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Abstract 

Autonomous collision avoidance for visually impaired people requires a specific processing for an accurate 

definition of traversable area. Processing of a real time image sequence for traversable area segmentation is 

mandatory. Low cost systems suggest use of poor quality cameras. However, low cost camera suffers from great 

variability of traversable area appearance at indoor as well as outdoor environments. Taking into account 

ambiguity affecting object and traversable area appearance induced by reflections, illumination variations, 

occlusions (, etc...), an accurate segmentation of traversable area in such conditions remains a challenge. 

Moreover, at indoor and outdoor environments, more added variability is induced. In this paper, we present a fast 

traversable area segmentation approach from image sequence recorded by a low-cost monocular camera for 

navigation system. Taking into account all kinds of variability in the image, we apply possibility theory for 

modeling information ambiguity. An efficient way of updating the traversable area model in each environment 

condition is to consider traversable area samples from the same processed image for building its possibility 

maps. Then fusing these maps allows making a fair model definition of the traversable area. Performance of the 

proposed system was evaluated on public databases, at indoor and outdoor environments. Experimental results 

show that this method is challenging leading to higher segmentation rates. 

 

Key Words: Traversable area segmentation, indoor/outdoor environment, possibility theory, fusion, reference 

window, visually impaired people. 

 

 

1 Introduction 

In recent years, many electronic travel aids (ETA), especially vision-based obstacle avoidance systems, have 

been developed to help the visually impaired people to walk safely [1, 2]. Vision- based obstacle detection is 

one of the major issues that need to be considered to ensure safe navigation of visually impaired people. The 

problem encountered in obstacle detection may often be reduced to a problem of traversable area 

segmentation. The state of the art of traversable area extraction for navigation assistance can be classified 

into two categories:  

- The first category, where obstacle detection is carried out by considering depth information [3, 5, 6 

and 7]: Accordingly, depth map is obtained from various capture devices, such as stereovision 

cameras [3, 4], or Kinect sensors [5, 6]. In [3], ground plane was estimated from stereo camera 
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image using RANSAC (RANdom SAmple Consensus) algorithm [4], combined with least-squares 

optimization. Object detection is performed by regrouping spatial neighbouring points above the 

ground plane. In [5], authors use the disparity map provided by the stereo camera, detects the ground 

plane applying a RANSAC algorithm in the v-disparity domain. In [6] authors use the same 

algorithm RANSAC is applied to depth map for determining the initial region of ground class, then a 

region growing method is applied to find similar colour regions. The depth map is provided by RGB-

D sensor. In [7], authors exploit the depth-maps given by a Kinect sensor to estimate the ground 

plane. After ground plane estimation, the objects in a region of interest are detected. The depth-map 

is divided in 3 vertical regions with 3 different orientations and a vibrating device is associated to 

each of them. Vibration intensity is stronger for the closer obstacle detected in each region. 

 

- The second category, where detection is based on appearance information such as texture, colour, 

hue and saturation for image segmentation using RGB camera [8–12]: In [8, 9], authors have been 

based on histogram features using hue and light information of the image. Accordingly, for each 

pixel, they compute the corresponding features and measure its similarity with the safe window. An 

empirical sub-threshold is then used for decision making. They are based on the assumption that the 

area, in front of the robot, is always traversable (initial state assumption). Then, they make use a 

given safe window to derive the properties of the surface to be analyzed. Such window will be 

relevant and a fair sample, taking into accounts the different environment conditions: luminance 

condition, ground texture and colour. However, given the pixel level dependency of this approach 

and eventual inaccuracy of the empirically chosen sub-threshold value, it cannot handle the 

condition variability of the image. Besides, it cannot be applied to a more general context such as, 

outdoor environment. Frikha et al. have improved in [10] the Ulrich method (described in [9]) to 

detect obstacles having the same colour as the traversable area by adding texture based features in 

segmentation [9]. This method can be easily applied in real time obstacle detection. Although it is 

efficient in indoor environment, it fails for outdoor context. In [11], Li and Birchfield propose 

gradient based techniques for traversable area segmentation. Unfortunately, such technique fails in 

some cases, due to lack of well defined boundaries. In [12], Kröse et al. propose the use of optical 

flow-based techniques; it solves the problem of complex background. However, it incurs additional 

computational cost and can be inaccurate in case of camera vibration and blurry image. 

 

All these methods, when applied to outdoor/ indoor context, are subject to confusion in scene 

interpretation, induced by camera vibration, blurry ground edges, etc. Such ambiguity and uncertainty in 

representation should be considered, in data modelling for sake of robustness/ efficiency. Probability theory 

was the first model used to cope with value uncertainty problem, but they are not suitable to solve ambiguity 

categorizing problem [13]. Theories based on Fuzzy sets [14], proposed later on, by Zadeh, can model 

ambiguity but they fail in case of uncertain data. Theory of belief functions as well as possibility theory was 

proposed later on, to efficiently handle/model ambiguous/uncertain data [15]. However, we can encounter 

some difficulties in belief mass function estimation from histogram features. Possibility theory is however 

naturally adapted to segmentation problems based on histogram features. Exploitation of possibility theory is 

becoming, in latest years, more frequent in the frame of data processing, especially for uncertainty 

modelling. However, no previous work deals with traversable area segmentation, based on possibility theory. 

We aim in this work at designing a powerful system that can be suitable for traversable area segmentation 

for different environment conditions, i.e. indoor, outdoor, and structured or not. We aim accordingly at 

proposing a global traversable area segmentation method. In this paper, we propose a possibility based 

segmentation method based on reference windows; we build an accurate possibility map allowing 

segmentation which is more adapted to the environment conditions. Hence, traversable area segmentation 

will be performed in indoor as well as outdoor environment. 

The paper is organized as follows: in section 2, we detail the main contribution and describe different 

concerns of our system. In section 3, performance evaluations are presented. Finally, we draw in section 4 

our conclusion. 
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2 Proposed segmentation system 

Our system is based on the following methodology aiming at extracting information from the video 

sequences to model traversable area for distinguishing it from non-traversable areas/obstacles. The main 

challenge is to propose an approach that is adaptable to variable environmental conditions. Figure 1 provides 

some examples of such challenging environmental conditions. 

  

Fig.1: Examples of challenging environmental conditions with shadows, reflections from standing water and, wet prints and 

ground condition with existence of obstacle plane (sewer for example) in the traversable area. 

The main target of the segmentation process is to assign each pixel from the analyzed image to a 

particular class of interest, namely traversable area and non traversable area. The image resulting from the 

pixel labeling is henceforth referred to as a thematic map. An important issue which can be addressed here 

concerns the fact that the segmentation lacks additional information related to the degree of certainty 

associated with each thematic class decision. In the proposed system, a pixel X is described as a vector in an 

N dimensional space: 

X = [x1,x2,…,xn], xn  Sn, n=1,2,…,N, where Sn denotes the nth knowledge source observation and N is the 

number of sources. The universal set S is the Cartesian product representing the multisource observation 

space.  

If C =[C1,C2,…,CM] is the set of M image predefined classes, then, based on the fuzzy set theory, each 

class CM is defined as a fuzzy set over S with X(Cm,n), m 1,2,...,M denoting the membership degree with 

which the pixel X S may be treated as belonging to the class CM . 

Possibility theory was introduced by Zadeh in 1978 [16], and developed by Dubois and Prade in 1988 

[17]. This theory represents a tool allowing to model uncertainty related to imprecise information. The main 

purpose is to enable reasoning on imperfect information by the use of a possibility distribution (x). The 

possibility distribution (x) of a singleton x is a mapping:  : [0,1].  

The possibility distribution of x traduces a possibility value of its occurrence such as: (x) 1 means that 

x is completely possible and (x) 0 means that x is completely impossible. To characterize an event A, two 

measures are also defined: the possibility measure (A) and the necessity measure N(A). The possibility 

measure is defined as follows: 

(A)= maxxA (x)                                                          (1) 

This measure shows the degree to which the event A is possible on .  

On the other hand, the necessity measure is defined as following: 

N(A) 1(Ā)= 1maxxA (1- (x))                                            (2) 

Where Ā denotes the complement of A. This measure shows the degree to which A is certain on such 

as: 

N(A) 1 means that Ā is impossible and then A is completely certain and N(A) 0 means that A is 

completely uncertain [18]. 

The proposed segmentation system, depicted in Figure 2, is an image segmentation system based on the 

concept of “possibilistic” knowledge propagation. Assuming the number of thematic classes contained in the 
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analyzed image is given as a prior knowledge (corresponding to the closed world assumption in classification 

systems), the proposed system can be decomposed into the following sub-systems: 

1. Generation of knowledge sources, which are here some sample windows taken as reference for class 

modeling. 

2. Estimation of possibility distributions for each source of knowledge; 

3. The fusion of these distributions in order to have a unique possibility map. 

 

Fig.2: Basic steps of the proposed method for traversable area segmentation. 

2.1 Generation of knowledge sources 

In the first step, knowledge source generation is performed throughout extraction of some features related 

to the reference areas. Accordingly, colour input image RGB values are transformed to the HSV (Hue, 

Saturation and Value) colour space. The convenience of HSV space lies in the extremely intuitive manner of 

perceiving a colour. In [19], Suryani et al. have compared six colour spaces and have shown that the HSV 

space is more effective for image retrieval by content. From the input image, we then select three window 

samples of the traversable area class (RW1, RW2, and RW3), they will be called reference areas (e.g. green, 

blue and red area in Fig. 2). The size of each reference window is 25  25 pixels. For each one, we apply a 

mean linear spatial filtering with kernel size of 5  5 for both H and S channels.  

REFERENCE WINDOW DEFINITION:  

Several prior traversable area segmentation techniques have been developed around the assumption that 

the area immediately in front of the robot is initially traversable and thus they identify the pathway by 

comparison to a safe window near the bottom of the image [8, 9, 14]. This assumption is quite reasonable, 

given the orientation of the camera to the floor and since from the start of navigation, the system is assisting 

the visually impaired by avoiding obstacles. Thus, such region is the nearest to the visually impaired and 

cannot be nothing than an object free traversable area. 

In our approach, we adopt this logic. Thus, the zone in front of the visually impaired person is used as 

reference one. Accordingly, for sake of generalization, we can be based on more than one reference window 

to model the traversable area. Furthermore, features extracted from these windows will be used to classify 

the whole pixels of the remaining image into traversable area or no traversable area. No traversable area 

means a potential obstacle. 

 

In a preliminary work, we tried to optimize the choice of this reference window. 
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(a) (b) 

Fig.3: Reference window definition: (a) case of one window. (b) case of multiple windows. 

 

Figure 3 illustrates two cases in which some reference windows are chosen. In Figure 3.a, a small central 

window in the bottom of the image is defined as a reference window with 25  25 pixels, which is assumed 

to be free from obstacles. This small area should represent the traversable area [14]. 

The robustness of our method relies on the adequate selection of this window to model appropriately the 

traversable area. In this example, we see that this single window is not so significantly illustrating the 

appearance of whole traversable area. Thus, to increase the reliability of the selection of this window, we 

will use additional small windows. This configuration is proposed to increase the number of samples 

describing the traversable area and to take into account more potential variability in the traversable area 

appearance. Hence, more precision will be reached in traversable area description. 

2.2 Estimation of possibility distributions 

In this step, each reference area RWj (j=1, 2, 3) is processed into three one-dimensional histograms hj, for 

each channel (H, S and V). We accordingly obtain for each image, nine histogram vectors. 

Now, exploitation of data issued from the previous step is carried out in order to estimate the possibility 

map related to the traversable area class. The corresponding probability distribution PRWj will then be 

computed as the normalized histograms of the RWj HSV channels.  

It is good to know that there are many transformations to get possibility distributions from probability 

ones [20; 21]. These transformations should satisfy certain consistency principles, which are presented in 

several approaches in the literature [22, 23]. We will study the best known approach which is the principle of 

consistency of Dubois and Prade [23] and we will use the symmetric transformation based on this principle. 

Using the symmetric transformation of Dubois and Prade, these probability distributions will be 

converted into possibility distributions RWj [23]. This transformation keeps a good relationship between 

measure of probability and measure of possibility that conserve some characteristics, called consistency 

principle. In the following sub section, we will detail how we proceed to implement this transformation. 

Given the possibility distributions corresponding to the three reference windows, classification of all pixels 

will be carried out by projecting their values on each possibility distribution. The obtained result will 

represent possibility maps, in which the possibility value of the class “traversable area” is equal to 1. By 

applying fusion on these maps (each map is extracted from one reference window) using conjunction 

operator, a decision on pixel class will be performed. Such fusion is useful to remove ambiguities of one 

source through the information provided by other sources/additional knowledge. Let’s remember that 

information is often imperfect in the decision aid systems. These imperfections are manifested in many 

forms: uncertainty, inaccuracy, incompleteness, ambiguity and conflict [23]. More detailed analysis is given 

in section 2.3. 
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PROBABILITY-POSSIBILITY TRANSFORMATIONS 

 Consistency principle of Dubois and Prade 

The consistency principle of Dubois and Prade suggests that what is probable should be possible. For 

instance, if p is the probability distribution and P is its measure, then any possibility distribution π, or any 

possibility measure Π, defined on a given domain Ω={w1,….,wi,….,wn} will satisfy the following equation: 

 

                                       wi A,  (wi)p(wi) 

(3) 

                                                A, (A) P (A) 
 

Any possibility distribution satisfying the consistency principle can be seen as an upper bound of the 

probability distribution. In this case, we affirm that π dominates p. In addition, equation (3) is based on the 

fact that the possibility representation is less informative than the probability one. Indeed, for the probability 

model, uncertainty is represented by a single value, while for the possibility model, uncertainty and 

imprecision are represented simultaneously by an interval [23]. 

 

 Transformation probability-possibility of Dubois and Prade. 

Dubois and Prade defined a symmetric transformation p → π satisfying the principle of consistency 

which is defined by [19] where pi = p (wi) and πi = π (wi):  





n

j

jii pp
1

),min(                                                                          (4) 

By applying this method, we compute possibility distributions for each feature and for each sample of the 

"traversable area" class. Then, we obtain three possibility maps for each reference window:  

From the possibility distribution and to make more reliable decision, we consider that only features, with 

possibility values greater than a predetermined threshold value Poss-th=0.2, can be considered safely as 

belonging to the traversable area. All similar features will be then classified as traversable area. Accordingly, 

the feature in the possibility distribution is discretized into a set of bins. For each query pixel, we compute 

similarity of its features with bin values, and the pixel inherits its class (traversable area or non traversable 

area) from the nearest similar bin. The bin step is then given by: 

bins ofNumber 
 F minmax

step

FF 
                                                                          (5) 

 

Where Fmax and Fmin are respectively the maximum and the minimum values of the considered feature, 

which are adaptively computed for each image and the number of bins is chosen equal to 10. 

Figure 4 gives an illustrating possibility distribution of reference area RW1 (red one) corresponding to the 

V channel. 

 



66   Jihen Frikha et al. / Electronic Letters on Computer Vision and Image Analysis 15(1):60-76, 2016 

 

 

 

 

 
Fig.4: Possibility transformation of V channel corresponding to red reference area 

 

 2.3 Fusion of possibility maps 

The goal of the fusion step, in the proposed system, is to combine and exploit information for taking into 

account potential variability and data imperfections.  

In the literature, three modes are conventionally distinguished for fusing information in possibility theory 

framework [24]: 

- The conjunction: gathers the operators of intersection, this mode of combination must be used if 

measurements are coherent, i.e. without conflict. For example, “min” operator. 

- The disjunction: gathers the operators of union; it must be used when measurements are in 

disagreement, i.e. in severe conflict. For example, “max” operator. 

- The compromise: gathers the median operator or some average operators; it must be used when 

measurements are in partial conflict.  
 

In the developed methods in our context, there are two steps in which we apply fusion: 

- For each feature, possibility map was defined. This operation is reproduced to the three reference 

windows. After determining the different possibility maps for each channel, a first fusion is applied to 

combine possibility maps. “Max” operator is used in this first fusion in order to conserve maximal 

information corresponding to traversable area. Figure 5 gives an illustrating image describing 

construction of possibility map based on V channel. By repeating this procedure to S and H channels, 

two extra possibility maps will be constructed. Hence, at the end of this step, three possibility maps 

are defined V, S and H. 
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Fig.5: Possibility maps construction based on max operator (first fusion): case of V channel. 

- The second fusion is applied to combine the previous possibility maps i.e. V, S and H. “Min” 

operator is used in this second fusion in order to define a unique possibility map. 

In this step, a pixel that can be classified as traversable area is imperatively defined as 

traversable area in all V, S and H possibility maps. This fusion will be called decision 

step. 

3  Performance evaluation 

3.1 Performance criteria 

To validate the proposed method and to explore its efficiency in detecting traversable area in several 

environments, we have performed a detailed evaluation based on a set of images from two databases: the 

first one deals with indoor context and the second one considers outdoor environment only. Accordingly, a 

set of 200 images corresponding to indoor environment were selected from the Technical University of 

Munich (TUM) dataset [25]. This dataset contains the color and depth images of a Microsoft Kinect sensor. 

The data was recorded at full frame rate (30 Hz) and sensor resolution (640480). Then, from the second 

database, selection of 300 images corresponding to outdoor environment [26] is done, based on a video 

dataset comprising sequences captured under a wide range of environmental conditions and different ground 

types (cf. Figure 1). In each image, path and obstacle boundaries (ground truth) were manually drown.  

The considered datasets are not acquired in the context of visually impaired people. However, the type of 

images and obstacles copes well with a visually impaired context. 

Four cases were considered: homogenous environment, textured environment (shadow or wet print), 

obstacle almost confused with traversable area (due to its thin thickness) and textured traversable area. 

The proposed approach deals with only software implementation solutions in Matlab environment 

(executed on a host computer with a processor Intel(R) Core(TM) i7-2.00 GHz with 4 Go of RAM). 

Accordingly, execution time allows processing of a video stream of 20 frames per second. We plan in future 

works to integrate this approach in our hardware platform.  

To evaluate the proposed algorithm, the output was compared to the ground truth and different quality 

measures [27] were derived as follows: let TP be the number of true positive detections, FN be the number of 

false negative detections, TN be the number of true negative detections, and FP be the number of false 

positive detections. 
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The Accuracy is the degree of closeness of measurements of a certain quantity to its actual value: 

FNTPFPTN

TNTP
Accuracy




                                                        (6) 

 

The Sensitivity can be defined as the percentage of true-positive results among those truly traversable 

areas (correct detections):  

FNTP

TP
ySensitivit


                                                                (7) 

 

The Specificity can be defined by the percentage of true-negative results among the "non-traversable 

area" (correct rejections): 

FPTN

TN
ySpecificit


                                                                  (8) 

 

Missed detections (MD) is defined by: 

FNTPFPTN

FP
MD


                                                                 (9) 

 

False alarm (FA) is expressed as follows:  

FNTP

FN
FA


                                                                       (10) 

It is worth noting that a good detection corresponds on the one hand to high accuracy, high specificity and 

high sensitivity rates, and on the other hand, to lower FA and MD rates. 

3.2 Simulation results 

SOME ILLUSTRATIONS OF THE WHOLE STEPS 

We discuss here the importance of the reference windows on the traversable area segmentation results 

(Figure 6). In fact, when dealing with the mean H image, we can easily notice that in some cases, there is no 

significant difference between maps issued from the red delineated window or the blue delineated window or 

the green delineated window. However, in the other cases (in ‘V image’ and ‘S image), a big difference in 

the possibility map can be observed. Such result depends on the processed image, in fact when Saturation is 

almost constant in the image, then Hue channel and/or V can be more pertinent to reveal special data that can 

easily discriminate traversable area. 
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Original 

image 

   

(a) 

   

(b) 

   

(c) 

   

(d) 

 
  

Fig.6: Illustration of different steps in the developed method. (a) Possibility maps based on red reference window, (b) Possibility 

maps based on blue reference window, (c) Possibility maps based on green reference window, (d) Possibility maps construction by 

applying fusion of previous primary possibility maps. 

In Figure 6, we have defined the segmentation results as possibility maps for each channel (H, S, V) and 

for each reference window. Hence, when applying the fusion for each channel, we take into accounts all data 

processed from the three reference windows. However, as we can notice visually, accuracy of the 

segmentation result at this step is weak (1st Fusion in Fig.6d). Though, the fusion between the possibility 

maps processed from the three reference windows give better results (Figure 7). The adopted fusion operator 

used in this step is the conjunction one, intended for increasing the possibility that a pixel belongs to 

traversable area. 

 

Input Image Traversable area truth The final fusion 

 
  

Fig.7: Image segmentation processes corresponding to the case treated in Figure 5. 
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STATISTICAL RESULTS 

Here, we undergo a fairer evaluation, based on the whole quantitative metrics defined in previous section, 

obtained in a statistical way from the images in the experimental sets. The results from the evaluation based 

on the testing image set are presented in Table. 

Challenge Accuracy Sensitivity Specificity MD FA 

Homogenous environment 0.941 0.959 0.935 0.047 0.040 

Textured environment 

Shadow 0.854     0.971     0.803 0.136 0.029 

Wet print 0.881 0.934 0.873 0.111 0.066 

Obstacles with thin thickness which is almost 

confused with traversable area 

0.850 0.873 0.719 0.135 0.126 

Textured traversable area 0.959 0.980 0.953 0.035 0.019 

Average for all database 0.900 0.943 0.857 0.093 0.056 

Table 1: Different performance characteristics obtained by the processed possibility approach applied to different environment 

conditions as well as indoor/ outdoor type. 

 

In the following, some significant image samples, illustrating each one particular challenge of our 

approach, were proposed (Figures 8, 9, 10 and 11). For all figures, three columns are used. In the first 

column, the input image is shown, whereas the second column contains the ground truth segmented image 

and in the last column, the processed image for traversable area segmentation is shown. For each 

environment condition, an example of indoor and outdoor environment cases is considered. 

The first case (Figure 8) deals with traversable area segmentation in homogenous environment, i.e. where 

traversable area and non traversable area regions have almost identical appearance patterns. In such a case, 

there is good traversable area detection (sensitivity=0.959). The false alarms are also not very high 

(FA=0.040), which can be comfortable for the navigation of the blind people. On the other hand, it is very 

important to note that there is nearly no missed detection (MD=0.047). It means that no bad surprise for the 

blind people can be encountered when they navigate (all obstacles are detected) and thus increased safety. 

 

   

   

Fig.8: Typical image dealing with homogenous environments. 

 

The second challenge is with respect to traversable area segmentation in the case of textured environment. 

This is illustrated in Figure 9; we can easily notice that the developed segmentation method is able to 

correctly classify the shadowed region. On the other hand, it is also able to solve highlight variation 
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problems. The results show that the performance of the detection is better in the case of image with shadow 

compared to image with wet print. In fact, there is a reduction in number of false alarms (FA measure 

reduces from 0.066 to 0.029) and an increase in the number of correct detection (sensitivity increases from 

0.934 to 0.971). Nevertheless, a small decrease in performance quality in the number of correct rejection 

(specificity decreases from 0.873 to 0.803) and missed detections is slightly higher as well (MD increases 

from 0.111 to 0.136). 

 
  

 
 

 

   

Fig.9: Typical image dealing with textured environment (shadow, highlight and wet print). 

 

Concerning detection of obstacles with thin thickness, almost confused with traversable area, which is a 

crucial problem for blind auto-navigation indoor as well as outdoor, a significant improvement was achieved. 

Figure 10 illustrates the efficiency of our model since it succeeds to detect rigid obstacles with thin 

thickness. Actually, the sensitivity is 0.873, the specificity is 0.719 and the accuracy is 0.799. These values 

are too weak and seem to indicate bad traversable area detection. But in reality, this result is also induced by 

the worth definition of the ground truth (as found in the used database) which considers sometimes the rigid 

obstacle as traversable area.   
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Fig.10: Typical images dealing with thin thickness detection which is almost confused with traversable area. 

The last contribution deals with segmentation in textured ground. The obtained result is extremely 

interesting since there is no wrong classification of pixels belonging to traversable area. A typical example is 

shown in Figure 11, where a different traversable area texture is classified as traversable area and not as 

obstacle. The best measurement values of traversable area segmentation are found in this case (0.959, 0.980 

and 0.953 respectively for Accuracy, Sensitivity and Specificity). More specifically, false alarms (FA) and 

missed detection (MD) have also shown the lowest values (0.019 and 0.035 respectively). This means that 

navigation is simultaneously comfortable and safe. 

   

   

Fig.11: Typical image dealing with textured ground. 

Table 2 illustrates comparison between the performances of the proposed possibility based method and 

the probability based approach. In the probability approach, the same segmentation procedure (considered in 

the possibility approach) is used without applying possibility transformation. 

Challenge Accuracy Sensitivity Specificity MD FA 

Probability based approach 0.730 0.796 0.669 0.219 0.162 

Possibility based approach 0.9 0.943 0.857 0.093 0.056 

Table 2: Comparison of performance characteristics obtained for probability and possibility approaches applied to different 

environment condition as well as indoor/ outdoor type. 
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As table 2 shows, the proposed system outperforms the probability based approach in every test. In 

general, the probability based approach is usually quite poor for avoiding false alarms. Overall, the proposed 

system has an overall accuracy of over 90% in all these situations, while the other system can only achieve 

about 73%. 

The following illustrations (Figure 12) are with a good agreement with corresponding quantitative metric 

results (Table 2).  

 

Input image ground truth Segmented image 

   

 
  

 
 

 

   

Fig.12: Image segmentation with probability based approach. 

3.3 comparison with conventional method 
 

In order to demonstrate the importance of the developed method a comparison with state of art is 

proposed. Two public dataset such as indoor [25] and outdoor environment [26] were used to achieve such 

comparison.  

Aladren et al. [6] have proposed a system that detects and classifies the main structural elements of the 

scene providing the user with obstacle-free paths in order to navigate safely across unknown scenarios.  This 

approach is based on RGB-D camera. Region growing method is applied to find same colour region. Initial 

region of ground class is defined throughout the RANSAC. Estimation of parameters based on RANSAC 
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technique is very efficient it gives generally very good results even when there is image perturbation. 

However, to reach such result a very high execution time is needed (0.3 frame per second). Such 

computation time seems to be too high to ensure use of vision algorithms at a rate compatible with the 

navigation of the visually impaired people. The precision of this method is 99% (applied to indoor 

environment [25]). 

A precision of 97% was achieved when applying the possibility based approach on this dataset [25]. The 

advantage of our method is the computation time which is 20 frames per second. 

Katramados et al. [26] have proposed a real-time approach for traversable surface detection using 

monocular camera mounted on an autonomous vehicle. Detection of traversable area is performed by fusing 

color and texture information from HSL, YCbCr and LAB colour spaces. Histogram analysis is proposed to 

achieve image segmentation. The execution time is 25 frames per second. The mean accuracy of this method 

is 97% (applied on the outdoor environment [26]). 

An accuracy of 98% was achieved when applying the possibility based approach on this dataset [26]. The 

computation time is 20 frames per second.  

Table 3 illustrates comparison results with the above conventional methods.  

In conclusion the possibility based approach is already suitable for indoor as well as for outdoor 

environments giving good segmentation quality with low execution time. 

performance  Frames/s  Precision 

Approach [6] with dataset1[25]   0.3  99% 

Approach [26] with dataset2[26]  25  97% 

Our approach with dataset1    20 97% 

Our approach with dataset2    20 98% 

Table 3: Comparison results with two state of the art approaches. 

4 Conclusions  

Ensuring safe auto-navigation of visually impaired people is a great challenge. Many traversable area 

segmentation methods were performed to achieve this goal. Efficiency of these methods must take into 

account real time application (short time response, reduced complexity for low cost implementation, easy 

use, etc). We have considered a context of a monocular based vision aid system mounted on electronic white 

cane. Very strict constraints, on the safety of the visually impaired user, lead us to the sake of a high reliable 

system. Segmentation of traversable area is a crucial task at indoor as well as outdoor environments. In that 

optic, we have to take into account some potential imperfections in the acquired image such as shadow, 

highlight, wet print, etc. For modeling such uncertainty, we apply the possibility theory. It’s important to 

note that the success of this method can be explained by a good definition of the reference window, from 

which ground features were extracted. Typically, three reference windows were used to create the possibility 

model that defines the ground. Moreover, a fusion step, between computed possibility maps, is intended for 

more robust decision.  

Results on two public databases prove the efficiency of the proposed approach. It ensures safe auto 

navigation of visually impaired people, since it solved many challenges such as: homogenous environment, 

obstacle with thin thickness, textured environment (shadow, highlight and wet print) and textured ground. 

Moreover, comparison with state of the art methods shows that our approach ensures an excellent trade-off 

between detection/accuracy performances and real time operations ability. In future works, some limitations 

such as motion blur in real-time implementations will be addressed. Finally, we project to integrate our 

software into an Arduino SD platform which can be mounted on a white cane. 
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