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Abstract 

Facial expressions (FEs) are integral part of non-verbal paralinguistic communication as they provide cues 

vital for perceiving one’s emotional state. Assessment of emotions through FEs is an active research domain in 

computer vision due to its potential applications in multifaceted domains. In this work, an approach is presented 

wherein FEs are modeled and analyzed with dense optical flow-derived divergence and curl templates that 

embody the ideal motion pattern of facial features pertaining to the unfolding of an expression on the face. Two 

types of classification schemes based on multi-class support vector machine and k-nearest neighbor have been 

employed for evaluation. The efficacy of the approach has been validated with promising results obtained from a 

comparative analysis of the proposed approach with the state-of-the-art FE recognition techniques on CK+ and 

JAFFE datasets and with human cognition and pre-trained Microsoft face application programming interface on 

KDEF dataset. 
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1 Introduction 

The face houses the apparatus for producing both verbal and non-verbal cues essential for interpersonal 

communication. To appraise the effect of lexical content, prosodic cues, and the facial expressions (FEs) in a 

conversation, Mehrabian [1] conducted an empirical cognitive investigation and concluded that for a 

particular message conveyed, the spoken words would contribute to just 7% of the overall impact of the 

message, while the voice intonation of the speaker contributes to 38%. FEs of the speaker play the most 

integral role in communication by contributing for a substantial 55% to the overall impact of the spoken 

message. Therefore, a paradigm shift of incorporating FE as a communication channel in human-machine 

interaction is expected to render the interactive process more effectual, thereby optimizing the user 

experience. With the ubiquity of smart devices and environments, assessment of human affective behavior 

through facial FEs has engendered considerable interest. A recent noteworthy instance is multi-national mass 

media and entertainment conglomerate the Walt Disney attempting to automatically gauge the audience 

response to its movies by capturing their faces with infrared cameras during its movie screenings [2]. They 

used a novel algorithm that tracked facial behavior and could even predict when the audience would smile or 
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laugh at specific moments in the movies. This provided a more accurate and reliable insight into how its 

audience actually felt about its movies rather than typical reviews and surveys that could be prejudiced and 

may have people suppressing their genuine opinions. 

After extensive cross-cultural investigations, Ekman and Friesen [3] proffered the discrete emotion theory 

that asserts the existence of certain fundamental emotions, namely anger, disgust, fear, happiness, sadness, 

and surprise, that have a prototypical expression unfolding pattern associated with each of them (Figure 1). 

Subsequently, the expression of contempt was also added to the list of these emotions expressed universally 

in similar fashion [4]. Automated recognition of these discrete emotions has been demonstrated to find utility 

in an expansive range of domains such as affective video summarization [5] and recommendation [6], 

ambient assisted living [7], providing interactive aid to kids with autism spectrum disorder [8], and 

interactive video gaming [9]. In pursuit of gauging performance of different methods for recognition of these 

discrete emotions conveyed through single image or image sequences, diverse benchmark databases [10–14] 

having subjects from different cultures, ethnicities, and belonging to different age groups have been 

proposed in the last two decades. Typically, methods aiming to attain facial expression recognition (FER) 

begin by taking images from a dataset and subsequently locating and cropping facial region in those images. 

This is followed by extracting relevant features that facilitate the characterization and subsequent analysis of 

the features with final stage of categorization of the FE portrayed by the subject in the images/videos by an 

adequate classifier.  

 

Figure 1: Six universal expressions. (Left to Right): anger, disgust, fear, happiness, sadness, surprise 

[11,12] 

Motivated by the growing need of inducing emotional intelligence in machines, in this work an approach 

to recognize the seven principal emotions, namely anger, contempt, disgust, fear, happiness, sadness, and 

surprise, with their corresponding FEs has been introduced. The key features of the work can be summarized 

as follows: 

• This work presents holistic features to model and quantify discrete emotions with pattern of facial 

motion arising during unfolding of their corresponding FE depicted in progressive image sequences. 

Divergence and curl templates derived from the dense optical flow field corresponding to facial 

motion are utilized as descriptors characterizing the motion. To the best knowledge of authors, this is 

the first work that uses divergence- and curl-based features as global or holistic descriptors, and 

thereby differs from previous similar approaches, which were atomistic, i.e., region-based. 

Furthermore this is the first time that for training purpose, divergence and curl templates are used 

instead of using the spatial distribution of divergence and curl of individual sequences. 

• To validate the features, a cross-database evaluation was performed on Karolinska Directed 

Emotional Faces database and the results were compared with human cognition and pre-trained 

Microsoft face application programming interface (API). The results obtained are in consonance 

with the human cognition, thus validating the features as most affect-sensitive artificial vision 

frameworks intend to emulate the innate cognitive capacity of humans. Thereby, an agreement of the 

results obtained with human perception of FEs substantiates the usefulness of the presented features 

in proactive vision-based affect-sensitive systems. 
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The rest of the paper is structured as follows. Section 2 presents an overview of the relevant literature in 

the field of FER using visual information. Section 3 elucidates the concept of optical flow highlighting its 

significance and contribution in emotion recognition. The proposed method is described in detail in Section 

4, whereas the summary of results obtained is discussed in Section 5. Conclusion and future directions are 

succinctly outlined in Section 6. 

2 Related work 

The pioneer model that combined physical cues with the anatomical knowledge of facial behavior was 

presented by Ekman and Friesen [15], who developed facial action coding system (FACS) that describes 

facial movements by mapping them onto a facial action unit (AU) space. FACS manual provides a concise 

linguistic elucidation of subtle and profound changes in facial configurations in terms of AUs for an 

objective measurement of facial activity. Presence of a single AU or combination of multiple AUs can 

represent a wide spectrum of FEs. For example, for conveying disgust, either the “nose wrinkle” or “upper 

lip raiser” must be present; for conveying happiness, “lip corner puller” must be there [10]. Inspired by 

FACS, Tong et al. [16] used dynamic Bayesian network to characterize probabilistic relationships among 

different AUs. They demonstrated with their experiments that systematically integrating AU measurement 

with temporal dynamics of AUs and their probabilistic relationship with other AUs yielded higher 

recognition rate of different AUs. 

Techniques presented hitherto for automatic FER from visual information can be broadly categorized into 

static or dynamic, depending on whether temporal information is utilized or not. Static- or frame-based 

methods categorize the emotion from still images embodying the momentary appearance of the FE, generally 

in its peak form. Silva et al. [17] presented a compact and effective description of face depicting an FE based 

on horizontal and vertical distance between distinct fiducial points whose locations were known a priori. In 

one of the experiments, they integrated this geometric feature vector with Gabor filters to extract appearance 

features and demonstrated that complementing the two features enabled a better discrimination between 

different emotions. Lopes et al. [18] presented a system that used convolutional neural networks (CNNs) for 

extracting visual features such as shapes, edges, corners, and end-points of eyes, eyebrows, and lips. They 

also used pre-processing to eliminate effects of pose, brightness change, improper lighting, etc. The method 

designed by Ashir et al. [19] integrated multiresolution pre-processing for feature extraction with 

compressive sensing theory for dimensionality reduction. Each input facial image was fed to a pyramid level 

wherein features based on image gray levels were extracted and subsequently concatenated with 

corresponding features from other levels to form a feature vector. A random variable Gaussian matrix was 

employed for collecting compressed measurements from different pyramid levels and were fed to a multi-

class support vector machine (SVM) classifier. Ding et al. [20] employed the illumination invariant 

logarithmic Laplace domain and extracted double local binary pattern (LBP)-based features from raw images 

described with Taylor series expansion. Similarity between extracted features was estimated with nearest 

neighbor classifier using chi-square distance. Bougourzi et al. [21] introduced a novel the pyramid multi-

level (PML) face representation and integrated transformed handcrafted features with deep features for static 

FER. The appraised the optimal level of PML features of the handcrafted descriptors and combined them 

with the transformed face layers to obtain a compact image descriptor. They obtained accuracies competent 

with the state-of-the-art FER approaches in both within-database and cross-database experiments. 

Dynamic methods generally model the temporal development of facial features and the correlation among 

them across different frames. Zhang et al. [22] attempted to capture temporal evolution of facial physical 

structure for expressions portrayed in a given video. They designed a hierarchical recurrent neural network 

for extracting dynamic features based on facial landmarks. The landmarks were decomposed into four 

different parts, with each part being fed as input to a separate subnet. Their architecture also comprised 

multi-signal CNN with one signal to enhance the variation among separate expression classes and the other 

to alleviate disparities among same expressions. Agarwal et al. [24] modeled a real time FER framework 

Anubhav which extracted features only from salient parts of the face carrying expression-related 

information. They exploited both spatial and temporal dimensions to achieve competitive recognition 

accuracies on benchmark datasets. Siddiqi et al. [25] presented an offline FER architecture that used stepwise 

linear discriminant analysis complemented with hidden conditional random fields model. The former 
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extracted relevant features from input expression images with the help of partial F-test values to curtail intra-

class differences and inflate inter-class variation. The latter, adept to approximate complex distributions with 

Gaussian density functions, was used for classification of the extracted features. Salmam et al. [25] presented 

a hybrid model that coupled a CNN representing appearance-based features such as wrinkles and skin folds 

and a deep neural network based on geometric features characterizing salient facial parts such as eyes, nose, 

and mouth. They demonstrated the increase in efficiency of FER by integrating both types of features. 

Danelakis et al. [26] accomplished dynamic FE retrieval for 3D face scans with the aid of spatial information 

of facial landmarks and their subsequent wavelet transformation.  

In a video with subjects involved in a spontaneous conversation, the speech articulation process 

conspicuously influences facial configuration and has been observed to reduce the FER accuracy as 

compared to the case where the subjects are not talking. Bursic et al. [27] noted that while examining FEs of 

subjects involved in such conversations, the speaking effect needs to be regarded as a crucial factor. They 

developed a deep neural network-based model that analyzed cues related to facial features and speech 

articulation extracted from a model trained for lipreading. Their experiments on RAVDESS dataset validated 

their conjecture that the incorporation of features associated with speech articulation process increased the 

FER accuracy. Wehrle et al. [28] remarked that employing temporal information led to a better 

understanding of FEs as a neutral face image could be used as a reference state. However, for the situations 

with unavailability of a neutral face, static techniques for FER have an edge over dynamic techniques. To 

circumvent this issue, “average human face” as an alternative to neutral face could also be employed in a 

dynamic model [29]. The approach presented in this work is dynamic and uses optical flow-based descriptive 

features to encode visual motion appearance. A brief sketch on flow-based approaches employed for FER is 

provided in the next section. 

3 Optical flow 

Estimating optical flow is a vital step for dynamic scene interpretation as it gives the relative 

displacement of image gray values in a time-varying image sequence. Assessing flow from image sequences 

is an active research area and has witnessed overwhelming progress in the last two decades. FEs may be 

regarded as dynamic variation of facial components such that muscular movement of ocular region, 

forehead, lips, cheeks, nose, etc. result in large scale variations, whereas fine scale variations arise because of 

subtle skin deformations [30]. The difference in appearance of facial features can be represented by the 

optical flow between emotional and neutral faces. Two images, one with a neutral face and one depicting an 

expression (Figures 2a and 2b) will have an optical flow field associated with them. This 2D vector field 

(Figure 2c) indicates apparent velocity of each pixel quantifying the apparent facial motion that arises when 

the face advances from neutral state to emotional state. At discrete spatial locations, optical flow is denoted 

by a vector, whose orientation gives flow direction and length characterizes flow magnitude. There are 

discernible changes around the forehead and in the mouth region when a face turns from neutral to “angry.” 

This explains maximum flow component in the corresponding region in the optical flow field diagram.  

 

Figure 2a: Neutral face; 2b: Face conveying anger; 2c: Corresponding optical flow field 
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3.1 Optical flow computation techniques and applications 

Classical flow computation techniques typically function by finding the spatial and temporal derivatives 

of pixel gray levels and optimizing a local or global objective function. Notwithstanding their simplicity, 

such methods are unsuitable for real-world scenarios with motion discontinuities and large displacements. 

Modern approaches employ supervised or unsupervised learning-based architectures to attain reliable 

estimates of optical flow. However, such approaches suffer from computational complexities.  

Optical flow finds application in a wide array of domains such as cell deformation analysis [31], medical 

image registration [32], blood flow estimation [33], video indexing and retrieval [34,35], and obstacle 

detection and avoidance in real and virtual environments [36]. 

3.2 Optical flow and FER  

About two decades ago, Mase [37] pioneered the analysis of FEs using optical flow. He utilized top-down 

and bottom-up approach to study movement of facial muscles and classified expressions into anger, disgust, 

happiness, and surprise. To study expressions with spatiotemporal models, Essa and Pentland [38] included 

temporal dimension in the FACS framework and modified it to FACS+. They tracked the facial changes 

occurring during the portrayal of an expression by superimposing a mesh on the face images and tracking the 

mesh corners using optical flow. Pu et al. [39] presented a novel framework for analysis of FEs by 

recognizing AUs from input image sequences with a two-fold random forest (RF) classifier. Facial motion 

was quantified by tracking active appearance model-based feature points with optical flow-based tracker 

giving the displacements of the feature points between the neutral and peak expression frames. The resultant 

displacement vectors were fed to the first level of RF to detect the AUs present in the corresponding input 

expression sequences. The detected AUs were fed as input to the second level of RF for categorization of 

FEs. 

Zhao et al. [40] introduced accumulated optical flow between non-consecutive input facial frames as a 

feature descriptive of the global motion. Using both static and dynamic features as input to 3D CNNs, they 

achieved high recognition accuracies. Multi-channel deep spatial temporal feature fusion neural network 

presented by Sun et al. [29] fused spatial and temporal features for analyzing expressions from image pairs. 

The gray levels of input emotional face images acted as spatial features, whereas the optical flow field 

corresponding to the changes between peak expression face and neutral face was utilized as the temporal 

feature. They also proposed the use of average human face as a substitute to the neutral face for the cases 

where neutral face was not available for reference. Pan et al. [41] utilized the magnitude of the optical flow 

between successive frames in a video to characterize their relative motion as a form of a temporal channel in 

their spatiotemporal video-based FER model. 

4 Evaluation methodology 

In this work, a series of experiments were conducted, and for evaluation, images were taken from the 

Extended Cohn-Kanade (CK+) [10], the Karolinska Directed Emotional Faces (KDEF) [11], and the 

Japanese Female Facial Expression (JAFFE) [12] datasets. For CK+, the sequences investigated had either of 

the seven FE labels viz. anger, contempt, disgust, fear, happiness, sadness, and surprise. For JAFFE and 

KDEF, the labels were anger, disgust, fear, happiness, sadness, surprise. During evaluation, the first step was 

to extract the facial region in the images and crop it from the rest of the image. During the training stage, the 

optical flow-derived motion templates were used to find the feature descriptors that describe the spatial 

distribution of divergence and curl across the entire facial region and were fed to either multi-class SVM or 

k-nearest neighbor (k-NN)-based classifiers. For testing, the optical flow field associated with image pair 

comprising an emotional face and the corresponding neutral face was used to determine the spatial 

distribution of divergence and curl of the flow field that were used as input for recognition with the 

classifiers. The following sub-sections explicate the steps used for evaluation.  

4.1 Image pre-processing: face localization and resizing 

The foremost step for expression analysis from an image with a subject displaying an emotion is to 

extract the region containing salient information, i.e., the facial region. This was done by employing the 
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Viola-Jones algorithm [42], a technique suitable for an expeditious and reliable detection of frontal upright 

faces in input images. It utilizes histogram of oriented gradients features, Haar-like features, and LBPs 

complemented with cascaded classifiers trained by boosting. The extracted facial region was eventually 

cropped from the image and resized to a 256 × 256 size grayscale image (Figure 3). 

 

Figure 3: Locating face in the given image using Viola-Jones algorithm and cropping the same from the 

background 

4.2 Optical flow computation 

For determination of optical flow, global variational mechanism devised by Brox et al. [43] was utilized 

due to its validated robustness to noise and illumination changes. Global models find a dense field by 

operating over the entire image domain. To determine a reliable flow field, the model uses the following 

assumptions. 

4.2.1 Gray value constancy assumption or brightness constancy assumption (BCA) 

Since the seminal work by Horn and Schunck [44], it has been presumed that gray value of a pixel does 

not vary despite the change in its position in successive frames. Mathematically, 

 

 

 

Taylor expansion of (1) gives the optical flow constraint:  

 

   

4.2.2 Gradient constancy assumption (GCA) 

Brox et al. [47] coupled BCA with gradient constancy to develop a technique robust to illumination 

changes. 

  

(3) 

 

The global deviations over the entire image domain can be measured by the data term given as:  

 

                         (4) 

 

Where 𝐱=(x,y,t)T and 𝐰=(u,v,1)T and γ is the weight between the two assumptions. The integral 

covers the entire spatial domain of the image. 

 

 



Shivangi Anthwal et al  / Electronic Letters on Computer Vision and Image Analysis 20(2):1-21; 2021      7 

4.2.3 Smoothness assumption  

The smoothness term minimizes square of magnitude of flow gradient and penalizes discontinuities in 

flow, i.e. large variations in u and v to attain a smooth flow field. The spatial smoothness term required to be 

minimized can be given as: 

 

 

The total function supposed to be minimized is given as: 

 

 

Where, the integral covers the entire spatial domain of the image. The values of u and v that 

minimize E(u,v) should satisfy Euler-Lagrange equations. The system of equations resulting from the 

discretization for derivatives, is solved with successive over relaxation iterations. In this work, in an 

emotional-neutral image pair, neutral facial image is given by I(x,y,t) and the emotional face is represented 

by I(x+u,y+v,t+1). (u,v) gives the optical flow for this image pair. The color or the gray value for any point 

on the face represented by a pixel or a group of pixels should remain unaltered in different frames even when 

there is motion. In other words, these values would remain constant regardless of the motion. Any plausible 

changes in different frames due to unwanted illumination variations or noise have been validated as being 

well-handled by the method proposed by Brox et al. [43]. Thereby, the method is suitable for the 

computation of the associated optical flow field. 

4.3 Designing motion templates associated with each expression using optical flow 

A principal step in this work was the computation of motion templates corresponding to each FE that 

depict the ideal motion pattern arising when a face advances from neutral to emotional. These templates were 

subsequently used for deriving divergence and curl templates/descriptors used for training the classifiers. To 

derive a template that can embody the motion pattern of unfolding of an FE, distinct image pairs of neutral 

and emotional faces associated with that FE portrayed by different subjects were taken and the flow fields 

(size: 256 × 256) corresponding to each pair were computed. Motion template (size: 256 × 256) associated 

with the FE was computed as the mean of all those optical flow fields. In this fashion, for each FE, three 

such templates were computed. The reason for using a template-based representation derived from mean 

flow fields to represent the ideal motion pattern is two-fold. First, to avoid irregularities and discontinuities 

that may occur in flow field for some subjects due to head pose variation, inconsistent illumination, eye 

blink, etc., as the effects get minimized when an average of different subjects is taken. Moreover, despite the 

similarities in their pattern, the intensity with which emotions are manifested, i.e., the level of expressiveness 

varies for different individuals (Figure 4). Effects of extremely low or high emotion intensities also get 

alleviated in the mean field. Thus, mean flow field-based template representation is a more adequate and 

effective representation for the ideal motion pattern corresponding to different FEs. The template-derived 

descriptors used in this work are outlined in the next section. 

 

Figure 4: Variation in expression intensity of (a) happiness (b) surprise (c) anger for different individuals 
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4.4 Flow-based descriptors 

The fundamental notion for the approach presented is to categorize the FEs based on the motion pattern of 

facial components that arises when a face advances from neutral to emotional state. As remarked by Black 

and Yacoob [45] and Shojaeilangari et al. [46], divergence and curl of flow field representing the motion 

may give pertinent information related to the expansion/contraction and circular motion of facial 

components. The spread of the optical flow field at any point may be quantified by the value of its 

divergence at that point. The regions with a greater spread have higher divergence value as opposed to the 

regions with zero or no spread. Likewise, curl of the optical flow field is anticipated to be greater at regions 

with a significant circular motion in comparison to the regions with absence of circular motion. Thus, 

divergence and curl of the flow field computed at each spatial location can yield a distinct pattern that can 

effectually characterize the facial motion and form adequate global descriptors for effective representation of 

facial motion. To the best knowledge of authors, this is the first work that uses divergence- and curl-based 

features as global or holistic descriptors in contrast to previous approaches which were atomistic, i.e., region-

based. Furthermore, this is the first time that divergence and curl are computed from flow-derived motion 

template rather than the optical flow field. Consider a sample motion template  with u and v the 

horizontal and vertical flow, respectively. The three types of features/descriptors derived from the motion 

templates are described below: 

4.4.1 Divergence-based descriptor 

The first type of descriptor FlowD (size: 256 × 256) is based on the divergence of motion field. It 

quantifies the expansion or contraction of facial components occurring while a face goes from neutral to 

emotional. As an illustrative example, Figures 5a and 5b depict a neutral face and a face portraying 

expression of happiness. Figure 5c depicts the optical flow field representing the motion pattern that arises 

during the portrayal of happiness. With horizontal widening of the mouth and cheeks, the motion pattern can 

be described by similar values of divergence of the flow field on either side in the lower half of the face. 

Also, the two eyes slightly widen symmetrically giving identical divergence values for the spatial regions 

corresponding to the two eyes. Thus the high/low values of divergence create a distinct pattern that can 

adequately characterize the facial motion. 

 

Figure 5: (a) Neutral face (b) Face conveying happiness (c) Corresponding flow field 

For the three templates representing the motion field, the divergence value was determined at each spatial 

location giving three corresponding divergence-based templates used as descriptors for training. The 

divergence value at each spatial location in the image domain is computed as the sum of partial derivatives 

of horizontal flow along x axis and vertical flow along y axis at that point, i.e.: 

 

4.4.2 Curl-based descriptor 

The second descriptor FlowC (size: 256 × 256) is derived from the component of curl of motion field 

perpendicular to itself. It gauges the circular motion of facial constituents. Figure 6 depicts the 
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transformation of a neutral face to a face with the expression of anger and the associated flow field. Circular 

motion arises in the highlighted areas due to pursing of lips and with the nasal edges of the eyebrows 

drooping downward. Both the regions have a symmetric rotation of the two halves occurring about the center 

of that region but in opposite direction, giving curl values similar in magnitude but opposite in sign. Thus, 

the circular motion arising during portrayal of anger can be quantified in terms of its curl. 

 

Figure 6: (a) Neutral face (b) Face conveying anger (c) Corresponding flow field 

For the three motion templates, the curl value can be determined at each spatial location to obtain three 

corresponding curl-based templates used as descriptors for training. The curl value at each spatial location in 

the image domain can be derived by subtracting partial derivative of horizontal flow along y axis from partial 

derivative of vertical flow along x axis at that point, i.e.: 

 

4.4.3 Divergence- and curl-based descriptor 

The third form of descriptor FlowDC (size: 256 × 256) is derived simply and straightforwardly with the 

concatenation of the divergence and curl descriptors associated with each motion template. It furnishes 

information regarding both the motion of facial components in terms of expansion/contraction and spin at 

each spatial location in the image domain. 

4.5 Classification techniques  

 

In an FER scheme, after the computation of characteristic features for describing the FE, they are fed to a 

robust classifier for categorizing the FE. Two different types of classification schemes were used for 

recognition: 

 

4.5.1 Multi-class SVM classification [47]  

A linear SVM aims at determining a suitable hyperplane or a decision boundary that divides the given 

data into two distinct classes. Distance between nearest data point from a particular class and the hyperplane 

is known as margin. There are multiple hyperplanes to categorize the data, but the one that has the largest 

margin between the two classes is the most appropriate as its leads to higher probability of classifying test 

data with precision. Error correcting output codes (ECOC) method segregates multi-class classification 

problem into multiple binary classification problems. Two different ECOC coding schemes namely “one-

versus-one” and “one-versus-all” were adopted for different experiments in this work for a comprehensive 

evaluation with variation in parameters. Under the first setting, to train a model for p different labels, ECOC 

uses m(m-1)/2 linear SVM models wherein for every binary learner first class is considered positive and the 

other negative, ignoring the rest. The second coding scheme one-versus-all entails for each binary learner 

first class to be positive and all others negative. For both the schemes, ultimately, the class with maximum 

positive votes is assigned to the test data. SVMs are used in this work due to their capability in efficient 

training even with a small set of samples. 
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4.5.2 k-NN classification [48]   

It is a non-parametric classification scheme based on lazy, i.e., instance-based learning. The input data is 

assigned the class which is most common amongst its k nearest neighbors. For k = 1, the class assigned is 

that of the single nearest neighbor. The scheme is chosen to ease in its implementation and robustness to 

linearly inseparable data. The two parameters required for tuning the classifier are distance metric and the 

value of k. In this work, to measure the distance between different data points, the Euclidean distance metric 

is utilized, and the number of nearest neighbors is 1.   

5 Experiments and results 

This section outlines the details of the evaluation scheme and the results obtained on the databases 

employed for training and testing.  

5.1 Evaluation on CK+ and JAFFE datasets 

The CK+ dataset consists of 327 image sequences labeled with one of the seven discrete expressions. The 

sequences start from a face with a neutral state and progress toward a face with peak expression. The JAFFE 

dataset comprises grayscale images with Japanese female subjects portraying fundamental emotions. The 

total number of sequences for each emotion in CK+ and JAFFE are encapsulated in Table 1.  

 
Anger Contempt Disgust Fear Happiness Sadness Surprise 

CK+ 45 18 59 25 69 29 82 

JAFFE 30 - 30 30 30 30 30 

Table 1: Sequences for each emotion in CK+ and JAFFE 

In this work, a subject-independent protocol was deployed to validate the generalization capability of the 

proposed features. For experimental evaluation, the sequences were divided into two equal sets of training 

and test samples. The training set was further divided into three equal subsets each having sequences 

associated with the fundamental FEs. All the sequences in each subset corresponding to the same emotion 

formed a group. The motion template corresponding to each FE was derived by computing mean of the flow 

fields associated with emotional and corresponding neutral face image pairs in that group. Thus, three motion 

templates associated with each expression were derived from those sequences as discussed previously. Using 

each template, corresponding divergence and curl templates were derived that represented the global 

distribution of their values across the facial image domain. The computed divergence and curl templates that 

embody the facial motion pattern were fed to the classifiers as descriptive feature vectors individually 

(FlowD and FlowC) and in concatenation with each other (FlowDC) along with the associated expression 

label for training. In this manner, for each emotion category, there were three training templates each 

describing divergence, curl, and both.  

From the testing sequences, first frame from each sequence was used as neutral frame and the last three 

peak expression frames were used as emotional frames, thereby giving three emotional-neutral faces image 

pairs from one sequence. The values of divergence and curl of the flow field associated with the emotional-

neutral faces image pair were computed at each spatial location and fed to the classifiers, individually and in 

concatenation as the test data. Thus the classifiers were trained with divergence and curl templates whereas 

testing was done using divergence and curl of optical flow field corresponding to the neutral and emotional 

faces of test samples. The output of the classifier was the one of the expression labels that were used during 

training. The experiment was conducted twice by changing the training and test sequences and the average 

recognition accuracies in percentage are encapsulated in Table 2. The descriptor FlowDC that exploits 

information related to both circular and expansive/contractive motion was found to have the most superior 

performance. 
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 Multi-class SVM k-NN 

FlowD 85.45 87.15 

FlowC 91.50 91.16 

FlowDC 97.52 97.80 

Table 2: Recognition rates (in percentage) for different classifiers and descriptors for CK+ 

Normalized confusion matrices for the two types of classifiers are shown in Tables 3–5. 

 Anger Contempt Disgust Fear Happiness Sadness Surprise 

Anger 91.11 0.00 0.00 0.00 0.00 8.89 0.00 

Contempt 0.00 100 0.00 0.00 0.00 0.00 0.00 

Disgust 0.00 0.00 100 0.00 0.00 0.00 0.00 

Fear 0.00 0.00 0.00 100 0.00 0.00 0.00 

Happiness 0.00 4.35 0.00 2.90 92.75 0.00 0.00 

Sadness 0.00 0.00 0.00 0.00 0.00 100 0.00 

Surprise 1.22 0.00 0.00 0.00 0.00 0.00 98.78 

Table 3: Normalized confusion matrix for multi-class SVM classifier (one-versus-one) with FlowDC 

 
Anger Contempt Disgust Fear Happiness Sadness Surprise 

Anger 84.44 4.44 0.00 0.00 0.00 11.11 0.00 

Contempt 0.00 100 0.00 0.00 0.00 0.00 0.00 

Disgust 0.00 0.00 100 0.00 0.00 0.00 0.00 

Fear 0.00 0.00 0.00 88.00 4.00 0.00 8.00 

Happiness 0.00 7.25 0.00 2.90 89.86 0.00 0.00 

Sadness 0.00 0.00 0.00 0.00 0.00 100 0.00 

Surprise 1.22 0.00 0.00 0.00 0.00 0.00    98.78 

Table 4: Normalized confusion matrix for multi-class SVM classifier (one-versus-all) with FlowDC 

 Anger Contempt Disgust Fear Happiness Sadness Surprise 

Anger 93.33 0.00 0.00 0.00 0.00 6.67 0.00 

Contempt    0.00 100 0.00 0.00 0.00 0.00 0.00 

Disgust 1.69 0.00    98.31 0.00 0.00 0.00 0.00 

Fear 0.00 0.00 0.00 100 0.00 0.00 0.00 

Happiness 0.00 2.90 0.00 2.90 94.20 0.00 0.00 

Sadness 0.00 0.00 0.00 0.00 0.00 100 0.00 

Surprise 1.22 0.00 0.00 0.00 0.00 0.00 98.78 

Table 5: Normalized confusion matrix for k-NN classifier with proposed FlowDC 

The overall accuracy attained with k-NN classifier is slightly higher than multi-class SVM. The 

expressions of contempt, fear, and sadness were identified with full accuracy by both the classifiers. There 

were a few cases of misclassification of happiness as contempt and fear. This could be due to the slight 

structural similarity that happiness bears with the aforementioned expressions involving horizontal widening 
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of the lower half of the face. For both the classifiers the recognition rate was the lowest for anger. In all the 

cases of misclassification, anger was inaccurately predicted as sadness. The emotions anger and sadness are 

negative emotions associated with displeasure of some sort. The confusion of anger as sadness may be 

attributed due to similarity in the expression portrayal as for both, the most noticeable changes occur around 

mouth and ocular regions and slight changes occur around the nose. An emotional expression that the 

humans may perceive unerringly can confuse a machine due to such similarities. Figure 7 further illustrates 

this point where a few images from CK+ and KDEF datasets labeled as “anger” were erroneously classified 

as “sorrow” by the powerful pre-trained Google cloud vision API [49]. When an image is fed to Google 

cloud vision API for face analysis, it predicts the likelihood for the subject in the image to be conveying 

“anger,” “joy,” “sorrow,” and “surprise.” For the input images displaying anger the highest possibility or 

likeliness was given to sorrow. 
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Figure 7: Erroneous classification of anger as sorrow for different cases by Google cloud vision API 

The recognition accuracies attained on CK+ were compared with those obtained by the state-of-the-art 

methods and were observed to be on par with them under both six-emotion class (contempt excluded) and 

seven-emotion class (contempt included) categorization paradigms adopted by different models (Table 6). 

No. of classes Research work Accuracy (%) 

Seven Fan and Tjahjadi (2019) [50] 92.50 

Seven Maheswari et al. (2020) [51] 93.89 

Seven Hu et al. (2019) [52] 94.00 

Seven Wei et al. (2020) [53] 94.41 

Seven Makhmujaedaev et al. (2019) [54] 94.50 

Seven Bin Iqbal et al. (2020) [55] 95.13 
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Seven Cheng and Zhou (2020) [56] 96.00 

Seven Gan et al. (2020) [57] 96.28 

Seven Qin et al. (2020) [58] 96.81 

Seven Salmam et al. (2019) [25] 96.92 

Seven Allaert et al. (2020) [59] 97.25 

Seven FlowDC (multi-class SVM, one-versus-one) 97.52 

Seven FlowDC (k-NN) 97.80 

Seven Zhu et al. (2021) [60]  98.46 

Six Meena et al. (2020) [61] 92.85 

Six Maheswari et al. (2020) [51] 94.85 

Six Khan et al. (2019) [62] 94.90 

Six Xie et al. (2019) [63] 95.88 

Six Kim et al. (2019) [64] 96.46 

Six Bin Iqbal et al. (2020) [55] 96.77 

Six Salmam et al. (2019) [25] 96.83 

Six Pan et al. (2020) [65] 97.01 

Six FlowDC (multi-class SVM, one-versus-one) 97.46 

Six Meena et al. (2019) [66] 97.61 

Six FlowDC (k-NN) 97.92 

Table 6: Comparison between accuracies of FER approaches 

As evident from the tabulated comparison, recognition accuracy of proposed descriptor FlowDC is on par 

with the state-of-the-art FER techniques. It is to be noted that the competence with state-of-the-art techniques 

is validated in terms of recognition accuracy. However, the computational time is not considered as a 

parameter in this work and will be considered as a direction to explore in future.  

For JAFFE dataset, images for the FE corresponding to contempt were not available, thus the other six 

emotions were studied, and the resultant confusion matrices are presented in Tables 7–9. The overall highest 

accuracy was attained with multi-class SVM under one-versus-all coding and the lowest with k-NN 

classifier. The confusions/misclassifications of sadness as fear and disgust as sadness or anger were the most 

prevalent in the experiments with JAFFE. 

 
  Anger Disgust Fear  Happiness  Sadness  Surprise 

Anger 100 0.00 0.00 0.00 0.00 0.00 

Disgust 10.00 73.33 0.00 0.00 16.67 0.00 

Fear 0.00 0.00 100 0.00 0.00 0.00 

Happiness 0.00 0.00 0.00 100 0.00 0.00 

Sadness 0.00 0.00 3.33 0.00 96.67 0.00 

Surprise 0.00 0.00 0.00 0.00 0.00 100 

Table 7: Normalized confusion matrix for multi-class SVM classifier (one-versus-one) with FlowDC for 

JAFFE 
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Anger Disgust   Fear Happiness Sadness Surprise 

Anger 100 0.00 0.00 0.00 0.00 0.00 

Disgust 23.33 76.67 0.00 0.00 0.00 0.00 

Fear 0.00 0.00 100 0.00 0.00 0.00 

Happiness 0.00 0.00 0.00 100 0.00 0.00 

Sadness 0.00 0.00 3.33 0.00 96.67 0.00 

Surprise 0.00 0.00 0.00 0.00 0.00 100 

Table 8: Normalized confusion matrix for multi-class SVM classifier (one-versus-all) with FlowDC for 

JAFFE 

 Anger Disgust Fear Happiness Sadness Surprise 

Anger 90.00 0.00 0.00 3.33 6.67 0.00 

Disgust 6.67 66.67 6.67 6.67 13.33 0.00 

Fear 0.00 0.00 100 0.00 0.00 0.00 

Happiness 0.00 0.00 0.00 100 0.00 0.00 

Sadness 0.00 0.00 10.00 0.00 90.00 0.00 

Surprise 0.00 0.00 10.00 0.00 0.00 90.00 

Table 9: Normalized confusion matrix for k-NN classifier with FlowDC for JAFFE 

To validate the descriptor further, a cross-database analysis was performed on the KDEF dataset. 

Classifiers trained with FlowDC derived from CK+ facial images were utilized for generating output 

expression labels corresponding to input facial images from KDEF dataset.  

5.2 Evaluation on KDEF dataset 

Forty front facing images for each expression and a neutral face corresponding to that subject were taken 

from KDEF set A for evaluation. Figure 1 top row shows a KDEF subject displaying six basic emotions. 

Flow was estimated between the image depicting an expression and corresponding neutral face. To interpret 

the results of evaluation on KDEF, a comparative analysis (Figure 8) was performed with the following: 

Human judgment: The results were derived from a perceptual study on KDEF conducted by Calvo and 

Lundqvist [67]. The study of human judgment on this dataset used 40 different facial images corresponding 

to each emotion. The participants of the study were asked to identify the emotion portrayed by the images 

displayed to them for different durations. For the purpose of comparison in this work the two cases 

considered are: (a) when the participants were given 25 msec to judge expression portrayed in each image 

and (b) When the participants were given free-viewing time i.e. no time bound was there to judge the 

expression. 

Microsoft face API [68]: When an input image is fed to pre-trained Microsoft face API, it analyzes 

information related to facial features, gender, age and attempts to detect and classify emotions such as anger, 

contempt, disgust, fear, happiness, sadness, and surprise portrayed by the subjects in the images. For 

evaluation in this study, test images were fed to the Microsoft face API. For each class, the accuracy was 

determined by dividing correctly identified expression with the total number of observations for that class.  

 



16   Shivangi Anthwal et al. / Electronic Letters on Computer Vision and Image Analysis 20(2):1-21; 2021 

 

Figure 8: Illustrative comparison of different techniques on KDEF dataset 

The expression identified with the least accuracy for all the cases was “fear.” The best identified 

expression was happiness, for all the methods. The multi-class SVM and Microsoft face API attained 100% 

accuracy and surpassed human judgment accuracy for happiness. Both anger and sadness were better 

recognized by the proposed descriptor FlowDC than human participants in the study by Calvo and Lundqvist 

[67]. Inevitably, human judgment with no time bound yielded the highest overall recognition accuracy of 

87.8%. followed by Microsoft face API of 86.3%. For such a challenging dataset. even human observers 

made lapse of judgment in many cases. The recognition rate of proposed descriptor FlowDC with multi-class 

SVM classifier of 84.6% surpassed human judgment for 25 msec duration with accuracy 84.4%. Some cases 

of misclassification by Microsoft API are illustrated in Figure 9. 

To further assess the results, the Pearson correlation coefficient was computed for recognition rates 

corresponding to different FEs attained by human judgment, Microsoft face API and the presented 

descriptors with the two classifiers. The correlation values are depicted in Table 10. It can be seen that 

results obtained by the proposed scheme are more in agreement with the human perception results Calvo and 

Lundqvist [67] presented. All the values are positive, implying a positive correlation. The highest 

correlations are of no time bound human judgment with FlowDC with multi-class SVM and k-NN, 

respectively. An agreement of the results obtained with human perception of FEs validates the usefulness of 

the divergence and curl-based feature descriptors for modeling FEs. 

 Microsoft face API FlowDC (k-NN) FlowDC (SVM) 

Human judgment (25msec) 0.63 0.76 0.72 

Human judgment (no time bound) 0.73 0.78 0.80 

Table 10. Correlation between human perception and different approaches 
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Figure 9: Instances of misclassification by Microsoft face API (Top) disgust misclassified as anger and 

sadness; (Bottom) fear misclassified as surprise and sadness by Microsoft face API 

6 Conclusion 

In this work an approach to determine FEs associated with discrete emotions has been presented. To 

attain successful classification, divergence and curl templates derived from motion templates and flow fields 

corresponding to each fundamental FE were used for the training and testing, respectively. High recognition 

rates were achieved on CK+, JAFFE, and KDEF datasets. Moreover the recognition rates on KDEF were 

found to be in agreement with human perception. 

The futuristic vision-based architectures in smart devices and environments are primarily driven by the 

objective of emulating human vision and cognition for comprehending their surroundings. Thereby, an 

agreement of the results obtained with human perception of FEs substantiates the usefulness of the 

divergence- and curl-based features in vision-based affect analysis systems. 

It is to be noted that the model is considered competent with state-of-the-art techniques in terms of 

recognition accuracy. However, the computational time is not considered as a parameter in this work. The 

future work will focus on comparison with other techniques based on time and other factors. Also, there will 

be focus on developing the model to be robust to unconstrained environments such as with high intensity 

fluctuations in image pairs, partial or full occlusion, and testing its applicability and performance in real-

time. In addition, it will be attempted to use average face instead of neutral face for situations where the 

neutral face is unavailable for the subjects in the input images. 
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