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Abstract 

In this paper, we propose a novel appearance based local feature descriptor called Local Mean Binary Pattern 

(LMBP) for facial expression recognition. It efficiently encodes the local texture and global shape of the face. 

LMBP code of a pixel is produced by weighting the thresholded neighbor intensity values with respect to mean 

of 3  3 patch. LMBP produces highly discriminative code compared to other state of the art methods. The micro 

pattern is derived by thesholding on mean of the patch, and hence it is robust against illumination and noise 

variations. An image is divided into M  N regions and feature descriptor is derived by concatenating LMBP 

distribution of each region. We also propose a novel template matching strategy called Histogram Normalized 

Absolute Difference (HNAD) for comparing LMBP histograms. Rigorous experiments prove the effectiveness 

and robustness of LMBP operator. Experiments also prove the superiority of HNAD measure over well-known 

template matching methods such as L2 norm and Chi-Square. We also investigated LMBP for expression 

recognition in low resolution. The performance of the proposed approach is tested on well-known datasets CK, 

JAFFE, and TFEID. 

 

Key Words: Local Binary Pattern, Local Direction Pattern, Local Mean Binary Pattern, Histogram 

Normalized Absolute Difference, Support Vector Machine. 

 
 

1 Introduction 

Facial expression plays a vital role in communicating emotions and intentions [1]. Visual clues and 

information lead towards a better understanding in a conversation. Application area of FER covers a broad 

spectrum, including grading of physical pain, smile detection [2], [3], [4], driver fatigue detection [5], patient 

pain assessment [6], video indexing, robotics and virtual reality [7], depression detection [8] etc. Mental state 

is imitated on the face in the form of various expressions; affective computing models them in an appropriate 

computer actions [9]. Interpretation of facial expression through the machine can become a driving force for 

the future automation interfaces such as car driving, robotics, driver alert systems, human-computer 

interfaces etc. [7], [10].  

Investigation of the Physiognomy and facial expression dates to the era of Aristotle (4th century). 

Physiognomy is the Greek word, in which physis means “nature” and gnom means “judge”. It corresponds to 

judging people’s character from their external appearance, especially from the face [11]. In 1872, the first 
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preliminary experiment on facial expression was conducted by Charles Darvin, that had a direct influence on 

modern FER research during that time. He mentioned the generality of facial expressions across human and 

animals in his well-known book "The Expression of the Emotions in Man and Animal"  [12]. He observed 

how humans and animals exhibit the common characteristics while expressing their emotions. Both have a 

tendency of showing their ocular muscles and tighten their teeth when they are in anger state. Darvin’s claim 

of universality in expression was reinforced by the series of cross cultural experiments conducted by Ekman 

and Friesen in 1971 [13]. They postulated a range of expressions into six judgmental classes, which are 

anger, disgust, fear, happy, sad and surprise. Most of the research on facial expression is centered around 

detecting these basic six expressions. 

In this paper, we propose a novel appearance based local face descriptor called Local Mean Binary 

Pattern. LMBP code is obtained by deriving LBP code of mean centered patch of size 3  3. Consequently, 

this approach is robust against non-monotonic gray level change and random noise. LMBP efficiently 

characterizes the local intensity variation and structural information. We also present a novel template 

matching technique called Histogram Normalized Absolute Difference (HNAD) for matching the LMBP 

histograms. Proposed measure normalizes the absolute difference of two histogram values by the union of 

histograms. Experiments show that HNAD outperforms the customary template matching techniques like L2 

norm and Chi-square. The discriminative capability of LMBP is also investigated for low-resolution facial 

expression recognition. Results show the stability of over a wide range of low-resolution images, which 

motivates the use of LMBP for real world applications. 

Rest of the paper is organized as follows: State of the art methods have been studied in section 2. A brief 

review on local statistical operators like Local Binary Pattern (LBP) and Local Directional Pattern (LDP) is 

presented in Section 3. The proposed appearance based operator Local Mean Binary Pattern is introduced in 

Section 4. Section 5 describes the novel template matcher HNAD along with experimental setup and facial 

expression datasets. Optimal parameter selection, result analysis and expression recognition in low resolution 

are presented in section 6. Finally, the work is summarized in Section 7. 

2 State of the Art Methods 

There are commonly two approaches for facial feature extraction: geometric feature based methods and 

appearance feature based methods [7], [9], [14], [15]. Many modern facial expression recognition systems 

utilize the vector of position and relation of certain facial key points as a feature descriptor. Such systems are 

referred as geometry based systems. The facial key points, whose position is localized are known as fiducial 

points. Typically, fiducial points are positioned along the nose, lip, eye and eyebrow. The motivation for 

using geometry based systems is that each expression affects the relative position of such fiducial points. 

Appearance or texture based analysis of the image is very useful in applications at different levels [16]. The 

texture is the visual property which characterizes the surface by means of variations in shape, illumination, 

reflectance, shadow, absorption etc. In appearance-based methods, certain filters or kernel functions are 

applied on the face to extract a feature vector. Appearance/texture features are more suitable for capturing 

subtle appearance changes (e.g. wrinkles) of the face, while geometric features are more capable of 

representing the shape and location information of facial components (e.g. mouth, eye, nose etc.). Geometry 

and appearance based features are depicted in Figure 1. 

 

Fig. 1. Illustration of geometric (left) and appearance (right) features 
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Based on the region of operation, facial extraction methods are further classified into global and local. 

Global methods operate on entire image and hence they are also known as holistic methods. Optical flow 

[17], [18], Eigenface [19], Fisherface [20], Independent Component Analysis (ICA) [21] are few of the 

widely used holistic methods. Even though these methods have been significantly used and explored, local 

descriptors have gained the attention of researchers because of their robustness and invariance property. 

Local feature extraction methods operate on a small neighbourhood of the pixel. Feature descriptor is 

obtained by collecting features computed locally. Local Binary Pattern (LBP) [22], multi-resolution LBP 

[23], Local Directional Pattern (LDP) [24], Gabor filter [25], Local Gabor Binary Pattern (LGBP) [10] are 

some of the well-studied local feature extraction methods. 

Comprehensive and widely cited surveys by Samal and Lyengar [26], Pantic and Rothkrantz [7] and Fasel 

and Luetin (2003) [8] are available that perform an in-depth study of the published work from 1990 to 2001. 

Recent advancements in the 21st century are surveyed by Tian et al. [27], Zeng et al. [8], Dailey et al. [28], 

Murtaza et al. [29] and Corneanu et al. [14]. 

3 Revisiting Local Statistical Operators 

The two important aspects of facial expression recognition comprise facial representation and design of 

the classifier. Facial representation refers to finding a set of features that can effectively characterize the face 

image. The optimal feature should maximize the intra-class similarity and minimize the interclass similarity 

[30]. The success of an appropriate classifier ultimately depends on an effective facial representation, which 

can lead to better recognition rate. 

3.1    Local Binary Pattern 

Local binary pattern is comprehensively studied powerful texture analysis descriptor. In 1996, Ojala et al. 

[22] proposed LBP for analysing macro and micro patterns of the image. It encodes micro patterns in the 

local neighbourhood of the pixel using knowledge of neighbour pixel intensity. LBP is invariant to changes 

in monotonic gray level. LBP code is generated by weighting the thresholded P neighbours by the decimal 

values. LBP code for the center pixel (xc, yc) is computed as, 
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Where, in denotes the gray value of equally spread out P neighbours on the perimeter of radius R with 

respect to center (xc, yc), and ic is the gray value of center pixel. Binary value assigned by function S(.) over 

P bits is weighted by the decimal value, which gives the LBP code for center pixel. Figure 2 illustrates the 

steps for LBP code generation. 

 
Fig. 2. LBP operator to compute the LBP code for P bits and radius R 

Many variants of LBP are proposed to make it more robust. Ojala et al. [31] introduced uniform binary 

pattern to reduce the feature dimensions. By combining Gabor filtering with LBP, Local Gabor Binary 

Patterns (LGBP) [32] was proposed to extend LBP to multiple resolutions and orientations. Shan et al. [30] 

presented boosted LBP based approach to extract most discriminative LBP features. They also extend the 

experiment for low-resolution images. To further reduce the computation, Hablani et al. [33] employed LBP 

on prominent regions of the face. LBP histograms of eyes, mouth, nose are concatenated to form the final 

feature vector. 

3.2   Local Directional Pattern 
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Jabid et al. [24] present a Local Direction Pattern (LDP) descriptor for facial representation. LDP derives 

8-bit binary pattern by encoding edge response value in 8 directions using Kirsch edge detector. Kirsch 

detects directional response more accurately compared to Prewitt or Sobel edge detectors. Though Kirsch 

operator is robust, it is computationally demanding as it uses eight different masks to compute response in 

each direction. Masks used to compute LDP are shown in Figure 3. 
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Fig. 3. Kirsch edge detector masks 
Mi-th mask generates mi response, where i = 0,1,…,7. The response of eight masks is collected in a 3  3 

matrix as displayed in Figure 4. Neighbor responses are thresholded with respect to mk-th directional 

response. The value of k is chosen by rigorous experiments. LBP of these responses gives the LDP code for 

center pixel. Histogram of these LDP values is used as a feature descriptor. 

 
Fig. 4. Generation of LDP code 

Given the center pixel and 8-Kirsch masks, eight direction edge response mi is computed for i=0, 1…, 7. 

LDP code is computed as, 
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Where mk is the k-th most significant directional response. Edge response is more stable than the intensity 

value, sometimes LDP generates same code even though the LBP code is different. 

4  Local Mean Binary Pattern 

LBP is simple and efficient but it is sensitive to noise and non-monotonic gray level changes. LDP uses 

fixed eight masks to measure edge response, so it cannot be stretched to operate at multi-scale or 

multiresolution. In addition, computing responses in eight directions for each pixel is also computationally 

intensive. Both the issues, robustness and computation cost are handled by LMBP operator with ease. It 

assigns an eight-bit binary code to each pixel, which represents the local structure. Multiscale modelling of 

LMBP is very similar to that of LBP. It may with ease be improved to work at different scale and resolution. 

In proposed LMBP, the mean value of 3  3 neighbourhood is compared with eight neighbour values. LMBP 

code of center pixel (xc, yc) is computed as follow: 
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Where, in is the intensity of neighbour of center pixel (xc, yc), and im is the mean intensity of 3  3 image 

patch. LMBP of code is resilient to noise and illumination compared to normal LBP operator. The mean of 

patch suppresses the effect of both, noise and illumination, by diluting the intensity variation. And still, the 

structural information of the original image is preserved. It provides the stability to generated LMBP code. 

Working of basic LMBP operator is portrayed in Figure 5. 
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Fig. 5. The procedure of computing LMBP code: (a). Compute mean of 3  3 patches, (b). Find mean 

centered patch, (c). The thresholded output of (b), (d). Weight matrix to be applied to (c), (e). Final masked 

patch used to derive LHMBP value. 
The mean value of the patch is subtracted from eight neighbours (Figure 5(b)). Non-negative neighbours 

are assigned bit 1, and negative neighbours are assigned bit 0 (Figure 5(c)). The weight matrix shown in 

Figure 5(d) is applied to thresholded patch. Summation of masked output is the LMBP code of center pixel. 

4.1   Robustness of LMBP 

LMBP binarizes the neighbour pixel with respect to mean value of the patch, and hence it is less 

susceptible to noise and non-monotonic gray level changes. Thus, robustness is inherent in LMBP operator. 

Patches in Figure 6(b), Figure 6(c) and Figure 6(d) show the intensity after adding gaussian noise of zero 

mean and 0.01 variance, zero mean gaussian white noise of local variance 0.5 and multiplicative speckle 

noise of zero mean and variance 0.1, respectively. Results show that LBP and LDP codes are sensitive to 

these noises but LHMBP suppresses the effect of noise, and hence LHMBP code remains unaltered in all 

three cases. 
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Fig. 6. Robustness of LMBP versus. LBP and LDP: (a). LMBP, LBP, and LDP value of original patch. 

Noisy patch and its LMBP, LBP, and LDP values after adding (b). Gaussian noise, (c). Local variance noise 

and (d). Speckle noise 

LDP generates the feature descriptor by considering the edge response using Kirsch masks, so it is more 

robust compared to LBP. But due to fixed mask, LDP cannot be extended for larger neighbourhood. Like 

LBP, an extension of LMBP for the larger neighbourhood is inherent. LDP weights five pixels by -3 and 

three pixels by 5, so small change in intensity brings larger change in mask response. Whereas LMBP 

averages the intensity of all nine pixels, and hence robustness of LMBP is guaranteed over LDP in most of 

the cases. 

4.2   LMBP Feature Descriptor 

LMBP operator is applied to each pixel of the image. Feature descriptor is obtained by computing the 256 

bin histogram of LMBP codes. LMBP histogram is computed as, 


  









row

i

col

j kx

kx
kxfkjiLMBPfkH

#

1

#

1 ,0

,1
),(),),,(()(  

Where k is the value of LMBP code. Histogram derived using above formula is used as a feature 

descriptor. Like LBP, LMBP also captures the location independent micro details like edge, spot, and other 

texture features. While encoding the whole face using LMBP, the global position of such local texture is 
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encoded but the precise location is unknown. For the texture analysis, the relation between features and 

position also plays a vital role. To acquire local features, we divide the image into M  N small regions and 

256-bin local histogram LMBPi of each region Ri is computed. All LMBPi histograms are concatenated to 

derive the final LMBP descriptor of the whole face. Local histogram corresponds to local details, i.e. texture. 

Histogram of the whole face encodes the global shape. To incorporate texture and shape both, as shown in 

Figure 7, we append global histogram of face LMBPG to the texture histograms. This feature vector gives 

precise features for the expression, in which local histograms represent finer detail and global histogram 

represents coarser detail. 

 

Fig. 7. LMBP descriptor is derived by concatenating local and global histograms of the image. 

5  Experimental Setup 

5.1   Histogram Normalized Absolute Difference 

Over the time, various classifiers have been proposed to effectively classify the patterns. Chi-square 

distance, nearest neighbour, neural network, support vector machines are few of them. Comparative analysis 

of various classifiers for facial expression recognition is discussed in [30]. In our work, we propose a novel 

distance measure Histogram Normalized Absolute Difference (HNAD). HNAD normalizes the absolute 

difference of histogram by the histogram union. HNAD distance between two k-bin histograms X and Y is 

computed as,  
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Computation of HNAD does not involve squaring or square root operations like Chi-square and L2 norm. 

HNAD is computationally simple yet very effective. Results of all three measures on different datasets are 

compared in Section 6. Rigorous experiments on different histogram patterns show that HNAD outperforms 

commonly used measures L2 norm and Chi-square. 

5.2   Experimental Data 

Experiments are conducted on three widely used comprehensive datasets, Cohn-Kanade (CK) [34], 

Japanese Female Facial Expression (JAFFE) [35] and Taiwanese Facial Expression Image Database 

(TFEID) [36]. CK dataset contains image sequence of 97 university students having a 7:13 Male: Female 

ratio. The dataset contains people of different ethnicity, of age group 18-30 years. Each subject was 

instructed to perform series of 23 facial displays, six of them were based on prototypical expression 

description. Each image sequence starts with a neutral expression and ends at the apex level. 

JAFFE database was planned and assembled by Lyons et al. [35] in 1998. This database is primarily used 

to evaluate the facial expression recognition systems. It may also be used for face recognition. JAFFE 

contains 213 images of Ten Japanese female, with 3 or 4 examples of each of the seven basic expressions. 

Numbers of images corresponding to each of the seven expressions are roughly identical.  

TFEID was designed by Chen and Yen at Brain Mapping Laboratory, Taiwan in 2007. It consists of 40 

subjects from the same ethnicity with an equal proportion of male and female. Subjects in TFEID are 
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instructed to perform eight facial expressions: neutral, anger, contempt, disgust, fear, happiness, sadness and 

surprise. Models were asked to gaze at two different angles (0° and 45°). Details of number of images used 

for the experiment from all datasets are listed in Table 1. 

Table 1. Number of images used for the experiment from each dataset. 

 AN DI FE HA SU SA NE Total 

CK 110 120 100 280 130 220 320 1280 

JAFFE 30 29 32 31 31 30 30 213 

TFEID 34 40 40 40 39 36 39 268 

We considered basic seven expressions anger (AN), disgust (DI), fear (FE), happy (HA), sad (SA), 

surprise (SU) and neutral (NE), for our problem. Few of the subject from all three datasets with all seven 

expressions are shown in Figure 8. 

Angry Disgust Fear Happy Sad Surprise Neutral 

       

       

       
Fig. 8. Snapshots of happy expression from CK (top), JAFFE (middle), and TFEID (bottom) datasets 

Researchers have suggested various validation techniques for generalization of classifier. Most widely 

used validation methods are k-fold validation, Repeated Random Sub-Sampling (RRSS) and Leave One Out 

(LOO) strategy. In k-fold validation, the dataset is partitioned into k roughly equal folds, of which k – 1 folds 

are used for training and remaining 1-fold is used for testing. In our experiment, 10-fold cross validation 

strategy is used with seven and six classes, that is with and without neutral expression being a part of the 

dataset. Results are averaged over 10 executions. Each time dataset is divided into 10 random partitions, out 

of which 9 are used for training and 1 for testing. 

6  Results and Discussion 

The performance of the proposed technique is evaluated for CK, JAFFE, and TFEID dataset using 

template matching and LS-SVM [37]. In following section, we discussed how optimal parameters are chosen 

for result analysis. 

6.1   Optimal Parameter Selection 

Single histogram of entire face estimates the global shape of the face. In the prototypic facial expression, 

textures such as wrinkles, bulges, furs play a crucial role. To extract the local texture features, we divide the 

face image into M  N regions. 256 bin local LMBP histogram of each region and a global histogram of the 

whole face are concatenated, which produce the feature vector of size 256*(MN + 1). 

To find the optimal number of regions, following Jabid et al. [24], Shan et al. [30], and Bartlett et al. [38] we 

divide images into 3  3, 5  5, 7  6 and 9  8 blocks. Larger image regions fail to capture small size texture 

leading to poor recognition rate. Whereas, smaller image regions/blocks effectively capture the texture and 

spatial relationship. However, after a certain point, the smaller size of regions introduces unnecessary 

computation and feature vector becomes too big to efficiently train the classifier. Performance comparison 

for a different number of blocks is stated in Table 2. Accuracy is measured using L2 norm, Chi-square 
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measure and the proposed distance measure HNAD. The results show that HNAD has better discrimination 

capacity compared to L2 norm and Chi-square distance. We chose a number of regions to be 5  5, as it 

gives a proper balance between accuracy and standard deviation of results from its mean. 

Table 2. Recognition rate for a different number of regions, Dataset: CK. 

 Accuracy for 7-class problem Accuracy for 6-class problem 

#Blocks L2 Norm Chi - Square HNAD L2 Norm Chi - Square HNAD 

3  3 95.3  2.7 95.5  2.4 96.1  2.6 98.2  1.9 98.1  2.1 98.0  2.2 

5  5 94.1  2.1 94.5  2.1 95.8  1.8 98.3  1.3 98.3  1.3 98.4  1.4 

7  6 95.2  1. 8 95.2  1.8 96.9  1.7 98.1  2.5 98.0  2.4 98.1  2.5 

9  8 94.9  2.2 95.4  1.5 96.3  1.5 99.2  1.1 99.2  1.1 99.3  1.1 

6.2   Performance Evaluation using Optimal Parameter Selection 

From experimental results, we chose an optimal number of blocks to be 5  5. Using HNAD measure, we 

achieved a recognition rate of 95.8% and 98.4% for a 7-class and 6-class problem respectively for CK 

dataset. Similarly, the accuracy of 97.2% and 95.2% is reported on JAFFE for a 6-class and 7-class 

problems. Comparison of proposed method with various local descriptors like Gabor [38], LBP [30] and 

LDP [24] is shown in Table 3 for CK and JAFFE dataset. Results show the superiority of proposed method 

with HNAD measure. 

Table 3. Performance comparison on CK and JAFFE dataset using template matching. 

 CK JAFFE 

Descriptor C = 6 C = 7 C = 6 C = 7 

Gabor [38] 83.7  4.5 78.9  4.8 81.9  6.4 75.5  5.8 

LBP [30] 84.5  5.2 79.1  4.6 83.7  6.7 77.2  7.6 

LDP [24] 89.2  2.5 86.9  2.8 87.4  5.6 82.6  4.1 

LMBP 98.4  1.4 95.8  1.8 95.2  2.2 97.2  1.7 

In recent time, LS-SVM [37] has emerged as a first choice classifier for researchers. We also conduct 

experiments using LS-SVM with different kernels. Block based approach produces a very big feature vector. 

For M  N blocks, LMBP produces the feature vector of size 256 * (MN + 1). Training the classifier for such 

a big vector is very difficult and time-consuming. Huge feature vector often leads to over trained model. In 

order to reduce the dimensions of the feature vector, we used principal component analysis. From 

experiment, we chose first 70 eigenvectors with highest eigenvalue for the projection. Results of this 

experiment for state of the art methods on CK dataset are compared in Table 4. With RBF kernel, we 

achieved highest recognition rate among all compared methods. 

Table 4. Performance comparison of different methods on CK dataset using support vector machine 

 Accuracy for 6-class problem Accuracy for 7-class problem 

Technique Linear (%) Poly. (%) RBF (%) Linear (%) Poly. (%) RBF (%) 

Gabor [38] 89.4  3.0 89.4  3.0 89.8  3.1 86.6  4.1 86.6  4.1 86.8  3.6 

LBP [30] 91.5  3.1 91.5  3.1 92.6  2.9 88.1  3.8 88.1  3.8 88.9  3.5 

LDP [24] 94.9  1.2 94.9  1.2 96.4  0.9 92.8  1.7 92.8  1.7 93.4  1.5 

LMBP 92.1  2.9 98.9  1.7 99.3  1.4 86.6  2.8 97.8  1.5 98.2  1.0 

A similar experiment is conducted on JAFFE dataset. Comparison of proposed method with existing 

work on JAFFE dataset is presented in Table 5.  
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Table 5. Performance comparison of different methods on JAFFE using support vector machine 

 Accuracy for 6-class problem Accuracy for 7-class problem 

Technique Linear (%) Poly.  (%) RBF (%) Linear (%) Poly. (%) RBF (%) 

Gabor [38] 85.1  5.0 85.1  5.0 85.8  4.1 79.7  4.2 79.7  4.2 80.8  3.7 

LBP [30] 86.7  4.1 86.7  4.1 87.5  5.1 80.7  5.5 80.7  5.5 81.9  5.2 

LDP [24] 89.9  5.2 89.9  5.2 90.1  4.9 84.9  4.7 84.9  4.7 85.4  4.0 

LMBP 87.8  2.2 91.2  2.1 92.3  2.5 81.7  3.2 80.6  2.2 88.3  1.4 

TFEID dataset is not much explored by researchers. We test the robustness of our method on TFEID also, 

and results are depicted in Table 6. As stated earlier, we chose 70 features after PCA projection. Optimal 

number of blocks chosen for experiment are also same as earlier, i.e. 5  5. 

Table 6. Performance of LMBP on TFEID 

 Template Matching Machine Learning 

#Class L2 Norm Chi - Square HNAD Linear (%) Polynomial (%) RBF (%) 

6 89.9  4.1 90.31  4.3 91.78  3.9 92.9  4.1 85.8  3.6 92.5  4.2 

7 86.4  5.2 86.5  5.3 89.9  5.2 90.0  4.8 87.9  5.6 90.4  5.1 

Results discussed so far were averaged over all six or seven expressions. To get a better idea about 

recognition rate of individual expression, confusion matrix for CK, JAFFE, and TFEID are shown in Table 

7. Results are reported using LS-SVM with RBF kernel. 

Table 7. Confusion matrix for a 7-class problem for all three datasets, classifier: LS-SVM (RBF) 

 Confusion matrix for CK  Confusion matrix for JAFFE  Confusion matrix for TFEID 

 AN DI FE HA SA SU NE AN DI FE HA SA SU NE AN DI FE HA SA SU NE 

AN 98.0 0.3 0.7 0.0 0.8 0.0 0.2 85.6 2.3 5.3 1.1 3.3 0.8 1.6 88.3 5.2 2.3 1.0 1.5 0.6 1.1 

DI 0.6 97.4 0.8 0.1 0.9 0.0 0.2 4.6 84.4 4.8 0.7 3.1 0.5 1.9 4.5 87.2 3.6 1.4 1.1 0.9 1.3 

FE 0.8 0.8 97.7 0.1 0.1 0.3 0.2 5.6 3.4 85.2 1.6 2.1 0.0 2.1 3.2 2.1 91.1 0.6 1.3 0.8 0.9 

HA 0.1 0.1 0.1 99.6 0.1 0.0 0.0 2.1 1.2 1.1 93.2 0.7 0.3 1.4 1.4 1.1 2.9 92.1 0.4 1.1 1.0 

SA 0.7 1.1 0.6 0.2 96.2 0.2 1.0 2.3 3.8 2.3 1.7 85.2 1.2 3.5 1.9 2.1 3.4 1.1 89.2 0.2 2.1 

SU 0.0 0.1 0.1 0.0 0.0 99.8 0.0 0.9 1.7 2.3 1.1 0.7 93.2 0.1 1.2 0.7 2.1 0.8 0.1 94.2 0.9 

NE 0.1 0.2 0.3 0.2 0.4 0.1 98.7 1.9 0.9 1.5 0.8 3.5 0.2 91.2 0.7 1.8 1.4 0.6 4.2 0.3 91.0 

Avg. 98.2 88.3 90.4 

For CK dataset, the average accuracy of 98.2% for seven classes is really encouraging, compared to 

91.4% accuracy reported by Shan et al [30]. Bartlett et al. [38] obtained the highest recognition rate of 93.3% 

using a subset of Gabor filters with Adaboost feature selection and SVM classifier. Using three layers neural 

network, Tian [39] achieved 94% recognition rate with Gabor features along with geometric features. Results 

of proposed method are compared with various existing approaches on CK dataset in Table 8. 

Table 8. Reported accuracy of state of the art methods on CK dataset. 

Literature #Subjects #Class Strategy Acc.(%) 

Yang et al.  [40] 96 6 - 92.3 

Shan et al. [30] 96 6 10 Fold 92.1 

Littlewort et al. [41] 90 7 - 93.3 

Wenfei et al. [42] 94 7 10 Fold 91.5 

Oyuang et al. [43] 94 6 - 93.5 
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Literature #Subjects #Class Strategy Acc.(%) 

Zheng et al.  [44] 97 6 10-Fold 94.0 

LMBP + HNAD 97 7 10-Fold 95.8 

LMBP + HNAD 97 6 10-Fold 98.4 

LMBP + SVM 97 7 10-Fold 98.2 

LMBP + SVM 97 6 10-Fold 99.3 

JAFFE dataset is another widely accepted facial expression dataset, developed by Lyons et al [25]. 

JAFFE does not have as much diversity as CK has. Subjects in JAFFE belong to the same ethnicity and all 

are female. The highest recognition rate of 88.3% and 92.3% is achieved using SVM with RBF kernel for 

seven and six class problem, respectively. Results of proposed method are compared with various state of the 

art methods in Table 9 for JAFFE dataset. 

Table 9. Reported accuracy of state of the art methods on JAFFE dataset. 

Literature  Method Acc. (%) 

Lekshmi and Sasikumar [45] SVM 86.9 

Zhi and Ruan [46] 2D-DLPP 95.9 

Zhao, Zhuang, and Xu  [47] PCA + ANN 93.7 

Owusu et al. [48] Gabor + MFFNN 96.8 

Proposed 

LMBP + HNAD (C = 7) 97.2 

LMBP + HNAD (C = 6) 95.2 

LMBP + SVM (C = 7) 88.3 

LMBP + SVM (C = 6) 92.3 

6.3   Expression Recognition in Low Resolution 

It is not always possible to acquire high-quality images under all circumstances. In certain applications 

such as home monitoring, surveillance applications, smart meeting, only low-resolution videos are available 

[39]. Expression recognition in low resolution is an almost unaddressed area, very little work is done in this 

field. In our experiment, we studied the performance of LMBP operator at four different resolutions: 150  

110, 75  55, 48  36 and 37  27. Low-resolution images are derived by down-sampling the original 

images. Shan et al. [30] conducted the experiment in low resolution with LBP and Gabor features derived by 

convolving the image with 40 gabor filter banks. The classification was performed using SVM. Tian [39] 

selected 375 image sequences from CK dataset. He used geometric and appearance features. Geometric 

features were computed using feature tracking and feature selection. Appearance features were derived using 

40 gabor filter banks. The three-layer neural network was used for expression classification. Due to down 

sampling and smaller size of the image, geometric features do not make sense, as detecting and tracking 

geometric feature is also difficult and vulnerable in such environment. So, only appearance features should 

be considered for classification. Jabid et al. [24] derived LDP features using 8 Kirsch edge detectors. They 

achieved notable recognition rate using SVM. In Table 10, the performance of LMBP in low resolution is 

compared with various existing approaches.  
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Table 10. Performance comparison of different methods in low-resolution environment 

Resolution 150  110 75  55 48  36 37  27 

Feature Descriptor 

    

Gabor [39] 92.2 91.6 - 77.6 

Gabor [38] 89.1  3.1 89.2  3.0 86.4  3.3 83.0  4.3 

LBP [30] 92.6  2.9 89.9  3.1 87.3  3.4 84.3  4.1 

Gabor [30] 89.8  3.1 89.2  3.0 86.4  3.3 83.0  4.3 

LDP [24] 96.4  0.9 95.5  1.6 93.1  2.2 90.6  2.7 

LMBP 95.9  1.7 97.0  1.8 95.9  2.9 94.8  1.7 

7  Conclusions and Future Work 

In this paper, we present a novel facial expression descriptor, Local Mean Binary Pattern and a novel 

classifier Histogram Normalized Absolute Difference. Gabor involves extensive computation due to the 

convolution of image with a large filter bank. LBP is sensitive to both, noise and non-monotonic gray level 

change. LDP is also computationally expensive as it requires eight masks to compute a single LDP code. As 

LMBP performs the thresholding with respect to mean of the patch, it can sustain against noise and 

illumination change stronger than other descriptors. LMBP is simple and fast yet quite effective. 

The performance of LMBP is evaluated in the different scenario for CK, JAFFE, and TFEID. Results 

confirm the consistency of LMBP in the sense that it achieves good recognition rate with very less standard 

deviation. In an uncompressed domain, with HNAD proposed method achieves a recognition rate of 98.4%  

1.4 and 95.8%  1.8 for CK dataset, and for JAFFE it achieves 95.2%  2.2 and 97.2%  1.7 for 6-class and 

7-class problem, respectively. Even in the low-resolution environment, LMBP achieves a recognition rate of 

94.8% for 37  27 image on CK, which is remarkable. 

In future, LMBP operator may be extended for temporal domain. Rotation invariance property of LMBP 

operator is yet to be explored. Like LBP, uniform pattern shall be derived and tested for LMBP too. 
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