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Abstract 

The performance of the semantic concept detection method depends on, the selection of the low-level visual 

features used to represent key-frames of a shot and the selection of the feature-fusion method used. This paper 

proposes a set of low-level visual features of considerably smaller size and also proposes novel ‘hybrid-fusion’ 

and ‘mixed-hybrid-fusion’, approaches which are formulated by combining early and late-fusion strategies 

proposed in the literature. In the initially proposed hybrid-fusion approach, the features from the same feature 

group are combined using early-fusion before classifier training; and the concept probability scores from multiple 

classifiers are merged using late-fusion approach to get final detection scores. A feature group is defined as the 

features from the same feature family such as color moment. The hybrid-fusion approach is refined and the “mixed-

hybrid-fusion” approach is proposed to further improve detection rate. This paper presents a novel video concept 

detection system for multi-label data using a proposed mixed-hybrid-fusion approach. Support Vector Machine 

(SVM) is used to build classifiers that produce concept probabilities for a test frame. The proposed approaches are 

evaluated on multi-label TRECVID2007 development dataset. Experimental results show that, the proposed 

mixed-hybrid-fusion approach performs better than other proposed hybrid-fusion approach and outperforms all 

conventional early-fusion and late-fusion approaches by large margins with respect to feature set dimensionality 

and Mean Average Precision (MAP) values.  

 

Key Words: Semantic Video Concept Detection, High-Level Feature Extraction, Semantic Gap, Video 

Retrieval, Support Vector Machine, Hybrid-Fusion, Mixed-Hybrid-Fusion, Multi-Label Classification. 

 

1 Introduction 

Recent technological development in the field of multimedia and particularly video storage, compression 

techniques and networking are resulting into huge amounts of rich video archives. It has been a common 

strategy to develop automatic analysis techniques for deriving metadata from videos which describe the 

summarization that facilitates browsing, search, retrieval, delivery and manipulation of video data in an 

efficient manner.  

The content of a video segment is also called high-level features or semantic concept for describing, 

indexing and searching video information. The semantic concepts could be a car, bus, road, vehicle, tree, forest, 

mountains, person or an animal for a particular segment of a video. The objective of concept detection or high 
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level feature extraction is to build mapping functions from the low-level features to the high-level concepts 

with some machine learning techniques [1]. The state-of-the-art concept detection system consists of low-level 

feature extraction, feature fusion, and classifier training. Thus, the kind of low-level features and fusion 

methods chosen and classifier models adopted have critical impact on the performance of concept detection. 

1.1 Semantic Video Concept Detection 

The goal of semantic video concept detection is to detect semantic concepts of a video segment on its visual 

appearance. Human beings interpret the semantic meaning for a video segment based on visual appearance. 

But automatic semantic detection techniques express the semantics on the basis of low-level features extracted 

from the video segment. There is a difference in semantics of these two representations. This is called ‘semantic 

gap’. The main challenge is to understand the video content by bridging the semantic gap between the video 

signals and the visual content interpretation. And to minimize the semantic gap, early efforts focused on 

methods exploiting simple handcrafted decision rules which maps a set of low-level visual features to a single 

high-level concept. Vailaya et al. [2] worked on concepts detectors for cityscape, landscape, mountains and 

forests. However, such dedicated approach to concept detection becomes expensive when a large-scale 

concepts need to be detected. Therefore, bridging of semantic gap is not possible by designing dedicated 

detector for each concept. Some generic approaches for large-scale concept detection have come into existence 

as an alternative to dedicated methods. These approaches [3, 4] exploit the observation that, if the low-level 

features of a video segment are to be mapped to a large number of high-level semantic concepts, it requires 

too many decision rules. Therefore, these rules must be derived using some type of machine learning 

mechanism. Many efficient concept detection schemes exist today based on machine learning approach, which 

allow access to multimedia as well as video data at the semantic level.  

1.2 Typical Concept Detection System 

The pipeline of a typical semantic video concept detection system is shown in Fig. 1. The four important stages 

of state-of-the-art system are as follows-  

1. Stage-I: Video segmentation or Shot boundary detection. 

2. Stage-II: Key-frame/s extraction. 

3. Stage-III: Low-level feature extraction for key-frame/s and classifier training. 

4. Stage-IV: Score-fusion to compute final concept detection scores.  

1.2.1 Shot Boundary Detection (Video Segmentation) 

In order to detect the semantic concepts precisely from video, video shots need to be identified perfectly. The 

automatic shot boundary detection and video segmentation is a well understood problem and highly robust 

methods exist [5]. Shot exhibits strong content correlations between frames hence shots are considered to be  

 

Fig. 1: The pipeline of a typical semantic video concept detection system 
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the basic units in concept detection. Generally shot boundaries are of two types, a cut, where the transition 

between two consecutive shots is abrupt and gradual transitions where boundary is stretched over multiple 

frames. The examples are dissolve, fade-in and fade-out etc. The shot boundary detection methods usually 

extract visual features from each frame and the similarities are measured and detect shot boundaries between 

frames that are dissimilar. 

1.2.2 Key-Frame Extraction  

In video processing applications, many times, the shots are often represented by a frame, called a key-frame, 

which is supposed to be a representative frame for a shot. There are great similarities among the frames from 

the same shot; therefore certain frames that best reflect the shot contents are chosen as key-frames. Mostly, the 

middle frame of a shot is taken as a key-frame, assuming that middle segment contains key contents, but many 

more other techniques do exist to get a key-frame. It is not necessary that a shot is always represented by a 

single frame; in some cases; however, multiple key-frames are required to represent a shot. The approaches 

like unsupervised clustering can be used, where frames in a shot are clustered depending on the variation in 

shot content and then choose frame closest to the cluster centre as a key frame. Each cluster is represented by 

a unique key-frame. So a single shot can have multiple key-frames. The choice of a key-frame may also depend 

on the object or the event one is looking for. Whichever frame that best represents the object or the event can 

be chosen as a key-frame.  

1.2.3 Low-level Feature Extraction & Classifier Training 

1.2.3.1 Low-Level Feature Extraction 

The aim of feature extraction is to derive a compact representation for the video shot. In video concept 

detection system, a shot is represented by a key-frame(s). Such a key- frame can then be described using text 

features, audio features, visual features and their combinations. Here, it is attempted to summarize the most 

common visual features, as used in many concept detection methods. As mentioned earlier, the major 

bottleneck for automatic concept detection system is bridging the semantic gap between low-level feature 

representations that is extracted from video and high-level human interpretation of the video data. Hence, 

visual features need to represent the wide diversity in appearance of semantic concepts. If the viewpoint, 

lighting and other conditions are varied in the scene recording will deliver different data, whereas the semantics 

has not been changed. These variations induce the so-called sensory gap, which is the lack of correspondence 

between a concept in the world and the information in a digital recording of that concept. Therefore, visual 

features are needed to be minimally affected by the sensory gap [6], while still being able to distinguish 

concepts with different semantics. Invariant visual features are needed, such that the feature is tolerant to the 

accidental visual changes caused by the sensory gap.  

Visual features are of three types, i.e., color features, texture features, and shape features; and they are 

computed along the spatial scale i.e., global level, region level, key-point level, and at temporal level. These 

features when extracted can be used independently or they can be fused to achieve more detector accuracy. 

Fusion can also be done at classifier level, where their kernel functions can be fused [7, 8] to improve 

performance.  

1.2.3.2 Multi-label Data Classifier  

Automatic video concept detection in segmented video is an inherently machine learning multi-label 

classification problem. In multi-label classification, the examples are associated with a set of labels. In a multi-

label classification system, given the input feature space 𝒳 ∈ ℝ𝑑 and the output label space 𝒴 = {0,1, … . 𝑛} , 

where n is no. of labels in the label set, a mapping function Һ: 𝒳 → 𝒴 can be used to predict the corresponding 

label vector 𝓎 ∈  𝒴 for each input data instance 𝓍 ∈ 𝒳. That means the input feature vector of an instance of 

a key-frame of shot is mapped to a vector of labels. Multi-label learning focuses on identifying a good mapping 

function Һ from the training data. Many feature extraction techniques do exist to choose from, and a variety 

of supervised machine learning techniques to learn the mapping between. In supervised machine learning, in 

the first phase, the machine has to be trained i.e. classifier by supplying a set of optimal input feature vectors, 
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and in the second phase, the classifier assigns a probability p(Cj| 𝒳i) to each input feature vector for every 

semantic concept. In automatic video concept detection methods, the two main factors which play a crucial 

role in the performance of a classifier are the extracted features and the supervised machine learning model. 

1.2.3.2.1 Supervised Learning 

Here, general methods are discussed that may exploit multimedia features used to train a machine to find the 

concept of a video shot. A better overview of machine learning is given in [9]. The supervised learning 

paradigm is most suitable for concept detection problems because the number of concepts in predefined 

concept list is fixed and known. The number of classes, the classifier will be trained for; will be equal to the 

number of concepts in a list. The objective of supervised learning is to optimize for a certain learning task and 

with limited amount of training data. This measure quantifies the performance of a classifier when classifying 

test patterns are not used during training. Poor generalization ability is commonly attributed to the over-fitting 

[10], It also attributes to curse of dimensionality, where the number of training examples used are two small 

compared to the number of features used. Therefore it is expected that, a supervised learning method should 

maintain a balance between the invariant features to use, and at the same time void over-optimization of 

parameters. Moreover, for concept detection, ideally, it must learn from a limited number of examples, it must 

handle imbalance in the number of positive versus negative training examples. Support Vector Machine 

framework [11] has become the default choice in most concept detection schemes because it proved to be the 

most effective machine learning technique for concept detection. In the experimentation, support vector 

machine is used to build concept classifiers. 

1.2.3.2.2 Support Vector Machine (SVM) 

The SVM framework, searches for an optimal hyper-plane which separates an n-dimensional feature space 

into two distinguished classes: one class represents the concept under consideration and second represents rest 

of the concepts, i.e. yi = ±1. A hyper-plane is considered optimal when the distance to the closest training 

examples is maximized for both classes. This distance is called the margin. It is parameterized by the support 

vectors, λi >0, which are obtained by optimizing: 

 

min
𝜆

(𝜆𝑇𝛬𝐾𝛬𝜆 + 𝐶 ∑ 𝜉𝑖

𝑧

)                                                                  (1)    

 

during training under the constraints: yig(xi)≥1-ξi, i=1,2,….,z, where Λ is a diagonal matrix containing the 

labels yi, C is a parameter used to balance training error and to model complexity, z is the total number of shots 

in the training set, when the data is not perfectly separable, slack variables are introduced and is represented 

by ξi., and for all training pairs, K is the matrix which stores the values of the kernel function K(xi,𝑥′). It is of 

interest to note the significance of this kernel function K(·), as it maps the distance between feature vectors 

into a higher dimensional space in which the hyper-plane separator and its support vectors are obtained. Once 

the support vectors are known, it is straightforward to define a decision function for an unseen test sample 𝑥′. 

1.2.4 Score-Fusion 

Score fusion is a feature-fusion technique where scores resulting out of classifiers are combined using some 

strategy and final detection scores for each concept are computed. It is discussed in detail in next section.  

In the section II, the early and late feature fusion approaches used in concept detection methods and the 

proposed hybrid-fusion and mixed-hybrid-fusion approaches are presented. This paper focuses on video 

concept detection methods over the benchmark dataset, using proposed hybrid-fusion and mixed-hybrid-fusion 

approaches based on variety of low-level visual features and SVM classifier. Section III presents the discussion 

about the low-level visual features used for training concept detector. Section IV, discusses the procedure to 

extract high-level features i.e. concept labels and brief description about the dataset selection is given. In the 

section V, detailed experimental results are presented. Section VI presents the conclusion. 
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2 Feature Fusion 

Naturally, robust concept detection can be achieved by fusing many features extracted from video data. 

Selection of a set of features is very important as far as the concept detection accuracy is concerned. Some 

form of independence of features is required to make feature fusion to be effective. To achieve independence, 

following two general approaches are identified in the literature. The first approach relies on the so called 

unimodal features, where the features are extracted from a single modality, e.g., the audio stream, only. The 

second approach relies on multimodal features, where features are extracted from multiple modalities, for 

example, the speech transcript and the visual content. After feature combination, both unimodal and 

multimodal feature fusion methods rely on supervised learning to classify semantic concepts. Most unimodal 

feature fusion approaches rely on visual information. As different visual features describe different 

characteristics of a key-frame; color, texture, shape and motion can be considered statistically independent 

from a conceptual point of view. In this section, the classical early and late-fusion [12] schemes and proposed 

hybrid-fusion and mixed-hybrid-fusion schemes are presented. 

2.1 Early-Fusion (EF) and Late-Fusion/Score Fusion 

In EF, all visual features are combined into one larger feature vector and the concept detector is trained using 

this vector.  Fig. 2(a) shows schematic diagram of EF approach where the fusion of the feature vectors takes 

place before training. 

In LF, all individual detection scores for each concept from separated classifiers are combined using any 

of the merging strategy like linear, max or average and final score is obtained. The detailed scheme is shown 

in Fig. 2(b). 

 

 

Fig. 2: (a) EF and (b) LF approaches with multiple visual features and SVM classifier/s 

 

2.2 Proposed Hybrid-Fusion (HF) & Mixed-Hybrid-Fusion (MHF) 

The EF and LF strategies have their own inherent merits and demerits. As the EF approach combines all feature 

vectors into one large vector, the training time increases, this is the biggest disadvantage while advantage is 

the number of classifiers required is only one. With LF approach, the number of classifiers required are equal 

to number of feature used, whereas the size of individual vectors is smaller. 

In proposed HF approach, an attempt has been made to balance out the advantages and disadvantages of both 

the fusion methods by combining them. Therefore if these approaches are properly combined in some way, the 

concept detection performance can be increased. Here, the idea is to apply EF to combine the same group 

features (e.g. all color moment features like 2x2, 3x3 block features or all HSV histogram block features) into 

single large vector before classifier training (EF) and combining all individual detection scores of separated 

classifiers (LF) after training to get the final detection score. If all the feature groups are combined in this 

fashion, it is to call hybrid-fusion (HF) and is shown in Fig. 3(a). But, it is found that, combining each feature 

group using EF is not always fruitful. Sometimes, non- combining (LF) is beneficial in terms of performance. 

     

(a) (b) 
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Therefore, the MAP value for each feature group is computed for EF and LF methods using validation dataset, 

the method resulting into higher MAP is chosen as the fusion method for that feature group. Accordingly 

feature groups are fused using EF or LF methods. This scheme is called mixed-hybrid-fusion (MHF). Following 

description explains the process of EF/LF scheme selection.  

Let 𝑀𝐴𝑃𝐸𝐹( )  and 𝑀𝐴𝑃𝐿𝐹( )  are the functions to compute MAPs for EF and LF schemes respectively and 

d is the difference between the two MAPs for an individual feature group fg.  

Let for a feature group fg, x and y are the values of MAP for EF and LF schemes respectively and                          

𝑥 = 𝐸𝐹𝑀𝐴𝑃(𝑓𝑔)  and  𝑦 = 𝐿𝐹𝑀𝐴𝑃(𝑓𝑔) then,                                              

 

     𝑑 = 𝑥 − 𝑦  = (𝐸𝐹𝑀𝐴𝑃(𝑓𝑔) - 𝐿𝐹𝑀𝐴𝑃(𝑓𝑔))                                                (2) 

 

Therefore, the selection of EF or LF strategy for a feature group fg is done by the equation (3).  

 

𝑀𝐴𝑃(𝑓𝑔) = {
𝑥   (𝐸𝐹), 𝑑 ≥ 0

𝑦   (𝐿𝐹), 𝑑 < 0
                                                                (3)  

 

 
From equation (3), EF is selected if difference d is positive or equal to zero, else LF is selected. The detailed 

scheme is explained diagrammatically in Fig. 3(b). 

 

  
(a) (b) 

  

Fig. 3: Proposed (a) HF and (b) MHF approaches with SVM classifiers 

 

3 Low-Level Features 

In the experimentation, five low-level visual features of type color, texture and shape structure are extracted 

for each key-frame of the ground-truth data provided by NIST. The first two are color moments texture 

features, taken on 2×2 and 3×3 block level, resulting into two feature vectors of dimension 24 and 54 

respectively. Since these features belong to the same group type i.e. color moments, they are clubbed into 

Group-I. Next two features are edge histogram structural features taken on a global level 1×1 and 2×2 block 

level, resulting into vectors of dimension 4 and 16 respectively. They are grouped into Group-II. Next feature 

is GLCM texture consists of contrast, correlation, energy and homogeneity, taken on a global level resulting 

into a vector of size 16 and is placed in Group-III. This way, the total dimension of a feature set is 114-D. 

Table 1 lists the low-level features and their dimensions in detail. 
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Feature Name Group Description Dimension 

2×2 Color moment 

Group-I 

Based on 2 by 2 grid division of 

images: 

1) Std. Deviation & 2) Mean  

for RGB components 

For a block: 2×3=6-D 

For 2×2 blocks: 4×6=24-D 

Total dimension: 24-D 

24-D 

3×3 Color moment 

Based on 3 by 3 grid division of 

images 

For 3×3 blocks: 9×6=54-D 

54-D 

1×1 Edge histogram 

Group-II 

Edge histogram: 

For “horizontal” direction:2-D 

For “vertical” direction:2-D 

Total dimension: 4-D 

4-D 

2×2 Edge histogram 

Based on 2 by 2 grid division of 

images: 

For 2×2 blocks: 4×4=16-D 

Total dimension: 16-D 

16-D 

1×1 GLCM  texture Group-III 

Co-occurrence matrix texture 

features for gray images: 

For 4 filters feature extracted: 

1) Contrast 2) Correlation 3) 

Energy 4) Homogeneity 

Total features: 4×4=16-D 

Total Dimension: 16-D 

16-D 

Table 1: Low-level visual features used for concept detection 

4 Concept Detection/High-Level Feature Extraction for Multi-Label Data 

The most important step in video concept detection is building classifier. 

4.1 Building a Classifier using SVM 

The multi-label video annotation task is posed into binary classification problem. SVM [13, 14, 15] is used as 

the baseline. As described in section 3, five low-level visual features are used; all of these features were utilized 

to build SVM classifiers. In EF approach, a single large feature vector is formed by combining all five feature 

vectors and a SVM classifier is trained. In LF, SVM classifiers are trained individually over each of the five 

feature spaces which results into five classifiers. In the proposed HF approach, the feature vectors are merged 

under the same group and the classifiers are trained resulting into 3 classifiers; and in MHF approach the 

number of classifiers required will vary and will depend on whether the EF or LF is used to fuse a feature 

group. The SVMs are implemented using LIBSVM (Version 3.18) [16].  

The stepwise procedure for building SVM classifier is as follows: 

a. Scaling: conduct simple scaling of the training and test dataset feature vectors. 

b. Selecting proper kernel function: e.g. RBF or linear kernel function. 

c. Parameter tuning: use cross-validation to find the best parameters C and g. 

d. Training: use the best C and g to train the whole training set. 

e. Testing: predicting a class for the test sample. 

SVMs work well when features are roughly in the same range. Here, the features are normalized using 

statistical normalization. For M feature vectors {x1, x2, …, xM } in which xi is an N-dimensional feature vector 

[xi1,xi2,…..,xiN]T, the mean vector (µ) and the standard deviation vector (σ) are to be computed. The mean of a 
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vector is defined as the average of a set of data elements in a vector. The mean vector (µ) is comprised of M 

mean values computed for each of M feature vectors and is computed by equation (4) as follows,  

 

µ =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

                                                                               (4) 

where N is number of data elements in a vector 𝑥𝑖.  

The standard deviation is the measure of dispersion of a set of data from its mean. It measures the absolute 

variability of a distribution; the higher the dispersion or variability, the greater is the standard deviation and 

greater will be the magnitude of the deviation of the value from their mean, the standard deviation is computed 

by equation (5) as follows,  

 

𝜎 = √
1

𝑁
∑(𝑥𝑖 − µ)2 

 

𝑁

𝑖=1

                                                                           (5) 

 

Equation (5), computes the square of the difference (𝑥𝑖 − µ)2 between a data element and a mean of a feature 

vector for all the elements of a vector and then computes the average, this is called variance. The standard 

deviation is the square root of the variance. The process is repeated for all M feature vectors. This way, a 

standard deviation vector (σ) of size M is computed.  

The features are then normalized through the equation (6), 

 

𝑥∗ =
(𝑥 − µ)

𝜎
                                                                               (6) 

 

where 𝑥∗ is the normalized feature. The division operation is applied to each component of the feature vector. 

Here, the features are normalized using statistical normalization which shifts the feature distribution to zero 

mean (i.e., µ = 0) and unified standard deviation (i.e., σ = 1). 

 

Sr.No. Concept 
Sr. 

No. 
Concept 

Sr. 

No. 
Concept 

01 Airplane 13 Face 25 Prisoner 

02 Animal 14 Flag-US 26 Road 

03 Boat_ship 15 Maps 27 Sky 

04 Building 16 Meeting 28 Snow 

05 Bus 17 Military 29 Sports 

06 Car 18 Mountain 30 Studio 

07 Charts 19 Natural-Disaster 31 Truck 

08 
Computer_ 

TV-screen 
20 Office 32 Urban 

09 Court 21 Outdoor 33 Vegetation 

10 Crowd 22 People-Marching 34 Walking-Running 

11 Desert 23 Person 35 Waterscape-Waterfront 

12 Explosion_Fire 24 Police-Security 36 Weather 

Table 2: Concept list in TRECVID development dataset 
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Concept Concept Definition Examples 

 

       
Airplane Segment contains a shot of an airplane 

 

       
Boat_Ship Segment contains a shot of a boat or ship 

 

       
Building Segment contains a shot of an exterior of a building 

 

       
Car Segment contains a shot of a car 

 

       
Crowd Segment contains a shot depicting a crowd 

 

       
Face Segment contains a shot depicting a face 

 

       
Road Segment contains a shot depicting a road 

 

       
Sports Segment contains a shot depicting any sport in action 

 

       
Snow Segment contains a shot depicting snow 

 

       
Walking_

Running 
Segment contains a shot depicting a person walking or running 

Table 3: Concept definition examples from the TRECVID development dataset 
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4.2 Dataset Selection 

Since 2001, the National Institute of Standards and Technology (NIST) [17] has been sponsoring the annual 

Text Retrieval Conference (TREC) Video Retrieval Evaluation (TRECVID) [18]. TRECVID provides a large-

scale test collection of video datasets every year, along with a task list and focuses its efforts to promote 

progress in video analysis and retrieval. It also provides ground-truth for data like a list of shots and a list of 

key-frames for a given TRECVID datasets for genuine researchers. Many researchers [19] [20] [21] and 

research teams present their high quality research contributions in yearly organized TRECVID conferences 

and workshops. 

The TRECVID dataset is composed of 219 video clips separated into two groups, the development set and 

testing set. The development set consists of 110 videos while the test set is composed of 109 video clips. The 

videos in development dataset have partitioned into 19140 shots and 664850 key-frames. There are 36 defined 

concepts in the dataset. The concept list is given in Table 2. The 36 concepts are manually annotated over these 

key-frames. NIST has prepared a ground-truth-data for the above dataset for genuine researchers. The ground-

truth consists of video shots and their representative key-frame/s for video clips. It is to be noted that, as per 

key-frame extraction method used by NIST, a shot in a video clip may have one or more positive and/or 

negative key-frames. For a concept, positive key-frame is defined as a frame containing a said concept as a 

visual content. The ground-truth dataset consists of both positive as well as negative examples. Table 3 lists 

some of the concepts and concept defining key-frames in the dataset.  

For the experimentation, the ground-truth data for the development dataset is used. As shown in Table 4, 

the dataset is partitioned into two parts, Partition-I and Partition-II. Partition-I is further divided into Validation 

set and Training set and Partition-II is Test-set. Validation/Selection dataset consists of 5398 randomly chosen 

positive key-frames from Partition-I to perform cross validation to find out optimal parameters C and g for 

RBF kernel function in SVM. The Validation/Selection dataset is also used in mixed-hybrid-fusion approach 

to compute the MAP for each feature group for selecting one between EF and LF. Training dataset consists of 

17114 randomly chosen positive key-frames to perform classifier training. Test dataset consists of 9352 

randomly chosen positive key-frames from Partition-II and is used to test classifier performance. Fig. 4 

illustrates the distribution of positive examples for each individual 36 concepts in the Training dataset. 

4.3 Parameter Selection 

Although the only parameters of the SVM are C and the kernel function K (•), it is well known that the influence 

of these parameters on concept detection performance is significant. Since the RBF Kernel is used, two 

parameters: C (the cost parameter) and γ (the width of the RBF function) need to be tuned. Since Libsvm-3.18 

toolset is used to implement SVM, the data unbalance problem is handled through imposing penalty weights 

on respective classes at the time of training classifiers. In practical implementation, the penalty weight for a 

particular class is the ratio 
𝑁𝑚𝑎𝑥+

𝑁+ , where Nmax
+ is the maximum number of positive training examples of any 

class and N+ is the number of positive training examples for a respective class. 

 

Dataset Dataset Name Partitions # of Videos 
# of Key- 

Frames 

TRECVID  

Development 

Dataset 

Partition-I 

Validation/ Selection 

Dataset 
90 

5398 

Training Dataset 17114 

Partition-II Testing Dataset 20 9352 

Table 4: Partition details of TRECVID development dataset 
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Fig. 4: Number of positive frames in TRECVID training dataset 

4.4 Applying Score Fusion 

After separated classifiers for each visual feature or feature group are learned, the LF approach is applied to 

combine all detection scores for each concept as shown in Fig. 2(b). The three fusion strategies are Linear, 

Average, and Max and their details are as follows- 

 Linear: Performs a grid search in fusion parameter space to select the optimal weights.  

 Average: The scores resulting from each classifier are simply averaged to generate the fused score.  

 Max: For each concept, the best performance is selected.  

Its results were considered as the fused results. In the experimentation average fusion strategy is used. 

4.5 Computing Average Precision (AP) and Mean Average Precision (MAP) for Multi-label 

Data 

The ground-truth dataset consists of the key-frames manually annotated with multi-label data. Therefore when 

dealing with multi-label frames, it is very important to know the way the Average Precision (AP) and Mean 

Average Precision (MAP) are computed as the performance is evaluated by these measures, which are the 

official performance metric in TRECVID evaluations. Some processing has been done over the ground-truth 

test dataset. The label set (concept set), Yi, and label count or label density, Ni, for each test sample, xi, are 

computed. Let D be a multi-label test dataset, consisting of │D│ multi-label test examples (xi, Yi), i = 1…│D│, 

Yi ⊆ L, where L is a label set for a dataset. When the detection score (probability score) for all the 36 concepts 

for a test example are combined in the score-fusion phase, following procedure is followed to compute AP and 

MAP: 

1. Rank the final scores of probabilities in descending order for all 36 concepts for a test example xi.   

2. If Ni is the label density for xi, then top Ni scores from a ranked list (top Ni predicted concepts), Pi, and 

concepts in Yi from a test sample are considered and their intersection is found out. The result of the 

intersection operation between sets Yi and Pi is the number of concepts, Mi, that are correctly predicted 

by a classifier.  

3. The average precision AP for a test sample is computed by equation (7), 

 

APi  = 
│𝑌𝑖 ⋂ 𝑃𝑖│

│𝑃𝑖│
 = 

𝑀𝑖

𝑁𝑖
                                                            (7) 

 

And the MAP for a classifier, H, on dataset D, is obtained by computing the mean of APs by equation (8), 
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𝑀𝐴𝑃 (𝐻, 𝐷) =
1

│𝐷│
∑

│𝑌𝑖 ⋂ 𝑃𝑖│

│𝑃𝑖│

│𝐷│
𝑖=1                                                    (8) 

                    

5 Experimental Results 

5.1 Experimental Evaluation 

To demonstrate the effectiveness of the proposed feature fusion approaches in improving the video concept 

detection rate, the performance of concept detection using proposed HF and MHF approaches are compared 

with the performance of the existing EF and LF methods. In the experimentation, video concept detectors using 

multi-class SVM are implemented and compared for four approaches: VCD_EF (video concept detection using 

early-fusion), VCD_LF (video concept detection using late-fusion), VCD_HF (video concept detection using 

proposed hybrid-fusion approach) and VCD_MHF (video concept detection using proposed mixed-hybrid-

fusion approach). The task is to detect the presence of 36 predetermined benchmark concepts in test dataset. 

Fig. 5(a) and Fig. 5(b) shows the detailed schematic diagram of video concept detection using HF and MHF 

approaches respectively. 

  

(a) (b) 

Fig. 5: Video concept detection using proposed (a) HF approach and (b) MHF approach 

The performance is evaluated by AP and MAP. The decision table required to implement MHF approach 

is given by Table 5, it also presents the experimental evaluation results (MAPs) using Selection dataset for EF 

and LF schemes. 

Feature Group 
EF 

(MAP) 

LF 

(MAP) 

Decision? 

EF/LF 

Color-Moments 0.43 0.40 EF 

Edge-Histogram 0.42 0.45 LF 

Table 5: Decision table for individual feature groups 

5.2 Performance Evaluation & Results Comparison 

The performance of all the above methods are evaluated on the basis of MAP values. Fig. 6(a), Fig. 6(b), Fig. 

6(c) and Fig. 6(d) shows the results for all the 36 individual defined concepts using VCD_EF, VCD_LF, 

VCD_HF and VCD_MHF methods respectively. Fig. 7 presents the combined comparison of existing 

approaches with proposed HF and MHF approaches in terms of APs. It is observed that, the APs obtained with 

HF and MHF approaches are lot better than the existing EF and LF approaches.  From Fig. 7, it is seen that, 

for a concept like Charts, the detection rate is a bit worst using EF (0.06) and LF (0.29) approaches, than using 

proposed methods. There is a significant improvement using the proposed HF and MHF (0.35) approaches. 

For concept Court the detection rate is 0.81 using EF and LF while it is 0.83 and 0.92 using HF and MHF  
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(a) (b) 

  

(c) (d) 

Fig. 6: APs of 36 concepts of TRECVID dataset obtained using (a) VCD_EF (b) VCD_LF (c) proposed 

VCD_HF and (d) proposed VCD_MHF 

 

Fig. 7: Comparison of APs of 36 concepts, obtained using VCD_EF, VCD_LF, VCD_HF and VCD_MHF 

Key-

Fram

e No. 

Test 

key- 

frame 

Concepts in 

Ground-Truth 

Data 

Correctly Detected Concepts 

EF LF HF MHF 

540 

 

Building-Crowd-

Outdoor-

People_Marching-

Urban-

Walking_Running 

Building-

Outdoor- 

Urban-

Walking_Runni

ng 

Crowd-

Outdoor- 

Walking_Run

ning 

Building-

Crowd-

Outdoor-

Urban-

Walking_Runni

ng 

Building-

Crowd-

Outdoor-

Urban-

Walking_Run

ning 

# of concepts 6 4 3 5 5 

1569 

 

Face-Person -- -- Face-Person  Face-Person 

# of concepts 2 0 0 2 2 

2375 

 

Building-Face-

Outdoor-Person-

Sky-

Waterscape_Waterf

ront 

Outdoor-Sky-

Waterscape_W

aterfront 

Face-

Outdoor-Sky-

Waterscape_

Waterfront 

Face-Outdoor-

Person-Sky-

Waterscape_W

aterfront 

Face-

Outdoor-

Person-Sky-

Waterscape_

Waterfront 

# of concepts 6 3 4 5 5 

2547 

 

Face-Outdoor-

Person-Sky-

Vegetation 

Outdoor-Sky-

Vegetation 

 

Outdoor-Sky-

Vegetation 

Face-Outdoor-

Sky-Vegetation 

Face-

Outdoor-

Person-Sky-

Vegetation 

# of concepts 5 3 3 4 5 

9095 

 

Face-Office-

Person-

Walking_Running 

Walking_Runni

ng 

 

Person  

Face-Person-

Walking_Runni

ng 

Face-Person-

Walking_Run

ning 

# of concepts 4 1 1 3 3 

Table 6: Result comparison of some of the sample test frames using proposed MHF and HF approaches and 

EF and LF methods 
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respectively. For Police-Security, the detection rate is 0.56 and 0.74 for EF and LF and is 0.75 and 0.76 for HF 

and MHF respectively. This shows that the concept detection rate for some concepts greatly improves using 

proposed HF and MHF approaches over EF & LF. Table 6 presents the experimental results for some of the 

test samples, showing the comparison of correctly detected concept count for the EF, LF and proposed HF and 

MHF approaches.  

For a test sample key-frame no. 540, the count of concepts in the ground-truth is 6, namely Building, Crowd, 

Outdoor, People-Marching, Urban and Walking-Running. Out of these concepts, EF has detected 4, namely 

Building, Outdoor, Urban, and Walking-Running while LF has detected 3 i.e. Crowd, Outdoor and Walking- 

Running and the proposed HF and MHF detected 5 concepts namely; Building, Crowd, Outdoor, Urban and 

Walking-Running. For other test samples too, the proposed methods exhibit better performance than EF and 

Sr.No. Fusion Method MAP 

1 EF 0.33 

2 LF 0.41 

3 HF 0.49 

4 MHF 0.52 

Table 7: Performance comparison of proposed methods with EF and LF 

Sr.

No 
Method Database used Features used 

Dimension of  

feature vector 
Classifier used MAP 

1 

Proposed 

method 

using 

Mixed-

Hybrid-

Fusion 

TRECVID2007 

1) 2×2 color moment 

2) 3×3 color moment 

3) 1×1 edge histogram 

4) 2×2 edge histogram 

5) 1×1 GLCM texture  

    

24-D 

54-D 

4-D 

16-D 

16-D 

Total: 114-D 

Multi-class 

Support Vector 

Machine 
0.52 

2 

TRECV0705

Model 

[22] 

 

TRECVID2007 

& Partial 

TRECVID2005 

1) AutoCorrelogram 

2) 3×3 color moment 

3) 5×5 color moment 

4) 7×7 color moment 

5) Co-occurrence texture 

6) Edge distribution  

    histogram 

7) Face 

8) HSV color histogram 

9) Wavelet PWT & TWT  

    texture 

144-D 

81-D 

225-D 

441-D 

16-D 

75-D 

7-D 

64-D 

128-D 

Total: 1181-D 

Support vector 

machine 
0.286 

3 

Multi-Label 

LGC 

[23] 

TRECVID2006 

1) 5×5 block-wise Color  

    moment in Lab color  

    space  

Each block is 

described by 

9-D features.  

Total: 225-D 

Graph-based 

Semi-

supervised 

learning 

0.329 

4 

Multi-Label 

GRF 

[23] 

Graph-based 

Semi-

supervised 

learning 

0.346 

5 

SGAL_noC

orr 

[24] 

NUS-WIDE-

Lite 

Dataset 

1) 5×5 block-wise color  

    moments 

2) edge direction  

    histogram 

3) wavelet texture 

225-D 

73-D 

128-D 

Total: 426-D 

Sparse-graph-

based 

Semi-supervised 

learning 

0.279 

Table 8: Performance comparison of video concept detection using proposed MHF with state-of-the-art other 

existing methods 
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LF methods. The results thus obtained with all the above methods are compared and given in Table 7. It is 

observed that, the MAP for the proposed MHF and HF approaches are 0.52 and 0.49 respectively, which are 

much better than 0.33 and 0.41 for EF and LF respectively. MHF exhibits substantial improvement of 

approximately 25% over LF and it is also observed that, the performance of MHF outperforms all. Fig. 8 shows 

the performance comparison of proposed approaches with conventional EF and LF methods. The performance 

of the proposed MHF approach is also compared with the state-of-the-art other existing video concept detection 

methods given by Zha at el. [22] & [23] and Tang et al. [24] as shown in Table 8. The proposed MHF approach 

gives the best performance amongst all other approaches. 

 

Fig. 8: Performance comparison of proposed MHF and HF with EF & LF methods 

6 Conclusion 

In video semantic concept detection methods, semantic gap directly controls the concept detection rate. Lower 

the semantic gap, higher the concept detection accuracy. The selection of low-level visual features and their 

dimensions to represent key-frame/s of a video shot and the selection of the feature-fusion methods are the two 

important factors to control the semantic gap. This paper has presented a work on these two important aspects 

and proposed 1) a set of low-level visual features of considerably smaller size (114) as compared to others and 

2) novel feature fusion approaches namely, hybrid-fusion and mixed-hybrid-fusion with an aim to minimize 

semantic gap and to improve performance of video concept detection. Multi-class SVM is used to build 

classifiers.  Extensive experimentation conducted on the multi-label ground-truth data for TRECVID 

development dataset have demonstrated that by combining EF and LF approaches in typical fashion which 

resulted into HF and MHF approaches, can substantially improve concept detection rate. In the experiments, 

video concept detectors are built using proposed HF and MHF approaches and their detection rate is compared 

with EF and LF methods. Experimental results show that, the proposed mixed-hybrid-fusion approach, MHF 

(MAP=0.52) performs better than our other proposed hybrid-fusion approach, HF (MAP=0.49) and 

outperforms conventional early-fusion, EF (MAP=0.33) and late-fusion, LF (MAP=0.41) approaches by large 

margins in terms of concept detection rate. The MHF approach is compared with other state-of-the-art methods 

in the category and exhibits enhanced performance over the methods. 
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