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Abstract 

Image composition refers to the process of composing two or more images to create a natural output image. It is 

one of the important techniques in image processing. In this paper, two efficient methods for composing color images 

are proposed. In the proposed methods, the Poisson equation is solved using image pyramid and divide-and-conquer 

methods.  The proposed methods are more efficient than other existing image composition methods. They reduce the 

time taken in the composition process while achieving almost identical results using the previous image composition 

methods.  In the proposed methods, the Poisson equation is solved after converting it to a linear system using different 

methods. The results show that the time for composing color images is decreased using the proposed methods. 

Keywords: image processing, gradient methods, image fusion 

 

1. Introduction 

In recent years, many researches and applications have been developed for composing images because 

the number of people that are interested in changing their images is increased [1]. Image composition is the 

process of composing two images to create a new image.  In the composition process, the user draws a 

boundary around the desired object in the source image which needs to be cloned into the destination image. 

A binary mask image is generated for the selected region.  

There are several techniques for image composition such as alpha blending and gradient domain 

methods. In alpha blending methods, images are composed by using an accurate alpha matte for each 

element. Recent alpha blending techniques can be divided into two categories: propagation-based matting [2-

8] and sampling-based matting [9-13]. Gradient domain compositing is an important technique in computer 

vision. It is the process of combining two images by copying the gradients of the pixels from the source 

image into the target image. It is used in many applications such as seamless cloning [14-22], seamless video 

editing [23-24], seamless stitching [25-27], shadow removal [28], inpainting [29-31], gradient domain 

painting [32,33], scene completion [34,35], and image smoothing [36-38]. Some of gradient domain methods 

compose images by solving the Poisson equation in the specified region. The Poisson equation is solved by 

transforming it into a large sparse linear system of equations 
     (1) 

 
Poisson Image Editing (PIE) Perez et al. [14] is a gradient domain image editing method. This method 

solves the Poisson equation with the Dirichlet boundary conditions. This method calculates the Laplacian of 

an unknown function for the pixels in the edited region and the unknown function values over the boundary 

of the region. The PIE method [14] may give unacceptable results where the user draws a boundary around 

the object in the source image that intersects with prominent regions in the destination image. Jia et al. [15] 

suggested a new method to solve this issue. This method makes the user draw a boundary around the desired 

object and then search for an optimized boundary which is not intersected with any prominent regions of the 

source and target images. Qin et al. [16] introduced an improved image editing method to solve the color 
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inconsistency problem in PIE [14] by adding an inner Drichilet boundary condition which divides the 

unknown region into two regions with two boundaries. The outer boundary values are equal to the values of 

the destination image and the inner boundary values are equal to source image values. The pixels in the 

region inside the inner boundary are equal to object values.  Then, the values of the pixels in the region 

between inner and outer boundaries are computed by solving the Poisson equation. So the Poisson equation 

is solved for the region, which is not too large.  

The PIE method in [14] solves the Poisson equation for the color image using each color channel (R, G, 

B) independently. Dizdaroğlu and İkibaş [17, 18] introduced a method for editing color images by using 

color information. This method takes into account that each color channel has an effect on other color 

channels on calculating the gradient of the image. This minimizes the color inconsistency resulting from PIE 

[14]. Tao et al. [19] presented an approach for image compositing for decreasing the bleeding artifacts in the 

result image without changing the boundary that the user draws.   

The PIE method [14] requires solving a large sparse linear system which is time consuming and memory 

intensive. Farbman et al. [20] introduced a new approach for seamless image cloning based on Mean Value 

Coordinates (MVC) [39]. This method avoids solving such linear system by using an interpolation technique 

to compute the intensity of the pixels in the selected region. The main advantage of the MVC method [20] is 

that it takes a small amount of memory and all the computation can be parallelized which makes it fast. 

Seamless image composition methods can be expressed as boundary value problems. These problems 

can be solved by constructing a smooth membrane that interpolates the differences between source and 

destination images across a specified region. Farbman et al. [21] constructed such membrane by 

approximating Shepard’s scattered data interpolation method [40] using a convolution pyramid. Jia and Wu 

[22] presented a new method for Seamless Image Cloning based on Derivative and Intensity Interpolation 

(SICDII). This method uses the Discrete Wavelet Transform (DWT) to decompose the image into four parts. 

This method solves the Poisson equation for the approximation parts and uses the MVC method on the other 

details parts. The SICDII method [22] takes less amount of memory for computation and is faster than the 

MVC method [20]. 

In this paper, two efficient methods for composing color images are proposed. The proposed methods 

solve the Poisson equation using image pyramid and divide-and-conquer methods.  The proposed methods 

are efficient because they reduce the time taken in the composition process while achieving almost identical 

result. The results show that the time taken by the proposed methods to generate the output image is less than 

the time taken by other existing methods. 

The remainder of this paper is structured as follows. The main concept of the PIE method is explained in 

Section 2. A detailed explanation of the proposed methods is introduced in Section 3. The experimental 

results and conclusions of the paper are shown in Sections 4, 5, respectively. 

2. Poisson Image Editing 

PIE is the process of extracting an object from source image   and pasting it into a destination image    

to create a new realistic image  . Let Ω be the selected region on the source image with the boundary ∂Ω. 

P´erez et al. [14] creates a guidance vector field   which is based only on source image called seamless 

cloning, source and destination images called mixed seamless cloning. Then, P´erez et al. [14] set  a new 

intensity value   for all the pixels in the region Ω that minimize the difference between the gradient of   

(  ) and the vector field  . This method assigns the intensity values of   at the boundary of the region ∂Ω to 

the values of the destination image          over ∂Ω ), as shown in figure 1. 

    ∬ |    | 

 

      |     |   (2) 

The solution of the minimization problem is the unique solution of the Poisson equation with the 

Dirichilet boundary condition. 

                         |     |   (3) 

For a simple seamless cloning, the guidance field   is set to be the gradient of the source image:     . 

Thus, the previous equation becomes 
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                    |     |   (4) 

where Δ is the Laplacian operator. The discrete solution to the previous equation (4) is equal to the solution 

of the linear system of equation (1) where   is (   ) matrix, n is the number of the unknown pixels in the 

selected region. This system is solved three times for the RGB images for each color channel separately.  

The final image results from merging the solved color channel values. 

  

 

(a) (b) (c) 

Figure 1. (a) Guided vector field. (b) Source image. (c) Destination image. 

3. Efficient Poisson Image Editing Using Pyramid 

The composition of two images based on the Poisson equation requires solving a linear system with n 

unknowns to compute the values of n pixels. In this work, an improved image composition method based on 

the Poisson equation is introduced to decrease the time taken in the composition process. The proposed 

methods solve the Poisson equation using image pyramid and divide-and-conquer methods [41]. Image 

pyramid and divide-and-conquer methods are used to speed up many different types of image operations. 

Using the proposed methods, the time taken in solving a large problem at one time is greater than the 

time taken if it is divided into smaller problems. In the proposed methods, two and three pyramid levels are 

constructed to increase the efficiency of the composition. The proposed methods start from the third pyramid 

level. At the third level of the pyramid, the source and destination images are combined together to generate 

the composite image. PIE method is used to compose the source and destination images in the third level of 

the pyramid. This method sets the intensity values of the pixels at the boundary of the selected region to the 

values of the destination image.  Then, the Poisson equation is solved to compute the intensity values for the 

pixels in the interior region. Thus, the border of the cloned object in the composite image is smooth. After 

generating the composite image from the third pyramid level, it is used in the second level of the pyramid. At 

the second level, the source and destination images are combined by solving the Poisson equation taking the 

Dirichlet boundary condition from the composite image results from the third level. So, the composite image 

generated from the second level is realistic and smooth. At the second level, the unknown region is divided 

into a number of small unknown regions and the sparse linear system is solved for each small region 

separately. Finally, the process that occurred in the second level is repeated in the first level to generate the 

final composite image. 

As explained before, the proposed methods are based on partitioning the unknown region into a number 

of small regions solving the sparse linear system for each small region separately. For the unknown region, 

the complexity of the Lower-Upper (LU) factorization method for solving the linear system in equation (1) is 

approximately  (
 

   
  ) [42] where the size of   is     . If the unknown region is divided into small 

regions, then the time cost of solving the system in equation (1) for the unknown region using LU 

factorization is equal to the summation of the time cost for solving it for each small region separately, as 

shown in the following equation: 

∑
 

   
  

 

 

   

 
 

   
∑  

 

 

   

 
 

   
   

    
      

 )     (5) 

where    is the number of the unknown pixels in the region i and r is the number of small regions. The 

complexity T for solving the linear system for all regions once is given by the following equation: 

  
 

   
   (6) 

   
    

   

Ω 
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Since the total number of the unknown pixels equal to the summation of the unknown pixels in all small 

regions   ∑   
 
   , then the equation (6) becomes: 

  
 

   
(∑  
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  (7) 

The expansion of equation (7) gives: 

  
 

   
   

    
      

     
       

         
       

       
     

    
        

       
         

                     
(8) 

The above equation shows that the time complexity for solving the linear system for all unknown pixels 

at one time T equals the time cost of solving it for all small regions separately    plus additional term   . 

Thus, the time cost of solving the linear system for the unknown region after dividing the unknown region 

into small regions is lower than the time cost of solving it at one time. 

3.1 Partitioning the unknown Region into Thin Slices (PRTS)  

In this method, the unknown region is divided into thin slices, as shown in figure 2. Then, the Poisson 

equation is solved for each slice separately taking the Dirichlet boundary condition from the composite 

image that results from the previous pyramid level. The steps of this method are described in the following 

algorithm: 

 

Figure 2. The unknown region is divided into thin slices 

PRTS Algorithm: Efficient PIE based on partitioning the unknown region into thin slices 

Inputs: mask of the unknown region, source, and destination images. 

Output: final composite image. 

1. Construct the pyramid levels for source, destination, and mask images using Gaussian pyramid 

method in [41]. 

2. Compose the source and destination images at the third level of the pyramid using PIE method [14]. 

3. At the second level of the pyramid do the following: 

a. Divide the unknown region in the mask into thin slices using the following steps: 

i.  Erode the unknown region using erode morphological operation. 

ii. Apply the exclusive-or (XOR) between the eroded unknown region and the original 

unknown region. 

b. for each slice do 

i. Compose source and destination images using the PIE method [14]. 

ii. Solve the Poisson equation with the Dirichlet boundary condition taken from the generated 

composite image from step 1. 

end for 

4. Compute the final composite image by repeating the previous step at the first level of the pyramid. 

3.2 Partitioning the unknown Region into Small Square Blocks (PRSSB) 

In this method, the unknown region is divided into small square blocks. The shape of the regions in the 

boundary of the unknown region is incomplete square (not all pixels in the block are unknowns) and the 

shape of the regions in the interior is square (all pixels are unknowns), as shown in figure 3. Then, the 
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Poisson equation is solved for each region separately taking the Dirichlet boundary condition from the output 

image of the previous pyramid’s level. The steps are described in the following algorithm: 

 

Figure 3. The unknown region is divided into small square blocks 

PRSSB Algorithm: Efficient PIE based on partitioning the unknown region into small square blocks 

Inputs: mask of the unknown region, source and destination images. 

Output: final composite image. 

1. Construct the pyramid levels for source, destination, and mask images using Gaussian pyramid 

method in [41]. 

2. Compose the source and destination images at the third level of the pyramid using PIE method [14]. 

3. At the second level of the pyramid do the following: 

a. Divide the mask of the unknown region into small square blocks each block of size   . 

b. Create the sparse matrix    that will be used if all the pixels in the block are unknowns by 

doing the following steps: 

i. Initialize the    matrix with size (       ) and diagonal elements 4s, where     is the 

number of the pixels in the block. 

ii. for       to      do 

for       to     do 

Determine the set of neighbor pixels    around the pixel      ) 

for each neighbor pixel     do 

if     is a pixel on the boundary then 

Set       )    

else 

Set       )     

end if 

end for 

end for 

end for 

c. for each block in the mask do 

i. Compose source and destination images using the PIE method [14]. 

ii. Solve the Poisson equation with the Dirichlet boundary condition taken from the generated 

composite image from step 1. 

iii. if all the Pixels on the block are unknowns then 

Use the pre-computed matrix    in solving the linear system. 

else 

Compute the sparse matrix   for solving the linear system. 

end if 

end for 

4. Compute the final composite image by repeating the previous step at the first level of the pyramid. 

The proposed methods are more efficient than previous image composition methods because they 

minimize the processing time.  
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4. Experimental Results 

In this section, the two proposed methods (PRSSB and PRTS) were applied to a number of instances 

[43] with different number of unknown pixels, as shown in table 1. Each instance consists of two color 

images (source and destination) and mask image, as shown in figure 4. 

 

(a) 

  
 

b)) 

  
 

(c) 

  
 

(d) 

   

 (i) (ii) (iii) 

Figure 4. (i) Source image. (ii) Destination image. (iii) Object mask. 

 

 

Table 1. Number of pixels in the unknown region for all instances 

Instance (a) Balloon (b) Bird (c) Cow (d) Phalarope 

Number of pixels 356,409 74,529 146,689 42,983 

The proposed methods with two pyramid levels (PRSSB2 and PRTS2) and with three pyramid levels 

(PRSSB3 and PRTS3) were compared with methods in [14, 20, 22]. In the composition process, the sparse 

linear system equation (1) was solved three times for R, G, and B colors separately using different methods 

[44, 45]:  

1. Preconditioned Conjugate Gradient (PCG). 

2. Bi-Conjugate Gradient (BCG). 

3. Successive-Over-Relaxation (SOR). 

4. Lower-Upper factorization (LU). 

5. Lower-Diagonal-Lower factorization (LDL). 

4.1 Time cost measurements 

This section shows the composition time of methods in [14, 20, 22] and the composition time of the two 

proposed methods with two and three pyramid levels, as shown in tables 2-5. 
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Table 2. Average time in seconds for PIE method 

Method Balloon Bird Cow Phalarope 

PCG 546.84 25.47 96.18 14.68 

BCG 736.82 32.79 208.77 15.38 

SOR 750.33 33.98 209.03 18.67 

LU > 60 min 40.21 219.16 26.71 

LDL 518.47 24.53 88.33 13.28 

Table 2 shows that LDL method has the lowest composition time compared to other tested methods, 

especially for high resolution image. 

Table 3. Average time in seconds for MVC and SICDII methods 

MVC  SICDII 

Balloon Bird Cow Phalarope Balloon Bird Cow Phalarope 

183.49 15.61 42.38 9.44 100.96 9.11 24.02 7.86 

Results in table 3 show that the time taken to compose images using the MVC method [20] is lower than 

the time taken from the PIE method [14]. Results also show that composing images using the SICDII method 

[22] takes lower time than the time taken using either PIE method [14] or MVC method [20]. 

Table 4. Average time in seconds for PRTS2 and PRTS3 methods 

 PRTS2 PRTS3 

Method Balloon Bird Cow Phalarope Balloon Bird Cow Phalarope 

PCG 71.72 7.42 20.91 4.41 41.07 8.36 17.36 3.94 

BCG 83.61 8.07 21.81 4.95 46.14 8.75 19.02 4.81 

SOR 115.29 11.86 38.28 6.12 75.64 8.50 27.24 5.99 

LU  85.49 8.14 23.68 5.38 41.03 6.95 15.26 4.28 

LDL  56.06 7.03 13.73 3.61 38.51 7.14 16.18 4.11 

Table 5. Average time in seconds for PRSSB2 and PRSSB3 methods 

 PRSSB2 PRSSB3 

Method Balloon Bird Cow Phalarope Balloon Bird Cow Phalarope 

PCG 47.21 4.88 13.79 3.71 20.01 3.79 7.52 2.88 

BCG 78.98 12.54 21.45 3.63 41.16 11.48 15.97 4.06 

SOR 116.92 12.43 32.77 3.88 41.66 8.83 15.85 3.26 

LU  62.93 4.43 17.22 3.36 12.58 2.61 5.18 2.41 

LDL  36.60 4.25 11.24 1.88 12.24 2.56 4.51 1.86 

Results in tables 4 and 5 show that the time taken in the composition process for all instances is 

decreased when applying PRTS and PRSSB methods with two and three pyramid levels compared to 

methods in [14, 20, 22]. Results also show that LDL method has the lowest composition time compared to 

other tested methods. 

4.2 Quality measurements 

The quality of the images is measured using subjective and objective methods. In subjective image 

quality assessment the visual quality of the images is assessed by humans. In objective methods, the quality 

is measured by algorithms such as Mean Square Error (MSE) [46] and Structural Similarity Index (SSIM) 

[47]. Subjective image quality assessment methods are based on the presentation of a questionnaire form to a 

number of observers. Each observer is asked to evaluate the quality of the image by giving a score between 0 

and 10.  
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In this paper, the quality of the composite images is measured using two objective metrics (MSE and 

SSIM) and one subjective metric using a questionnaire form. The MSE and SSIM are used to compare 

between the composite images generated by the two proposed methods and output images produced by PIE 

method [14]. The SSIM test generates values between -1 and 1. If the SSIM value between two images is 

equal 1, this means that the images are identical. In the MSE test, the images are identical if the MSE value 

is equal 0. 

A comparison between the output images from PRTS and PRSSB methods and the output images from 

PIE method [14] are shown in figure 5. The output images in figure 5 show that visually there are no 

differences between the images generated by PRTS or PRSSB methods and output images from the PIE 

method in [14]. 

   

   

   

   

(i) ii)) (iii) 

Figure 5. (i) Image produced by the PIE method [14]. (ii) Image produced 

by the PRSSB method. (iii) Image produced by the PRTS method. 

The quality of the output images from PRTS2, PRTS3, PRSSB2, and PRSSB3 methods was measured 

by computing the MSE and SSIM. The MSE and SSIM were computed using the output images from PIE 

method in [14] where the system in equation (1) was solved by the LDL method as a reference. Tables 6-10 

show the MSE and SSIM for the output images that are result from MVC, SICDII methods in [20, 22], and 

the two proposed methods with two and three pyramid levels. 

Table 6. MSE and SSIM for output images from MVC and SICDII methods 

 MSE SSIM 

Method Balloon Bird Cow Phalarope Balloon Bird Cow Phalarope 

MVC 0.0364 0.056 1.71 0.0462 0.9999 0.999 0.998 0.9999 

SICDII 0.0223 0.681 1.14 0.0418 0.9997 0.999 0.998 0.9998 

As shown in table 6, the MSE and SSIM for the images generated from MVC and SICDII methods in 

[20, 22] are approximately close to 0 and 1 for all instances, respectively. This means that there is a small 

difference between these images and the images produced by PIE method [14]. 
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Table 7. MSE and SSIM for output images from PRTS2 method 

 MSE SSIM 

Method Balloon Bird Cow Phalarope Balloon Bird Cow Phalarope 

PCG 0.263 0.118 6.69 0.797 0.999 0.999 0.997 0.9997 

BCG 0.263 0.118 6.69 0.797 0.999 0.999 0.997 0.9997 

SOR 0.293 0.114 6.69 0.797 0.999 0.999 0.997 0.9997 

LU 0.263 0.118 6.69 0.797 0.999 0.999 0.997 0.9997 

LDL 0.263 0.114 6.69 0.797 0.999 0.999 0.997 0.9997 

Table 8. MSE and SSIM for output images from PRTS3 method 

 MSE SSIM 

Method Balloon Bird Cow Phalarope Balloon Bird Cow Phalarope 

PCG 0.285 0.400 15.31 4.955 0.999 0.999 0.995 0.9988 

BCG 0.285 0.400 15.31 4.955 0.999 0.999 0.995 0.9988 

SOR 0.448 0.400 15.31 4.955 0.999 0.999 0.995 0.9988 

LU 0.285 0.400 15.31 4.955 0.999 0.999 0.995 0.9988 

LDL 0.285 0.400 15.31 4.955 0.999 0.999 0.995 0.9988 

Table 9. MSE and SSIM for output images from PRSSB2 method 

 MSE SSIM 

Method Balloon Bird Cow Phalarope Balloon Bird Cow Phalarope 

PCG 0.0937 0.074 4.43 0.653 0.9998 0.9999 0.998 0.9998 

BCG 0.0937 0.074 4.33 0.653 0.9998 0.9999 0.998 0.9998 

SOR 0.0937 0.074 4.56 0.6529 0.9998 0.9999 0.998 0.9998 

LU 0.0937 0.074 4.43 0.653 0.9998 0.9999 0.998 0.9998 

LDL 0.0937 0.074 4.43 0.653 0.9998 0.9999 0.998 0.9998 

Table 10. MSE and SSIM for output images from PRSSB3 method 

 MSE SSIM 

Method Balloon Bird Cow Phalarope Balloon Bird Cow Phalarope 

PCG 0.1600 0.177 10.61 4.955 0.9998 0.999 0.997 0.9988 

BCG 0.1600 0.177 10.61 3.509 0.9998 0.999 0.997 0.9992 

SOR 0.1600 0.177 10.61 3.509 0.9998 0.999 0.997 0.9992 

LU 0.1600 0.177 10.61 3.509 0.9998 0.999 0.997 0.9992 

LDL 0.1600 0.177 10.61 3.509 0.9998 0.999 0.997 0.9992 

Results in tables 7-10 show that the MSE and SSIM values for the images generated by the two 

proposed methods with two and three pyramid levels are approximately near to 0 and  1, respectively. This 

means that these images are almost identical to the images produced by PIE method [14]. In the composition 

process for each instance, the linear system equation (1) is solved using direct and iterative methods. 

Iterative methods are adjusted to give approximately the exact solution for the linear system as direct 

methods. Thus, the MSE and SSIM values for each composite image when equation (1) is solved using direct 

and iterative methods are approximately the same. 

The quality of the output images is measured visually by presenting a form to 30 people, then everyone 

gives a score between 0 and 10 (0 is the lowest score and 10 is the highest score) for each image for all 

methods. Finally, the average of the scores for each method is computed, as shown in table 11. 
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Table 11. A quality comparison between different methods 

Method Quality (%) 

PIE [14] 65 

MVC [20] 67 

SICDII [22] 70 

PRTS2 71 

PRTS3 70 

PRSSB2 68 

PRSSB3 67 

4.3 Time cost and Quality measurements 

Results in subsections 4.1 and 4.2 showed that the composition time for the PRTS and PRSSB methods 

with two and three pyramid levels is less than the time taken from methods in [14, 20, 22]. Results also show 

that the quality of the output images from the two proposed methods is approximately the same as the quality 

of the images generated from methods in [14, 20, 22]. Tables 12, 13 show a run time, MSE, and SSIM 

comparison between PIE, MVC, SICDII methods in [14, 20, 22], and the two proposed methods. 

Table 12. A run time comparison between different methods 

Method Balloon Bird Cow Phalarope 

PIE [14] 518.47 24.73 88.33 13.28 

MVC[20] 183.49 15.61 42.38 9.44 

SICDII[22] 100.96 9.1088 24.02 7.86 

PRTS2 56.06 7.03 13.73 3.61 

PRTS3 38.51 7.14 16.18 4.1 

PRSSB2 36.60 4.25 11.24 1.88 

PRSSB3 12.24 2.56 4.51 1.86 

The highlighted values in table 12 show that the two proposed methods (PRTS2, PRTS3, PRSSB2, and 

PRSSB3) take the lowest composition time compared to the other three methods. The composition time for 

PRSSB2 and PRTS2 methods is lower than the time taken using the PIE method [14] by approximately a 

factor of 1/14 and 1/9, respectively. Results also show that PRSSB3 takes the lowest composition time for all 

images compared to other methods. 

As shown in table 11, the quality of the output images from PRSSB2 and PRSSB3 methods is 

approximately the same as the quality of the output images from PIE, MVC, and SICDII methods [14, 20, 

22]. Results in table 11 show that PRTS2 is the best method and the quality of the output images from 

PRTS3 method is approximately the same as the quality of the output images from MVC and SICDII 

methods [20, 22], and better than PIE method [14]. 

Table 13. MSE and SSIM comparison between different methods 

 MSE SSIM 

Method Balloon Bird Cow Phalarope Balloon Bird Cow Phalarope 

MVC[20] 0.0364 0.056 1.71 0.0462 0.9999 0.999 0.998 0.9999 

SICDII[22] 0.0223 0.681 1.14 0.0418 0.9997 0.999 0.998 0.9998 

PRTS2 0.263 0.114 6.69 0.797 0.999 0.999 0.997 0.9997 

PRTS3 0.285 0.400 15.31 4.955 0.999 0.999 0.995 0.9988 

PRSSB2 0.0937 0.074 4.43 0.653 0.9998 0.9999 0.998 0.9998 

PRSSB3 0.1600 0.177 10.61 3.509 0.9998 0.999 0.997 0.9992 
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Results in table 13 show that the quality of the output images from the two proposed methods are almost 

the same as the quality of the images generated by methods [20, 22]. 

5. Conclusions 

In this paper, two efficient methods are proposed to reduce the time taken in composing color images. 

Using an image pyramid and divide-and-conquer methods, the proposed methods solve the Poisson equation 

for color images for each color separately. The proposed methods are based on partitioning the unknown 

region into small regions. Experimental results show that the composition time is reduced using the proposed 

methods. Results also show that the quality of the output images is approximately the same as the quality of 

the images that result from other methods. Thus, the proposed methods can be used efficiently in composing 

images. 
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