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Abstract

Visual attention is the ability of the human vision system to detect salient parts of the scene, on which
higher vision tasks, such as recognition, can focus. In human vision, it is believed that visual attention is
intimately linked to the eye movements and that the fixation points correspond to the location of the salient
scene parts. In computer vision, the paradigm of visual attention has been widely investigated and a saliency-
based model of visual attention is now available that is commonly accepted and used in the field, despite
the fact that its biological grounding has not been fully assessed. This work proposes a new method for
quantitatively assessing the plausibility of this model by comparing its performance with human behavior.
The basic idea is to compare the map of attention - the saliency map - produced by the computational model
with a fixation density map derived from eye movement experiments. This human attention map can be
constructed as an integral of single impulses located at the positions of the successive fixation points. The
resulting map has the same format as the computer-generated map, and can easily be compared by qualitative
and quantitative methods. Some illustrative examples using a set of natural and synthetic color images show
the potential of the validation method to assess the plausibility of the attention model.
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1 Introduction

Human vision relies extensively on a visual attention mechanism which selects parts of the scene, on which
higher vision tasks can focus. Thus, only a small subset of the sensory information is selected for further
processing, which partially explains the rapidity of human visual behavior.

It is generally agreed nowadays that under normal circumstances eye movements are tightly coupled to
visual attention [1]. This can be partially explained by the anatomical structure of the human retina, which is
composed of a high resolution central part, the fovea, and a low resolution peripheral one. Visual attention
guides eye movements in order to place the fovea on the interesting parts of the scene. The foveated part of the
scene can then be processed in more detail. Thanks to the availability of sophisticated eye tracking technologies,
several recent works have confirmed this link between visual attention and eye movements [2, 3, 4]. Hoffman et
al. suggested in [5] that saccades to a location in space are preceded by a shift of visual attention to that location.
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Using visual search tasks, Findlay and Gilchrist concluded that when the eyes are free to move, no additional
covert attentional scanning occurs, and most search tasks will be served better with overt eye scanning [6].
Maioli et al. agree that "There is no reason to postulate the occurrence of shifts of visuospatial attention, other
than those associated with the execution of saccadic eye movements” [7]. Thus, eye movement recording is a
suitable means for studying the temporal and spatial deployment of attention in any situation.

Like in human vision, visual attention represents a fundamental tool for computer vision. Thus, the paradigm
of computational visual attention has been widely investigated during the last two decades. Numerous com-
putational models have been therefore reported [8, 9, 10, 11, 12]. Most of these models rely on the feature
integration theory presented by Treisneral. in [13]. The saliency-based model of Koch and Uliman, which
relies on this principle, was first presented in [14] and gave rise to numerous software and hardware imple-
mentations [15, 16, 17]. The model starts with extracting a number of features from the scene like color and
orientation. Each of the extracted features gives rise to a conspicuity map which detects conspicuous parts of
the image according to a specific feature. The conspicuity maps are then combined into a final map of attention
named saliency map, which topographically encodes stimulus saliency at every location of the scene. Note that
the model is purely data-driven and does not require any a priori knowledge about the scene. This model has
been used in numerous computer vision applications including image compression [18], robot navigation [19],
and image segmentation [20, 21]. However, and despite the fact that it is inspired by psychological theories,
the theoretical grounding of the saliency-based model has not been fully assessed.

This work aims at examining the plausibility of the saliency-based model of visual attention by comparing
its performance with human behavior. The basic idea is to compare the map of attention - the saliency map -
produced by the computational model with another map derived from eye movement experiments. Practically,
a computational saliency map is computed for a given color image. The same color image is presented to
human subjects whose eye movements are recorded, providing information about the spatial location of the
sequentially foveated image parts and the duration of each fixation. A human attention map is then derived,
under the assumption that this human attention map is an integral of single impulses located at the positions
of the successive fixation points. Objective comparison criteria have been established in order to measure the
similarity of both maps.

The remainder of this paper is organized as follows. Section 2 reports the saliency-based model of visual
attention. The recording of human eye movements and the derivation of the human attention map are presented
in Section 3. Section 4 is devoted to the comparison methods of the performance of the computational model
and human behavior. Section 5 reports some experimental results that illustrate the different steps of our
validation method. Finally, the conclusions are stated in section 6.

2 The saliency-based model of visual attention

The saliency-based model of visual attention transforms the input image into a map expressing the intensity of
salience at each location: the saliency map. The model is composed of three main steps, as reported in [15]
(see Fig. 1).

2.1 Feature maps

First, a number:{) of features are extracted from the scene by computing the so-called feature maps. Such
a map represents the image of the scene, based on a well-defined feature. This leads to a multi-feature rep-
resentation of the scene. This work considers the following features which are computed from an RGB color
image.

¢ Intensity
I=(R+G+B)/3 1)
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Figure 1: Saliency-based model of visual attention. (a) represents the four main steps of the visual attention
model. Feature extraction, conspicuity computation (for each feature) and finally the saliency map computation
by integrating all conspicuity maps. (b) illustrates the conspicuity operator in more detail. It computes six

multiscale intermediate conspicuity maps. Then, it normalizes and integrates them into the final conspicuity

map.

e Two chromatic features based on the two color opponency fitte¢s~ and B*Y ~ where the yellow
signal is defined by = R;—G. Such chromatic opponency exists in human visual cortex [22].

RG=R-G
BY=B-Y (2)

Before computing these two chromatic features, the color components are first normalizeddsgder
to decouple hue from intensity.

e Local orientation according to four anglés= {0°,45°,90°,135°} [23]. Gabor filters, which approxi-
mate the receptive field impulse response of orientation-selective neurons in primary visual cortex [24],

are used to compute the orientation.

2.2 Conspicuity maps

In a second step, each feature map is transformed into its conspicuity map which highlights those parts of the
scene that strongly differ, according to a specific feature, from their surroundings. In biologically inspired
models, this is usually achieved by usingenter-surroundnechanism. Practically, this mechanism can be
implemented with alifference-of-Gaussiariiter, DogG (see Eq.3), which can be applied to feature maps in

order to extract local activities for each feature type.

s

e inn (3)

1 _7;2+y2
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A visual attention task has to detect salient objects, regardless of their sizes. Thus, a multi-scale conspicuity
operator is required. It has been shown in [10], that applying variable size center-surround filters on fixed size
images has a high computational cost. An interesting method to implemecoeer-surroundnechanism

has been presented in [15]. This method is based on a multi-resolution representation of images. For each
feature, nine spatial scales ([0..8]) are created using gaussian pyramids, which progressively lowpass filter and
subsample the feature map. Center-Surround is then implemented as the difference between fine and coarse
scales. The center is a pixel at scake {2, 3,4} and the surround is the corresponding pixel at seatec + §

andd € {3,4}. Consequently, six maps(c, s) are computed for each pyramRi(Eq. 4).

Fle,s) = [P(c) = P(s)| (4)

The absolute value of the difference between the center and the surround allows the simultaneous computing of
both sensitivities, dark center on bright surround and bright center on dark surround (red/green and green/red
or blue/yellow and yellow/blue for color). For the orientation features, an oriented Gabor pytdmid) is

used instead of the gaussian one. For each of the four preferred orientations, six maps are computed according
to equation 4 P(o) is simply replaced by) (6, c)). Note that Gabor filters approximate the receptive field
sensitivity profile of orientation selective neurons in primary visual cortex [24]. A weighted sum of the six
mapsF(c, s) results into a unique conspicuity mé&pfor each pyramid and, consequently, for each feature.

The maps are weighted by the same weighting funcii@s described in Section 2.3.

2.3 Saliency map

In the last stage of the attention model, theonspicuity maps§; are integrated together, in a competitive way,
into asaliency mags in accordance with equation 5.

S = Zwlcl (5)
i=1

The competition between conspicuity maps is usually established by selecting weightording to a weight-

ing functionw, like the one presented in [15} = (M — m)?, where M is the maximum activity of the
conspicuity map an@ is the average of all its local maxima: measures how the most active locations dif-

fer from the average. Indeed, this weighting function promotes conspicuity maps in which a small number of
strong peaks of activity is present. Maps that contain numerous comparable peak responses are demoted. It
is obvious that this competitive mechanism is purely data-driven and does not require any a priori knowledge
about the analyzed scene.

Thus, a computational map of attention - a saliency map - is available. Now we need a human attention map to
compare computer and human visual attention.

3 Human map of attention

In the following, the computation of the human attention map will be described. As discussed above, the
deployment of visual attention in humans is intimately linked to their eye movements. Under the assumption
that attention is guided by the saliency of the different scene parts, the recorded fixation locations can serve to
plot a saliency distribution map. The computation of the human attention map is achieved in two steps. First,
eye movements of a number of volunteers are recorded while they are viewing a given scene. Second, these
measurements are transformed into a map of attention or saliency.
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Figure 2: Principle of eye movements recording.

3.1 Eye movement recording

Eye position was recorded with a video-based tracking system (EyeltingensoMotoric Instrumertts!
GmbH, Teltow/Berlin). This system consists of a headset with a pair of infrared cameras tracking theyeyes (
camera$, and a third camerdnéad cameramonitoring the screen position in order to compensate for any head
movements (see Fig. 2). Once the subject is placed in front of a CRT display for stimulus presentation, the
position of his pupils is derived from theye camerasising specialized image processing hard- and software.
Combining the pupil and head positions, the system computes the gaze position at a rate of 250 Hz and with a
gaze-position accuracy relative to the stimulus positioh&f— 1.0°, largely dependent on subjects fixation ac-
curacy during calibration. Each experimental block was preceded by two 3x3 point grid calibration sequences,
which the subjects were required to track. The first calibration scheme is part of the EyeLink system and allows
for on-line detection of non-linearities and correction of changes of headset position. The second calibration
procedure is supported by an interactive software in order to obtain a linearised record of eye movement data
(off-line).

The eye tracking data are parsed for fixations and saccades in real time, using parsing parameters proven to
be useful for cognitive research thanks to the reduction of detected microsaccades and short fixat@hs (
ms). Remaining saccades with amplitudes less than 20 pix&k’ (visual angel) as well as fixations shorter
than 120 ms were discarded afterwards.

3.2 Computation of the human attention map

This section aims at computing a human attention map based on the fixation data collected in the experiments
with human subjects. The idea is that this human attention map is an integral of single impulses located at the
positions of the successive fixation points. Practically, each fixated location gives rise to a grey-scale patch
whose activity is normally (gaussian) distributed. The widthdf the gaussian patch can be set by the user. It
should approximate the size of the fovea. We also introduced a paramttat tunes the contribution of the
fixation duration to the gaussian amplitudealt= 0, the amplitude is the same for all fixations regardless of
their duration. However, ife = 1, the amplitude is proportional to the fixation duration.
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Since numerous human subjects are involved in the experiments, two kinds of human attention maps can be
derived. The first category is a mean map of attention that considers all the fixations of all human subjects. The
second manner is to compute individual human maps of attention, that is a map of attention for each human
subject. In both cases the procedure to compute the map of attention is the same. It is described in Algorithm
1.

Algorithm 1 From fixation points to human attention map

Colorimage | {v x h)
hM : human attention map (output)
N eye fixationsF;(z, y, t) ((z, y) are spatial coordinates ands the duration of the fixation)
o the standard deviation of the gaussian (FOVEA)
a € [0..1] tunes the contribution of fixation duration to the saliency
Imgl =Img2=0
1=1
while : < N do

(z,y) = Coord(F;)

t = Duration(F;)

fork=0..h—1do

fori=0..w—1do
Imgl(k,l) = (et + (1 — a)).exp(—w)
end for

end for

Img2 = Img2 4+ Imgl

Imgl =0
end while
Normalize(Img2,0,255)

4 Comparison of human attention and computational saliency

The idea is to compare the computational saliency map computed by the model of visual attention and the
human attention map derived from human eye movement recordings. On one hand, a subjective comparison
of both maps gives an approximative evaluation of the correlation of both human and computer attentions. On
the other hand, a quantitative correlation measure between the maps provides an objective comparison between
human and computer behavior.

Color image Computational map Human map Comparison map

Figure 3: Merging the computational saliency map and the human attention map into a comparison map which
better visualizes the correlation between the two maps of attention.
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4.1 Subjective comparison

This method is based on a subjective appreciation of the correlation between the human attention map and the
computational saliency map by experts. It gives a first and approximative idea about the correlation of both
maps.

In order to support the experts in their evaluation, the correlation between the two maps is visually represented.
First we assign a different color channel to each map of attention (blue for the computational map and red for
the human map). Then we combine the two channel into an RGB color image, which wernakirison map
according to equation 6.

R = human attention map
G =0
B = computational saliency map (6)

On this color image, observers can easily see where the two maps correlate and where they do not. Black regions
on the color image represent the absence of saliency on both maps, whereas magenta image parts indicate the
presence of saliency on both maps of attention. Uncorrelated scene parts are either red (human attention but
no computational saliency) or blue (computational saliency but no human attention). An example of this visual
representation of correlation is given in Figure 3.

4.2 Objective comparison

The objective comparison of the human attention map and the computational saliency map relies on the correla-
tion coefficient. LetM},(z) andM.(x) be the human and the computational maps respectively. The correlation
coefficient of the two maps is computed according to equation 7.

P 2 [(Mi(z) — ) (Me(x) — pie)]
Ve (Mi(2) = pn)?. 20, (Me(2) — pc)?

Wherey, andy, are the mean values of the two maps () and M. (x) respectively.

(7)

5 Experiments and Results

In this section we report some experimental results that illustrate the different steps of our empirical validation
of the saliency-based model of visual attention. The basic idea is to compare computational and human maps
of attention gained from the same color images according to objective criteria.

The computational map of attention is computed from the features color (RG and BY), intensity and orien-
tations. The eye recording experiments were conducted with 7 subjects (1 .. 7) between 24 and 34 years, 6
female and 1 male. All of them have normal or corrected-to-normal visual acuity as well as normal color vision.
The images were presented to the subjects with a resoluti®ddok 600 pixels on a 19” monitor, placed at a
distance of 70 cm from the subject, which results in a visual angle of approxima2¥ety22°. Each image
was presented for 5 seconds, during which the eye movements were recorded. The instruction given to the
subjects was "just look at the image”.

From the recorded eye movement data, we computed mean as well as individual human maps of attention
using the following parameter values:

e 0 = 37.0for all maps.
e o = 0. That means that all fixations have the same importance, regradless of their duration.

Some of the images used in our experiments are illustrated in Fig. 4.
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swissalps forest
Figure 4: Test images.

Objective comparison

Table 1 represents the correlation coefficients, for the six considered images, of the computational saliency
map on one hand and three human attention maps on the other hand. The three human attention maps are:
the mean human attention map (first row), the individual human attention map with the highest correlation
coefficient (second row), and the individual human attention map with the lowest correlation coefficient (third
row). For most of the images the correlation between the computational saliency and the mean human attention
map is quite high. The two landscape images (swissalps and forest), where the stimuli are more bottom-
up driven, give rise to particularly highly correlated human and computational maps of attention. For the
images containing traffic signs, where more top-down information is present, the computational and the human
attentional behavior are less correlated. Figure 5 visually illustrates the correlation between the computational
map and human maps (mean and individuals) for the image "swissalps”.

roadl| road2| road3| coke| swissalps| forest
All subjects| 0.232| 0.3624| 0.482 0.4 0.523| 0.436
Best subject 0.321| 0.348| 0.462| 0.45 0.608| 0.477
Worst subject] 0.079| 0.194| 0.082| 0.154 0.134| -0.078

Table 1: Correlation coefficients between the computational map of attention on one hand and mean and indi-
vidual human maps of attention on the other hand.

Some human subjects have better correlation with the computational saliency than the mean of all subjects.
However, others exhibit a totally uncorrelated behavior with the computational results. This behavior varia-
tion among human subjects prompts us to consider also the correlation between subjects themselves. Table
2 illustrates these variations for the "swissalps” image based on correlation measurements between individual
subjects, but also between individuals and the mean of all subjects. In addition, the table includes the correlation
between the computational saliency map and all human maps of attention (individual and mean).

To summarize, the results produced by the computational model of visual attention and the human behavior
exhibit a satisfactory correlation. Despite the behavior variation among human subject, the "mean” behavior of
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Model | Mean 1 2 3 4 5 6 7
Model 1] 0.523| 0.608| 0.450| 0.613| 0.293| 0.268| 0.271| 0.134
Mean 1]0.729| 0.752| 0.670| 0.741| 0.674| 0.752| 0.563
Subj 1 1] 0.525| 0.661| 0.464| 0.311| 0.333| 0.359
Subj 2 1] 0.482| 0.620| 0.220| 0.518| 0.384
Subj 3 1] 0.342| 0.300| 0.332| 0.191
Subj 4 1| 0.354| 0.439]| 0.499
Subj 5 1| 0.717| 0.247
Subj 6 1]0.285
Subj 7 1

Table 2: Inter-subject correlations for the "swissalps” image.

subjects is still comparable to the model behavior. Although the reduced number of subjects and test images
does not allow to draw final conclusions, these preliminary results tend to confirm the bottom-up aspect of
the computational model of attention, since higher correlation between computational and human attention is
obtained with scenes where less top-down information are present.

Color image Computational map Mean human map Correlaffpr= 0.52)

human map: Subj1 Correlatiofp = 0.60) human map: Subj7  Correlatiofjp = 0.13)

Figure 5: Correlation between computational saliency map and human attention maps. The computational map
is compared to 1) the mean human map of attention (top right), 2) the individual human map of attention with

the highest correlation (bottom left), and 3) the individual human map of attention with the lowest correlation
(bottom right).

6 Conclusion

In this paper, we present a framework for assessing the plausibility of the saliency-based model of visual
attention. The basic idea is to compare the results produced by the computational model of attention with a
human attention map which is derived from experiments conducted with human subjects under the assumption
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that the human visual attention is tightly coupled to eye movements. Therefore, the eye movements of subjects
are recorded, using a video-based eye tracker. These eye movements are then transformed into a human map
of attention which can be compared to the computational one. A subjective as well as an objective comparison
method are investigated in this work. Some experiments which have been carried out to assess the different
steps of our validation method gave us preliminary but encouraging results about the correlation of human and
computer attention. The full assessment of such a correlation which needs experiments that involves a larger
number of human subjects and images will be considered in future works.
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