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Abstract 

So far, most of the research on classification algorithms in machine learning has been focused only on 

improving the training speed and further improving the technical performance evaluation measures of the 

constructed models. There is no focus on improving the runtime efficiency of the classification phase which is 

much required in some critical applications. In this paper, we are considering the computation complexity of a 

decision tree’s classification phase as the major criterion. A novel approach has been proposed to predict the 

class label of an unseen instance using the decision tree in less time than the regular tree traversal method. In the 

proposed method, the constructed decision tree is represented in the form of arrays. Then, the process of finding 

the class label is carried out by performing the bitwise operations between the elements of the arrays and test 

instance. Empirical results on various UCI data sets proved that the proposed method outperforms the standard 

method and five other benchmark classifiers and its classification is at least four times faster than the regular 

method. 
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1 Introduction 

Classification is the predominant concept in the fields of data mining and machine learning which is used to 

predict the class label of an unseen instance. Many sectors like medicine, telecom, banking, speech 

recognition, handwritten character recognition, fraud detection, and biology, etc. are using the concept of the 

classification to predict the class label of the unseen record [1, 2]. Though several classifiers like bayesian 

classifiers, neural networks, k-nearest neighbour, and support vector machines, and so on are available, 

decision trees (DT) are popular and received huge significance due to their various merits like less training 

time, good accuracy, dealing well with high dimensional data, and working for both numeric and categorical 

data. When the user needs a simple and interpretable classifier, DT is the most preferable one. For the 

automatic extraction of actionable knowledge, many researchers have considered the DT as the model        

[3, 4, 5]. In general, classification through DTs comprises three phases namely, training phase, testing phase, 

and classification phase. During the testing and classification phases, the class label has to be determined for 

an instance using the DT. 

https://doi.org/10.5565/rev/elcvia.1267
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Earlier, many researchers have focused on comparing various technical performance evaluation measures 

of a variety of classifiers [6, 7, 8, 9]. Few researchers also put their efforts to compare the performance of 

various classifiers in terms of their computational times. Reif et al. proposed an approach to predict the 

runtime of the training phase of different classifiers [10]. Doan et al. presented an approach to estimate the 

total runtime, i.e. training time and classification time, on various classification algorithms on an arbitrary 

data set by incorporating the idea of meta-learning [11]. 

Most of the past research has concentrated only on improving the technical evaluation measures like 

accuracy, AUC, sensitivity, specificity, precision, and F-score of the classifier [12, 13, 14]. The researchers 

of data mining have not focused on expediting the classification phase with a notion that this phase takes less 

time. In fact, if the classification phase of a DT is accelerated, then it helps speed up the training phase too. 

Either for the test records or any unseen records though the time taken for determining the class label by 

traversing the DT from root to an appropriate leaf node is low, still, this process can be improvised by 

adopting the efficient data structures.  
Reducing the classification complexity need not be neglected since there are applications where the fast 

classification of an instance is much required. In many time-critical cases, actions have to be taken very 

quickly based on the decision otherwise the cost can be very high or consequences can be unbearable. Such 

criticality could be achieved through fast classification. Predicting the complications in critical care quickly, 

where electronic surveillance systems can detect the symptoms, needs an automated rapid action based on 

the decision [15]. Text to speech conversion in the case of CRM automation, hard real-time applications, 

aircraft systems, fraud detection during online transactions, dynamic systems, and other applications require 

fast classification to take timely necessary remedial actions. In big data scenarios, in the Map phase, if it is 

required to predict the class label for a huge number of instances, an efficient method is much useful to save 

the processing time [16].  

Ahmad Ashari et al. have studied the classification speed of three standard classifiers [17] and opined that 

the decision tree’s performance is relatively high. Weinberg et al. [16] have proposed a method to improve 

classification speed when the ensemble of decision trees is constructed on big data. Their method finds the 

best representative tree from the ensemble on which classification is performed. Hurtik et al. have introduced 

a method viz. PCA+FT which can enhance the training and classification speed [18]. However, this is a lossy 

dimensionality reduction based method where a classifier has to be fit on a PCA transformed data. 

To predict the class label of a test record, the existing conventional decision tree based method performs 

comparison operations at each node for finding the attribute representing the node. Thereafter, to traverse 

down to reach the appropriate leaf, it performs comparison operations to find the value of the required 

attribute within the test record. This method employs linked lists in the process. Comparison operations are 

slower and the linked lists are not too fast for accessing the elements.  

The research in this paper focuses on improvising the computational efficiency of the classification phase 

of a DT. A new approach that is based on bitwise operations has been introduced. In this approach, the 

constructed DT is represented as arrays and then, the bitwise AND operations are performed on the elements 

of the arrays for finding the class label. The step count required to find the class label of an unseen record 

using the proposed method is relatively less than the step count of the regular approach. Moreover, as the 

bitwise operations are faster [19, 20, 21], and the arrays are also faster for accessing the elements, the 

proposed method exhibits better computational performance than the classical method. Once the DT is 

represented as the arrays, it is discarded and further at no stage it is used. The applications which require fast 

classification can be benefitted by adopting the proposed method. 

Rest of the paper is organised as: Section 2 reviews the conventional classification method of a DT. 

Section 3 presents the proposed novel method with an illustration. Section 4 provides the performance 

analysis of the proposed method and section 5 gives the concluding remarks. 

2 Review of classification phase of a decision tree 

All the existing DT construction algorithms follow the regular tree traversal method to predict the class label 

of an unseen instance [22]. An instance is classified by submitting it to a series of tests that determine its 

class label. To traverse down, at each of the non-terminal nodes, it is required to determine the attribute, attri, 

https://jmlr.org/papers/volume15/delgado14a/delgado14a.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0377221715004208?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0306457309000259
https://link.springer.com/article/10.1023%2FA%3A1007608224229
https://link.springer.com/chapter/10.1007/978-3-642-24455-1_25
https://link.springer.com/article/10.1007/s13042-016-0571-6
https://www.inderscience.com/info/inarticle.php?artid=16385
https://link.springer.com/article/10.1007%2Fs00521-014-1673-2
https://elcvia.cvc.uab.es/article/view/v18-n1-hamid/pdf_38
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7593335
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0186-3
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https://ieeexplore.ieee.org/document/8716169
https://ieeexplore.ieee.org/document/7109838
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developers-manual.pdf
https://nostarch.com/writegreatcode1_2e
https://link.springer.com/article/10.1007/BF00993309
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representing the node. Thereafter, in the test instance, the value of the attribute attri has to be found.  Then, 

based on its attri‘s value the test instance traverses down the tree. This process is repeated until one of the 

leaf nodes is reached. The pseudocode for the regular method (hereafter we refer it as R_Classify), is 

presented in Algorithm 1.  

In this approach, the DT is represented in the form of linked lists where each node contains the pointers to 

its children. At each node to find the attribute, atr number of comparisons are required to be performed 

where atr is the number of attributes in the data set. If the average number of outcomes of the attributes of 

the data set is o, then o number of comparisons is required to find that attribute’s value in the test instance. 

Up to this stage, (atr + o) number of comparison operations are needed to be performed. If the average 

length of each path from the root to a leaf of the DT is h, then a total of (h * (atr + o)) comparisons are 

needed. Consequently, time complexity of the traditional method is O(h * (atr + o)). To our knowledge, no 

research has introduced an alternative efficient method for finding the class label of an instance on the DT 

classifier.    

 

 

 

 

 

 

 

 

 

 

 

 

 

3  Proposed scheme 

To achieve better computational efficiency than the conventional approach a new method namely, 

E_Classify has been introduced. The new method employs the arrays and bitwise AND operations to achieve 

the objective of finding the class label of an instance. The working of the proposed method is briefly 

described in the following three steps.  

(i) Form the 2-dimensional attributes’ bit-patterns array, AB[ ][ ], with the outcomes of all the attributes in 

the DT. 

(ii) Represent the outcomes of the non-terminal nodes of the DT in the form of arrays, LT[ ][ ], AX[ ][ ]. 

Maintain the number of outcomes of each of the attributes of the DT in an array, fan_out[ ]. The entries 

of the LT[ ][ ] are used to find the subsequent attribute/node, i.e. attr, to be processed along the path to a 

leaf node for an input instance. Then, for that attr, to find the corresponding row number in LT[ ][ ], the 

Algorithm 1: Pseudo code for predicting class label of an instance using the conventional R_Classify 

                 method 

 

Inputs :   list    -     Reference of the root node of the decision tree  

               X[ ]  -     Test instance  

Output :  Class label for the test instance  

 

Step 1 :  while list.next is not NULL   do 

Step 2 :      for  each i ∈ atr    do   

Step 3 :            if  list.atrname = name[i]  then 

Step 4 :                        ind ← i ; 

Step 5 :     Jump to step 8;                                

Step 6 :             end if 

Step 7 :      end for  

Step 8 :      for each j ∈ attr[ind].fan_out do 

Step 9 :             if X[ind] = attr[ind].val[j]  then    

Step 10 :                 Jump to step 13;     

Step 11 :             end if 

Step 12 :      end for 

Step 13 :      list ←  list.next + j; 

Step 14 :  end while 

Step 15 :   return list.atrname;  
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elements of the matrix AX[ ][ ] are used. Every entry in AX[ ][ ] denotes one of the row numbers 

pertaining to LT[ ][ ]. These arrays are of type integers which contains either the attribute Ids or the leaf 

node Ids.     

(iii) By accessing the elements of the arrays LT[ ][ ], AX[ ][ ], and fan_out[ ] perform the bitwise AND 

operations between the contents of AB[ ][ ] and the input instance X[ ] to find the class label.  

To demonstrate the working of the proposed scheme, a sample 2-class data set as given in Appendix has   

been considered [35]. This data set is given as input to the C4.5 algorithm [22] and the DT as given in Fig. 1 

has been obtained where each of the leaf nodes is also associated with an Id viz., L1, L2, L3, L4, and L5 in 

addition to a class label. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1  Decision tree constructed using sample 2-class data set in Appendix. 

An array, fan_out[ ], containing the fan-out of each of the attributes in the DT is maintained as given in 

Table 1. Each non-terminal attribute is also assigned a numeric identifier for future references. A 2-

dimensional array, AB[ ][ ], which contains bit-patterns of the outcomes of the attributes is organized where 

each of its row contains oatr_i  patterns of the attribute atri. If the number of outcomes of an attribute is o then 

the length of each of the bit-patterns of that attribute is o-bits where one bit of the pattern is set to 1 and the 

remaining bits are set to 0s. This array is used to find the test record attributes’ values that are further needed 

to find the next node to be visited in the next level of the tree. The pseudocode for the formation of the     

AB[ ][ ] is given below. 

 

for each i ∈ atr do    

      for each  j ∈ oatr_i  do    

         Among o bits/outcomes of attribute-i, set the jth bit to 1 and remaining bits to 0s  

      end for    

end for     

The matrix, AB[ ][ ], for the DT given in Fig. 1 is shown in Table 2. For the test sample X, in the process 

of reaching the appropriate leaf node from the root, it is required to find the attribute representing each of the 

non-terminal nodes along the path. Thereafter, that attribute’s value of input instance X has to be found to 

determine the appropriate path that has to be chosen to traverse down to the next level of the DT. To help 

attaining these tasks, two arrays i.e. LT[ ][ ], a lookup table, and AX[ ][ ], an auxiliary array, are maintained. 

 

https://www.elsevier.com/books/data-mining-concepts-and-techniques/han/978-0-12-381479-1
https://link.springer.com/article/10.1007/BF00993309
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 Table 1:  fan_out [ ] array containing fan-out of all the attributes in the decision tree given in Fig. 1. 

 

 

 

 

 

Table 2:  Matrix AB[ ][ ] containing the bit-patterns of the attributes in the DT in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If the number of non-terminal nodes in the DT is n, then the number of rows in the LT[ ][ ] is also n.  

Consequently, one row in the LT[ ][ ] corresponds to one of the non-terminal nodes represented by an 

attribute of the DT. However, the first row of the LT[ ][ ] corresponds to the attribute representing the root 

node. A variable, row, maintains the required row number in LT[ ][ ]. To track the attribute/node of the DT 

that has to be processed, another variable attr is maintained. This variable holds one of the attribute Ids as 

given in Table 1. As it is obvious that the traversal has to start from the root node, attr is initialized with the 

root node attribute’s Id. Hence, for the DT in Fig. 1, attr = 1 which is the attribute Id of Age (Table 1). At the 

same time, row = 1. This implies that the node/attribute to be processed in the DT is Age, and the 

corresponding row for Age (at root node) in LT[ ][ ] is row-1. Each entry of the LT[ ][ ] is either an 

attribute’s Id or a leaf node’s Id. If a row-r of LT[ ][ ] corresponds to an attribute attr whose fan-out is o 

then, the number of non-null elements in the row-r of LT[ ][ ] is o. Thus, the number of outcomes of attribute 

attr, and the entries in the corresponding row of LT[ ][ ] are related. The ith outcome of attr, where i = 1, 2, 

..., o, corresponds to LT[row][i]. 

For the test record X[ ], to find the next node/attribute along the appropriate path of DT, a bitwise AND 

operation is performed in between X[attr]’s bit-pattern and the bit-patterns of attribute attr maintained in the 

row-attr of AB[ ][ ]. Whenever, one of the bit-patterns in the row-attr of AB[ ][ ] match to the value of the 

test instance X[attr], the corresponding bitwise ANDing results in True. Thus, the value of the attribute attr 

in X[ ] is found. If X[attr] value is matched with AB[attr][i] then the Id of the next node/attribute along the 

path to be visited in the DT is found at LT[row][i]. For the next attribute along the path of the DT, the 

corresponding row number within LT[ ][ ] is accessed from the auxiliary array AX[ ][ ] at AX[row][i] to 

continue the process. This procedure is repeated until a leaf node is reached. For the DT in Fig. 1, LT[ ][ ] 

and  AX[ ][ ] are formed and given in Table 3 and Table 4 respectively. 

If the value of Age of an input instance X is youth, then the non-terminal node represented by the attribute 

Student, whose attribute Id is 2, has to be visited. Hence, entry at LT[1][1] is filled with 2. If the Age 

attribute’s value of X is middle_aged, then leaf node L3 has to be reached. Consequently, LT[1][2] = L3.  If  

fan_out [ ] fan_out [1] fan_out [2] fan_out [3] 

Attribute Name Age Student Credit_rating 

Attribute Id  1 2 3 

Attribute’s fan-out 3 2 2 

Attribute Row#                   Column# 

1 2 3 

Age 1 AB[1][1]                     

100            Youth     

 Youth 

AB[1][2]         

010     Middle_aged                 

Middle_aged 

AB[1][3]              

001          Senior            

Senior Student 2 AB[2][1]                         

10              Yes         

 Yes 

AB[2][2]                           

01                 No            

No 

- 

Credit_rating 3        AB[3][1]                      

10              Fair      

 Fair 

 

AB[3][2]                

01           Excellent       

Excellent 

 

- 
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the Age value is senior, the non-terminal node represented by Credit_rating, whose attribute Id is 3. Thus, 

LT[1][3] = 3 has to be reached. For example, when the Age = youth, the non-terminal node represented by 

Student has to be visited. During the time of processing of this node, the required row (number) in LT[ ][ ] 

for Student, which is the leftmost child of Age, is 2. Hence, AX[1][1] is filled with 2. When a leaf node is 

reached, no further processing is required. Hence, AX[1][2] is filled with 0. The rows of LT[ ][ ] and       

AX[ ][ ] are formed by following the depth-first search order. According to the procedure discussed, 

the E_Classify algorithm has been designed and the pseudocode is presented in Algorithm 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider a customer’s record X = (Age = senior, Student = no, Credit_rating = fair) whose class label has 

to be predicted using the DT in Fig. 1. Bit-patterns of the attributes of record-X are given in Table 5. The 

process begins with attr = 1, and row = 1. Then, initially, the bitwise ANDings are performed in between the 

elements of AB[1][ ] since the root node represents Age and X[1] as shown in Table 6.  

Table 5:  Bit-patterns of the test record X[ ]. 

 

 

 

 

 

Table 3:  Lookup table, LT[ ][ ], with   

 Attribute/Leaf Ids. 

Row 

# 

Column# 

1 2 3 

1 
LT[1][1] 

2 

LT[1][2] 

L3 

LT[1][3] 

3 

2 
LT[2][1] 

L1 

LT[2][2] 

L2 

LT[2][3] 

- 

3 
LT[3][1] 

L5 

LT[3][2] 

L4 

LT[3][3] 

- 

 

   Table 4:    Auxiliary array AX[ ][ ] for  

   identifying corresponding row in LT[ ][ ].    

Row 

# 

Column# 

1 2 3 

1 
AX[1][1] 

2 

AX[1][2] 

0 

AX[1][3] 

3 

2 
AX[2][1] 

0 

AX[2][2] 

0 

AX[2][3] 

- 

3 
AX[3][1] 

0 

AX[3][2] 

0 

AX[3][3] 

- 

 

Attribute  Name Age Student Credit_ rating 

Attribute Id  1 2 3 

 

Bit-pattern 
X[1] 

001 

X[2] 

01 

X[3] 

10 

Algorithm 2: Pseudocode for predicting class label of an instance using E_Classify 
                    

Inputs :   -  X[ ] i.e. Test instance    

               -  Root_ Id     

               -  AB[ ][ ], LT[ ][ ], AX[ ][ ], fan_out[ ]  

Output :  Class label for the test instance   
 

Step  1   :    attr ← Root_ Id;         

Step  2   :    row ← 1;                      

Step  3   :    while  attr is not  Leaf  do 

Step  4   :         for each i ∈ fan_out[attr] do         

Step  5   :               if  AB[attr][i] & X[attr] then             

Step  6   :                       attr  ←    LT[row][i] ;        

Step  7   :                       row  ←  AX[row][i] ;    

Step  8   :                    Jump to Step 10; 

Step  9   :             end if 

Step  10 :         end for  

Step  11 :      end while 

Step  12 :     return Class Label represented by Leaf; 
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  Table 6:   Bitwise operations between X[Age] and outcomes of attribute Age. 

 

 

 

 

 

When i = 3, the ANDing resulted in True. Consequently, Age value of X[ ] has been identified as senior. 

After finding the Age value in X, the attribute Id of the next attribute to be visited in DT is, attr =  LT[row][i] 

= LT[1][3] = 3 i.e. Credit_rating (from Table 1), and  the corresponding row number in LT[ ][ ] for 

Credit_rating is, row = AX[row][i] = AX[1][3] = 3. Then, bitwise ANDings are performed between 

X[Credit_rating] and AB[3][ ] as shown in Table 7 to find the next node in the DT. From the results in  

Table 7 it can be observed that when i = 1 the ANDing resulted in True and the entry at LT[3][1] is accessed 

and the class label yes, which is represented by L5, is returned. 

Table 7:  Bitwise AND operations between  X[Credit_rating] and outcomes of attribute Credit_rating. 

 

 

 

 

 

 

 

 

 

 

4  Results and Discussion 

The proposed method for predicting the class label of an instance purely depends on arrays and bitwise 

operations. Arrays are faster for random accessing of the required element with a constant time complexity 

O(1). Bitwise operations are also quicker when compared to equality conditional operations since they take 

only one clock cycle [19, 20, 21]. In the conventional tree traversal method, at each node, it is required to 

find the attribute and then the test instance’s value of that attribute. For achieving both tasks, the traditional 

method performs comparison operations. Moreover, in the regular method, the tree is represented in the form 

of linked lists. For determining the attribute’s value of the test instance, the proposed method employs 

bitwise AND operations. Subsequently, to determine the next attribute to be visited along the path, it 

employs the arrays. Comparison operations and linked lists are computationally costlier than the bitwise 

operations and arrays. It can be observed from the pseudocodes of the two methods (Algorithm 1 and 

Algorithm 2), that the proposed method is more efficient than the regular method in terms of step count. In 

the proposed method, instead of two for-loops, one for-loop is able to achieve the objective. The overhead of 

finding the attribute by applying comparison operations at a node is avoided in the proposed method.  

For complexity analysis, we consider that the average length of the paths from the root to leaves of the 

DT is h and the average fan-out of each of the attributes of DT is o. Then, E_Classify requires (h * o) bitwise 

AND operations to predict the class label of a record. As a result, the time complexity of E_Classify is      

O(h * o). On the other hand, the runtime of the regular method is O(h * (atr + o)) where it has to perform    

(h * (atr + o)) number of comparison operations. 

 

i i = 1 i = 2 i = 3 

X[attr] = X[1] 
X[1] 

001 

X[1] 

001 

X[1] 

001 

AB[1][i] 
AB[1][1] 

100 

AB[1][2] 

010 

AB[1][3] 

001 

X[1] & AB[1][i] False False True 

i   i = 1  i = 2 

X[attr] = X[3] 
   X[3]                          

    10 

  X[3]             

   10 

AB[3][i] 
AB[3][1]              

    10 

AB[3][2]   

   01 

X[3] & AB[3][i]  True  

https://ieeexplore.ieee.org/document/7109838
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developers-manual.pdf
https://nostarch.com/writegreatcode1_2e
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4.1      Experimental set up 

To verify the computational performance, the proposed method and the comparing methods are implemented 

in Java programming language and the experiments are conducted on a dual core Intel i3, 3.80 GHz 

processor with 8GB RAM running on Windows7 Operating System. All the numeric attributes are 

discretized during the preprocessing stage. C4.5 algorithm [22] has been used for decision tree construction 

as it is a popular algorithm and also ranked as #1 algorithm in the field of data mining [23]. Experiments are 

conducted on 10 UCI ML data sets [24]. The constructed models are validated using 10-fold cross-

validation.  

4.2 Performance analysis with German data set  

 
Initially, for the detailed analysis of the proposed method, German data set from the UCI repository has been 

used. This data set contains 20 input attributes and a binary class label, i.e. good or bad. We renamed the 

input attributes as A, B, ..., and, T, class labels as C1 and C2 and outcomes of the attributes as a, b, c, etc. for 

simplicity. By using 666 randomly chosen records from the German data set, a decision tree as shown in  

Fig. 2 has been constructed. Size of the tree is 40 with 29 leaf nodes and 11 non-terminal nodes. Each leaf is 

also associated with a leaf Id from L1 through L29. A data set with a moderate size and dimensionality can 

help for a detailed explanation of the methodology of our proposed approach. Hence, German data set has 

been considered for detailed experimental analysis in this section. 

 

 

Fig. 2  Decision tree constructed using German data set 

 

The data structures required during the process of predicting the class label of a test instance are furnished 

below. Table 8 contains the attributes’ Ids, fan-out values, and the outcomes of the 7 distinct attributes 

present in the decision tree in Fig. 2.  

 

https://link.springer.com/article/10.1007/BF00993309
https://link.springer.com/article/10.1007/s10115-007-0114-2
https://archive.ics.uci.edu/ml/index.php
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Table 8: Fan-out and Id’s of each attribute in the decision tree in Fig. 2. 

 

 

 

 

 

 

 

 

The 2-D array AB[ ][ ] containing the bit-patterns of outcomes of all the 7 attributes in the decision tree is 

given below. 

AB[7][5] = {{1000, 0100, 0010, 0001, -}, {10000, 01000, 00100, 00010, 00001}, {10000, 01000, 00100,     

                      00010, 00001}, {100, 010, 001, -,-}, {100, 010, 001,-,-}, {1000, 0100, 0010, 0001, -},  

                    {10, 01, -, -, -}}. 

The elements of the lookup table LT[ ][ ] which are used to follow the outcomes of a node/attribute in the 

tree are furnished below. As the tree contains 11 non-terminal nodes, LT[ ][ ] also contains 11 corresponding 

rows.  

LT[11][5] = {{7, 7, 4, L29, -}, {4, L17, -, -, -}, {2, L15, L16, -, -}, {L1, L2, 3, L13, L14}, {5, L9, L10, L11, L12},                                  

                 {L3, L4, 6, -, -}, {L5, L6, L7, L8, -}, {4, L25, -, -, -}, {2, L23, L24, -, -}, {L18, L19, L20, L21, L22}, 

                 {L26, L27, L28, -, -}}.  

The elements of the auxiliary array, AX[ ][ ], to find the corresponding row in the LT[ ][ ] are as shown 

below. 

AX[11][5] = {{1, 7, 10, 0, -}, {2, 0, -, -, -}, {3, 0, 0, -, -}, {0, 0, 4, 0, 0}, {5, 0, 0, 0, 0}, {0, 0, 6, -, -}, {0, 0, 0, 0, -},                     

                  {8, 0, -, -, -}, {9, 0, 0, -, -}, {0, 0, 0, 0, 0}, {0, 0, 0, -, -}}. 

 

At one time one record has been given as input to the two approaches and the classification times are 

noted. To obtain notable runtimes, the process of predicting class label for one sample has been repeated for 

10000 times. For each test instance, while recording the runtime with R_Classify method (T1), the total 

number of attribute name comparisons (O1), test instance attributes’ values comparisons (O2), assignment 

operations (O3), and the total step count (O4 = O1 + O2 + O3) required for predicting class label are also 

recorded. For the same instance when E_Classify method is used for predicting the class label, the total 

number of bitwise AND operations (O5), assignment operations (O6), and the total step count (O7 = O5 + 

O6) have been noted along with the execution time (T2). P1, P2, and P3 values represent the percentage of 

bitwise operations among all the operations done by E_Classify, percentage of step count of E_Classify in 

comparison to R_Classify, and the percentage of runtime of E_Classify in comparison to R_Classify 

respectively. The results on 10 test instances are furnished in Table 9. For each test record in Table 9, the 

values of the input attributes A, B, ..., and T are given without separating them by a comma. The runtimes 

and the total step counts of the two methods on each record are plotted as bar charts and given in Fig. 3 and 

Fig. 4 respectively.   
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Table 9:  Classification times comparison of R_Classify and E_Classify on German data set. 

 

 

          Fig. 3  Runtime comparison of R_Classify and E_Classify on German data set. 

                     

                      Fig. 4  Step count comparison of R_Classify and E_Classify on German data set. 

T_
Id 

Test Record R_Classify E_Classify (O7/ 

O4) 

% 

 

(P2) 

(T2/ 

T1) 

% 

 

(P3) 

(Input attributes order) 
ABCDEFGHIJKLMNOPQR

ST 

Step count Runtime 
(ms) 

(T1) 

Step count (O5/ 

O7) 

% 

(P1) 

Runtime 
(ms) 

(T2) O1 O2 O3 O4 O5 O6 O7 

1 abaacbabbbabbcbbdbba 78 14 7 99 12.76 14 14 28 50.0 2.53 28.3 19.8 

2 bbabbaaaaaaaaaaaaaaa 40 6 4 50 5.96 6 8 14 42.8 1.23 28.0 20.6 

3 babcaaaaaabaaaaaaaaa 15 5 2 22 2.98 5 4 9 55.5 1.08 40.9 36.2 

4 abbacabaaaaaaaaaaaaa 47 8 5 60 7.67 8 10 18 44.4 2.17 30.0 28.3 

5 bbbaaaaaaaaaaaaaaaaa 40 4 4 48 5.62 4 8 12 33.3 1.08 25.0 19.2 

6 aaabaaaaaacaaaaaaaaa 35 6 3 44 4.99 6 6 12 50.0 1.14 27.3 22.8 

7 babaaaaaaaaaaaaaaaab 24 3 2 29 3.71 3 4 7 42.8 0.66 24.1 17.8 

8 abaacaaaaaaaaaaaaaaa 61 8 6 75 9.21 8 12 20 40.0 2.32 26.7 25.2 

9 abbaeaaaaaaaaaaaaaaa 40 8 4 52 6.86 8 8 16 50.0 1.77 30.8 25.8 

10 bbadaaaaaaaaaaaaaaaa 4 4 1 9 1.04 4 2 6 66.7 0.55 66.7 

 

52.8 
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The total runtimes of R_Classify and E_Classify are 60.8 ms and 14.52 ms respectively where the latter 

method is four times faster than the former one. On the other hand, the average runtime of E_Classify is 

nearly one-fourth of the former method. From the results shown in Table 9, it can be observed that the 

runtimes are directly proportionate to the step count. The step count of E_Classify is less than that of the 

R_Classify method for all instances and its total step count is 29.64% of the regular method. The results 

depict that the step count and runtimes of E_Classify are relatively less than that of the R_Classify for all 

cases. The bitwise AND operations of E_Classify (O5) and the comparison operations for finding the 

attribute’s value at a node using R_Classify are equal since the bitwise AND operations are used for finding 

the test instance attributes’ values.  

The best performance of the proposed method has been observed on the 7th test record. For this record, 

the classification times of R_Classify and E_Classify are 3.71 ms and 0.66 ms respectively, where the latter 

method’s runtime is only 17.8% of the former one. The reason for this significant difference is, to find the 

class label for this instance, the step count required by E_Classify is 24.1% of R_Classify which is minimum 

among all the cases shown in Table 9.  

The 10th record takes the rightmost path from the root and reaches the leaf node L29. For this record, 

E_Classify performs 4 bitwise AND’s since the attribute D’s value for this instance is its fourth outcome i.e. 

d. The difference in the runtimes for the 10th test sample is least since the step count of E_Classify is 66.67% 

of R_Classify which is highest among all the 10 cases. In proportion to the step count, the increase in the 

runtime of E_Classify is not too high since the contribution of bitwise operations of E_Classify is high i.e. 

66.7%. Thus, in some of the cases, though there is no much difference in the step count of two methods 

(since that path contains very less number of non-terminal attributes), the E_Classify still exhibits better 

performance than the R_Classify as it employs the bitwise operations and accesses the elements from the 

arrays. E_Classify is not explicitly performing any operations to identify the attribute representing a non-

terminal node.  

 

4.3     Experiments on UCI data 

For experimental analysis, we have chosen 10 data sets from UCI ML repository [24], the most extensively 

used database in the classification literature and the classification times of R_Classify and E_Classify 

methods are compared. Reasons for choosing these data sets are: Classifier behaviour also depends on the 

data set properties like dimensionality, size, and the number of classes. Each of these data sets has a 

sufficient number of records and is composed of different dimensionalities and sizes that help better 

observation and differentiation of the performances of the comparing methods. If the decision tree is 

constructed using the data sets with different dimensionalities and size, then the trees with different sizes are 

obtained. The proposed method’s runtimes are influenced by the tree size and dimensionality. These datasets 

are also the mix of binary class and multi-class and they cover various application domains. Hence, for better 

observation of runtimes in different scenarios, these datasets are chosen. 

Each data set is given as input to the C4.5 decision tree construction algorithm. 10-fold cross-validation is 

applied for validation of the model and the technical evaluation measures [25] are also recorded as shown in 

Table 10.   

From a data set, each time, one instance is input to two methods i.e. R_Classify and E_Classify to predict 

the class label and the classification times are noted. Thusly, the total time taken for finding class labels for 

all the instances in a data set w.r.t. each of the methods has been recorded and shown in Table 10.  

The classification times presented in Table 10 depicts that the E_Classify outperforms the R_Classify. The 

total classification times of R_Classify and E_Classify on 10 data sets are 596.65 ms and 101.9 ms 

respectively. On the other hand, the average runtimes of R_Classify and E_Classify are 59.67 ms and 10.19 

ms respectively. In Table 10, P values denote the percentage of runtime of E_Classify over R_Classify. The 

P values also describe that the runtimes of E_Classify are around 25% of R_Classify. 

If the data set is large, composed of more attributes and the average fan-out of the attributes is high then, 

both the methods exhibit higher computational times. However, in all cases, the computational times of 

E_Classify are relatively less than those of R_Classify. If the dimensionality is high, then the proposed 

method exhibits better performance than the traditional method since attribute finding is done straight away 

https://archive.ics.uci.edu/ml/index.php
https://ieeexplore.ieee.org/document/1388242
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using arrays without performing any comparisons. This fact has been observed on the data sets Anneal, 

Autos, Connect-4, and Hypothyroid where the runtimes of E_Classify are 19.6%, 20.32%, 16.36%, and 

19.55% of R_Classify respectively. In such a way, the experimental results demonstrate that on average, 

E_Classify is at least four times faster than R_Classify. 

 Due to low complexity than the regular method, and usage of efficient data structures, the proposed 

method is more efficient than the standard decision tree based method. Step count of the proposed method is 

indeed less than the standard method. The detailed performance analysis using the German data set has also 

proved this fact (Table 9). Employment of arrays in the process and performing bit-level operations on the 

elements of arrays also helped improve the efficiency. For E_Classify, it is not necessary to perform the 

attribute name identifying task at a node of the tree. These all helped the reduction in the runtime of the 

proposed method. If the dimensionality of a data set is high, then the standard method has to spend more 

time on attribute name identifying task at each node of a specific path. In such scenarios, the performance of 

the proposed method is more significant than the standard method. Due to these reasons, the proposed 

method outperformed the standard method. For the conventional method if the attribute compared is the first 

one in the list and the outcome is the first value among its outcomes then, low runtimes take place. 

 

Table 10:  Classification time comparisons of R_Classify and E_Classify on UCI data sets 
(Tr. Inst - No. of Training Instances,  No. Atr - No. of Attributes,  No. Cls - No. of Classes,                        

 Prec. -  Precision, Acc- Accuracy, T1 - Runtime of   R_Classify, T2 - Runtime of E_ Classify). 

 

4.4   Performance comparison with other classifiers  

For performance comparison, five standard classifiers namely Naive Bayes (NB) [26], k-Nearest Neighbor 

(k-NN) [27], Random Forest (RF) [28], Support Vector Machines (SVM) [29], and AdaBoost (AB) [30] are 

considered. Reasons for considering these classifiers for comparison are: Accuracy is the key predictive 

performance evaluation metric of a classifier and in general, RF and SVM are the benchmark algorithms and 

occupy the top positions with respect to accuracy [6]. However, no classifier can be always the best. SVM 

and RF are also identified as popular, reliable, most robust, and benchmark classifiers thus normally used as 

the default classifiers in various Machine Learning applications. Boosting is treated to be the significant 

family of ensemble methods and also become a buzzword in computer vision and many other domains. AB 

is relied to be robust and successfully works for wide applications like text classification and spam filtering 

[23]. NB is an eager learner, a highly scalable probabilistic classifier and works well for large and high 

dimensional data [23]. k-NN is the simplest and lazy learner whose training time is zero and it has to spend 

all its time on classification. k-NN fits well for multi-modal classes for the domains in which the objects can 

have many class labels. Moreover, to compare with standard and versatile algorithms from different families, 

we have chosen these classifiers. RF is an ensemble tree based classifier, SVM is of support vector 

Data set 
Tr. 

Inst 

No. 

Atr 

No. 

Cls 
Prec. Recall F-score 

Acc 

(%) 
AUC 

Tree 

Size 

No. of 

Leaves 

No. 
Test 

Inst 

Classification 

Time (ms) 

(T2/ 

T1) 

% 
(P) 

(T1) (T2) 

Anneal 898 39 6 0.941 0.942 0.941 94.20 0.965 346 306 898 0.877 0.172 19.6 

Autos 205 26 7 0.854 0.854 0.853 85.37 0.913 215 194 205 0.122 0.024 20.3 

Balance 

Scale 625 4 3 0.642 0.693 0.666 69.28 0.755 221 199 625 0.126 0.039 31.4 

Connect-4 67557 42 3 0.795 0.795 0.795 79.45 0.907 15952 10635 67557 551.19 90.19 16.4 

German 666 20 2 0.706 0.721 0.710 72.10 0.697 40 29 1000 0.591 0.143 24.2 

Glass 214 10 7 0.556 0.579 0.562 57.94 0.775 221 199 214 0.044 0.011 26.6 

Heart-c 303 14 5 0.770 0.769 0.767 76.89 0.835 200 171 303 0.084 0.026 31.7 

Hypo 
thyroid 

3772 30 4 0.891 0.923 0.906 92.33 0.818 570 467 3772 7.513 1.469 19.5 

Nursery 12960 8 5 0.988 0.988 0.988 98.78 0.999 944 680 12960 35.562 9.673 27.2 

Solar 1066 12 6 0.727 0.738 0.729 73.82 0.924 192 145 1066 0.542 0.155 28.6 

https://scholar.google.com/scholar_lookup?title=Pattern%20classification&author=R.O.%20Duda&publication_year=2000
https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
https://link.springer.com/article/10.1023/A:1010933404324
https://link.springer.com/article/10.1007/BF00994018
https://cseweb.ucsd.edu/~yfreund/papers/boostingexperiments.pdf
https://jmlr.org/papers/volume15/delgado14a/delgado14a.pdf
https://link.springer.com/article/10.1007/s10115-007-0114-2
https://link.springer.com/article/10.1007/s10115-007-0114-2
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machines, AB belongs to the boosting category. However, NB and k-NN belong to Bayes (probabilistic) and 

nearest neighbours respectively [6, 7]. The study by Xindong et al. also reported that SVM, C4.5, k-NN, 

AdaBoost, and Naïve Bayes are the most influential classifiers [31, 32, 33, 34] of data mining placed in the 

top 10 positions [23]. 

Before using them for classification, the classifiers are validated using 10-fold cross validation. Training 

and validation sets are generated randomly. 10% of the instances are used as validation data set required to 

tune the parameters of the classifier. If parameter tuning is not required for a classification model, then the 

validation data is combined with training data. Thereafter, by using the selected values for the tunable 

parameters, the classification accuracy, and AUC [25] of each classifier is obtained by the average of 10 runs 

of 10-fold cross-validation. This methodology has been used because it helps to reduce the computational 

cost of the experimental work. Moreover, every instance is used in testing exactly once and is used in the 

training phase for k-1 times, and reduces the bias.  

In our experiments, for RF the number of trees is set to 100. For k-NN, k value is considered as 5 to avoid 

expensive classification times and the Euclidean metric is used for finding distance matrix. The whole time 

taken by k-NN to predict the class label of an input instance is considered as the classification time. While 

testing the SVM, precomputed kernel is used in the experiments. Precomputed kernel achieves better 

accuracy and does not need parameter tuning which helps to save the computational time. AdaBoost and 

Naïve Bayesian are run using the standard parameters. Accuracy and AUC of various classifiers on the 10 

UCI data sets are shown in Table 11 and Table 12 respectively. 

Table 11: Accuracy results for different classifiers on 10 UCI data sets 

 

Table 12: AUC results for different classifiers on 10 UCI data sets 

Data set Accuracy 

k-NN  NB RF SVM AB E_Classify 

Anneal 75.00 72.00 96.00 95.50 86.40 94.20 

Autos 31.25 37.50 81.25 62.50 31.25 85.37 

Balance  

Scale 

95.24 96.83 95.24 92.06 80.95 69.28 

Connect-4 75.20 76.46 81.60 82.20 80.50 79.45 

German 72.00 76.00 74.00 72.00 71.00 72.10 

Glass 76.19 38.10 80.95 80.95 42.86 57.94 

Heart-c 75.56 80.80 84.60 83.76 76.30 76.89 

Hypo 

thyroid 

90.28 90.28 100.00 90.28 93.06 92.33 

Nursery 82.30 82.88 96.42 95.78 92.42 98.78 

Solar 76.36 74.00 80.66 81.26 76.58 73.82 

Data set 
AUC 

k-NN  NB RF SVM AB E_Classify 

Anneal 0.746 0.718 0.962 0.952 0.843 0.965     

Autos 0.745 0.799 0.847 0.844 0.800 0.913 

Balance  

Scale 
0.984 0.833 0.833 0.867 0.806 0.755 

Connect-4 0.758 0.783 0.904 0.868 0.814 0.907 

German 0.694 0.741 0.939 0.645 0.613 0.697 

Glass 0.963 0.815 0.748 0.790 0.806 0.775 

Heart-c 0.792 0.827 0.866 0.821 0.784 0.835 

Hypo 

thyroid 
0.500 0.667 1.000 0.500 0.833 0.818 

Nursery 0.848 0.803 0.966 0.968 0.944 0.999 

Solar 0.801 0.887 0.849 0.804 0.782 0.924 

https://jmlr.org/papers/volume15/delgado14a/delgado14a.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0377221715004208?via%3Dihub
https://link.springer.com/article/10.1007/s10115-007-0114-2
https://ieeexplore.ieee.org/document/1388242
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The technical performance evaluation measures furnished in Table 11 and Table 12 describe that in most 

of the cases, RF and SVM exhibit relatively higher accuracy and AUC. At least for 5 data sets, either the RF 

or the SVM are showing maximum accuracy and AUC values. The accuracy measures of E_Classify are also 

fair enough and its average AUC (0.859) is higher than the SVM (0.806) and slightly lesser than that of the 

RF (0.891). 

For performance comparison, experiments are conducted on UCI data sets and the results are furnished in 

Table 13. The runtimes are also plotted using the bar chart as shown in Fig. 5. The experimental results 

depict that the proposed method outperforms the other classifiers. After E_Classify, SVM is the fastest in 

classifying a test record. However, k-NN is the slowest among all. Random Forest is the next slowest one but 

it is the best performer with respect to accuracy. The classification times of Random Forest also depend on 

the number of trees generated. Among all the 10 UCI datasets, on Connect-4, the proposed method exhibited 

the best performance. Classification time of E_Classify on Connect-4 is 90.19 ms. Connect-4 is relatively a 

large data set (67557 records) and its dimensionality, i.e. 42, is also the maximum among all the data sets. 

More the dimensionality of a data set then higher the performance of the proposed method. This is because 

other classifiers have to identify the attribute in the process of predicting the class label. On the other hand, 

explicit identification of an attribute is not performed by the proposed method that helps save its processing 

time. In the case of Connect-4, at each node, the proposed method avoids 42 attribute name comparisons. 

 

Table 13: Classification time results for six classifiers on 10 UCI data sets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For each data sample, k-NN needs to compute the distance between the test sample and the other 

instances in the training data, and then it has to determine k nearest neighbours using a metric like Euclidean 

distance. This process increases the processing time of k-NN. Consequently, when the data set size is large, 

k-NN exhibits even worse results. The results on Connect-4 depict this case. On the other hand, to compute 

the posterior probability w.r.t each class, the computations to be performed by Naive Bayes is more in 

number and those operations are costlier than the operations adopted by E_Classify. Hence, the computation 

times of Naive Bayes are also higher than the E_Classify. Classification times of Random Forest depend on 

the number of trees generated. In our experiments, we have considered the number of trees to be 100. Hence, 

to determine the prediction result for an instance, it is required to predict class labels using 100 trees, and the 

class label that obtains the maximum votes stands as the prediction result. This process requires more time 

than the methods that use a single tree. However, there is no substantial difference in the classification times 

of SVM and the proposed method. SVM uses the maximum margin hyperplane to predict the class label of a 

Data set Classification time (ms) 

k-NN NB RF SVM AB E_Classify 

Anneal 349.03 237.91 56.20 0.284 21.351 0.172 

Autos 3.422 0.339 2.554 0.067 0.373 0.024 

Balance  

Scale 

5.601 0.460 4.342 0.092 0.396 0.039 

Connect-4 95773.95 8911.21 47172.83 303.91 7417.11 90.19 

German 31.99 2.590 23.60 0.205 2.031 0.143 

Glass 3.205 0.210 2.503 0.028 0.206 0.011 

Heart-c 3.781 0.290 2.816 0.066 0.239 0.026 

Hypo 

thyroid 

281.07 18.440 455.20 2.930 15.97 1.469 

Nursery 2199.52 125.04 1690.46 17.93 96.08 9.673 

Solar 31.005 2.063 25.281 0.211 1.681 0.155 



52  Janapati et al.  / Electronic Letters on Computer Vision and Image Analysis 19(3):38-54; 2020 

test sample where the computations are not much expensive. AdaBoost is an ensemble based classifier and it 

is also slower than the proposed method. It predicts the class label by calculating the weighted average of the 

weak classifiers which is computationally costlier than the E_Classify. 

From the experimental results, it can be concluded that the proposed method’s classification times are 

better than those of various other standard classifiers belonging to different families and also the regular tree 

based method.  

 

 

 

 

 

 

 

 

 

 

Fig. 5  Classification times comparison of various classifiers on 10 UCI data sets. 

 

5     Conclusions 

Classification is a vital concept of data mining and machine learning which is predominantly used in various 

sectors for the prediction of the class label of an unseen instance. Among various classification models, 

decision trees have got high significance due to their merits. In the research area of classification through 

decision trees, improving the computational performance of the classification phase has not been given much 

attention.  

In this paper, an efficient method that is applicable to decision trees has been introduced to predict the 

class label of the test instance quicker than the regular tree traversal method. The experiments conducted on 

UCI data sets proved that the proposed method is at least four times faster than the regular method. The 

experimental results also verified that in comparison to other standard classifiers k-NN, Naive Bayes, 

Random Forest, SVM, and AdaBoost which belong to different families, the proposed method’s performance 

is significant. The proposed method’s step count is low and also due to the employment of various efficient 

data structures like arrays and bit-level operations, it achieved significant computational efficiency.  

The work described in this paper can be considered as the first step in the development of fast classifying 

algorithms and it can serve as a basic stone that can be further improved. The proposed method is designed 

to work on a single decision tree and fits well for the data sets with discrete attributes. Extending the research 

for more optimization for an ensemble of trees and other classifiers can be taken up as the future work. 
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Appendix     
 

Sample 2-class data set. 

 

Age Income Student Credit_rating Class: Buys_computer 

youth high no fair no 

youth high no excellent no 

middle_aged 

 

high no fair yes 

senior medium no excellent no 

senior low yes excellent no 

senior low yes fair yes 

middle_aged low yes excellent yes 

youth medium no fair no 

youth low yes fair yes 

senior medium yes excellent no 

youth medium yes excellent yes 

middle_aged medium no excellent yes 

middle_aged high yes fair yes 

senior medium no fair yes 
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