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Abstract

There has been a lot of progress in the field of invariant object recognition/categorization in the last decade with

several methods trying to mimic functioning of the human visual system (e.g. Neocognitron, HMAX, VisNet).

Examining those brain regions is a very difficult task with myriads of details to be considered. To simplify

modeling approaches, Jeff Hawkins [1] proposed a framework of three basic principles that might underlie

computations in regions of the neocortex. These also form the basis for a capable object recognition system

named ”Hierarchical Temporal Memory” (HTM).

1. Learning of temporal sequences for creating invariance to transformations contained in the training data.

2. Learning in a hierarchical structure, in which lower level knowledge can be reused in higher level context

and thereby makes memory usage efficient.

3. Prediction of future signals for disambiguation of noisy input by feedback.

In my thesis I have developed and efficiently implemented two related artificial neural systems relying on these

principles, the Temporal Correlation Graph (TCG) and the Temporal Correlation Net (TCN). Both are hierar-

chical neural networks made up of alternating levels of spatial and temporal neurons located at subsampled

image positions called nodes. Spatial neurons represent spatial patterns, which on the lowest level are visual

features from training images and on higher levels composed patterns of activities. Temporal neurons represent

but groups of spatial patterns that tend to follow each other in time. Neural activities are stored in nodes which

define the architecture of the systems. In each node any neuron of the same level can become active. Connec-

tions from temporal to the next higher spatial level are convergent collecting input from 3 × 3 spatial neurons

in one node. Convergence is chosen thus that at the top of the network only one node of temporal neurons

remains. These neurons represent the different object categories the system has learned.

During training each of both systems observes sequences of images showing objects of different categories

undergoing transformations in viewing conditions (scaling, rotation in depth, illumination changes etc.) to

which the top level responses shall become invariant. First spatial patterns on the lowest level are learned, then
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temporal groupings in which these tend to appear. Temporal groups (neurons) becoming active concurrently at

adjacent positions constitute spatial patterns at the next level and so forth. Thus more and more complex patterns

covering observations of increasing time ranges and parts of the input images are created. After learning the

systems are able to recognize known object categories e.g. from unknown viewing angles or under unknown

illumination conditions.

The systems differ significantly in how spatial and temporal patterns are learned. TCG is trained in batch

mode and level by level, for each level all training images are browsed. First, spatial patterns on the lowest level

are learned by employing vector quantization on visual features extracted from the images. Thus a codebook

or Bag of Words is built containing a descriptive subset of observed patterns. In the next sweep over the

training images the occurrences of spatial patterns at the same network position (node) within a short time

range are counted. These counts are stored in a matrix which is subsequently clustered to yield temporal

groups. Similarity measures are defined that allow to compare spatial patterns of the next level composed of

these groups. Thus a codebook of higher level spatial patterns can be learned in the next epoch and again

temporal groups can be built. This is continued until neurons on the highest level have been created. Using

similarities between temporal groups synaptic connection weights are defined that are used for computing

neural activities on test images.

In TCN both learning steps are performed by neural learning rules. The learning of spatial patterns is done by

an associative Hebbian learning rule on all but on the lowest level, which still consists of a codebook of visual

features. Temporal groups are learned by applying the Trace rule, a Hebbian like learning rule that is also used

in VisNet and allows to group neurons that are frequently activated consecutively. No clustering beyond the

lowest level is necessary, therefore TCN can be trained in online mode on all levels simultaneously. Every few

epochs new neurons are created if current input patterns are represented too weakly.

Whereas TCG is similar to HTM in its learning algorithm it shows better scaling with regard to the number of

categories to be learned. This is possible by efficient calculation of neural activities. The learning algorithm of

TCN leads to a sparser connectivity structure, which allows for even faster calculation and also could improve

generalization in several tests. Both systems were tested on the following databases for object recognition:

ETH80, COIL100, ALOI1000, and the German Traffic Sign Recognition Benchmark (GTSRB). On the first 3

databases it was tested how good TCG and TCN can recognize known object categories from unknown viewing

angles using different sizes of training and test set. Additionally test conditions were made more difficult by

scaling objects, adding structured backgrounds to training and test images and inserting distracting objects

that occluded parts of the main objects. On ALOI1000 also tests for recognition under unknown illumination

conditions were performed. On ETH80 a leave-one-object-out cross validation test was performed, in which

unknown objects of known categories had to be recognized. GTSRB was tested with sorted test images with

and without feedback (contradicting benchmark rules). Both systems performed very well in the standard tests

even with very small training sets, in most tests TCN outperformed TCG with reaching for example over 90%
recognition when learning from ca. 6% of all ETH80 images and close to 100% for bigger training sets. With

adverse training conditions both systems decreased in performance depending on the applied manipulation.

Occlusion and structured background had moderate effects with up to ca. 20% lower recognition rates, scaling

was much more harmful for scaling factors 6∈ [0.9, 1.2]. Illumination tests performed close to 100%, and

recognition rates of 98.33% (hence close to benchmark winners) could be reached in GTSRB using feedback.
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