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Abstract 

In this paper a novel multi-objective optimization technique based on Inclined Planes Optimization algorithm 

(called MOIPO), is used to design an ensemble classifier. Diversity, ensemble size, and error rate are three 

objectives which are considered along designing the proposed ensemble classifier. 

The performance of designed ensemble classifier is tested on different kinds of benchmarks with nonlinear, 

overlapping class boundaries, and different feature space dimensions. Extensive experimental and comparative 

results on these data sets provided to show the performance of the proposed method, are better than ensemble 

designed by Multi-Objective Particle Swarm Optimization (MOPSO) algorithm. 

Another important aspect of this article is stability analysis of designed ensemble classifier. In fact, for the 

first time, the stability of a heuristic ensemble classifier is analyzed by using statistical method. For this aim, 

three regression models are investigated by applying F-test to find better model in each case. Due to the results 

of stability analysis, quadratic model is the best model for two datasets as representative of simple data and 

overlapped data. 

 

Key Words: Ensemble Classifier, Heuristic Algorithms, Multi-Objective Inclined Planes Optimization 
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1 Introduction 

Ensemble method is one of the main developments in machine learning in the past years. An ensemble 

classifier contains a group of individually trained classifiers whose predictions are combined when 

classifying new samples [1]. In other words, an ensemble classifier combines a finite number of classifiers of 

the same type or different, trained concurrently for a joint classification problem. The ensemble efficiently 

amends the performance of the classifier compared to a single classifier [2]. 

On the first step of designing an ensemble classifier, several base classifiers, which are usually traditional 

and known classifiers in pattern recognition, are used. At this point, the designer should employ a collection 

of complementary base classifiers which can cover the weakness of each other by making independent and 

supplementary decisions. Thus, as regards to the diversity among base classifiers is an important factor for 
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achievement of ensemble classifier systems, and considering that the classifiers are built in a learning 

process and on the other hand, in order to have diverse base classifiers, it's necessary to make the learning 

process of base classifiers different; this task can be attained in various methods. Finally, the outcome of this 

step is a pool of base classifiers. 

There are two main techniques when dealing with ensemble classifiers: fusion and selection. In the first, 

it's expected that each classifier has independent error. Of course, it's difficult to inflict independence among 

the components of ensemble because base classifiers are redundant [3]. Since they obtain the answer to an 

equivalent problem, there is no assurance that a specific ensemble combination method attains independent 

error [4]. By contrast, the aim of classifier selection is to find the most efficient subset of classifiers instead 

of combining all existing classifiers and this method is applied in this paper. 

In designing an ensemble classifier, there are a variety of significant topics which affect directly on the 

performance of the designed ensemble classifier. Some of instances in this issue include: number and kind of 

base classifiers, training technique, method of making final decision and combining decisions, feature 

selection (possibly feature fusion), even, the ultimate aim of designing an ensemble classifier. These 

problems make a complex search space with high dimensions so it is often impossible to find the best 

solution in such space by using trial and error. On the other hand, heuristic algorithms have the capability to 

search the solution space efficiently and thus, they can find best solutions. So, the use of such algorithms is 

proposed to design ensemble classifiers. 

Heuristic algorithms sometimes receive various solutions in different simulation runs due to the random 

nature of them. These responses are highly dependent on the structural parameters of employed algorithms. 

An important issue in the literatures of heuristic algorithms application is stability which means how much 

the changes of structural parameters influence the output of heuristic methods. 

Several researches have addressed the stability analysis of heuristic algorithms; in [5] a stability analysis 

of the stochastic particle dynamics in particle swarm optimizer is provided. The analysis is made feasible by 

representing the particle dynamics as a nonlinear feedback controlled system as formulated by Lure. The 

impacts of tuning parameters on the performance of genetic algorithm have been evaluated in [6] by using 

regression modeling. An elite reservation technique for the robust GA, which performs random perturbation 

during optimization processes, has been applied in [7]. 

Since, there is no study related to stability of multi-objective heuristic ensemble classifiers, in this paper, 

for the first time, the stability of these systems is investigated by using statistical analysis. In order to 

accomplish this, in the first step, two multi-objective heuristic algorithms, named Multi-Objective Inclined 

Planes Optimization (MOIPO) and Multi-Objective Particle Swarm Optimization (MOPSO), are used to 

design ensemble classifiers. Then, the performance of these ensemble classifiers is studied in terms of three 

objective functions including ensemble size, error rate and diversity. Finally, stability analysis of the best 

ensemble classifier is done. 

The rest of this paper is organized as follows: Section 2 provides the related works. In section 3, the 

technique of stability analysis, which is used in this research, is presented. Section 4 reviews the employed 

multi-objective heuristic algorithms. Section 5 explains how to design multi-objective heuristic ensemble 

classifiers and implement the stability analysis of the best one. Section 6 discusses the results and finally 

Section 7 is devoted to conclusions. 

2 Related Works 

There are several ensemble approaches for combining a set of classifiers. Among them, boosting [8] and 

bagging [9] are two important methods which have been widely used. 

Boosting changes the distribution of weights of each training sample. Initially the weights are uniform for 

all the training samples [10]. This approach increases weight on the misclassified samples through iterations. 

The samples that are incorrectly classified by previous classifiers are selected more often than samples that 

are correctly classified. So Boosting tries to produce new classifiers which are better able to classify samples 

for which the present ensemble’s performance is poor. Boosting combines predictions of ensemble of 

classifiers with weighted majority voting by giving more weights on more accurate predictions [11]. 
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In Bagging procedure, the training subsets are randomly selected (with replacement) from the original 

training set. Similar base classifiers are trained on the subsets. Base classifiers are then combined by using 

majority vote of their decisions. The final decision of the ensemble classifier is the class chosen by most base 

classifiers. There are a number of variants of bagging including random forests [12]. A random forest can be 

created from individual decision trees, whose certain training parameters vary randomly. Such parameters 

can be bootstrapped replicas of the training data, as in bagging, but they can also be different feature subsets 

as in random subspace methods [13]. 

Several studies have addressed these types of ensemble classifiers; in [14] an in-depth analysis of a 

random forests model is offered. This paper shows that the procedure is consistent and adapts to sparsity, in 

the sense that its rate of convergence depends only on the number of strong features and not on how many 

noise variables are present. Skurichina and Duin in [15] indicate that bagging, boosting and the random 

subspace method can be beneficial in linear discriminant analysis. Simulation results show that the 

performance of the combining methods is strongly affected by the small sample size properties of the base 

classifier: boosting is useful for large training sample sizes, while bagging and the random subspace method 

are useful for critical training sample sizes. In [16] a way to manage the learning complexity and improve the 

classification performance of AdaBoost.MH is provided and called RFBoost. The weak learning in RFBoost 

is based on filtering a small fixed number of ranked features in each boosting round rather than using all 

features, as AdaBoost.MH does. A novel approach for bankruptcy prediction that applies Extreme Gradient 

Boosting for learning an ensemble of decision trees is proposed in [17]. The connection between the random 

forests and the kernel methods is provided in [18]. It shows that by slightly modifying their definition, 

random forests can be rewritten as kernel methods (called KeRF for kernel based on random forests) which 

are more interpretable and easier to analyze. A novel approach for improving Random Forest in hyper 

spectral image classification is proposed in [19]. The proposed approach combines the ensemble of features 

and the semi-supervised feature extraction technique. 

Besides the mentioned methods, there is a great trend to heuristic approaches; three meta-heuristic 

approaches for the optimization of stacking configuration are studied in [20] in which, accuracy is used to 

compare the results. In [21] first, an optimized static ensemble selection approach is proposed on the basis of 

NSGA-II multi-objective genetic algorithm by simultaneous optimization of error and diversity objectives. In 

the second phase, the dynamic ensemble selection-performance is improved by utilizing the first proposed 

method. A multi-level approach using genetic algorithms is proposed in [22] to build the ensemble of least 

squares support vector machines. To analyze the performance of the proposed method, they prepared two 

new versions of the fitness function; the first version uses only the bad diversity calculation while the second 

consists of the quadratic error norm of the ensemble plus the value of bad diversity. 

Heuristic methods have random parameters and their response can be influenced by these structural 

parameters. Despite the high tendency in designing heuristic ensemble classifiers, there has been no research 

related to the stability analysis of these systems. So in this paper, for the first time, the stability of these 

systems is investigated by using statistical analysis which is described in detail in the next section. 

3 Statistical Analysis of Stability 

Response surface methodology (RSM) is a set of mathematical and statistical methods beneficial for 

developing, improving, and optimizing processes [23]. The most extensive applications of RSM are in the 

cases where multiple input variables potentially impress some performance measures or quality 

characteristics of the process which is called the response. The input variables are sometimes named 

independent variables and they are subject to the control of the scientist or engineer, at least for the goals of a 

test or an experiment. 

In general, assume that the scientist or engineer (the experimenter) is concerned with a process involving 

a response y that pertains to the controllable input variables ξ1, ξ2, …, ξk. The relationship is shown in the 

following: 

   ),...,,( 21 kfy
 (1)  
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Where the form of the true response function f is unknown and probably very complex, and  is a term that 

indicates other sources of variability not considered in f.  is treated as a statistical error, often assuming to 

have a normal distribution with mean zero and variance σ
2
. So the response function is: 

   ),...,,()(),...,,()( 2121 kk fEfEyE  
 (2)  

In much RSM works, it is appropriate to transform the controllable input variables to coded variables x1, 

x2, …, xk, which are usually described to be dimensionless with mean zero and the same standard deviation. 

In terms of the coded variables, the true response function (2) is now specified as: 

 ),...,,( 21 kxxxf
 (3)  

The form of the true response function f must be approximated because it is unknown. In fact, prospering use 

of RSM is critically dependent upon the experimenter’s ability to develop a proper approximation for f. 

It's worth noting that there is a close relationship between RSM and linear regression analysis. For 

example, consider the following model: 

   kk xxxy ...22110  (4)  

The β’s are a collection of unknown parameters. To assess the values of these parameters, one must gather 

data on the system under study. Regression analysis is a branch of statistical model building that utilizes 

these data to estimate the β’s. In general, polynomial models are linear functions of the unknown β’s, so the 

technique is mentioned as linear regression analysis [24]. In the following subsections linear regression 

models and F-test for significance of regression are described in details. 

3.1 Linear Regression Models 

One can fit a response surface for predicting y at various combinations of the design factors. In general, 

linear regression methods are used to fit these models to the experimental data [25]. 

For example, a first-order response surface model, which is a multiple linear regression model with two 

independent variables, is shown in the following:  

   22110 xxy
 (5)  

It is very important that one learns to interpret the coefficient estimates both correctly and completely. 

Sometimes, β1 and β2 are called partial regression coefficients, because β1 measures the expected change in y 

per unit change in x1 when x2 is maintained constant, and β2 measures the expected change in y per unit 

change in x2 when x1 is maintained constant. The intercept i.e. β0 is the estimate of the mean outcome 
when x equals zero [26]. 

Models which are more complicated in appearance than equation (5) may often be analyzed by multiple 

linear regression techniques so far. As an example, considering adding an interaction term to the first-order 

model in two variables: 

   211222110 xxxxy
 (6)  

Let x3=x1x2 and β3= β12, then the equation (6) can be written as a standard multiple linear regression model 

with three variables: 

   3322110 xxxy
 (7)  

In general, any regression model which is linear in the β-values is a linear regression model, irrespective 

of the shape of the response surface that it produces [25]. 

The technique of least squares is usually used to assess the regression coefficients in a multiple linear 

regression model. It says that one should choose as the best-fit line, that line which minimizes the sum of the 
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squared residuals, where the residuals are the vertical distances from individual points to the best-fit 

regression line [26]. 

3.2 F-Test for Significance of Regression 

Certain tests of hypotheses about the model parameters are beneficial in measuring the utility of the 

model in multiple linear regression problems. 

The test for significance of regression is a test to specify, if there is a linear relationship, between the 

response variable y and a subset of the variables x1, x2, …, xk. The appropriate hypotheses are: 

 
joneleastatfor:H

...:H

j

k

0

0

1

210


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


 (8)  

Rejection of H0 in equation (8) pointed that at least one of the variables x1, x2, …, xk contributes significantly 

to the model [24]. 

One could use the P-value approach to hypothesis testing and hence, reject H0 if the P-value for the 

statistic F0 is less than α which is level of significance. In other words, the p-value is the smallest level of 

significance that would lead to rejection of H0 with the given data. This test method is called an analysis of 

variance (ANOVA) [27]. 

The coefficient of multiple determination R
2
 is a measure of the amount of reduction in the variability of y 

achieved by using the variables x1, x2, …, xk in the model. From inspection of the analysis of the variance, it's 

obvious that R
2
 varies between 0 and 1. However, a large value of R

2
 does not necessarily connote that the 

regression model is a good one. Adding a variable to the model will always enhance R
2
, regardless of 

whether the extra variable is statistically important or not. 

Because R
2
 always increases by adding terms to the model, some regression model builders prefer to 

apply an adjusted R
2
 statistic described as: 

 )R(
pn

n
Radj

22 1
1

1 





 
(9)  

Where n is the number of observations and p is the number of β’s in the model [24]. 

It's worth mentioning that, the impact of each variable is determined according to the measured β which is 

related to it. 

4 Multi-Objective Heuristic Algorithms 

Heuristic approach is a strategy that disregards some of the information to make decisions rapidly with 

maximum savings in time and with more precision than of complicated technique [28]. This method 

guarantees greater probability to reach optimal solutions because it uses a population to explore the problem 

space [29]. 

Searching operation in multi-objective heuristic algorithms is accomplished in parallel; means a set of 

agents search the problem space. So, they can find Pareto-optimal solutions with a single simulation run. 

These algorithms can save time and also flee from local optimum with special schemes and converge to 

global optimum. 

In multi-objective optimization unlike single-objective optimization, a single solution cannot be 

introduced as the best solution. In such problems, a set of solutions, which complies each objective function 

with an acceptable level, is defined as optimal solutions [30]. 

In this paper, two multi-objective optimization algorithms (called MOIPO and MOPSO) are used and 

they are defined in the following subsections. 

4.1 Multi-Objective Inclined Planes Optimization (MOIPO) Algorithm 
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IPO algorithm mimics the dynamic motion of spherical objects along frictionless inclined plane. All of 

these objects have tendency to reach the lowest points. In this algorithm, the agents are some tiny balls which 

explore the problem space to find optimal solutions. The main idea of IPO is to impute height to each agent, 

regarding to its objective function. These heights are estimations of the potential energy of each agent that 

should be transformed to kinetic energy by assigning suitable acceleration. In fact, agents tend to tine their 

potential energy and to reach the minimum point(s) [31]. 

Position, height and angles made with other agents, are three characteristics of each ball in the search 

space. The position of each ball is a possible solution in the problem space and their heights are acquired 

using a fitness function. 

In a system with N balls, the position of the i-th ball is defined by: 

   N,1,2,ifor,x,,x,,xx n
i

d
i

1
ii    (10)  

Where, d
ix is the position of i-th ball in the d-th dimension in an n dimensional space. At a given time t, angle 

between the i-th ball and j-th one in dimension d, i.e. d
ijφ , is calculated using the following equation: 
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(11)  

Where,  tf i  is the height (value of objective function) for the i-th ball in time t. Because a specific ball tends 

to move toward the lowest heights on the inclined plane, only balls with lower heights (fitness) are used in 

acceleration calculating. 

The amplitude and direction of acceleration for the i-th ball at time t and in dimension d, is measured 

using: 

          tiφsin.tftfUta d
j

N

1j
ij

d
i  

  
(12)  

In which, )U(  is the Unit Step Function: 

Finally, the following equation is used to update the position of the balls: 

 
   

   txΔt.t.vrand.k

Δt.ta..randk1tx

d
i

d
i22

2d
i11

d
i





 

(13)  

rand1 and rand2 are two random weights distributed uniformly on the interval [0,1].  tv d
i  is the velocity of i-

th ball in dimension d, at time t. to control the search process of algorithm, two essential parameters named 

k1 and k2 are used. These control parameters of IPO are described as functions of time (t) by using: 

  
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(15)  

Where c1, c2, shift1, shift2, scale1 and scale2 are constants determined for each function, experimentally. 

 tv d
i  is: 

  
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Δt
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d
i

d
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

 
(16)  

In the above equation, d
bestx is employed in numerator to determine the ball desire to reach the best position in 

any iteration. 

The main structure of the Inclined Planes optimization algorithm should be amended to use it in multi-

objective problems [32]. The main steps of multi-objective IPO are shown in the flowchart of Figure 1: 
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Figure 1: The flowchart of MOIPO algorithm 

4.2. Multi-Objective Particle Swarm Optimization (MOPSO) Algorithm 
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Particle swarm optimization algorithm, which presented by James Kennedy and Russell Eberhurt, is one 

of the most important intelligent optimization algorithms and stands in the field of swarm intelligence. This 

algorithm inspires the social behavior of animals like fishes and birds that live in small and large groups [33]. 

In PSO algorithm, feasible solutions for an optimization problem are considered as birds without volume 

and quality specifications called particles. These birds fly in an N-dimensional space and change their 

movement route based on the past experiences of themselves and their neighbors. 

The position of the i-th particle in a system contained N particles is demonstrated as: 

   Sx,,x,xx n
iiii  21

 
(17)  

In which S is the search space. 

The velocity vector and the best remembered individual particle position vector are: 

  n
iiii v,,v,vv 21

 
(18)  

  n
iiii p,,p,pp 21

 
(19)  

New particles' positions are acquired by using: 
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(21)  

In above equations: 

 : Inertia weight. 

gp : Best remembered swarm position. 

1c : Cognitive parameter. 

2c : Social parameter. 

1r , 2r : Random numbers between 0 and 1. 

Each particle has a maximum velocity that is specified by user. 

Multi-Objective version of PSO can be achieved by applying some changes. In this situation, unlike the 

single-objective mode, the concept of best particle (best remembered individual particle position) is not fixed 

but each particle selects randomly a member from the repository as leader per moment. One of the most 

famous and effective proposal for multi-objective particle swarm optimization algorithm (MOPSO) is 

introduced in [34]. The steps of MOPSO are similar to MOIPO which was described in the sub-section 4.1. 

The important differences between MOIPO and MOPSO are the mechanisms of space exploration and 

employed equations. 

5  Design and Stability Analysis of Multi-Objective Heuristic Ensemble 

Classifiers 

The purpose of this paper is to design multi-objective heuristic ensemble classifiers and also to perform 

stability analysis which is not addressed in recent researches. So, at first, two multi-objective heuristic 

ensemble classifiers with three objective functions are designed by exerting MOIPO and MOPSO algorithms 

then, the victor ensemble classifier is selected for stability analysis. Statistical procedure, which was 

explained previously in section 3, is used for performing stability analysis. Now, in the following 

subsections, the way of designing ensemble classifiers and analyzing the stability are explicated. 

5.1 Design Step 
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In the design step, the applied optimization algorithm is looking for the best subset of classifiers, in terms 

of size, error rate and diversity, among an initial pool of classifier. Thus, ensemble size, error rate and a 

diversity measure are used as three objective functions to guide the optimization process. It is worth 

mentioning that in design step, all parameters of the applied algorithms are constant. 

Random subspace method is used to create the initial pool of classifiers and k-Nearest Neighbors (kNN) 

classifiers with k=1 are the base classifiers. 

10-fold cross-validation strategy is applied in the experiments; in K-fold cross-validation, K-1folds are 

used for training and the last fold is used for evaluation. This process is repeated K times, leaving one 

different fold for evaluation each time. 

The specifications of datasets used in the first step, are briefed in Table 1. 

 

Dataset 
Number of 

samples 

Number of 

features 

Number of 

classes 

Glass 

Iris 

Wine 

Wisconsin 

214 

150 

178 

683 

9 

4 

13 

9 

2 

3 

3 

2 

Table 1: Specifications of datasets 

In all experiments, population size and number of iterations are considered 20 and 200 respectively. 

Three important issues should be defined properly when applying heuristic algorithms for optimization: 

search agents, objective function and combination technique. These issues are explained in the next 

subsections. 

5.1.1 Search Agents Description 

Agents' dimensions in both algorithms are twice the size of primary pool of classifiers. Since the primary 

pool contains 50 classifiers, considered dimensions for search agents will be 100. Dimensions 1 to 50 are 

coded in binary; ‘1’ means the classifier is selected and ‘0’ means the classifier is not selected. Other 

dimensions specify coefficients related to each classifier; these coefficients are used in classifier combination 

process. 

5.1.2 Fitness Function Description 

Evaluation of each member of the population is done by objective (fitness) function calculation. In this 

paper, ensemble size, error rate and diversity measure are considered as objective functions to design multi-

objective heuristic ensemble classifiers. It's expected these functions will be optimized by using multi-

objective heuristic algorithms. 

A. Diversity 

Diversity among the members of a team of classifiers has been recognized as a key issue in classifier 

combination. Notwithstanding the popularity of the idiom diversity, there is no single definition and measure 

of it. Although several measures have been proposed to demonstrate the diversity and are optimized 

explicitly in different ensemble learning algorithms, none of these measures is proven premier to the others 

[35]. 

 In this research, the Q statistic is used as a diversity measure and is defined according to [36] in the 

following. 

Let Z={z1, ..., zN}be a labeled dataset. The output of a classifier Di can be represented as an N-dimensional 

binary vector yi =[y1,i ,... ,yN,i]
T
, such that yj,i =1 if Di distinguishes correctly zj and 0 otherwise, i =1,...,L. 

Yule’s Q statistic for two classifiers Di and Dk is: 
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Where N
ab

 is the number of elements zj of Z for which yj,i =a and yj,k =b (see Table 2). 

 

 Dk correct (1) Dk wrong (0) 

Di correct (1) N
11

 N
10

 

Di wrong (0) N
01

 N
00

 

Table 2: A 2×2 table of the relationship between a pair of classifiers 

For an ensemble of L classifiers, the averaged Q statistics over all pairs of classifiers is computed as: 
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It's worth mentioning that the diversity is greater if the Q statistic is lower [37]. 

B. Ensemble size 

Most extant approaches in ensemble learning employ all the trained constitutive classifiers to create 

ensembles, which are sometimes inessentially large and can propel to extra computational times and costs 

[10]. One of the objective functions of this paper is ensemble size which is expected to be minimized. 

C. Error rate 

Classification error rate is used as another fitness function to instruct the optimization process. In fact, 

recognition rate will be maximized if error rate minimized. 

In order to compare the performance of two algorithms in designing ensemble classifiers, three points 

from Pareto front are selected and compared; these points are an ensemble with minimum size, an ensemble 

with minimum error rate and an ensemble with maximum diversity. 

5.1.3 Combination Technique 

When a subset of classifiers is found, a combination technique should be applied. Weighted voting is used 

in this research as combination rule. The weight of each classifier is characterized by the search agent. If a 

classifier is selected, its relevant coefficient should be used in combination process. 

5.2 Stability Analysis Step 

After determining the winner algorithm in the first step, second step i.e. stability analysis starts. To obtain 

required data for this phase, the algorithm's parameters, which were constant in the previous step, change in 

the range of 50% and the algorithm is repeated as many as the number of necessary observations. 

To perform stability analysis, Iris and Glass datasets are utilized as a representative of simple data and 

overlapped data respectively. 

For stability analysis, six parameters (c1, c2, shift1, shift2, scale1 and scale2) are considered as variables 

(coded to x1 to x6, respectively) and three points of Pareto front (ensemble with minimum error rate, 

ensemble with minimum size and ensemble with maximum diversity) are chosen for response value (y). 

Then three regression models are checked by using F-test meanwhile α=0.05. These models are linear, 

quadratic and cubic which are specified in the following equations respectively: 

 66110 x...xy  
 (24)  
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Next section provides obtained results of two mentioned steps. 

6  Experimental Results and Discussion 

The obtained results of design step are reported in Table 3 to 5. The numerical values of three objective 

functions in these tables are the average of 5 independent runs. It's worth mentioning that the ensemble in 

Table 3, Table 4 and Table 5 are an ensemble with minimum size, an ensemble with minimum error rate and 

an ensemble with maximum diversity respectively. 

 

Dataset Algorithm Ensemble size Error rate Q statistic 

Glass 
MOPSO 7.8 0.033 0.673 

MOIPO 7.6 0.043 0.692 

Iris 
MOPSO 12.8 0.057 0.707 

MOIPO 5.2 0.063 0.666 

Wine 
MOPSO 11.8 0.076 0.208 

MOIPO 7.2 0.057 0.242 

Wisconsin 
MOPSO 11.6 0.023 0.733 

MOIPO 7 0.023 0.732 

Table 3: Obtained comparative results using MOPSO and MOIPO (Ensemble with minimum size 

considered as best ensemble) 

Due to Table 3, MOIPO performs better than MOPSO for all datasets; the value of ensemble size is 

smaller when using MOIPO algorithm for designing multi-objective ensemble classifier. In the best case, 

ensemble size has improvement by 59.38% for Iris by using MOIPO. 

 

Dataset Algorithm Ensemble size Error rate Q statistic 

Glass 
MOPSO 15.4 0.029 0.678 

MOIPO 22.4 0.028 0.649 

Iris 
MOPSO 15 0.056 0.700 

MOIPO 17.6 0.052 0.713 

Wine 
MOPSO 16.8 0.063 0.297 

MOIPO 20.8 0.037 0.319 

Wisconsin 
MOPSO 14.4 0.022 0.702 

MOIPO 16.2 0.021 0.728 

Table 4: Obtained comparative results using MOPSO and MOIPO (Ensemble with minimum error rate 

considered as best ensemble) 

According to Table 4, for all datasets, MOIPO has outperformed MOPSO in terms of error rate values. 

For Wine, MOIPO compared with MOPSO leads to 41.27% improvement. 
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Dataset Algorithm Ensemble size Error rate Q statistic 

Glass 
MOPSO 14 0.035 0.590 

MOIPO 12.4 0.045 0.530 

Iris 
MOPSO 17.2 0.059 0.673 

MOIPO 8.8 0.067 0.589 

Wine 
MOPSO 9.4 0.076 0.376 

MOIPO 8.6 0.058 0.173 

Wisconsin 
MOPSO 15.8 0.023 0.665 

MOIPO 11.2 0.023 0.629 

Table 5: Obtained comparative results using MOPSO and MOIPO (Ensemble with maximum diversity 

considered as best ensemble) 

According to Table 5, the value of Q statistic is better when using MOIPO. Obtained improvement of this 

measure is up to 53.99%. 

Up to now, experimental results confirm that MOIPO, as a novel multi-objective optimization, has high 

capability to design multi-objective heuristic ensemble classifier with improved values of considered 

objective functions. So, this algorithm is selected for next step i.e. stability analysis. In order to provide a 

comparison between proposed ensemble classifier and existing methods, the obtained error rate in Table 4 is 

compared with obtained error rate using Bagging and Boosting methods in Table 6. 

Dataset 

Algorithm  
Glass Iris Wine Wisconsin 

Bagging[10] - - - 0.033 

Boosting[10] - - - 0.036 

Bagging[38] - 0.06 0.051 0.044 

Boosting[12] 0.214 0.053 - - 

Bagging[39] - - 0.065 0.047 

Boosting[39] - - 0.040 0.033 

Boosting[40] 0.469 0.111 0.040 - 

MOPSO 0.029 0.056 0.063 0.022 

MOIPO 0.028 0.052 0.037 0.021 

Table 6: A comparative analysis of error rate between the proposed ensemble classifier and other methods 

Table 6 provides a comparative analysis of error rate between the proposed ensemble classifier and 

existing methods such as Bagging and Boosting. According to this Table, MOIPO outperforms other 

methods for all datasets. 

Another important issue is that there is no explicit measure of diversity involved in the process of 

Boosting and Bagging but it is assumed that diversity is a key factor for the success of these algorithms [37]; 

diversity in a bagging-based ensemble classifier was achieved by training the base classifiers using different 

randomly drawn (with replacement) subsets of data. On the other hand, a boosting-based ensemble classifier 

was used to create data subsets for base classifier training [41]. However diversity is considered as a measure 

in the proposed heuristic ensemble classifier and can be optimized during iterations. Also, it’s worth noting 

that Bagging and Boosting are full ensembles because they use all trained component classifiers but the 

proposed ensemble uses a subset of the full ensemble. 
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Table 7, summarizes the qualitative results of stability analysis regard to R
2
; means which model is good 

in each case. 

 

Dataset Model Result 

Glass 

Linear No 

Quadratic Yes 

Cubic Yes 

Iris 

Linear No 

Quadratic Yes 

Cubic Yes 

Table 7: Qualitative results of stability analysis 

As Table 7 shows, quadratic and cubic models are better for both datasets. Now the results of F-test for 

good models are reported in Table 8. 

 

Dataset 

Quadratic model (53 observations) Cubic model (180 observations) 

Measure 
Result 

Measure 
Result 

Size Error Q Size Error Q 

Glass 

R
2
 0.693 0.397 0.500 R

2
 0.571 0.159 0.415 

adjusted R
2
 0.600 0.216 0.349 adjusted R

2
 0.523 0.065 0.349 

P-value 0.000 0.000 0.000 P-value 0.000 0.044 0.000 

Iris 

R
2
 0.533 0.376 0.449 R

2
 0.458 0.909 0.326 

adjusted R
2
 0.392 0.188 0.283 adjusted R

2
 0.396 0.899 0.250 

P-value 0.000 0.000 0.009 P-value 0.000 0.000 0.000 

Table 8: F-test results for selected models 

According to Table 8, both models are eligible in terms of P-value for both datasets but quadratic model 

is better for Glass regard to the value of adjusted R
2
. This measure is much greater for error response using 

cubic model for Iris while the value related to Glass data is not good. So, if the quadratic model is selected 

for both dataset, it can perform better than the other model. This model can be stated by following equations, 

for Glass and Iris, respectively: 
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According to above equations, for Glass, scale2, shift1 and the square of scale2 are respectively more 

important for ensemble size, error rate and diversity, because their related β is larger. For the same reason, 

shift2, c2 and shift2 have greater impact for Iris in ensemble size, error and diversity, respectively. 

 It's worth noting that the difference between obtained coefficients for error in two datasets is reasonable 

because Iris is a simple dataset which can be classified easily so the algorithm is stable for this objective 

function and changing the parameters has no significant impact but for Glass, the stability is affected by 

parameters due to the complexity of dataset. 

7  Conclusion 

In this paper, in order to design multi-objective ensemble classifiers, MOIPO and MOPSO are used and 

ensemble size, error rate and Q statistic (as a diversity measure) are employed as objective functions to 

assess ensemble classifiers. Experimental results confirm that MOPIO has better performance than MOPSO. 

Regarding to the significance of stability analysis of heuristic algorithms, the stability analysis of winner 

classifier in evaluation phase is done in the stability phase. Statistical method is used for this step and three 

regression models are investigated by applying F-test to find better model in each case. Due to the results of 

stability analysis, quadratic model is the best model for two datasets. 
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