

 Correspondence to: <nagamuni513@gmail.com>

 Recommended for acceptance by Angel D. Sappa

 https://doi.org/10.5565/rev/elcvia.1267

 ELCVIA ISSN: 1577-5097

 Published by Computer Vision Center / Universitat Autonoma de Barcelona, Barcelona, Spain

Electronic Letters on Computer Vision and Image Analysis 19(3):38-54, 2020

A Novel Method to Improve the Efficiency of Classification Phase

of a Decision Tree

Janapati Naga Muneiah1,* Ch D V Subba Rao2

1Department of Computer Science and Engineering, Jawaharlal Nehru Technological University,

Kakinada-533005, Andhra Pradesh, India.

2Department of Computer Science and Engineering,

Sri Venkateswara University College of Engineering, Tirupati- 517502,

Andhra Pradesh, India.

Received 25th of July 2020; accepted 25th of September 2020

Abstract

So far, most of the research on classification algorithms in machine learning has been focused only on

improving the training speed and further improving the technical performance evaluation measures of the

constructed models. There is no focus on improving the runtime efficiency of the classification phase which is

much required in some critical applications. In this paper, we are considering the computation complexity of a

decision tree’s classification phase as the major criterion. A novel approach has been proposed to predict the

class label of an unseen instance using the decision tree in less time than the regular tree traversal method. In the

proposed method, the constructed decision tree is represented in the form of arrays. Then, the process of finding

the class label is carried out by performing the bitwise operations between the elements of the arrays and test

instance. Empirical results on various UCI data sets proved that the proposed method outperforms the standard

method and five other benchmark classifiers and its classification is at least four times faster than the regular

method.

Key Words: Data mining, Classification, Decision trees, Classification phase, Computational efficiency.

1 Introduction

Classification is the predominant concept in the fields of data mining and machine learning which is used to

predict the class label of an unseen instance. Many sectors like medicine, telecom, banking, speech

recognition, handwritten character recognition, fraud detection, and biology, etc. are using the concept of the

classification to predict the class label of the unseen record [1, 2]. Though several classifiers like bayesian

classifiers, neural networks, k-nearest neighbour, and support vector machines, and so on are available,

decision trees (DT) are popular and received huge significance due to their various merits like less training

time, good accuracy, dealing well with high dimensional data, and working for both numeric and categorical

data. When the user needs a simple and interpretable classifier, DT is the most preferable one. For the

automatic extraction of actionable knowledge, many researchers have considered the DT as the model

[3, 4, 5]. In general, classification through DTs comprises three phases namely, training phase, testing phase,

and classification phase. During the testing and classification phases, the class label has to be determined for

an instance using the DT.

https://doi.org/10.5565/rev/elcvia.1267
https://link.springer.com/article/10.1007/s00521-012-1196-7
https://www.sciencedirect.com/science/article/abs/pii/S0957417411009237
https://journal.iberamia.org/index.php/intartif/article/view/314/94
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs190628
https://ieeexplore.ieee.org/document/4016514

Janapati et al. / Electronic Letters on Computer Vision and Image Analysis 19(3):38-54; 2020 39

Earlier, many researchers have focused on comparing various technical performance evaluation measures

of a variety of classifiers [6, 7, 8, 9]. Few researchers also put their efforts to compare the performance of

various classifiers in terms of their computational times. Reif et al. proposed an approach to predict the

runtime of the training phase of different classifiers [10]. Doan et al. presented an approach to estimate the

total runtime, i.e. training time and classification time, on various classification algorithms on an arbitrary

data set by incorporating the idea of meta-learning [11].

Most of the past research has concentrated only on improving the technical evaluation measures like

accuracy, AUC, sensitivity, specificity, precision, and F-score of the classifier [12, 13, 14]. The researchers

of data mining have not focused on expediting the classification phase with a notion that this phase takes less

time. In fact, if the classification phase of a DT is accelerated, then it helps speed up the training phase too.

Either for the test records or any unseen records though the time taken for determining the class label by

traversing the DT from root to an appropriate leaf node is low, still, this process can be improvised by

adopting the efficient data structures.
Reducing the classification complexity need not be neglected since there are applications where the fast

classification of an instance is much required. In many time-critical cases, actions have to be taken very

quickly based on the decision otherwise the cost can be very high or consequences can be unbearable. Such

criticality could be achieved through fast classification. Predicting the complications in critical care quickly,

where electronic surveillance systems can detect the symptoms, needs an automated rapid action based on

the decision [15]. Text to speech conversion in the case of CRM automation, hard real-time applications,

aircraft systems, fraud detection during online transactions, dynamic systems, and other applications require

fast classification to take timely necessary remedial actions. In big data scenarios, in the Map phase, if it is

required to predict the class label for a huge number of instances, an efficient method is much useful to save

the processing time [16].

Ahmad Ashari et al. have studied the classification speed of three standard classifiers [17] and opined that

the decision tree’s performance is relatively high. Weinberg et al. [16] have proposed a method to improve

classification speed when the ensemble of decision trees is constructed on big data. Their method finds the

best representative tree from the ensemble on which classification is performed. Hurtik et al. have introduced

a method viz. PCA+FT which can enhance the training and classification speed [18]. However, this is a lossy

dimensionality reduction based method where a classifier has to be fit on a PCA transformed data.

To predict the class label of a test record, the existing conventional decision tree based method performs

comparison operations at each node for finding the attribute representing the node. Thereafter, to traverse

down to reach the appropriate leaf, it performs comparison operations to find the value of the required

attribute within the test record. This method employs linked lists in the process. Comparison operations are

slower and the linked lists are not too fast for accessing the elements.

The research in this paper focuses on improvising the computational efficiency of the classification phase

of a DT. A new approach that is based on bitwise operations has been introduced. In this approach, the

constructed DT is represented as arrays and then, the bitwise AND operations are performed on the elements

of the arrays for finding the class label. The step count required to find the class label of an unseen record

using the proposed method is relatively less than the step count of the regular approach. Moreover, as the

bitwise operations are faster [19, 20, 21], and the arrays are also faster for accessing the elements, the

proposed method exhibits better computational performance than the classical method. Once the DT is

represented as the arrays, it is discarded and further at no stage it is used. The applications which require fast

classification can be benefitted by adopting the proposed method.

Rest of the paper is organised as: Section 2 reviews the conventional classification method of a DT.

Section 3 presents the proposed novel method with an illustration. Section 4 provides the performance

analysis of the proposed method and section 5 gives the concluding remarks.

2 Review of classification phase of a decision tree

All the existing DT construction algorithms follow the regular tree traversal method to predict the class label

of an unseen instance [22]. An instance is classified by submitting it to a series of tests that determine its

class label. To traverse down, at each of the non-terminal nodes, it is required to determine the attribute, attri,

https://jmlr.org/papers/volume15/delgado14a/delgado14a.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0377221715004208?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0306457309000259
https://link.springer.com/article/10.1023%2FA%3A1007608224229
https://link.springer.com/chapter/10.1007/978-3-642-24455-1_25
https://link.springer.com/article/10.1007/s13042-016-0571-6
https://www.inderscience.com/info/inarticle.php?artid=16385
https://link.springer.com/article/10.1007%2Fs00521-014-1673-2
https://elcvia.cvc.uab.es/article/view/v18-n1-hamid/pdf_38
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7593335
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0186-3
https://thesai.org/Downloads/Volume4No11/Paper_5-Performance_Comparison_between_Na%C3%AFve_Bayes.pdf
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0186-3
https://ieeexplore.ieee.org/document/8716169
https://ieeexplore.ieee.org/document/7109838
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developers-manual.pdf
https://nostarch.com/writegreatcode1_2e
https://link.springer.com/article/10.1007/BF00993309

40 Janapati et al. / Electronic Letters on Computer Vision and Image Analysis 19(3):38-54; 2020

representing the node. Thereafter, in the test instance, the value of the attribute attri has to be found. Then,

based on its attri‘s value the test instance traverses down the tree. This process is repeated until one of the

leaf nodes is reached. The pseudocode for the regular method (hereafter we refer it as R_Classify), is

presented in Algorithm 1.

In this approach, the DT is represented in the form of linked lists where each node contains the pointers to

its children. At each node to find the attribute, atr number of comparisons are required to be performed

where atr is the number of attributes in the data set. If the average number of outcomes of the attributes of

the data set is o, then o number of comparisons is required to find that attribute’s value in the test instance.

Up to this stage, (atr + o) number of comparison operations are needed to be performed. If the average

length of each path from the root to a leaf of the DT is h, then a total of (h * (atr + o)) comparisons are

needed. Consequently, time complexity of the traditional method is O(h * (atr + o)). To our knowledge, no

research has introduced an alternative efficient method for finding the class label of an instance on the DT

classifier.

3 Proposed scheme

To achieve better computational efficiency than the conventional approach a new method namely,

E_Classify has been introduced. The new method employs the arrays and bitwise AND operations to achieve

the objective of finding the class label of an instance. The working of the proposed method is briefly

described in the following three steps.

(i) Form the 2-dimensional attributes’ bit-patterns array, AB[][], with the outcomes of all the attributes in

the DT.

(ii) Represent the outcomes of the non-terminal nodes of the DT in the form of arrays, LT[][], AX[][].

Maintain the number of outcomes of each of the attributes of the DT in an array, fan_out[]. The entries

of the LT[][] are used to find the subsequent attribute/node, i.e. attr, to be processed along the path to a

leaf node for an input instance. Then, for that attr, to find the corresponding row number in LT[][], the

Algorithm 1: Pseudo code for predicting class label of an instance using the conventional R_Classify

 method

Inputs : list - Reference of the root node of the decision tree

 X[] - Test instance

Output : Class label for the test instance

Step 1 : while list.next is not NULL do

Step 2 : for each i ∈ atr do

Step 3 : if list.atrname = name[i] then

Step 4 : ind ← i ;

Step 5 : Jump to step 8;

Step 6 : end if

Step 7 : end for

Step 8 : for each j ∈ attr[ind].fan_out do

Step 9 : if X[ind] = attr[ind].val[j] then

Step 10 : Jump to step 13;

Step 11 : end if

Step 12 : end for

Step 13 : list ← list.next + j;

Step 14 : end while

Step 15 : return list.atrname;

Janapati et al. / Electronic Letters on Computer Vision and Image Analysis 19(3):38-54; 2020 41

elements of the matrix AX[][] are used. Every entry in AX[][] denotes one of the row numbers

pertaining to LT[][]. These arrays are of type integers which contains either the attribute Ids or the leaf

node Ids.

(iii) By accessing the elements of the arrays LT[][], AX[][], and fan_out[] perform the bitwise AND

operations between the contents of AB[][] and the input instance X[] to find the class label.

To demonstrate the working of the proposed scheme, a sample 2-class data set as given in Appendix has

been considered [35]. This data set is given as input to the C4.5 algorithm [22] and the DT as given in Fig. 1

has been obtained where each of the leaf nodes is also associated with an Id viz., L1, L2, L3, L4, and L5 in

addition to a class label.

Fig. 1 Decision tree constructed using sample 2-class data set in Appendix.

An array, fan_out[], containing the fan-out of each of the attributes in the DT is maintained as given in

Table 1. Each non-terminal attribute is also assigned a numeric identifier for future references. A 2-

dimensional array, AB[][], which contains bit-patterns of the outcomes of the attributes is organized where

each of its row contains oatr_i patterns of the attribute atri. If the number of outcomes of an attribute is o then

the length of each of the bit-patterns of that attribute is o-bits where one bit of the pattern is set to 1 and the

remaining bits are set to 0s. This array is used to find the test record attributes’ values that are further needed

to find the next node to be visited in the next level of the tree. The pseudocode for the formation of the

AB[][] is given below.

for each i ∈ atr do

 for each j ∈ oatr_i do

 Among o bits/outcomes of attribute-i, set the jth bit to 1 and remaining bits to 0s

 end for

end for

The matrix, AB[][], for the DT given in Fig. 1 is shown in Table 2. For the test sample X, in the process

of reaching the appropriate leaf node from the root, it is required to find the attribute representing each of the

non-terminal nodes along the path. Thereafter, that attribute’s value of input instance X has to be found to

determine the appropriate path that has to be chosen to traverse down to the next level of the DT. To help

attaining these tasks, two arrays i.e. LT[][], a lookup table, and AX[][], an auxiliary array, are maintained.

https://www.elsevier.com/books/data-mining-concepts-and-techniques/han/978-0-12-381479-1
https://link.springer.com/article/10.1007/BF00993309

42 Janapati et al. / Electronic Letters on Computer Vision and Image Analysis 19(3):38-54; 2020

 Table 1: fan_out [] array containing fan-out of all the attributes in the decision tree given in Fig. 1.

Table 2: Matrix AB[][] containing the bit-patterns of the attributes in the DT in Fig. 1.

If the number of non-terminal nodes in the DT is n, then the number of rows in the LT[][] is also n.

Consequently, one row in the LT[][] corresponds to one of the non-terminal nodes represented by an

attribute of the DT. However, the first row of the LT[][] corresponds to the attribute representing the root

node. A variable, row, maintains the required row number in LT[][]. To track the attribute/node of the DT

that has to be processed, another variable attr is maintained. This variable holds one of the attribute Ids as

given in Table 1. As it is obvious that the traversal has to start from the root node, attr is initialized with the

root node attribute’s Id. Hence, for the DT in Fig. 1, attr = 1 which is the attribute Id of Age (Table 1). At the

same time, row = 1. This implies that the node/attribute to be processed in the DT is Age, and the

corresponding row for Age (at root node) in LT[][] is row-1. Each entry of the LT[][] is either an

attribute’s Id or a leaf node’s Id. If a row-r of LT[][] corresponds to an attribute attr whose fan-out is o

then, the number of non-null elements in the row-r of LT[][] is o. Thus, the number of outcomes of attribute

attr, and the entries in the corresponding row of LT[][] are related. The ith outcome of attr, where i = 1, 2,

..., o, corresponds to LT[row][i].

For the test record X[], to find the next node/attribute along the appropriate path of DT, a bitwise AND

operation is performed in between X[attr]’s bit-pattern and the bit-patterns of attribute attr maintained in the

row-attr of AB[][]. Whenever, one of the bit-patterns in the row-attr of AB[][] match to the value of the

test instance X[attr], the corresponding bitwise ANDing results in True. Thus, the value of the attribute attr

in X[] is found. If X[attr] value is matched with AB[attr][i] then the Id of the next node/attribute along the

path to be visited in the DT is found at LT[row][i]. For the next attribute along the path of the DT, the

corresponding row number within LT[][] is accessed from the auxiliary array AX[][] at AX[row][i] to

continue the process. This procedure is repeated until a leaf node is reached. For the DT in Fig. 1, LT[][]

and AX[][] are formed and given in Table 3 and Table 4 respectively.

If the value of Age of an input instance X is youth, then the non-terminal node represented by the attribute

Student, whose attribute Id is 2, has to be visited. Hence, entry at LT[1][1] is filled with 2. If the Age

attribute’s value of X is middle_aged, then leaf node L3 has to be reached. Consequently, LT[1][2] = L3. If

fan_out [] fan_out [1] fan_out [2] fan_out [3]

Attribute Name Age Student Credit_rating

Attribute Id 1 2 3

Attribute’s fan-out 3 2 2

Attribute Row# Column#

1 2 3

Age 1 AB[1][1]

100 Youth

 Youth

AB[1][2]

010 Middle_aged

Middle_aged

AB[1][3]

001 Senior

Senior Student 2 AB[2][1]

10 Yes

 Yes

AB[2][2]

01 No

No

-

Credit_rating 3 AB[3][1]

10 Fair

 Fair

AB[3][2]

01 Excellent

Excellent

-

Janapati et al. / Electronic Letters on Computer Vision and Image Analysis 19(3):38-54; 2020 43

the Age value is senior, the non-terminal node represented by Credit_rating, whose attribute Id is 3. Thus,

LT[1][3] = 3 has to be reached. For example, when the Age = youth, the non-terminal node represented by

Student has to be visited. During the time of processing of this node, the required row (number) in LT[][]

for Student, which is the leftmost child of Age, is 2. Hence, AX[1][1] is filled with 2. When a leaf node is

reached, no further processing is required. Hence, AX[1][2] is filled with 0. The rows of LT[][] and

AX[][] are formed by following the depth-first search order. According to the procedure discussed,

the E_Classify algorithm has been designed and the pseudocode is presented in Algorithm 2.

Consider a customer’s record X = (Age = senior, Student = no, Credit_rating = fair) whose class label has

to be predicted using the DT in Fig. 1. Bit-patterns of the attributes of record-X are given in Table 5. The

process begins with attr = 1, and row = 1. Then, initially, the bitwise ANDings are performed in between the

elements of AB[1][] since the root node represents Age and X[1] as shown in Table 6.

Table 5: Bit-patterns of the test record X[].

Table 3: Lookup table, LT[][], with

 Attribute/Leaf Ids.

Row

Column#

1 2 3

1
LT[1][1]

2

LT[1][2]

L3

LT[1][3]

3

2
LT[2][1]

L1

LT[2][2]

L2

LT[2][3]

-

3
LT[3][1]

L5

LT[3][2]

L4

LT[3][3]

-

 Table 4: Auxiliary array AX[][] for

 identifying corresponding row in LT[][].

Row

Column#

1 2 3

1
AX[1][1]

2

AX[1][2]

0

AX[1][3]

3

2
AX[2][1]

0

AX[2][2]

0

AX[2][3]

-

3
AX[3][1]

0

AX[3][2]

0

AX[3][3]

-

Attribute Name Age Student Credit_ rating

Attribute Id 1 2 3

Bit-pattern
X[1]

001

X[2]

01

X[3]

10

Algorithm 2: Pseudocode for predicting class label of an instance using E_Classify

Inputs : - X[] i.e. Test instance

 - Root_ Id

 - AB[][], LT[][], AX[][], fan_out[]

Output : Class label for the test instance

Step 1 : attr ← Root_ Id;

Step 2 : row ← 1;

Step 3 : while attr is not Leaf do

Step 4 : for each i ∈ fan_out[attr] do

Step 5 : if AB[attr][i] & X[attr] then

Step 6 : attr ← LT[row][i] ;

Step 7 : row ← AX[row][i] ;

Step 8 : Jump to Step 10;

Step 9 : end if

Step 10 : end for

Step 11 : end while

Step 12 : return Class Label represented by Leaf;

44 Janapati et al. / Electronic Letters on Computer Vision and Image Analysis 19(3):38-54; 2020

 Table 6: Bitwise operations between X[Age] and outcomes of attribute Age.

When i = 3, the ANDing resulted in True. Consequently, Age value of X[] has been identified as senior.

After finding the Age value in X, the attribute Id of the next attribute to be visited in DT is, attr = LT[row][i]

= LT[1][3] = 3 i.e. Credit_rating (from Table 1), and the corresponding row number in LT[][] for

Credit_rating is, row = AX[row][i] = AX[1][3] = 3. Then, bitwise ANDings are performed between

X[Credit_rating] and AB[3][] as shown in Table 7 to find the next node in the DT. From the results in

Table 7 it can be observed that when i = 1 the ANDing resulted in True and the entry at LT[3][1] is accessed

and the class label yes, which is represented by L5, is returned.

Table 7: Bitwise AND operations between X[Credit_rating] and outcomes of attribute Credit_rating.

4 Results and Discussion

The proposed method for predicting the class label of an instance purely depends on arrays and bitwise

operations. Arrays are faster for random accessing of the required element with a constant time complexity

O(1). Bitwise operations are also quicker when compared to equality conditional operations since they take

only one clock cycle [19, 20, 21]. In the conventional tree traversal method, at each node, it is required to

find the attribute and then the test instance’s value of that attribute. For achieving both tasks, the traditional

method performs comparison operations. Moreover, in the regular method, the tree is represented in the form

of linked lists. For determining the attribute’s value of the test instance, the proposed method employs

bitwise AND operations. Subsequently, to determine the next attribute to be visited along the path, it

employs the arrays. Comparison operations and linked lists are computationally costlier than the bitwise

operations and arrays. It can be observed from the pseudocodes of the two methods (Algorithm 1 and

Algorithm 2), that the proposed method is more efficient than the regular method in terms of step count. In

the proposed method, instead of two for-loops, one for-loop is able to achieve the objective. The overhead of

finding the attribute by applying comparison operations at a node is avoided in the proposed method.

For complexity analysis, we consider that the average length of the paths from the root to leaves of the

DT is h and the average fan-out of each of the attributes of DT is o. Then, E_Classify requires (h * o) bitwise

AND operations to predict the class label of a record. As a result, the time complexity of E_Classify is

O(h * o). On the other hand, the runtime of the regular method is O(h * (atr + o)) where it has to perform

(h * (atr + o)) number of comparison operations.

i i = 1 i = 2 i = 3

X[attr] = X[1]
X[1]

001

X[1]

001

X[1]

001

AB[1][i]
AB[1][1]

100

AB[1][2]

010

AB[1][3]

001

X[1] & AB[1][i] False False True

i i = 1 i = 2

X[attr] = X[3]
 X[3]

 10

 X[3]

 10

AB[3][i]
AB[3][1]

 10

AB[3][2]

 01

X[3] & AB[3][i] True

https://ieeexplore.ieee.org/document/7109838
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developers-manual.pdf
https://nostarch.com/writegreatcode1_2e

Janapati et al. / Electronic Letters on Computer Vision and Image Analysis 19(3):38-54; 2020 45

4.1 Experimental set up

To verify the computational performance, the proposed method and the comparing methods are implemented

in Java programming language and the experiments are conducted on a dual core Intel i3, 3.80 GHz

processor with 8GB RAM running on Windows7 Operating System. All the numeric attributes are

discretized during the preprocessing stage. C4.5 algorithm [22] has been used for decision tree construction

as it is a popular algorithm and also ranked as #1 algorithm in the field of data mining [23]. Experiments are

conducted on 10 UCI ML data sets [24]. The constructed models are validated using 10-fold cross-

validation.

4.2 Performance analysis with German data set

Initially, for the detailed analysis of the proposed method, German data set from the UCI repository has been

used. This data set contains 20 input attributes and a binary class label, i.e. good or bad. We renamed the

input attributes as A, B, ..., and, T, class labels as C1 and C2 and outcomes of the attributes as a, b, c, etc. for

simplicity. By using 666 randomly chosen records from the German data set, a decision tree as shown in

Fig. 2 has been constructed. Size of the tree is 40 with 29 leaf nodes and 11 non-terminal nodes. Each leaf is

also associated with a leaf Id from L1 through L29. A data set with a moderate size and dimensionality can

help for a detailed explanation of the methodology of our proposed approach. Hence, German data set has

been considered for detailed experimental analysis in this section.

Fig. 2 Decision tree constructed using German data set

The data structures required during the process of predicting the class label of a test instance are furnished

below. Table 8 contains the attributes’ Ids, fan-out values, and the outcomes of the 7 distinct attributes

present in the decision tree in Fig. 2.

https://link.springer.com/article/10.1007/BF00993309
https://link.springer.com/article/10.1007/s10115-007-0114-2
https://archive.ics.uci.edu/ml/index.php

46 Janapati et al. / Electronic Letters on Computer Vision and Image Analysis 19(3):38-54; 2020

Table 8: Fan-out and Id’s of each attribute in the decision tree in Fig. 2.

The 2-D array AB[][] containing the bit-patterns of outcomes of all the 7 attributes in the decision tree is

given below.

AB[7][5] = {{1000, 0100, 0010, 0001, -}, {10000, 01000, 00100, 00010, 00001}, {10000, 01000, 00100,

 00010, 00001}, {100, 010, 001, -,-}, {100, 010, 001,-,-}, {1000, 0100, 0010, 0001, -},

 {10, 01, -, -, -}}.

The elements of the lookup table LT[][] which are used to follow the outcomes of a node/attribute in the

tree are furnished below. As the tree contains 11 non-terminal nodes, LT[][] also contains 11 corresponding

rows.

LT[11][5] = {{7, 7, 4, L29, -}, {4, L17, -, -, -}, {2, L15, L16, -, -}, {L1, L2, 3, L13, L14}, {5, L9, L10, L11, L12},

 {L3, L4, 6, -, -}, {L5, L6, L7, L8, -}, {4, L25, -, -, -}, {2, L23, L24, -, -}, {L18, L19, L20, L21, L22},

 {L26, L27, L28, -, -}}.

The elements of the auxiliary array, AX[][], to find the corresponding row in the LT[][] are as shown

below.

AX[11][5] = {{1, 7, 10, 0, -}, {2, 0, -, -, -}, {3, 0, 0, -, -}, {0, 0, 4, 0, 0}, {5, 0, 0, 0, 0}, {0, 0, 6, -, -}, {0, 0, 0, 0, -},

 {8, 0, -, -, -}, {9, 0, 0, -, -}, {0, 0, 0, 0, 0}, {0, 0, 0, -, -}}.

At one time one record has been given as input to the two approaches and the classification times are

noted. To obtain notable runtimes, the process of predicting class label for one sample has been repeated for

10000 times. For each test instance, while recording the runtime with R_Classify method (T1), the total

number of attribute name comparisons (O1), test instance attributes’ values comparisons (O2), assignment

operations (O3), and the total step count (O4 = O1 + O2 + O3) required for predicting class label are also

recorded. For the same instance when E_Classify method is used for predicting the class label, the total

number of bitwise AND operations (O5), assignment operations (O6), and the total step count (O7 = O5 +

O6) have been noted along with the execution time (T2). P1, P2, and P3 values represent the percentage of

bitwise operations among all the operations done by E_Classify, percentage of step count of E_Classify in

comparison to R_Classify, and the percentage of runtime of E_Classify in comparison to R_Classify

respectively. The results on 10 test instances are furnished in Table 9. For each test record in Table 9, the

values of the input attributes A, B, ..., and T are given without separating them by a comma. The runtimes

and the total step counts of the two methods on each record are plotted as bar charts and given in Fig. 3 and

Fig. 4 respectively.

fan_out [] fan_out

[1]

fan_out

 [2]

fan_out

 [3]

fan_out

[4]

fan_out

[5]

fan_out

[6]

fan_out

[7]

Attribute

Name D E G K N Q T

Attribute Id 1 2 3 4 5 6 7

Attribute’s

fan-out

4 5 5 3 3 4 2

Outcomes

of attribute

a, b, c, d a, b, c,

d, e

a, b, c,

d, e

a, b, c a, b, c a, b, c,

 d

a, b

Janapati et al. / Electronic Letters on Computer Vision and Image Analysis 19(3):38-54; 2020 47

Table 9: Classification times comparison of R_Classify and E_Classify on German data set.

 Fig. 3 Runtime comparison of R_Classify and E_Classify on German data set.

 Fig. 4 Step count comparison of R_Classify and E_Classify on German data set.

T_
Id

Test Record R_Classify E_Classify (O7/

O4)

%

(P2)

(T2/

T1)

%

(P3)

(Input attributes order)
ABCDEFGHIJKLMNOPQR

ST

Step count Runtime
(ms)

(T1)

Step count (O5/

O7)

%

(P1)

Runtime
(ms)

(T2) O1 O2 O3 O4 O5 O6 O7

1 abaacbabbbabbcbbdbba 78 14 7 99 12.76 14 14 28 50.0 2.53 28.3 19.8

2 bbabbaaaaaaaaaaaaaaa 40 6 4 50 5.96 6 8 14 42.8 1.23 28.0 20.6

3 babcaaaaaabaaaaaaaaa 15 5 2 22 2.98 5 4 9 55.5 1.08 40.9 36.2

4 abbacabaaaaaaaaaaaaa 47 8 5 60 7.67 8 10 18 44.4 2.17 30.0 28.3

5 bbbaaaaaaaaaaaaaaaaa 40 4 4 48 5.62 4 8 12 33.3 1.08 25.0 19.2

6 aaabaaaaaacaaaaaaaaa 35 6 3 44 4.99 6 6 12 50.0 1.14 27.3 22.8

7 babaaaaaaaaaaaaaaaab 24 3 2 29 3.71 3 4 7 42.8 0.66 24.1 17.8

8 abaacaaaaaaaaaaaaaaa 61 8 6 75 9.21 8 12 20 40.0 2.32 26.7 25.2

9 abbaeaaaaaaaaaaaaaaa 40 8 4 52 6.86 8 8 16 50.0 1.77 30.8 25.8

10 bbadaaaaaaaaaaaaaaaa 4 4 1 9 1.04 4 2 6 66.7 0.55 66.7

52.8

48 Janapati et al. / Electronic Letters on Computer Vision and Image Analysis 19(3):38-54; 2020

The total runtimes of R_Classify and E_Classify are 60.8 ms and 14.52 ms respectively where the latter

method is four times faster than the former one. On the other hand, the average runtime of E_Classify is

nearly one-fourth of the former method. From the results shown in Table 9, it can be observed that the

runtimes are directly proportionate to the step count. The step count of E_Classify is less than that of the

R_Classify method for all instances and its total step count is 29.64% of the regular method. The results

depict that the step count and runtimes of E_Classify are relatively less than that of the R_Classify for all

cases. The bitwise AND operations of E_Classify (O5) and the comparison operations for finding the

attribute’s value at a node using R_Classify are equal since the bitwise AND operations are used for finding

the test instance attributes’ values.

The best performance of the proposed method has been observed on the 7th test record. For this record,

the classification times of R_Classify and E_Classify are 3.71 ms and 0.66 ms respectively, where the latter

method’s runtime is only 17.8% of the former one. The reason for this significant difference is, to find the

class label for this instance, the step count required by E_Classify is 24.1% of R_Classify which is minimum

among all the cases shown in Table 9.

The 10th record takes the rightmost path from the root and reaches the leaf node L29. For this record,

E_Classify performs 4 bitwise AND’s since the attribute D’s value for this instance is its fourth outcome i.e.

d. The difference in the runtimes for the 10th test sample is least since the step count of E_Classify is 66.67%

of R_Classify which is highest among all the 10 cases. In proportion to the step count, the increase in the

runtime of E_Classify is not too high since the contribution of bitwise operations of E_Classify is high i.e.

66.7%. Thus, in some of the cases, though there is no much difference in the step count of two methods

(since that path contains very less number of non-terminal attributes), the E_Classify still exhibits better

performance than the R_Classify as it employs the bitwise operations and accesses the elements from the

arrays. E_Classify is not explicitly performing any operations to identify the attribute representing a non-

terminal node.

4.3 Experiments on UCI data

For experimental analysis, we have chosen 10 data sets from UCI ML repository [24], the most extensively

used database in the classification literature and the classification times of R_Classify and E_Classify

methods are compared. Reasons for choosing these data sets are: Classifier behaviour also depends on the

data set properties like dimensionality, size, and the number of classes. Each of these data sets has a

sufficient number of records and is composed of different dimensionalities and sizes that help better

observation and differentiation of the performances of the comparing methods. If the decision tree is

constructed using the data sets with different dimensionalities and size, then the trees with different sizes are

obtained. The proposed method’s runtimes are influenced by the tree size and dimensionality. These datasets

are also the mix of binary class and multi-class and they cover various application domains. Hence, for better

observation of runtimes in different scenarios, these datasets are chosen.

Each data set is given as input to the C4.5 decision tree construction algorithm. 10-fold cross-validation is

applied for validation of the model and the technical evaluation measures [25] are also recorded as shown in

Table 10.

From a data set, each time, one instance is input to two methods i.e. R_Classify and E_Classify to predict

the class label and the classification times are noted. Thusly, the total time taken for finding class labels for

all the instances in a data set w.r.t. each of the methods has been recorded and shown in Table 10.

The classification times presented in Table 10 depicts that the E_Classify outperforms the R_Classify. The

total classification times of R_Classify and E_Classify on 10 data sets are 596.65 ms and 101.9 ms

respectively. On the other hand, the average runtimes of R_Classify and E_Classify are 59.67 ms and 10.19

ms respectively. In Table 10, P values denote the percentage of runtime of E_Classify over R_Classify. The

P values also describe that the runtimes of E_Classify are around 25% of R_Classify.

If the data set is large, composed of more attributes and the average fan-out of the attributes is high then,

both the methods exhibit higher computational times. However, in all cases, the computational times of

E_Classify are relatively less than those of R_Classify. If the dimensionality is high, then the proposed

method exhibits better performance than the traditional method since attribute finding is done straight away

https://archive.ics.uci.edu/ml/index.php
https://ieeexplore.ieee.org/document/1388242

Janapati et al. / Electronic Letters on Computer Vision and Image Analysis 19(3):38-54; 2020 49

using arrays without performing any comparisons. This fact has been observed on the data sets Anneal,

Autos, Connect-4, and Hypothyroid where the runtimes of E_Classify are 19.6%, 20.32%, 16.36%, and

19.55% of R_Classify respectively. In such a way, the experimental results demonstrate that on average,

E_Classify is at least four times faster than R_Classify.

 Due to low complexity than the regular method, and usage of efficient data structures, the proposed

method is more efficient than the standard decision tree based method. Step count of the proposed method is

indeed less than the standard method. The detailed performance analysis using the German data set has also

proved this fact (Table 9). Employment of arrays in the process and performing bit-level operations on the

elements of arrays also helped improve the efficiency. For E_Classify, it is not necessary to perform the

attribute name identifying task at a node of the tree. These all helped the reduction in the runtime of the

proposed method. If the dimensionality of a data set is high, then the standard method has to spend more

time on attribute name identifying task at each node of a specific path. In such scenarios, the performance of

the proposed method is more significant than the standard method. Due to these reasons, the proposed

method outperformed the standard method. For the conventional method if the attribute compared is the first

one in the list and the outcome is the first value among its outcomes then, low runtimes take place.

Table 10: Classification time comparisons of R_Classify and E_Classify on UCI data sets
(Tr. Inst - No. of Training Instances, No. Atr - No. of Attributes, No. Cls - No. of Classes,

 Prec. - Precision, Acc- Accuracy, T1 - Runtime of R_Classify, T2 - Runtime of E_ Classify).

4.4 Performance comparison with other classifiers

For performance comparison, five standard classifiers namely Naive Bayes (NB) [26], k-Nearest Neighbor

(k-NN) [27], Random Forest (RF) [28], Support Vector Machines (SVM) [29], and AdaBoost (AB) [30] are

considered. Reasons for considering these classifiers for comparison are: Accuracy is the key predictive

performance evaluation metric of a classifier and in general, RF and SVM are the benchmark algorithms and

occupy the top positions with respect to accuracy [6]. However, no classifier can be always the best. SVM

and RF are also identified as popular, reliable, most robust, and benchmark classifiers thus normally used as

the default classifiers in various Machine Learning applications. Boosting is treated to be the significant

family of ensemble methods and also become a buzzword in computer vision and many other domains. AB

is relied to be robust and successfully works for wide applications like text classification and spam filtering

[23]. NB is an eager learner, a highly scalable probabilistic classifier and works well for large and high

dimensional data [23]. k-NN is the simplest and lazy learner whose training time is zero and it has to spend

all its time on classification. k-NN fits well for multi-modal classes for the domains in which the objects can

have many class labels. Moreover, to compare with standard and versatile algorithms from different families,

we have chosen these classifiers. RF is an ensemble tree based classifier, SVM is of support vector

Data set
Tr.

Inst

No.

Atr

No.

Cls
Prec. Recall F-score

Acc

(%)
AUC

Tree

Size

No. of

Leaves

No.
Test

Inst

Classification

Time (ms)

(T2/

T1)

%
(P)

(T1) (T2)

Anneal 898 39 6 0.941 0.942 0.941 94.20 0.965 346 306 898 0.877 0.172 19.6

Autos 205 26 7 0.854 0.854 0.853 85.37 0.913 215 194 205 0.122 0.024 20.3

Balance

Scale 625 4 3 0.642 0.693 0.666 69.28 0.755 221 199 625 0.126 0.039 31.4

Connect-4 67557 42 3 0.795 0.795 0.795 79.45 0.907 15952 10635 67557 551.19 90.19 16.4

German 666 20 2 0.706 0.721 0.710 72.10 0.697 40 29 1000 0.591 0.143 24.2

Glass 214 10 7 0.556 0.579 0.562 57.94 0.775 221 199 214 0.044 0.011 26.6

Heart-c 303 14 5 0.770 0.769 0.767 76.89 0.835 200 171 303 0.084 0.026 31.7

Hypo
thyroid

3772 30 4 0.891 0.923 0.906 92.33 0.818 570 467 3772 7.513 1.469 19.5

Nursery 12960 8 5 0.988 0.988 0.988 98.78 0.999 944 680 12960 35.562 9.673 27.2

Solar 1066 12 6 0.727 0.738 0.729 73.82 0.924 192 145 1066 0.542 0.155 28.6

https://scholar.google.com/scholar_lookup?title=Pattern%20classification&author=R.O.%20Duda&publication_year=2000
https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
https://link.springer.com/article/10.1023/A:1010933404324
https://link.springer.com/article/10.1007/BF00994018
https://cseweb.ucsd.edu/~yfreund/papers/boostingexperiments.pdf
https://jmlr.org/papers/volume15/delgado14a/delgado14a.pdf
https://link.springer.com/article/10.1007/s10115-007-0114-2
https://link.springer.com/article/10.1007/s10115-007-0114-2

50 Janapati et al. / Electronic Letters on Computer Vision and Image Analysis 19(3):38-54; 2020

machines, AB belongs to the boosting category. However, NB and k-NN belong to Bayes (probabilistic) and

nearest neighbours respectively [6, 7]. The study by Xindong et al. also reported that SVM, C4.5, k-NN,

AdaBoost, and Naïve Bayes are the most influential classifiers [31, 32, 33, 34] of data mining placed in the

top 10 positions [23].

Before using them for classification, the classifiers are validated using 10-fold cross validation. Training

and validation sets are generated randomly. 10% of the instances are used as validation data set required to

tune the parameters of the classifier. If parameter tuning is not required for a classification model, then the

validation data is combined with training data. Thereafter, by using the selected values for the tunable

parameters, the classification accuracy, and AUC [25] of each classifier is obtained by the average of 10 runs

of 10-fold cross-validation. This methodology has been used because it helps to reduce the computational

cost of the experimental work. Moreover, every instance is used in testing exactly once and is used in the

training phase for k-1 times, and reduces the bias.

In our experiments, for RF the number of trees is set to 100. For k-NN, k value is considered as 5 to avoid

expensive classification times and the Euclidean metric is used for finding distance matrix. The whole time

taken by k-NN to predict the class label of an input instance is considered as the classification time. While

testing the SVM, precomputed kernel is used in the experiments. Precomputed kernel achieves better

accuracy and does not need parameter tuning which helps to save the computational time. AdaBoost and

Naïve Bayesian are run using the standard parameters. Accuracy and AUC of various classifiers on the 10

UCI data sets are shown in Table 11 and Table 12 respectively.

Table 11: Accuracy results for different classifiers on 10 UCI data sets

Table 12: AUC results for different classifiers on 10 UCI data sets

Data set Accuracy

k-NN NB RF SVM AB E_Classify

Anneal 75.00 72.00 96.00 95.50 86.40 94.20

Autos 31.25 37.50 81.25 62.50 31.25 85.37

Balance

Scale

95.24 96.83 95.24 92.06 80.95 69.28

Connect-4 75.20 76.46 81.60 82.20 80.50 79.45

German 72.00 76.00 74.00 72.00 71.00 72.10

Glass 76.19 38.10 80.95 80.95 42.86 57.94

Heart-c 75.56 80.80 84.60 83.76 76.30 76.89

Hypo

thyroid

90.28 90.28 100.00 90.28 93.06 92.33

Nursery 82.30 82.88 96.42 95.78 92.42 98.78

Solar 76.36 74.00 80.66 81.26 76.58 73.82

Data set
AUC

k-NN NB RF SVM AB E_Classify

Anneal 0.746 0.718 0.962 0.952 0.843 0.965

Autos 0.745 0.799 0.847 0.844 0.800 0.913

Balance

Scale
0.984 0.833 0.833 0.867 0.806 0.755

Connect-4 0.758 0.783 0.904 0.868 0.814 0.907

German 0.694 0.741 0.939 0.645 0.613 0.697

Glass 0.963 0.815 0.748 0.790 0.806 0.775

Heart-c 0.792 0.827 0.866 0.821 0.784 0.835

Hypo

thyroid
0.500 0.667 1.000 0.500 0.833 0.818

Nursery 0.848 0.803 0.966 0.968 0.944 0.999

Solar 0.801 0.887 0.849 0.804 0.782 0.924

https://jmlr.org/papers/volume15/delgado14a/delgado14a.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0377221715004208?via%3Dihub
https://link.springer.com/article/10.1007/s10115-007-0114-2
https://ieeexplore.ieee.org/document/1388242

Janapati et al. / Electronic Letters on Computer Vision and Image Analysis 19(3):38-54; 2020 51

The technical performance evaluation measures furnished in Table 11 and Table 12 describe that in most

of the cases, RF and SVM exhibit relatively higher accuracy and AUC. At least for 5 data sets, either the RF

or the SVM are showing maximum accuracy and AUC values. The accuracy measures of E_Classify are also

fair enough and its average AUC (0.859) is higher than the SVM (0.806) and slightly lesser than that of the

RF (0.891).

For performance comparison, experiments are conducted on UCI data sets and the results are furnished in

Table 13. The runtimes are also plotted using the bar chart as shown in Fig. 5. The experimental results

depict that the proposed method outperforms the other classifiers. After E_Classify, SVM is the fastest in

classifying a test record. However, k-NN is the slowest among all. Random Forest is the next slowest one but

it is the best performer with respect to accuracy. The classification times of Random Forest also depend on

the number of trees generated. Among all the 10 UCI datasets, on Connect-4, the proposed method exhibited

the best performance. Classification time of E_Classify on Connect-4 is 90.19 ms. Connect-4 is relatively a

large data set (67557 records) and its dimensionality, i.e. 42, is also the maximum among all the data sets.

More the dimensionality of a data set then higher the performance of the proposed method. This is because

other classifiers have to identify the attribute in the process of predicting the class label. On the other hand,

explicit identification of an attribute is not performed by the proposed method that helps save its processing

time. In the case of Connect-4, at each node, the proposed method avoids 42 attribute name comparisons.

Table 13: Classification time results for six classifiers on 10 UCI data sets

For each data sample, k-NN needs to compute the distance between the test sample and the other

instances in the training data, and then it has to determine k nearest neighbours using a metric like Euclidean

distance. This process increases the processing time of k-NN. Consequently, when the data set size is large,

k-NN exhibits even worse results. The results on Connect-4 depict this case. On the other hand, to compute

the posterior probability w.r.t each class, the computations to be performed by Naive Bayes is more in

number and those operations are costlier than the operations adopted by E_Classify. Hence, the computation

times of Naive Bayes are also higher than the E_Classify. Classification times of Random Forest depend on

the number of trees generated. In our experiments, we have considered the number of trees to be 100. Hence,

to determine the prediction result for an instance, it is required to predict class labels using 100 trees, and the

class label that obtains the maximum votes stands as the prediction result. This process requires more time

than the methods that use a single tree. However, there is no substantial difference in the classification times

of SVM and the proposed method. SVM uses the maximum margin hyperplane to predict the class label of a

Data set Classification time (ms)

k-NN NB RF SVM AB E_Classify

Anneal 349.03 237.91 56.20 0.284 21.351 0.172

Autos 3.422 0.339 2.554 0.067 0.373 0.024

Balance

Scale

5.601 0.460 4.342 0.092 0.396 0.039

Connect-4 95773.95 8911.21 47172.83 303.91 7417.11 90.19

German 31.99 2.590 23.60 0.205 2.031 0.143

Glass 3.205 0.210 2.503 0.028 0.206 0.011

Heart-c 3.781 0.290 2.816 0.066 0.239 0.026

Hypo

thyroid

281.07 18.440 455.20 2.930 15.97 1.469

Nursery 2199.52 125.04 1690.46 17.93 96.08 9.673

Solar 31.005 2.063 25.281 0.211 1.681 0.155

52 Janapati et al. / Electronic Letters on Computer Vision and Image Analysis 19(3):38-54; 2020

test sample where the computations are not much expensive. AdaBoost is an ensemble based classifier and it

is also slower than the proposed method. It predicts the class label by calculating the weighted average of the

weak classifiers which is computationally costlier than the E_Classify.

From the experimental results, it can be concluded that the proposed method’s classification times are

better than those of various other standard classifiers belonging to different families and also the regular tree

based method.

Fig. 5 Classification times comparison of various classifiers on 10 UCI data sets.

5 Conclusions

Classification is a vital concept of data mining and machine learning which is predominantly used in various

sectors for the prediction of the class label of an unseen instance. Among various classification models,

decision trees have got high significance due to their merits. In the research area of classification through

decision trees, improving the computational performance of the classification phase has not been given much

attention.

In this paper, an efficient method that is applicable to decision trees has been introduced to predict the

class label of the test instance quicker than the regular tree traversal method. The experiments conducted on

UCI data sets proved that the proposed method is at least four times faster than the regular method. The

experimental results also verified that in comparison to other standard classifiers k-NN, Naive Bayes,

Random Forest, SVM, and AdaBoost which belong to different families, the proposed method’s performance

is significant. The proposed method’s step count is low and also due to the employment of various efficient

data structures like arrays and bit-level operations, it achieved significant computational efficiency.

The work described in this paper can be considered as the first step in the development of fast classifying

algorithms and it can serve as a basic stone that can be further improved. The proposed method is designed

to work on a single decision tree and fits well for the data sets with discrete attributes. Extending the research

for more optimization for an ensemble of trees and other classifiers can be taken up as the future work.

349.03

237.91

56.2

0.284
21.35

0.17
0

50

100

150

200

250

300

350

400

C
la

s
s
if

ic
a

ti
o
n

 t
im

e
 (

m
s)

Classifier

A n n e a l

3.422

0.339

2.554

0.067
0.373

0.024

0

0.5

1

1.5

2

2.5

3

3.5

4

C
la

ss
if

ic
a

ti
o

n
 t

im
e
 (

m
s)

Classifier

A u t o s

5.601

0.46

4.342

0.092
0.396

0.039

0

1

2

3

4

5

6

C
la

ss
if

ic
a

ti
o

n
 t

im
e
 (

m
s)

Classifier

B a l a n c e S c a l e

95774

8911
0 304

7417
90.19

0

20000

40000

60000

80000

100000

120000

C
la

ss
if

ic
a

ti
o

n
 t

im
e
 (

m
s)

Classifier

C o n n e c t - 4

31.99

2.59

23.6

0.205
2.03

0.143

0

5

10

15

20

25

30

35

C
la

ss
if

ic
a

ti
o

n
 t

im
e
 (

m
s)

Classifier

G e r m a n

3.205

0.21

2.503

0.028
0.206

0.011
0

0.5

1

1.5

2

2.5

3

3.5

C
la

ss
if

ic
a

ti
o

n
 t

im
e
 (

m
s)

Classifier

G l a s s

3.781

0.29

2.816

0.0660.239
0.026

0

0.5

1

1.5

2

2.5

3

3.5

4

C
la

ss
if

ic
a

ti
o

n
 t

im
e
 (

m
s)

Classifier

H e a r t - c

281.07

18.44

455.2

2.9315.971.47
0

50
100
150
200
250
300
350
400
450
500

C
la

ss
if

ic
a

ti
o

n
 t

im
e
 (

m
s)

Classifier

H y p o t h y ro i d

2199.52

125.04

1690.5

17.9 96.1 9.67
0

500

1000

1500

2000

2500

C
la

ss
if

ic
a

ti
o

n
 t

im
e
 (

m
s)

Classifier

N u r s e r y

31.005

2.063

25.281

0.2111.6810.155

0

5

10

15

20

25

30

35

C
la

ss
if

ic
a

ti
o

n
 t

im
e
 (

m
s)

Classifier

S o l a r

Janapati et al. / Electronic Letters on Computer Vision and Image Analysis 19(3):38-54; 2020 53

References

[1] A.T. Azar and S.M. El-Metwally, “Decision tree classifiers for automated medical diagnosis”, Neural Comput &

Applic, 23(7), pp. 2387-2403, 2013. https://doi.org/10.1007/s00521-012-1196-7

[2] G. Nie, W.L. Rowe, Y. Zhang, Tian, Y. Shi, “Credit card churn forecasting by logistic regression and decision

tree”, Expert Syst Appl., 38(12), pp. 15273–15285, 2011. doi: 10.1016/j.eswa.2011.06.028

[3] J. Naga Muneiah and C. Subba Rao, “An Efficient Probability Estimation Decision Tree Postprocessing Method

for Mining Optimal Profitable Knowledge for Enterprises with Multi-Class Customers”, Inteligencia Artificial,

22(64), pp. 63-84, 2019. https://doi.org/10.4114/intartif.vol22iss64pp63-84

[4] Naga Muneiah Janapati and Ch. D. V. Subba Rao, “Customer’s class transformation for profit maximization in

multi-class setting of Telecom industry using probability estimation decision trees”, Journal of Intelligent & Fuzzy

Systems, 37(6), pp. 8167-8197, 2019. DOI: 10.3233/JIFS-190628

[5] Quiang Yang, Jie Yin, Charles Ling, and Rong Pan, “Extracting Actionable knowledge using decision Trees”,

IEEE Transactions on Knowledge and Data Engineering, 17(1), pp. 43-56, 2007. doi: 10.1109/TKDE.2007.9

[6] Manuel Fern´andez-Delgado, Eva Cernadas, Sen´en Barro, and Dinani Amorim, “Do we Need Hundreds of

Classifiers to Solve Real World Classification Problems?”, Journal of Machine Learning Research, vol. 15, pp.

3133-3181, 2014.

[7] Stefan Lessmann, Bart Baesens, Hsin-Vonn Seow, and L. C. Thomas, “Benchmarking state-of-the-art classification

algorithms for credit scoring: An update of research”, European Journal of Operational Research, 247(1), pp. 124-

136, 2015. DOI: 10.1016/j.ejor.2015.05.030

[8] Marina Sokolova and Guy Lapalme, “A systematic analysis of performance measures for classification tasks”,

Information Processing and Management, 45, pp. 427–437, 2009. DOI: 10.1016/j.ipm.2009.03.002
[9] Tjen-Sien Lim and Wei-Yin Loh, “A Comparison of Prediction Accuracy, Complexity, and Training Time of

Thirty-Three Old and New Classification Algorithms”, Machine Learning, 40, 203–228, 2000.
https://doi.org/10.1023/A:1007608224229

[10] M. Reif, F. Shafait, A. Dengel, “Prediction of Classifier Training Time Including Parameter Optimization”, In:

Bach J., Edelkamp S. (eds) KI 2011: Advances in Artificial Intelligence. KI 2011, Springer, Berlin, Heidelberg,

2011. https://doi.org/10.1007/978-3-642-24455-1_25

[11] T. Doan, J. Kalita, “Predicting run time of classification algorithms using meta-learning”, Int. J. Mach. Learn.

Cybern., 8, pp.1929–1943, 2017.

[12] Long Bing Cao, D. Luo, C. Zhang, “Knowledge actionability: Satisfying technical and business interestingness”,

International Journal of Business Intelligence and Data Mining, 2(4), pp. 496-514, 2007.

DOI: 10.1504/IJBIDM.2007.016385

[13] M. Panda and A. Abraham, “Hybrid evolutionary algorithms for classification data mining”, Neural Comput &

Applic, 26(3), pp. 507-523, 2015. https://doi.org/10.1007/s00521-014-1673-2

[14] L. E. Hamid and S.A.R. Al-Haddad, “Automated Leaf Alignment and Partial Shape Feature Extraction for Plant

Leaf Classification”, Electronic Letters on Computer Vision and Image Analysis, 18(1), pp.37-51, 2019.

DOI: https://doi.org/10.5565/rev/elcvia.1143

[15] V. Huddar, B. K. Desiraju, V. Rajan, S. Bhattacharya, S. Roy, and C. K. Reddy, “Predicting Complications in

Critical Care Using Heterogeneous Clinical Data”, IEEE Access, vol. 4, pp. 7988-8001, 2016. doi:

10.1109/ACCESS.2016.2618775

[16] A. I. Weinberg and M. Last, “Selecting a representative decision tree from an ensemble of decision-tree models

for fast big data classification”, J. Big Data, 6(23), 2019.

 https://doi.org/10.1186/s40537-019-0186-3

[17] A. Ashari, I. Paryudi, and A. Min, “Performance Comparison between Naïve Bayes, Decision Tree and k-Nearest

Neighbor in Searching Alternative Design in an Energy Simulation Tool”, Int. J. Adv. Comput. Sci. Appl., 49(11),

pp. 33–39, 2013. DOI: 10.14569/IJACSA.2013.041105

[18] P. Hurtik and I. Perfilieva, “Fast Training and Real-Time Classification Algorithm Based on Principal Component

Analysis and F-Transform”, Proc. of 2018 Joint 10th International Conference on Soft Computing and Intelligent

Systems (SCIS) and 19th International Symposium on Advanced Intelligent Systems (ISIS), IEEE, 275-280, 2018.

doi: 10.1109/SCIS-ISIS.2018.00056.

[19] Vivek Seshadri, Kevin Hsieh, Amirali Boroum, Donghyuk Lee, M. A. Kozuch, Onur Mutlu, P. B. Gibbons, T. C.

Mowry, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE Computer Architecture Letters, 14(2), 127-131,

2015. doi: 10.1109/LCA.2015.2434872

https://doi.org/10.1007/s00521-012-1196-7
https://doi.org/10.4114/intartif.vol22iss64pp63-84
https://content.iospress.com/search?q=author%3A%28%22Naga+Muneiah%2C+Janapati%22%29
https://content.iospress.com/search?q=author%3A%28%22Subba+Rao%2C+Ch+D.+V.%22%29
https://content.iospress.com/journals/journal-of-intelligent-and-fuzzy-systems
https://content.iospress.com/journals/journal-of-intelligent-and-fuzzy-systems
https://www.sciencedirect.com/science/journal/03772217/247/1
https://doi.org/10.1023/A:1007608224229
https://doi.org/10.1007/978-3-642-24455-1_25
https://www.researchgate.net/journal/1743-8187_International_Journal_of_Business_Intelligence_and_Data_Mining
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1504%2FIJBIDM.2007.016385
https://doi.org/10.1007/s00521-014-1673-2
https://doi.org/10.5565/rev/elcvia.1143
https://doi.org/10.1186/s40537-019-0186-3
https://ieeexplore.ieee.org/author/38267348700
https://ieeexplore.ieee.org/author/37085663982
https://ieeexplore.ieee.org/author/37085675955
https://ieeexplore.ieee.org/author/38263905800
https://ieeexplore.ieee.org/author/38185080900
https://ieeexplore.ieee.org/author/37085559110
https://ieeexplore.ieee.org/author/37282940400
https://ieeexplore.ieee.org/author/37282940800
https://ieeexplore.ieee.org/author/37282940800

54 Janapati et al. / Electronic Letters on Computer Vision and Image Analysis 19(3):38-54; 2020

[20] Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 2, September 2016.

[21] Randall Hyde, Understanding the Machine, vol. 1, 2nd Ed., No Starch Press, 2020.

[22] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, 1993.

[23] W. Xindong, J. Vipin Kumar, R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, N. Angus, Bing Liu,

S. Philip, Y.Z. Zhou, S. Michael, D.J. Hand, and D. Steinberg, “Top 10 algorithms in data mining. Knowledge and

Information Systems”, 14(1), pp. 1-37, 2008. DOI 10.1007/s10115-007-0114-2.

[24] D. Dua, C. Graff, UCI Machine Learning Repository, http://archive.ics.uci.edu/ml. 2019.

[25] Huang J. and Ling C. X., “Using AUC and Accuracy in Evaluating Learning Algorithms,” IEEE Trans. on

Knowledge and Data Engineering, 17(3): 299-310, 2005. DOI: 10.1109/TKDE.2005.50

[26] R.O. Duda, D.G. Starc & P.E. Hart, Pattern classification, Wiley, 2000.

[27] N. S. Altman, “An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression”, The American

Statistician, 46(3), pp.175-185, 1992.

[28] L. Breiman, Random Forests, Machine Learning, 45 (1), pp. 5-32, 2001.

https://doi.org/10.1023/A:1010933404324

[29] C. Cortes and V. Vapnik, “Support-vector networks”, Machine Learning, 20, pp. 273–297, 1995.

https://doi.org/10.1007/BF00994018

[30] Y. Freund and R. E. Schapire, “Experiments with a New Boosting Algorithm”, Machine Learning: Proceedings of

the Thirteenth International Conference, 1996.

[31] Duleep Rathgamage Don, I. E. Iacob, “DCSVM: fast multi-class classification using support vector machines”,

International Journal of Machine Learning and Cybernetics, 11, pp. (433–447), 2020.

https://doi.org/10.1007/s13042-019-00984-9

[32] R. R. Yager, “An extension of the naive Bayesian classifier”, Information Sciences, 176, pp. 577–588, 2006.

[33] Filip Kadlček and Otto Fučík, “Fast and Energy Efficient AdaBoost Classifier”, Proceedings of the 10th

FPGAworld Conference, 2, pp.1-5, 2013.

[34] S. Ruggieri, “Efficient C4.5”, IEEE Transactions on Knowledge and Data Engineering, 14(2), pp. 438-444, 2002.

doi: 10.1109/69.991727.

[35] J. Han, J. Pei, and M. Kamber, Data Mining: Concepts and Techniques. 3rd edition, Elsevier, 2011.

Appendix

Sample 2-class data set.

Age Income Student Credit_rating Class: Buys_computer

youth high no fair no

youth high no excellent no

middle_aged

high no fair yes

senior medium no excellent no

senior low yes excellent no

senior low yes fair yes

middle_aged low yes excellent yes

youth medium no fair no

youth low yes fair yes

senior medium yes excellent no

youth medium yes excellent yes

middle_aged medium no excellent yes

middle_aged high yes fair yes

senior medium no fair yes

http://archive.ics.uci.edu/ml.%202019
https://doi.org/10.1109/TKDE.2005.50
https://www.tandfonline.com/author/Altman%2C+N+S
https://www.tandfonline.com/toc/utas20/current
https://www.tandfonline.com/toc/utas20/current
https://doi.org/10.1023/A:1010933404324
javascript:;
javascript:;
https://link.springer.com/journal/10994
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/s13042-019-00984-9
https://dl.acm.org/doi/proceedings/10.1145/2513683
https://dl.acm.org/doi/proceedings/10.1145/2513683

