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Abstract

In this paper, we address the problem of multi-frame vidg@steation using an appearance-based frame-
work, where linear subspace constraints are applied instefrthe appearance subspace constancy assump-
tion [3]. We frame the multiple-image registration in a tweysiterative algorithm. First, a feature space is
built through and Singular Value Decomposition (SVD) of as®d moment matrix provided by the images
in the sequence to be analyzed, where the variabilitiesaf #ame respect to a previously selected frame
of reference are encoded. Secondly, a parametric modétaglirced in order to estimate the transformation
that has been produced across the sequence. This modetithdddn terms of a polynomial representa-
tion of the velocity field evolution, which corresponds toaametric multi-frame optical flow estimation.
The objective function to be minimized considers both issatethe same time, i.e., the appearance repre-
sentation and the time evolution across the sequence. @hiidn is the connection between the global
coordinates in the subspace representation and the paiaomgtical flow estimates. Both minimization
steps are reduced to two linear least squares sub-probldrose solutions turn out to be in closed form for
each iteration. The appearance constraints result to ta&eaccount all the images in a sequence in order
to estimate the transformation parameters. Finally, teshlow the extraction &fD affine structure from
multiple views depending on the analysis of the surfacemmtyial’s degree.

Key Words Computer Vision, Image Analysis, Pattern Recognition,R&onstruction, Video and Image
Sequence Analysis.

1 Introduction

The addition of temporal information in visual processiagistrong cue for understanding structure and
motion. Two main sub-problems appear when it comes to dethl mbtion analysiscorrespondencend
reconstruction First issue (correspondence) concerns the location sisafwhich elements of a frame corre-
spond to which elements in the following images of a sequelRaam elements correspondence, reconstruction
corresponds t@D motion and structure recovery of the observed world. In flaiper, we focus on the first
issue, and, more specifically, the problem is centered owliserved motion in static scenes onto the image
plane which is produced by camera motiago-motion In previous work, dense [7, 5] and sparse [9, 6, 4]
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methods to estimate the motion field have been used to thisSpatse methods strongly rely on the accuracy
of the feature detector and not all the information avaddblthe image is employed. Dense methods are based
on optical flow estimation which often produces inaccuratereates of the motion field. Moreover the analysis
is instantaneous, which means that is not integrated ovey fftames. Many authors [15, 1, 12, 2, 8] focus
on this registration problem in terms 2D parametric alignment, where the estimation process Idstiveen

two frames. Thus, taking into account that the second stepnstruction requires that all the transformations
must be put in correspondence with a certain frame of refesgthe accumulation error can be present in these
computations.

Authors in [3] introduce the notion addubspace constancy assumptigrhere visual prior information is
exploited in order to build a viewsaffine transformation model for object recognition. Thearsng point
is that the training set has to be carefully selected withaihe of capturing just appearance variabilities; that
is, the training set is assumed to be absent of camera (oomdtansformations. Once the learning step is
performed, the test process is based on the computatiore afffine parameters and the subspace coefficients
that map the region in the focus of attention onto the closeshed image. However, in this paper, the topic
that we deal with has as input data the images of a sequertdachale a camera (or motion) transformations.

In this paper, we address the problem of multi-frame regfisin by means of arigenfeaturespproach,
where linear subspace constraints are based on the assaroptionstancy in the appearance subspace. We
frame the multiple-image registration in a two-step iteetlgorithm. A feature space is built through and
SVD decomposition of a second moment matrix provided by rtegies in the sequence to be analyzed. This
technique allows us to codify images as points capturingrttransic degrees of freedomf the appearance,
and at the same time, it yields compact description presgrvisual semantics and perceptual similarities
[14, 11, 10].

The outline of the paper is as follows: section 2 frames tlea iof using the eigenfeatures approach and its
relation with the parametric model of transformations. Mepecifically, we analyze how such an appearance
subspace is built according to a previously selected frahmeference. Therefore, a polynomial model is
introduced in order to link the appearance constraintsgdrdmsformations that occurred across the sequence.
In the experimental results, section 3, we show a hew marfreeramding temporal information. We point out
that when parallax is involved in the problem of video regigon, the temporal representation gives a visual
notion of the depth in the scene, and therefore it offers tdssipility of extracting the affin@D structure from
multiple views. The relation between the surface polyndsdegree and D affine structure is also illustrated.

In section 4, the summary and the conclusions of this pagestaswn.

2 Appearance Based Framework for Multi-Frame Registration

In this section, we present an objective function which $alkéo account appearance representation and time
evolution between each frame and a frame of reference. $nctide, temporal transformations estimation is
based on the fact that images belonging to a coherent segjaea@lso related by means of their appearance
representation.

Given a sequence df images{I,...,Ir} (of n rows andm columns) and a selected frame of reference
Iy, we can write them in terms of column vectdrg, . . ., yr } andyg of dimensiond = n x m. Both pictures
pixel-basedl; andvector-formy; of thei-th image in the sequence are relevant in the descriptionrahethod.
The first representatiofy is useful to describe the transformations that occurredéh @ixel. The vector-form
picture is utilized for analyzing the underlying appearaircall the sequence.

Under the assumption of brightness constancy, each fratte isequencé; can be written as the result of
a Taylor’'s expansion around the frame of referefice

1(%) = Io(Z) + VIo(Z) & (%) @)

This is equivalent, in a vector-form, to:
vi=vo+1 2)
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wheret; is the vector-form of the second summa¥idy(Z)?'d;(Z) in eq. (1). First description is exploited

in section 2.2, where the parametric polynomial model t@idles the velocity field estimates is applied. The
vector-form description in eq (2) is employed in the follogiisection 2.1 to develop the appearance analysis
respect to a chosen reference frame.

2.1 Appearance Representation Model

First of all, we need to define a space of features where imagesepresented as points. This problem
involves finding a representation as a support for analy#tiegtemporal evolution. To address the problem
of appearance representation, authors in [14, 11, 10] peap@rincipal Component Analysis as redundancy
reduction technique in order to preserve the semantics, degceptual similarities, during the codification
process of the principal features. The idea is to find a smaliber of causes that in combination are able to
reconstruct the appearance representation.

One of the most common approaches for explaining a data seaissume that causes act in linear combi-
nation:

yi = W& + o 3)

where¢; € R? (our chosen reduced representatigny. d) are the causes ang corresponds to the selected
frame of reference. Thgvectors that span the basis are the columnd’dfd x ¢ matrix), where the variation
between the diferents imaggsand the reference frame is encoded.

With regard to equation (2), and considering the mentiongataximation in (3), we can see that the dif-
ferencet; between the frame of referengg and each imageg; in the sequence is described by the linear
combinationiW¢; of the vectors that span the basislin. Notice that in the usual PCA techniqugs plays
the role of the sample mean. In recognition algorithms thé fs relevant, since there is assumed that each
sample is approximated by the mean (ideal pattern) with dedwsariation which is given by the subspdte
However, in our approach, each imageends to the frame of referengg with a certain degree of variation,
which is represented as a linear combination of the Hasis

Furthermore, from eq. (1), the differen¢g that relies on the linear combination of the appearances bas
vectors, can be described in terms of the parametric modehvdefines the transformation from the reference
frameyy and each imageg;. This parametric model is developed in the following sati@o2. Besides, from
the mentioned description in terms of a subspace of appemrare can see the form that takes the objective
function to be minimized. Indeed, the idea is to find: a b&Bisa set of parametery, ..., p, }, (that model
the temporal transformations), and a set of registeredeésadpere the squared distance between the difference
obtained through the taylor's expansigrand the projected vector in the appearance subgpagés minimum,

i.e.:
F

EW,ooply s D) = D L tilph, o 0)) = WE (4)
=1
The minimization of this objective function requires of aohstep iterative procedure: first it is necessary to
build an appearance basis, and therefore, to estimate tamptic transformations that register the images in
the sequence. In the following sections introduce closet$eolutions for each step.

2.2 Polynomial Surface Model

In this section we present a polynomial method to estimatdrtimsformation between de reference fraime
and each framé; in the sequence. To this end we utilize the pixel-based gctkrom equation (1) we can
see that the difference between a frafpand the frame of referendg relies on the velocities field;(z). A
s-degree polynomial model for each velocity component cawtigen as follows:

wi(T) = X(Z) F; ()
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whereX'(¥) is a matrix that takes the following form:

with
Q(f):[l oy xy 22 ... (alyF) ... ys}

whereQ(7) is ad x 2r , (r = (s + 1)(s + 2)), matrix that encodes pixel positions, afilis a column vector

of dimensionr = (s + 1)(s + 2), which corresponds to the number of independent unknowanpeters of

the transformation. In matrix languade() is a matrix2d x r, P has dimensions x 1, and the velocities

corresponding to each pixel can be encoded in a mayix) of dimension2d x 1. The gradient expression
in the linear term of the taylor's expansion (1) can be wniftea diagonal matrix form as follows:

9 0 .. 0 9y 02 .0
0 gz ... 0 0 g5 ... 0
Gy = . ‘ . . Gy = . ! . .
0 ... ... g¢¢ 0o ... ... gg

Stacking horizontally both matrices we obtain a ma@#hof dimensions! x 2d: G = [G, | G,]. Therefore,
according to the vector-form in eq (2), the differerigdetween the-th framey; and the frame of reference
10, IS expressed in terms of the polynomial model through:

ti(Z, P)ax1 = GaxadX (Z)aaxr P |rx1 (6)

Given that the terndz ;24X (Z)24x - IS computed once for all the images in iteration, we re-narae¥ ;. =
Gax24X (Z)24x,. Notice that even when images are highly dimensional, (g-g.240 x 320), the computation
of ¥ can be perfomed easily Matlab by means of the operator ”.*", without incurring in an out oémory.

2.3 The Algorithm

Given the parametric model for the transformations of thages in a sequence, the objective function (4) can
be written explicitly in terms of the parameters to be estada

F
EW,Py,....,Pp)=> | VP - W¢ | (7)
=1
In order to minimize this objective function, we need a twepsprocedure: first given a set of images, the
subspace of appearant® is computed, and secondly, once the parameithat register each framg to
the frame of referencg, are obtained, the images are registered in order to builth ayaew subspace of
appearance.

a. Appearance Subspace Estimation. Consider an intermediate iteration in the algorithm, thhs, set of
registerd images to be analyzed afei; (y1, P1),-..,¢r(yr, Pr)}. From this set and the reference frame
Yo, the appearance subspace can be performed by means of ateSvgue Decomposition of the second
moments matrix

F

5= ($i(yi, B) — y0) (i (yi, Po) — yo)" (8)

=1
The column vectors ofV/ correspond to the first eigenvectors of (8), that have been previously ordered
from the largest eigenvalues to the smallest one. The pegemmordinates onto the appearance subspace are:
& = WT(¢i(yi, Bi) — o).

*This can be perfomred following the idea introduced in [10].
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Figure 1: Some selected frames (1st, 3rd, 5th) from a sequédn1,81 form the original one.

b. Transformation Parameters Estimation. Setting derivatives to zero in eq. (7) respect to the transie
tion parameters, they are computed as follows:

P = [\I:qu}*l oTWwe, 9)

Note that the matri>{\I/T\I/} ' has manageable dimensions r, i.e. in the linear polynomial case= 3, in

the quadratic case = 12, etc. We can see that while the appearance (global infoomjais codified ini1/,

the local infomation which is related to the pixels in the gaa is encoded i¥. With this, we can see that
their combination in eq. (9) gives a relation between eadg’s subspace coordinatgsand the parameters
that register each frame to the frame of reference. Moredhisrmethod considers the contribution of all the
frames in the sequence to the estimation of each single setrafformation parameters. From these estimates,
we compute a new set of registered images(y:, ]31), e O (yr, ]3F)} and repeat step. These two steps
are iterated until a certain degree of tolerance in the valiained through the error function eq. (7).

3 Experimental Results

In order to see the range of applications of this techniquedeal with two sort of problems. First, we study
a camera movement, where it is shown the different resudiisahpear when it comes to deal with a specific
selected frame of reference. In particular, this cameraem@nt is a zoom that can be interpreted in terms of
registration as zoom-in or zoom-out operations dependimthe selection of the reference frame. Secondly,
the significance of the polynomial's degree is analyzedufioa sequence that includes a moving object due
to a parallax effect.

3.1 Selecting a Reference Frame. Consequences in the Regison

This topic is about camera operations with a single planatiano Figure 1 shows three frames from a se-
guence of 100 frames, where a zoom-in is originally perfomadhis particular case, we selected 5 frames
(15¢,21%% 415t 615, 815%) from the original sequence to perform this analysis. This mativated in order to
exploit the fact that the images have not to be taken contisiypthe key point is that they are related by the
same underlying appearance. Here, we analyze three cgsesditey on the selection of the reference frame:
zoom-in registration fig.2 and zoom-out registration fig.3.

Figure 2 shows a zoom-in registration that has been obtaieledting as reference frame the left side image
in fig. 1. To this end, we utilized a linear polynomial modelddgree), and the subspace of appearance has
been built using just one eigenvector, given that appearanmainly conserved in the sequence. The point is
that the dimension not only depends on the error recongirues in a recognition problem [14, 11, 10], but
also relies on the selection of the frame of reference.

Figure 2 (a) shows a time evolution of the registered sequémnages, while figure 2(d) the registration
picture also explains the module of the velocity field in epdtel. Latter figure gives a notion of the situation
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Velocity Magnitude

(d)

Figure 2: Zoom in: (a) Registered images according to a lesegolynomial model, where the first frame has
been taken as reference frame. Optical flow field correspgnidi the third frame (b), and to the last frame (c).
(d) Velocity field module representation of the sequencenafges. (e) Top view of (d).

of the camera’s center. This is highly useful to perform aalysis of camera operations from this registration
technique. Figures 2(b) and (c) show the estimate opticalfflld, which is computed respect to the reference
frame, in some frames of the sequence. When it comes toeediem this vector field, we have to take the

inverse direction that is indicated in each arrow.

Besides, even though the sequence evolution showed a zooanviera operation, we can register selecting
as reference frame the last frame, ( see right side image. ib)fig he main difference between the registrations
in figure 2 and figure 3 is the size of the final mosaic (top viefvBgo 2(a) and fig. 3(a)). Actually, the size
of the final mosaic selecting as reference frame the firstdrsnequal to the reference frame. However, taking
as reference frame the last frame (case fig3) the size of thlenfiosaic is bigger than the size of the reference
frame. This is clearly reflected in the module represematif the sequence registration, figures 2(d) and 3(d).

3.2 Analyzing the Complexity in the Polynomial Model. Towads 3D Affine Reconstruction

In order to get an insight into the relation between the cexipl of the polynomial estimation of the velocity
field and the3 D affine structure which is encoded in the image sequence, alendtn three sort of experi-
ments. The idea is to see the variety of possibilities thapthilynomial surface model offers in this registration
framework. Three cases present different relative motiamess the image sequence.

First sequence of images corresponds to a camera pannimgtiope where the target is an object with
different depths respect to the camera position. This fadyres a parallax effect onto the image plane, which
means that the affine model (degree 1) to estimate the viewdield is not sufficient. Figure 4 shows three
frames of a sequence of ten images, which have been usedftonpehe first analysis 08D motion. To
estimate the introduced parametric optical flow, we usedrd tlegree polynomial model, which according to
eq. (5) represent®) parameters in the estimation process.
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@

Figure 3: Zoom out: (a) Registered images according to a fiedgaplynomial model, where the last frame has
been taken as reference frame. Optical flow field correspgntdi the third frame (b), and to the first frame

(c). (d) Velocity field module representation of the seqeeoktimages.(e) Top view of (d), where the red lines
show the original size of the reference frame.

Registration results are shown in figure 5 (a) and (b), wheditst frame has been taken as reference frame.
First one is a velocity field module representation of thegeaequence, where is can be seen that the edge
between the dark region and the light one is in the same pifetence coordinate position in each frame. We
use the method described in [13] to estimate 3fkaffine structure from the registered images. To this end
we utilized all the pixels in the images to perform the faiz@tion method. This fact is present in tB&®
reconstruction results (see figs. 5(c) and (d)) since theruedges between planes are smoothly reproduced.
To reproduced properly these mentioned high frequencymsgit is necessary to consider hard constraints in
the3D recovery step. This topic remains a task for our future metea

Second experiment deals with a translational camera moflaro main motion layers are present in this
sequence due to a parallax effect. Figure 6 shows three $rafme sequence of five, where the tree belongs
to a different motion layer than the background (houses)paigntly, the sequence can be interpreted as a
moving object with moving background as well. Nevertheléiss cause is the difference in depth that the tree
is situated from the background, and, moreover, the spauificement of the camera. The registration has
been performed using 2 eigenvectors of basis appearanca dfidlegree polynomial model for the motion
field. The result of this can be seen in figures 7 (a) and (b).eMpecifically, figure 7 (a) gives a certain notion
of the relative depth among different regions in the imagie® to the module representation of the velocity
field; regions with higher velocity module are meant to bereetne camera than regions with a lower module.
Figure 7 (b) shows a top view of (a), where the result of regisy is regarded in terms of a mosaic image.
Finally, figure 7(c) shows th8D affine structure estimation using [13], where all the imagesls in the
sequence have been employed. With this, we can see that #8 firsmooth surface shows this mentioned
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(@) (b) (©)

Figure 4: Three frames of a sequence of ten images. Firstart@gcorresponds to the first frame, (b) is the
fifth and (c) is the tenth.

depth difference due to parallax.

4 Summary and Conclusions

The problem of multi-frame registration has been presetitenligh aneigenfeaturegpproach, where linear
subspace constraints are based on the assumption of apnstahe appearance subspace. One of the main
contributions of the appearance subspace encoding ishthappropriate scale in each problem is captured
from the images themselves, i.e., robust time derivatifebeoptical flow are obtained from eigenfeatures.
As mentioned in section 2.1, this fact is due to the constateraf both picturespixel-basedandvector-form

into the same formulation. First picture exploits locabimhation, while the vector-form is utilized for global
information purposes. The aim of this is to point out that geaime derivatives are computed coupling the
linear combination of the eigenfeature basis and the dpat@mation which is provided by the polynomial
surface model (pixel-based picture). This coupling is ganked in a objective function that is minimized in
order to obtain the registration of a sequence.

This approach is combined with a polynomial model for estingathe transformation that has been pro-
duced across the sequence. Although the objective fundtiam corresponds to the connection between the
global coordinates in the subspace representation andattaengtric optical flow estimates, requires a two
step procedure, the minimization steps have been redudiegtto least squares subproblems, whose solutions
turned out to be in a closed form for each iteration.

We dealt with a variety of experiments in order to analyze rdnege of applications of this registration
technique. One of the purposes is to see that the contribafia parametric multiframe optical flow estimation
provides a smooth reconstruction of th® affine structure the is imaged in the sequence, where allixiedsp
information is employed. Besides, from section 3.2, thati@h between the polynomial model and the
reconstruction has been observed qualitatively. It is la ¢hduture work to give a formal description of this
relation. Also, the idea of including hard constraints #® taconstruction method in this polynomial framework
is encouraging. The purpose is to keep the advantageousmeotalysis estimation in terms of a few number
of parameters, and, at the same time, the future goal isrmdinte prior knowledge in order to indicate where
the curvature is locally higher.
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(@) (b)

(© (d)

Figure 5: Velocity field module representation (a) of thastged images, where 2 eigenvectors of appearance
and a polynomial model df"® degree have been used to this estimation. Fig. (b) is theieapof (a). Two
views, (c) and (d), of th8 D affine structure of the sequence.

Figure 6: Three frames of a sequence of five images. Theseesagrespond tds?, 35 and 5! (from right
side to left side).
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