2σ  for the KCS. The KCS construction, 
formulation, and analysis are presented with details in [1].  

The generalized KCS may be expressed as follows: 

²
( 1)1 ² ² ² ² ² ²2

( , ),
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x ye if x y
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x y
elsewhere
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                                                                  (3) 

Where:   σ and γ  are, respectively, the standard deviation and the width parameter.  

The parameter γ controls the distance between the zero-crossing of the KCS to the origin of the axis; it 

doesn’t affect the nature of σρ functions; they remain kernels with compact support type. Furthermore, if 
2γ ≥ , the desired characteristics are guaranteed, which means that the first and second derivative curves 

exhibit the same behavior as the Gaussian. Figure 2 depicts the 1D and 2D profiles of the KCS. 

 

                         

   Figure 2: One and two-dimensional profiles of the KCS Kernel  

Data segmentation is determined by the zero-crossings of the second derivative operator [6] (Laplacian 
of KCS (LoKCS)) and it is defined by the convolution of the image with LoKCS which is given by: 
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The cross-sections of the LoKCS function are shown on figure 3. 
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Figure 3: One and two-dimensional profiles and the contour peaks 

                                                     of the Laplacien of KCS (LoKCS) 

2.4 The KCS main features and their improvement 

Authors have shown that, thanks to their compact support property, the KCS give very satisfactory 
segmentation results, with an effective response to both practical limitation problems when using the 
Gaussian kernel, namely the information loss caused by the truncation of the Gaussian kernel and the 
prohibitive processing time due to the mask size. 

Results have been confirmed by qualitative and quantitative comparisons of results obtained by both the 
Gaussian and the KCS kernels.    

The question raised now is how to increase the KCS performances. In scale -space formulation, a 
convolution product with the kernel is computed at each scale, as mentioned above in the algorithm (see 
2.2),. These successive convolutions require substantial processing time. Considerable savings of time may 
be achieved by using separable convolution masks.  For this purpose, we propose a Separable version of the 
KCS, denoted SKCS (Separable Kernel with Compact Support).  

3 Separable version of the KCS 

3.1 Introduction 
The KCS formula is shown in (3). As we can see, this formula is not separable. However, the product of 

1D KCS following x and y, leads to a new 2D operator [10]. To design the new proposed kernel, we define 
an implementation based on the decomposition of the Laplacian of the KCS shape, as the sum of two 1D 
filters.   

3.2 Building the SKCS 

The separable version of the KCS is defined as the product of one-dimensional KCS kernels [17]. To 
express the new version, we must first recall the one-dimensional KCS formula. 

2
1 2 2( 1)2 22

( ),

0


 + < −=




if xe xC
x

elsewhere

σ
γ σ

σσγρσ γ

                                              (5) 

where:    γC  :  is the normalization constant  

               σ   :   is the standard deviation KCS 

              γ    :  is the width parameter.      
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Let the one parameter 2D SKCS function be: 

( , ) ( , ) ( ). ( )SKCS x y x y x yρ ρ= Φ =  
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                                              (6) 

And, 
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This leads to the next generalized SKCS formula: 
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Then, if N is the number of points in the discretization process 

    
2( )

1

0

−

=

= ∆ ∑ i

N
x

i

C x e
γ

γ                     Where      
2

( 1 )ix i x and x
N

= − + ∆ ∆ = . 

In our experiments, we have kept the parameter γ  constant, while varying σ .  γC  is then computed just 
once in the process. However, if we need varying the parameter γ  during the process; we propose as in [1] a 

high-speed algorithm to compute Cγ for every γ  from 0Cγ  and 1Cγ  for the given values 0γ and 1γ . 

Proposition: If )(γh  is the solution of the following second-order differential equation: 

[,[,0)()
2
1

4
1

()('' 0 +∞∈=+− γγγ
γ

γ hh  

Then 2/)( γ
γ γ ehC =               (Proof: see [1]). 

 

By using the second-order Taylor expansion, we discretize the upper equation: 
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Then, 

1

= iC h eii
γ

γ  where γ∆  is the γ -step and γγγ ∆+= ii 0 . So, γC  is obtained for all values of γ  

with few operations. 

The next figure depicts the 1D and 2D profiles of the SKCS. 

 

                               
   Figure 4: One and two-dimensional profiles of the SKCS Kernel  

 

As the KCS, the SKCS exhibits the same behaviour of the Gaussian. However, the SKCS Laplacian 
presents, for 1=γ , a new maximum at the origin (see figure 5). But it can be easily shown (following the 
same arguments as [1] ) that if 2>γ , the first and second SKCS derivatives exhibit the same behaviour as 
the Gaussian’s e.g. the convolution with the SKCS doesn’t introduce new extreme. 

 

            
     (a): γ =1        (b): γ =2.1                                    (c) γ =4 

Figure 5: the influence of the parameter γ  on the width 
 of LoSKCS peak, for σ =4. 

 

The parameter γ  of the KCS controls the distance between the zeros-crossing of the KCS Laplacian to the 
origin of the axes. For the SKCS, γ  controls the distance α  from the origin of the axes to the zeros-
crossing-line of the SKCS Laplacian along one of the axes. Hence, for some applications, two parameters 

yx γγ ,  can be used, which control, respectively, the distance xα and yα  (see figure 6). As for the one 
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dimensional KCS, if 
2

2

3
( 1)

2 2
n

n
γ = − +  then for all σ , n/σα ≈  where n  is a real. (Proof: see [1]).This 

proves that for a fixed n , γ  is fixed and doesn’t depend on the value ofσ . 

 

 

Figure 6: Support of the SKCS for 10=σ  with two parameters 
 4,1.2 21 == γγ  

 
3.3 Discussion of some properties of the SKCS  

Since one of our concerns when building the SKCS was to preserve the main properties of the Gaussian 
in order to perform image segmentation efficiently, it is important to verify that the SKCS satisfies the 
following proprieties: 

3.3.1 Recovering the original signal when the scale parameter is close to zero. 

It has been shown in [1] that the one dimensional KCS kernel γρ is in the space )(ℜD . As the SKCS 

kernel γϕ  is the product of two one-dimensional KCS kernel, it is defined in )( 2ℜD .  

Theorem [13]: Let )( 2ℜ∈ pLf , where +∞≤≤ p1 , then ∫ℜ→
=−∗2 0|(|lim ,0

µϕ σγσ
dff p  

The extension f of an image by 0 for all 2ℜ is )( 2ℜpL  for +∞≤≤ p1 . This ensures the recovering of 
the original image when σ  tend to zero [15]. 

 
3.3.2 Continuity and regularization 

By its construction from the one dimensional KCS, the SKCS respects the same properties of continuity 
and regularization: e.g.: 

• The scale-space representation is continuous with respect to the scale parameterσ , which means that 
        f∗σγϕ , is continuous withσ . 

• As the SKCS is in the space of mollifiers (smoothing functions), the convoluted image with it is in 
∞C .  
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3.3.3 Heisenberg Uncertainty Principle (H.u.p.) 

As the one dimensional SKCS is exactly the one dimensional KCS, we have here again the same property 
for these kernels: when γ  increases, the H.u.p. decreases rapidly and becomes close to (1/4 )π , which is the 
optimal value reached by the Gaussian kernel [16]. 

 

3.4 Important remarks 

The 1D KCS and SKCS kernels have nearly the same behaviour (see figure 2 and 4). But the fact that the 
SKCS is separable means that its support is of a square form. This shape implies that all the pixels which are 
on the frontier will not be equidistant from the kernel center. So, the information on the diagonals may be 
privileged. Only, we have noticed that, however all the points which belong to the kernel support and not to 
the ball of the same center as the kernel of radius σ , constitute at most 3% of the total kernel weight. In 
other words, in the convolution process with the image, the information excited by this part of the support 
will have a little weight on the final sum. On the other hand, the excitatory region of the support (region of 
important weights), which is close to the center of the mollifier (smoothing kernel), is almost circular and 
similar to the KCS (figure 7). 

We have plotted the image difference KCS-SKCS, with the same values of γ  and σ  (figure 7(c)). We 
can see that the weights of the SKCS are more important at the corners near the summits of the square. The 
most important weights of the KCS are located in a lozenge situated at the kernel centre. 

   
    (a)     (b) 

 
(c) 

Figure 7: Peaks contour plot of the SKCS (a), KCS (b) and their difference (KCS-SKCS) (c). 
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3.5 The SKCS Laplacien  

Here, we are interested in computing the Laplacian of the SKCS (LoSKCS), we proceed as before: 

² ( , ),LoSKCS x yσ γ= ∇ Φ  

By re-writing the 2D SKCS formula: 
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Hence, the LoSKCS operator is written as a sum of two one-dimensional filters (one column vector and 
one row vector). Its equation can be rewritten as the sum of two filters as follows:  

2 ( , ) ( , ) ( , )SKCS x y H x y H y x∇ = +                                      (16) 

Where                                                     
[ ( )] [ ( )]( , ) . ( ). .h x h yH x y A x e eµ=                                      (17) 

With                                                                                 ²
eγ

µ
σ

=                                                              (18) 
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We can still notice that the support of the LoSKCS is of square form. If γ  is small, the shape of the 
mollifier (smoothing kernel) shows 4 humps (2 horizontals and 2 verticals ) instead of the regular hump of 
the LoKCS around the center of the kernel (figure 8), the contour peaks of the LoSKCS are circles in the 
middle but quickly become round of square forms. The behavior of the LoSKCS along the diagonals is then 
different from the LoKCS. 

 

  
                (a)             (b) 

Figure 8: Peaks contour plot of LoKCS (a) and of LoSKCS (b) for 1.2=γ  

It is important to mention that, when γ  increases, the shape of the LoSKCS becomes closer to the shape 
of the LoKCS (figure 9). In order to get a kernel nearly behaving as the KCS, we advise the reader to use a γ  
value larger than 4. 

        
(a)     (b) 

Figure 9: LoKCS (a) and LoSKCS (b) shapes for 10=γ  

4  Experimental results 

For the practical aspect, in order to investigate the SKCS impacts on extracting handwritten data from 
degraded and noisy images, experiments have been conducted on real data, from CEDAR, at SUNY Buffalo, 
data base, that contain Zip codes scanned in US Postal offices on live mail and our local data base. The 
filters implementation is performed using a PIV-700MHz computer, under Matlab software. The 
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performance of the proposed method is judged by visual inspection using criteria of image shape, such as 
thickness, intensity and connectivity of the strokes of character shapes with a weight given to each.  

To achieve this purpose, we have used the algorithm described in 2.2 and replaced the LoG operator by 
the LoKCS operator and the LoSKCS, respectively. 

4.1 Algorithm parameters  

For both kernels, KCS and SKCS, we have chosen the same width parameter ω  and the same mask size 
contained in the interval]-σ ,+σ [, then the mask size is fixed = 2σ . For the multi-scale representation, we 
have decreased the σ  value from σ max= 4 (which allows noise immunity) to σ min = 2 (which allows 
accurate shapes) and a scale step of 0.5. In terms of mask dimension, it corresponds to a mask variation from 
(8x8) to (4x4).  

4.2 algorithm behavior 

In order to compare the performance of the KCS and the SKCS operators, our tests focused exclusively 
on qualitative comparison. To perform this comparison, the methodology we followed is based on the 
capacity of each kernel to resist to progressively degraded input images without adapting their parameters to 
the degradation. To perform this task, we have fixed appropriate parameters with respect to a certain number 
of images for both the LoKCS and LoSKCS operators. We then used these parameters to process a large 
image data base. We focused the discussion on two sets of images. 

   a. In the first set (see figure 10), we produce the original image and the results achieved by the KCS and 
the SKCS operators. 
 

   

   

  
 

   

   

(a): Original  Image (b):Segmentation using 
              the KCS 

(c):Segmentation using 
           the SKCS 

Figure 10: Segmentation of gray level images 
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By observing the behaviour of the algorithms on different data qualities, we can confirm, in this case, 
that both operators give good results with accurate segmentation and high visual quality even with the 
presence of noise. This effective segmentation shows the robustness of the two operators in extracting visual 
shapes of handwritten data from noisy images and will bring an increase to the overall recognition system 
rate. 

      b. In the second set (see figure 11); we use the same parameters as in (4.1.a), and we produce degraded 
images for the two operators.  
 

   

 

 

  

 
 

 

  

  
 

   

Figure 11: Segmentation of degraded images 

If we focus on the segmented images in figure 11, we can see that the two operators yield satisfactory 
results, but we observe certain degradation which appears on the image segmented by the LoSKCS, 
especially in the extremities and in the non homogenous zones of the character. This phenomenon is due to 
the width of LoSKCS excitatory region (see comments on 3.4 section). It can be explained by the fact that 
the LoSKCS has a tendency to smooth more pixels than the LoKCS in certain regions of the image. We 
think that this degradation doesn’t affect seriously the segmentation and the results, obtained by the SKCS, 
are sufficiently improved, to make the recogniser system task particularly easier.     
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4.3 Improvement of the SKCS segmentation 

The methodology, we followed to compare the performance of the KCS and SKCS kernels, is based on 
the capacity of each kernel to segment properly the image. For this purpose, we have set the same algorithm 
parameters for the two kernels, without adapting them to the image degradation. To improve segmentation 
data quality, we have to adapt the SKCS algorithm parameters, or to adjust them to their optimal values, as 
shown in figure12. 

   

   

Original image γ =2.4 γ =4.8 

Figure 12: Improvement of the image segmentation by varying the width parameter γ  

We observe that the thickness of the characters augment when γ  increases. Hence, an appropriate choice 
of γ  improves the segmentation data quality. More experiences are currently underway, on a large testing 
set, in order to adapt the SKCS algorithm parameters and to test its robustness. 

4.4 Processing time evaluation 

In this set (see figure 13); we use the same parameters as in (4.2.a), and we produce different images for 
the two operators in order to evaluate the processing time of the KCS and the SKCS operators. 

    

     

    

    

    
(a): Original  Image (b):Segmentation by using the    

                 KCS 

(c):Segmentation by using the  

                    SKCS 

Figure 13: Some sample images and the segmented images obtained by applying the  
KCS and the SKCS operators. 
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In figure 14, we summarize the results of the different images to illustrate the processing time, in 
seconds, corresponding respectively to the KCS and the SKCS operators. 

 

 

 

55.04 

 

17.69 

 
 

54.88 

 

17.56 

 

 

62.64 

 

20.20 

 
 

50.65 

 

16.32 

 
 

61.08 

 

19.89 

 

 

64.02 

 

21.82 

 
 

51.23 

 

16.58 

Original Image Processing time 

for KCS 

Processing time 

for SKCS 

                     Figure 14: KCS and SKCS processing time (in seconds). 

We notice that the processing time required for the LoSKCS operator is distinctly less than that required 
for the LoKCS operator. Indeed, for the separable version of the KCS, each of the convolutions is realized as 
successive one-dimensional row and column convolutions. Thus reducing the total number of operations 
required at each pixel from M2 to 2M, where the size of the filters is MxM pixels. 

 

Conclusion 

In this paper, we have presented a new Separable version of Kernels with Compact Support. The new 
kernels (SKCS) are used to segment visual data in variable contrasted images with the presence of noise. We 
have shown that the obtained kernels preserve the most important propertie s of the Gaussian kernel in order 
to perform image segmentation efficiently. A thorough study of some important properties is provided and a 
comparative analysis based on the mask sizes of the KCS and the SKCS kernel has been discussed. An 
application for extracting handwritten data from noisy images is presented including a qualitative 
comparison between the results obtained by the KCS and the SKCS. It has been shown that, with the two 
operators, satisfactory segmentation with high visual quality is obtained. When applying the same parameters 
to both kernels, a little degradation appears when using the SKCS. This degradation is due to the SKCS 
shape behaviour. It corresponds only to a small part loss of information (3%) and may not have serious 
influence on future treatments. However, considerable savings in processing time are achieved by using the 
separable KCS kernel (SKCS). This advantage renders use of large LoSKCS operators practical and opens 
new application fields to the SKCS. 
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