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Abstract 

This paper presents an edge detection algorithm for omnidirectional images based on superposition law on Bloch’s 

sphere and quantum local entropy. Omnidirectional vision system has become an essential tool in computer vision, 

due to its large field of view. However, classical image processing algorithms are not suitable to be applied directly 

on this type of images without taking into account the spatial information around each pixel. To show the 

performance of the proposed method, a set of experimentation was done on synthetic and real images devoted to 

agriculture applications. Later, Fram & Deutsh criterion has been adopted to evaluate its performance against three 

algorithms proposed in the literature and developed for omnidirectional images. The results show a better 

performance in term of edge quality, edge community and sensibility to noise.  
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1. Introduction  

Omnidirectional images represent the type of images that covers almost the entire sphere or at least a 

full horizontal plane, therefore containing much more information than the conventional one. Duo to its various 

advantages, omnidirectional images has been widely used in several research fields such as: Person detection 

and tracking [1], robot navigation [2], 3D scene reconstruction [3], line image extraction [4] etc. essentially 

for the 360° field of view provided by a such image. This large field of view can be reached by numerous 

technics notably: A rotating camera [5], a fish eye camera [6] and also with a combination between mirror and 

perspective camera: catadioptric camera [7]–[9]. 

Even with all the positive points, the major weakness with this type of images is the difficulty of using 

classical image processing algorithms directly on it, due to several reasons such as: the radial distortions 

provided by the geometry of omnidirectional image, the non-uniformity of the image resolution, etc. For that, 

a significant number of research interested on solving this issue [10]–[13], by proposing new algorithms which 

take into account the spatial information of the image. One of the most affected type of image processing 

algorithms is edge detection, duo to the use of kernels and convolution in the majority of the known methods.  

Edge detection can be defined as the detection of significant and abrupt changes in grey level image 

intensity, the major aim is to detect important objects/events in the processed image, and its used in several 
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applications linked to omnidirectional images:  3D human tracking [14], robot navigation monitoring system 

[15], Global Localization for Aerial Robots [16] etc. Duo to its importance, many researches has been carried 

out to propose new edge detection algorithms for omnidirectional images. In [17] the authors proposed a 

spherical gradient operator that computes the gradient from a discrete spherical image with irregular pixels. 

The authors in [18] proposed to define catadioptric image processing from geodesic metric in the unitary 

sphere, in order to simply adapt classical image processing methods to omnidirectional images. Domonceaux 

& al proposed in [19] to define a spherical neighborhood for each pixel in order to adapt Markovian methods 

to omnidirectional images. Likewise, authors in [20] used spherical harmonics to define convolution products 

in spherical images. Another work proposed by Hara & al in 2015 purpose an extension of the Laplacien 

operator that can handle spatial inhomogeneity in omnidirectional images, by using a specially varying filter 

matrix [21]. Whereas the majority of edge detection algorithms for omnidirectional images presented in the 

literature are not designed directly on the spherical space which is more suitable for this image types.  

In the last decades, the quantum image processing (QIP) theory was developed, based on quantum 

information theory, to overcome classical image processing algorithms’ limits. As we will see later, it’s come 

down to present the image information with a combination of all its states by the so-called quantum 

superposition law [22].  

In this paper, we propose an algorithm for edge detection in omnidirectional images based on quantum 

entropy and superposition laws by spherical neighborhood definition on Bloch’s sphere. The proposed 

algorithm avoids the binarisation step which is a cost consuming step in the majority of edge detection 

algorithms while taking into account the spatial information of the omnidirectional image in order to avoid the 

weakness of the classical methods. The proposed algorithm is composed of 3 major steps: i) Spherical 

neighborhood definition on Bloch’s sphere. ii) Edge enhancement by quantum superposition iii) Edge 

localization using local quantum entropy. 

In order to test our proposal regarding other algorithms presented in the literature, a set of experiments 

are carried out using synthetic and real images devoted to agriculture applications, after that we used Fram 

and Deutsh metrics presented in [23], to evaluates its performance in term of edge continuity and sensibility 

to noise. 

The paper is organized as follow: section 2 presents a theoretical background of quantum information 

theory; the proposed algorithm is detailed in section 3. Finally, a set of experiments and comparisons are 

presented in section 4. 

 

2. Quantum information: Theoretical background 

In classical information theory, the basic information unit is the bit or binary digit which takes the 

value 0 or 1, its correspondent in quantum information is the qubit. Contrary to the bit, the qubit can be 

presented as a superposition of 0 and 1 which represent in this case two orthogonal quantum eigenstates [24]. 

|𝜓⟩  =  𝛼|0⟩  +  𝛽|1⟩                                                                                     (1) 

With:  |0⟩  =  (
1
0

) ; |1⟩  =  (
0
1

) 

This superposition can be written in matrix form as:  

|𝜓⟩  =   (
𝛼
𝛽) = (

𝛼
0

) +  (
0
𝛽

) =  𝛼 (
1
0

) +  𝛽 (
0
1

)                                                      (2) 

With |𝜓⟩ represents the wave function, when 𝛼 and β are the probability amplitudes with two degrees of 

freedom each, satisfying: 

 |𝛼|2 +|𝛽|2 = 1.                                                                  (3) 
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However, the normalization constraint (Equation 3) removes one degree of freedom. Thus,  the geometric 

representation of the qubit was introduced by Bloch in 1964 [25] where the amplitudes are given by: 

𝛼 =  𝑒𝑖𝛾  𝑐𝑜𝑠
𝜃

2
 ;    β =   𝑒𝑖(𝜙+𝛾) 𝑠𝑖𝑛

𝜃

2
                                                          (4)   

In the other side, the overall phase 𝑒𝑖𝛾 don’t represent any physical identifiable consequences, we can therefore 

write the two amplitudes as: 

 𝛼 =  𝑐𝑜𝑠
𝜃

2
 ;    β =   𝑒𝑖𝜙 𝑠𝑖𝑛

𝜃

2
                                                                (5)                                

 With 𝜃 and 𝜙 represent the polar and azimuth angle of a quantum states respectively. These two angles can 

be used to map the qubit into a 3D spherical space so-called Bloch’ sphere (Figure 1), equation (1) can be 

rewritten as: 

|𝜓⟩ = 𝑐𝑜𝑠
𝜃

2
 |0⟩ + 𝑒𝑖𝜙 𝑠𝑖𝑛

𝜃

2
 |1⟩                                                              (6) 

 

Figure 1: Bloch sphere. 

Supposing we have a two qubits system, it has 22 = 4 computational basis states denoted | 𝑖𝑏⟩ =
{ |00⟩, |01⟩, |10⟩, |11⟩ }. A pair of qubits can be at a superposition of these four states as: 

|𝜓⟩   =  𝛼00|00⟩  + 𝛼01 |01⟩ 𝛼10 |01⟩ + 𝛼11 |11⟩                                            (7) 

Where 𝑤4 =  {𝛼00, 𝛼01, 𝛼10, 𝛼11} are the amplitudes of the given system. 

Similarly, in the case of a system of n states, the equation 1 can be writing as:  

|𝜓⟩   =  𝛼1𝛼2 …  𝛼𝑛 |000 … 0⟩  +  𝛼1𝛼2 … 𝛼𝑛−1𝛽𝑛 |00 . . 01⟩ +… + 𝛽1𝛽2 …  𝛽𝑛 |111 … 1⟩                  (8) 

And generalized as follow: 

      |𝜓⟩  =  ∑ 𝑤𝑖 | 𝑖𝑏𝑖𝑛𝑎𝑟𝑦⟩2𝑛

𝑖=1                                                                 (9) 

Where 𝑖𝑏𝑖𝑛𝑎𝑟𝑦 is an n-bits binary number and 𝑤𝑖 is the probability of the 𝑖𝑡ℎ state satisfying: 

∑ |𝑤𝑖|2

2𝑛

𝑖=1

= 1                                                                             (10) 

Based on the above descriptions quantum image processing can be modelled using the basic representation of 

qubit.  

Let I(x,y) be the intensity value of a normalized grey scale image pixel at the (x,y) position. the qubit pixel can 

be obtained according to the equation 1 and the eigenstates constraint, under the viewpoint of the probability 

statistics by: 
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|𝐼(𝑥, 𝑦)⟩ =  √1 − 𝐼(𝑥, 𝑦) |0⟩  + √𝐼(𝑥, 𝑦) |1⟩                                                          (11) 

Where √1 − 𝐼(𝑥, 𝑦)  and √𝐼(𝑥, 𝑦) are the probabilities of having the current pixel at the state 0 and 1 

respectively, and satisfying |√1 − 𝐼(𝑥, 𝑦) |2 + |√𝐼(𝑥, 𝑦) |2  = 1.     

 

3. Proposed Method 

3.1 Spherical neighborhood on Bloch’s sphere  

The principal limitation of using classical edge detectors directly on omnidirectional image is that 

whatever the kernels position in the image, its effect on the pixel’s neighborhood remains the same leading to 

false edge detection (since the neighborhood definition is different in the case of omnidirectional image).  

In order to solve this issue, and as we are working in the QIP, we propose to work with an equivalent 

image based on Bloch’ sphere where each pixel is defined by its intensity 𝐼 and its position on the Bloch’s 

Sphere according to the polar and azimuth angles 𝜃 and 𝜙 as 𝐼(𝜃, 𝜙)  instead of planar 2D position x and y as 

𝐼(𝑥, 𝑦).  

Let 𝜓𝑆𝑝ℎ𝑒𝑟𝑒
𝑖  be the 𝑖𝑡ℎ pixel in the spherical Moore neighborhood and 𝐼𝑖 its intensity. Based on the 

equations 5, 6 and 11 and taking into account the Bloch’s sphere, we propose an adapted pixel quantum state, 

which bring together both intensity-based state and the one based on the spherical position on Bloch’s sphere, 

as follow: 

The wave function is presented in the Bloch’s sphere by: |ψ⟩  =  α|0⟩  +  β|1⟩ where 

𝛼 =   𝑐𝑜𝑠
𝜃

2
 ;    β =   𝑒𝑖𝜙 𝑠𝑖𝑛

𝜃

2
 (𝜃 and 𝜙 are the polar and azimuth angle of the quantum pixel respectively). In 

addition, the qubit pixel is given by:  |𝐼(𝑥, 𝑦)⟩ =  √1 − 𝐼(𝑥, 𝑦) |0⟩  + √𝐼(𝑥, 𝑦) |1⟩, where 𝐼(𝑥, 𝑦) is the 

intensity value of the pixel at (x,y) position. The main idea is to have the qubit pixel with polar coordinates, 

we shall introduce the adapted pixel quantum state as: 

| 𝜓𝑆𝑝ℎ𝑒𝑟𝑒
𝑖 ⟩ =  𝐴𝑖 . |0⟩  +  𝐵𝑖 . |1⟩              𝑖 = 1,2, … ,6                                   (12)  

Where:           

𝐴𝑖 =  
√1−𝐼𝑖(𝜃,𝜙)  

𝛼𝑖
2    ; 𝐵𝑖 =  

√𝐼𝑖(𝜃,𝜙)  − 𝛽𝑖
2

1− 𝛽2   

𝛼𝑖 =   𝑐𝑜𝑠
𝜃𝑖

2
 ;    𝛽𝑖 =   𝑒𝑖𝜙 𝑠𝑖𝑛

𝜃𝑖

2
  ; 𝜃 𝜖 [0:

𝜋

2
[   ;    𝜙 = [0: 2𝜋[    

The amplitudes 𝐴𝑖  and 𝐵𝑖 satisfies the condition presented in the equation 3:  

|
√1−𝐼𝑖(𝜃,𝜙)  

𝛼𝑖
2    |

2

+  |
√𝐼𝑖(𝜃,𝜙)  − 𝛽𝑖

2

1− 𝛽2  |

2

= 1                                                  (13) 

3.2 Object edges enhancement by quantum superposition 

The next step in our process of edge detection is to get a more accentuated object edges, in order to 

avoid false detections comes from a textured background, we consider the Moore neighborhood of the active 

pixel as illustrated in Figure 2:  
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Figure 2: the Moore neighborhood of the active pixel. 

For a better result, we enhance the edge points in four different directions in each Moore neighborhood: 

• ⟨𝜓𝑆𝑝ℎ𝑒𝑟𝑒
4 |𝜓𝑆𝑝ℎ𝑒𝑟𝑒

1 |𝜓𝑆𝑝ℎ𝑒𝑟𝑒
8 ⟩ as the 0° direction. 

• ⟨𝜓𝑆𝑝ℎ𝑒𝑟𝑒
3 |𝜓𝑆𝑝ℎ𝑒𝑟𝑒

1 |𝜓𝑆𝑝ℎ𝑒𝑟𝑒
7 ⟩ as the 45° direction. 

• ⟨𝜓𝑆𝑝ℎ𝑒𝑟𝑒
2 |𝜓𝑆𝑝ℎ𝑒𝑟𝑒

1 |𝜓𝑆𝑝ℎ𝑒𝑟𝑒
6 ⟩ as the 90° direction. 

• ⟨𝜓𝑆𝑝ℎ𝑒𝑟𝑒
9 |𝜓𝑆𝑝ℎ𝑒𝑟𝑒

1 |𝜓𝑆𝑝ℎ𝑒𝑟𝑒
5 ⟩ as the 135° direction. 

Then, we apply equations 9 and 12 for each subsystem of three pixels, an example for the 90° direction 

is given in the Table 1, where the state ‘0’ and ‘1’ represent a background and an object pixel respectively.  

Table 1: Different states of the 90° direction. 

𝒊𝒃 𝒘𝒊 

0 0 0 𝐴2. 𝐴1. 𝐴6 

0 0 1 𝐴2. 𝐴1. 𝐵6 

0 1 0 𝐴2. 𝐵1. 𝐴6 

0 1 1 𝐴2. 𝐵1. 𝐵6 

1 0 0 𝐵2. 𝐴1. 𝐴6 

1 0 1 𝐵2. 𝐴1. 𝐵6 

1 1 0 𝐵2. 𝐵1. 𝐴6 

1 1 1 𝐵2. 𝐵1. 𝐵6 

 

By definition, an edge point (edge pixel) is defined as an object pixel that have at least one background 

pixel in its neighborhood [26], so this two cases can be ignored: 

Case 1: The processed pixel is a background pixel. 

Case 2: The processed pixel is surrounded only by object pixels. 

By ignoring these two cases, and for each subsystem in a given direction, we have:  

⟨𝜓𝑆𝑝ℎ𝑒𝑟𝑒
2 |𝜓𝑆𝑝ℎ𝑒𝑟𝑒

1 |𝜓𝑆𝑝ℎ𝑒𝑟𝑒
6 ⟩ =  𝐴2. 𝐵1. 𝐴6|010⟩ +  𝐴2. 𝐵1. 𝐵6|011⟩ +  𝐵2. 𝐵1. 𝐴6|110⟩         (14) 

𝑃𝑟𝑜𝑏 90° =  ∑ 𝑤𝑖 | 𝑖 ∈ {2, 3, 6} = 𝐵1. (𝐵2 𝐴6 + 𝐴2. (𝐴6 + 𝐵6))                              (15) 

Similarly, we have: 

𝑃𝑟𝑜𝑏 0° = 𝐵1. (𝐵4 𝐴8 +  𝐴4. (𝐴8 + 𝐵8))                                              (16) 

𝑃𝑟𝑜𝑏 45°= 𝐵1. (𝐵3 𝐴7 +  𝐴3. (𝐴7 + 𝐵7))                                              (17) 

   𝑃𝑟𝑜𝑏 135°= 𝐵1. (𝐵9 𝐴5 +  𝐴9. (𝐴5 + 𝐵5))                                             (18) 

After that, the processed pixel is replaced by the maximum value between the 4 directions as:  

𝑃𝑖𝑥𝑒𝑙(𝜃, 𝜙) = 𝑚𝑎𝑥 {𝑃𝑟𝑜𝑏 0°, 𝑃𝑟𝑜𝑏 45°, 𝑃𝑟𝑜𝑏 90°, 𝑃𝑟𝑜𝑏 135°}                            (19) 
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Each new enhanced pixel 𝑃𝑖𝑥𝑒𝑙(𝜃, 𝜙) is processed according the described steps in order to generate a new 

enhanced image. 

3.3 Edge Localization by quantum entropy 

The concept of Quantum entropy was introduced the first time by John von Neumann in 1932 [27] 

which represent a quantum generalization of the classical Shannon entropy and gives meaning to the quantum 

information theory in a qubit. This concept can be presented as the measure of the amount of information, 

uncertainty or disorder in a quantity of information, it’s given by: 

𝑆𝑞𝑢𝑎𝑛𝑡𝑢𝑚 = − 𝑇𝑟𝑎𝑐𝑒 (𝜌 log 𝜌)                                                         (20) 

Where 𝜌 is the density matrix of the system. 

Many edge detection algorithms have been developed based on entropy theory [28]–[31]. We applied 

the local quantum entropy in each Moore neighborhood of the processed image, a higher entropy, correspond 

to an edge pixel. For each central pixel of the Moore neighborhood, its defined as an edge pixel if the local 

entropy is greater than a threshold 𝐻𝐿 funded practically. 

𝑃𝑖𝑥𝑒𝑙(𝜃, 𝜙) =  {
1                𝑖𝑓 𝐻𝐿 < 𝑆𝑞𝑢𝑎𝑛𝑡𝑢𝑚

 0               𝑖𝑓 𝐻𝐿 > 𝑆𝑞𝑢𝑎𝑛𝑡𝑢𝑚
                                                (21) 

The proposed algorithm is summarized in the following steps: 

 

Figure 3: Summary of the proposed algorithm. 

4.Experiment results and discussion 

In this section, a set of experimentations is done, on synthetic and real images, in order to show the 

algorithm performance in term of edge continuity and behavior against noise, compared to other algorithms 

presented for the same purpose. 

4.1 Evaluation method 

In order to evaluate the proposed method in term of edge detection quality (edge continuity and 

behavior to noise), a measurable criterion is needed. In [23], Fram & Deutsh presented two criterions 𝑃1 and 𝑃2 

which measures the detector behaviour against noise and edge continuity respectively, ranges between 0 (poor 

behavior) and 1 (good behavior), and applied to blocks of 36 × 36 containing 3 regions, as shown at the Figure 

4. 
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Figure 4: The 3 regions of the Fram & Deutsh block test. 

The Figure 5 represents an example of the Fram & Deutsh parameters extraction from a synthetic 

omnidirectional image with two regions. Let C be the image region taking into consideration and containing 

two parts: 𝐶𝑒 the outside edge region and 𝐶𝑖 the inside edge region (Figure 5). Accordingly, 𝑤1
𝑒 is the number 

of columns in the edge region 𝐶𝑖. 𝑛
𝑒 and 𝑛0 represent the number of detected edge pixels inside and outside 

𝐶𝑖 respectively. 𝑤1and 𝑤2 are the number of columns and rows of the output binary image respectively, , 𝑛𝑒 

and 𝑛0 represent the number of detected edge pixels inside and outside of the edge zone respectively, 𝑤1
𝑠𝑡𝑎𝑛 

is by default set to 30 and to finish 𝑛𝑟 is the number of rows in the edge region that contain at least one detected 

edge point. The 𝑃1 and 𝑃2 are given by: 

𝑃1 =
𝑛𝑠𝑖𝑔

𝑒

𝑛𝑠𝑖𝑔
𝑒 +(𝑛𝑛𝑜𝑖𝑠𝑒

𝑒 + 𝑛0)(𝑤1
𝑠𝑡𝑎𝑛 𝑤1)⁄

                                                         (22) 

 

where 

𝑛𝑠𝑖𝑔
𝑒 =  

𝑛𝑒− 𝑛𝑛𝑜𝑖𝑠𝑒
𝑒

1− 𝑛𝑛𝑜𝑖𝑠𝑒
𝑒 𝑤1

𝑒𝑤2⁄
                                                                      (23) 

and 

𝑛𝑛𝑜𝑖𝑠𝑒
𝑒 =  𝑛0  

𝑤1
𝑒

𝑤1− 𝑤1
𝑒.                                                                         (24) 

𝑃2 =  
𝑛𝑟 𝑤2⁄  −{1−[1−𝑛𝑛𝑜𝑖𝑠𝑒

𝑒 𝑤1
𝑒𝑤2⁄ ]𝑤1

𝑒
 

[1−(𝑛𝑛𝑜𝑖𝑠𝑒
𝑒 𝑤1

𝑒𝑤2)]𝑤1
𝑒

⁄
                                                 (25) 

 

Figure 5: An example of Fram & Deutsh parameters for a synthetic omnidirectional image.  
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4.2 Materials  

Our goal is the segmentation of omnidirectional images contours. Therefore, we used two types of 

images: synthetic images for the method evaluation and comparisons, and real images taking from an 

omnidirectional camera inside a greenhouse, where we used a calibrated omnidirectional camera composed of 

a spherical mirror and perspective camera, in a face-to-face configuration (Figure 6). The Table 2 &Table 3 

contains the details about the omnidirectional camera and the used images. 

 

Table 2: Omnidirectional camera details  

Omnidirectional camera 

Mirror Camera 
Type Spherical Sensor type CCD – 23.0 x 15.5 mm 

 

Radius  3 cm Focal length (mm) 28.4 

 

Focal length ~1.5 cm Resolution (Pixels) 4256 x 2848  

Material Stainless steel Pixel size (mm) 0.0054  

 

 

Figure 6: Face to face configuration of the used omnidirectional camera 

Table 3: Details of the used images 

 Synthetic images Real images 

   

Used for Method evaluation & comparisons Agricultural application  

Number 15 5 

 

Format JPEG (Joint Photographic Experts 

Group) 

 

TIFF (Tagged Image File Format) 

Original type Grayscale RGB 

 

 

Resolution 

(Pixels) 

800 x 400 4256 x 2848 
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4.3 Synthetic images 

In order to evaluate the performance of the proposed method, a comparison against three methods 

proposed in the literature is performed: i) The method proposed by Guelzim & al, which propose and edge 

detection algorithm for omnidirectional images based on four steps: a) Image quantification b) calculation of 

the entropy H matrix c) local maxima verification and  d) thresholding [10]. ii) The method proposed by 

Jacquey & al which estimate image gradient based on non-additive approach [32] and iii) The method proposed 

by EL kadmiri & al that used a spherical virtual electrostatic charges distribution model to detect edges in 

spherical images [33]. We applied those methods in three representative synthetics omnidirectional images 

devoted to edge detection applications and contain different type of edges. Also, Gaussian and Salt & Pepper 

noises are added to those images in order to evaluate the behavior of the tested methods against noise. 

As described before, the second step of the proposed method is the edge enhancement, which is 

performed using quantum superposition laws on the Bloch sphere, the Figure 7 Shows the edge enhancement 

for an omnidirectional synthetic image, where some regions of the synthetic image were zoomed to show the 

edge enhancement in different image parts. Figure 8 and Figure 9 shows the application of the considered edge 

detectors for the synthetic omnidirectional images.  

 

 

 

 

                         (a) 

 

                     (b) 

Figure 7: (a) Original noised synthetic image. (b) Edge enhancement for the synthetic image. 

 

Figure 8: Edge detection using the proposed method for three synthetic omnidirectional images. 
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The first synthetic omnidirectional image (Figure 8.a) contains a black and white checkboard in a white 

background, the checkboard presents a radial distortion which reduce the resolution near the center which 

generates a line deformation. The same, the second (Figure 8.b) and third image (Figure 8.c) contain a 360° 

checkboard which present a good example of the  radial distortion generated by the spherical mirror, these two 

images simulate a catadioptric camera placed inside a cylinder and a parallelepiped respectively.  

Salt and 

Pepper 

noise 

(noise 

density = 

0.2) 

 

Gaussia

n noise 

(noise 

density = 

0.12) 

 

Without 

noise 

 

Figure 9: Application of different edge detection method to the three synthetic images. (a) Original synthetic 

image. (b) Proposed method. (c) Guelzim and al [10] method. (d) Jacquey & al [32] method. (e) EL kadmiri 

& al [33] 

 

As a quantifiable measurement of the methods performance, Table 4 and Table 5 presents 𝑃1 and 𝑃2 

values for the tested synthetic image in different cases: without noise, with Gaussian noise and with Salt and 

Pepper. 

Table 4: 𝑃1 values of the different tested algorithms. 

 Without noise Gaussian noise Salt & Pepper noise 

Proposed algorithm 0.9121 0.8919 0.9009 

Guelzim & al 0.8380 0.8240 0.8314 

Jacquey & al 0.8802 0.8711 0.8699 

EL kadmiri & al  0.8902 0.8800 0.8107 
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Table 5: 𝑃2 values of the different tested algorithms. 

 Without noise Gaussian noise Salt & Pepper noise 

Proposed algorithm 0.9891 0.9638 0.9770 

Guelzim & al  0.9329 0.9100 0.8129 

Jacquey & al  0.9891 0.9190 0.8591 

EL kadmiri & al  0.9894 0.9209 0.9609 

 

Since the criterion 𝑃1 measure the robustness of the edge detection method against noise, the Table 4 show 

that the proposed method is resistant to different type of noise compared to the other tested methods. On the 

other hand, the Table 5 show the values of the 𝑃2 which characterise the performance of the method in term of 

edge continuity. These two parameters show that the proposed method present a better performance in both 

the edge continuity and sensibility to noise. 

4.4 Real omnidirectional images devoted to agricultural robotics. 

In order to validate the results from the previous section, we applied the proposed method to 

omnidirectional images captured in Strawberry greenhouse. For this, we used the omnidirectional camera 

resented in the materials section. 

The Figure 10 show two omnidirectional images in a strawberry greenhouse for robotics 

experimentations, taking from an embedded omnidirectional camera in the agricultural robot we presented in  

[34]. We used this type of images for our robot navigation between the greenhouse’ rows. For each acquired 

image, the edge map is generated using the proposed method (Figure 11), then the deviation of the robot (Green 

line) is calculated using the center axis between the rows as a reference (Red line) 

 

 

(a) 

 

(b) 
 

Figure 10: Omnidirectional images of a strawberry greenhouse. 
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Figure 11: Path estimation using edge detection in omnidirectional image.  

5. Conclusion  

In this paper, we present an algorithm for edge detection in omnidirectional images, based on quantum 

entropy and superposition laws on Bloch’s sphere. The proposed method has the advantage of being developed 

directly on the spherical space, which make it adapted to the spherical images by taking into account its 

geometry, and being non-gradient based, which positively affect its robustness against different type of noise. 

These advantages have been shown through the Fram & Deutsh criterions, where the proposed method gives 

a better performance compared to the other tested methods in both edge continuity and sensibility to noise. In 

addition, we observed that the computational time can be improved and more optimal outcomes can be attained 

with the implementation with a deep learning approach. As a future work, we encourage to use the proposed 

algorithm for point of interest detection in omnidirectional images. The proposed edge detection algorithm can 

be used in various applications and devises such as: robots, quality control systems, UAV applications and 

authentication systems.  

ACKNOWLEDGEMENT  

The authors of this paper are thankful to the Ministry of Higher Education and Scientific Research of Morocco 

(MESRSFC), and the National Centre of Scientific and Technical Research of Morocco (CNRST) for financing 

this project. 

 

REFERENCES  

[1] M. Boui, “Détection et suivi de personnes par vision omnidirectionnelle : approche 2D et 3D,” 

PhD Thesis, Paris-Saclay University (ComUE), 2018. 

[2] L. F. Posada, A. Velasquez-Lopez, F. Hoffmann, and T. Bertram, “Semantic Mapping with 

Omnidirectional Vision,” in 2018 IEEE International Conference on Robotics and Automation 

(ICRA), May 2018, pp. 1901–1907, doi: 10.1109/ICRA.2018.8461165. 

[3] M. Vlaminck, H. Luong, W. Goeman, and W. Philips, “3D Scene Reconstruction Using 

Omnidirectional Vision and LiDAR: A Hybrid Approach,” Sensors, vol. 16, no. 11, Art. no. 11, 

Nov. 2016, doi: 10.3390/s16111923. 

[4] J. Bermudez-Cameo, “New contributions on line-projections in omnidirectional vision,” 

ELCVIA: electronic letters on computer vision and image analysis, vol. 15, no. 2, pp. 24–26, 

2016, doi: 10.5565/rev/elcvia.948. 

[5] S. Peleg and M. Ben-Ezra, “Stereo panorama with a single camera,” in Proceedings. 1999 IEEE 

Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), 

Fort Collins, CO, USA, 1999, pp. 395–401, doi: 10.1109/CVPR.1999.786969. 



   A. Ezzaki et al.  / Electronic Letters on Computer Vision and Image Analysis 20(1):70-83; 2021       

[6] I. Powell, “Panoramic fish-eye imaging system,” US Patent, N°:5,631,778. 

[7] S. K. Nayar, “Sphereo: Determining Depth Using Two Specular Spheres And A Single 

Camera,” in Optics, Illumination, and Image Sensing for Machine Vision III, Mar. 1989, vol. 

1005, pp. 245–254, doi: 10.1117/12.949051. 

[8] S. Barone, P. Neri, A. Paoli, and A. V. Razionale, “Catadioptric stereo-vision system using a 

spherical mirror,” Procedia Structural Integrity, vol. 8, pp. 83–91, Jan. 2018, doi: 

10.1016/j.prostr.2017.12.010. 

[9] Q. Shi, C. Li, C. Wang, H. Luo, Q. Huang, and T. Fukuda, “Design and implementation of an 

omnidirectional vision system for robot perception,” Mechatronics, vol. 41, pp. 58–66, Feb. 

2017, doi: 10.1016/j.mechatronics.2016.11.005. 

[10] I. Guelzim, “Contributions aux traitements d’images perspectives et omnidirectionnelles par des 

outils statistiques.,” PhD Thesis, Mohammed V University, Rabat, Morocco, 2012. 

[11] Eder, M., & Frahm, J. M. (2019). Convolutions on spherical images. In Proceedings of the 

IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (pp. 1-5). 

[12] J. Li, Z. Wen, S. Li, Y. Zhao, B. Guo, and J. Wen, “Novel tile segmentation scheme for 

omnidirectional video,” in 2016 IEEE International Conference on Image Processing (ICIP), 

Sep. 2016, pp. 370–374, doi: 10.1109/ICIP.2016.7532381. 

[13] Z. Kerkaou, N. Alioua, M. E. Ansari, and L. Masmoudi, “Edge points-based stereo matching 

approach for omnidirectional images,” JEI, vol. 27, no. 5, p. 053015, Sep. 2018, doi: 

10.1117/1.JEI.27.5.053015. 

[14] F. Ababsa, H. Hadj-Abdelkader, and M. Boui, “3D Human Tracking with Catadioptric 

Omnidirectional Camera,” in Proceedings of the 2019 on International Conference on 

Multimedia Retrieval, Ottawa ON Canada, Jun. 2019, pp. 73–77, doi: 

10.1145/3323873.3325027. 

[15] K. Bhongale and S. Gore, “Design of robot navigation monitoring system using image feature 

analysis and omnidirectional camera images,” In 2017 2nd International Conference for 

Convergence in Technology (I2CT) IEEE, pp. 405-409, doi: 10.1109/I2CT.2017.8226161 

[16] K. Qiu, T. Liu, and S. Shen, “Model-Based Global Localization for Aerial Robots Using Edge 

Alignment,” IEEE Robot. Autom. Lett., vol. 2, no. 3, pp. 1256–1263, Jul. 2017, doi: 

10.1109/LRA.2017.2660063. 

[17] S. Li, “Spherical gradient operator: SPHERICAL GRADIENT OPERATOR,” IEEJ Trans Elec 

Electron Eng, vol. 8, no. S1, pp. S61–S65, 2013, doi: 10.1002/tee.21919. 

[18] C. Demonceaux, P. Vasseur, and Y. Fougerolle, “Central catadioptric image processing with 

geodesic metric,” Image and Vision Computing, vol. 29, no. 12, pp. 840–849, Nov. 2011, doi: 

10.1016/j.imavis.2011.09.007. 

[19] C. Demonceaux and P. Vasseur, “Markov random fields for catadioptric image processing,” 

Pattern Recognition Letters, vol. 27, no. 16, pp. 1957–1967, Dec. 2006, doi: 

10.1016/j.patrec.2006.05.007. 

[20] A. Makadia, C. Geyer, and K. Daniilidis, “Correspondence-free Structure from Motion,” Int J 

Comput Vis, vol. 75, no. 3, pp. 311–327, Dec. 2007, doi: 10.1007/s11263-007-0035-2. 

[21] K. Hara, K. Inoue, and K. Urahama, “Gradient operators for feature extraction from 

omnidirectional panoramic images,” Pattern Recognition Letters, vol. 54, pp. 89–96, Mar. 2015, 

doi: 10.1016/j.patrec.2014.12.010. 

[22] J. Watrous, Theory of quantum information. Cambridge University Press, 2018. 

[23] J. R. Fram and E. S. Deutsch, “On the Quantitative Evaluation of Edge Detection Schemes and 

their Comparison with Human Performance,” IEEE Transactions on Computers, vol. C–24, no. 

6, pp. 616–628, Jun. 1975, doi: 10.1109/T-C.1975.224274. 

[24] K. Fujii, Quantum Computation with Topological Codes: From Qubit to Topological Fault-

Tolerance, vol. 8. Singapore: Springer Singapore, 2015. 

[25] Bloch, F. (1946). Nuclear induction. Physical review, 70(7-8), 460, 1946. 



83    A. Ezzaki et al.  / Electronic Letters on Computer Vision and Image Analysis 20(1):70-83; 2021 

 

[26] A. Ezzaki, M. Lhoussaine, M. E. Ansari, F.-A. Moreno, R. Zenouhi, and J. G. Jimenez, “Edge 

detection algorithm based on quantum superposition principle and photons arrival probability,” 

International Journal of Electrical & Computer Engineering, vol. 10, no. 2, p. 12, 2020. doi: 

10.11591/ijece.v10i2.pp1655-1666 

[27] J. Von Neumann, R. T. Beyer, and N. A. Wheeler, Mathematical foundations of quantum 

mechanics, New edition. Princeton: Princeton University Press, 2018. 

[28] V. Rajinikanth and S. C. Satapathy, “Segmentation of Ischemic Stroke Lesion in Brain MRI 

Based on Social Group Optimization and Fuzzy-Tsallis Entropy,” Arabian Journal for Science 

and Engineering, Jan. 2018, doi: 10.1007/s13369-017-3053-6. 

[29] M. A. El-Sayed and T. A.-E. Hafeez, “New edge detection technique based on the shannon 

entropy in gray level images,” arXiv preprint arXiv:1211.2502, 2012. 

[30] B. Singh and A. P. Singh, “Edge Detection in Gray Level Images based on the Shannon Entropy 

1,” Journal of Computer Science, pp. 186–191, 2008. 

[31] M. A. El-Sayed and H. A. M. Sennari, “Multi-Threshold Algorithm Based on Havrda and 

Charvat Entropy for Edge Detection in Satellite Grayscale Images,” Journal of Software 

Engineering and Applications, vol. 07, no. 01, pp. 42–52, 2014, doi: 10.4236/jsea.2014.71005. 

[32] F. Jacquey, F. Comby, and O. Strauss, “Non-additive Approach for Omnidirectional Image 

Gradient Estimation,” in 2007 IEEE 11th International Conference on Computer Vision, Rio de 

Janeiro, Brazil, 2007, pp. 1–6, doi: 10.1109/ICCV.2007.4409193. 

[33] O. E. Kadmiri, Z. E. Kadmiri, and L. Masmoudi, “A spherical electrostatic model edge detector 

for omnidirectional images,” Journal of Theoretical and Applied Information Technology, vol. 

51, p. 9, 2013. 

[34] A. Abanay, Lh. Masmoudi, A. Elharif, M. Gharbi, and B. Bououlid, “Design and development 

of a mobile platform for an agricultural robot prototype,” in Proceedings of the 2nd International 

Conference on Computing and Wireless Communication Systems  - ICCWCS’17, Larache, 

Morocco, 2017, pp. 1–5, doi: 10.1145/3167486.3167527. 

 


