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THE SCIENTIFIC METHOD

Good theories
are those capable

of being disproved, Karl
Popper says. Like

that if I come
next week,

at the same time, sit
over my coffee

just exactly
there

where I looked up
and observed

you,
looking at me,

that I will find you,
again,
there,

and this time
have the courage

to smile.

Roald Hoffmann
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Descubŕı que no soy disciplinado por virtud, sino como reacción contra mi negligencia; que
parezco generoso por encubrir mi mezquindad, que me paso de prudente por mal pensado,
que soy conciliador para no sucumbir a mis cóleras reprimidas, que sólo soy puntual para
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Norwich, en Xavi, n’Olivier, en Joost, n’Eduard, en Fahad, en Jordi, na Naila, na Shida, en
David, en Jaime, n’Ahmed, en Marc i n’Ekain.

I am not forgetting about the Colour Lab at UEA. I am extremely graithful to David
Connah, who has teached me the important things of the English culture and Roberto and
our mutual support in these final moments of the thesis.I want also to thank Michael, Perla,
Dome and Stuart for the teas and lunches we have spent together.
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Resum

El color és la conseqüència de la interacció de tres propietats f́ısiques: la llum incident,
la reflectància de l’objecte i la sensibilitat del sensor. La llum incident varia en condicions
naturals, de manera que el coneixement de l’ il·luminant que es troba a l’escena és una qüestió
important en el color computacional. Una manera de tractar aquest problema en condicions
de calibratge és seguint tres passos: 1) la construcció d’una base de sensors de banda estreta
per poder aplicar el model diagonal, 2) la construcció del conjunt factible d’il·luminants, i 3)
la definició de criteris per seleccionar el millor il·luminant. En aquest treball ens centrem en
la introducció de criteris de percepció ,més concretament enfocant-nos en el primer i tercer
pas.

Per fer front a l’etapa de selecció de l’il·luminant, nosaltres postulem que les categories
bàsiques de color poden ser utilitzades com a categories d’ancoratge per recuperar el millor
il·luminant. Aquestes categories de color han evolucionat per a codificar les estad́ıstiques
pertinents color natural. Per tant la imatge recuperada és la millor representació de l’escena
etiquetada amb els termes bàsics de color. Es demostra amb diversos experiments com aquest
criteri de selecció assoleix l’estat de l’art en la constància del color computacional. A més
d’aquest resultat, demostrem psicof́ısicament que l’error angular que s’utilitza habitualment
en la constància del color no es correlaciona amb les preferències humanes, i es proposa una
nova avaluació basada en la percepció.

L’aplicació del criteri de selecció definit en aquesta tesi es basa enormement en l’ús d’un
model diagonal per al canvi d’il·luminant. Per tant, la segona aportació es centra en la
creació d’una base adequada de sensors de banda estreta de cara a representar les imatges
naturals. Ens proposem utilitzar la tècnica de l’spectral sharpening per calcular una base
única de banda estreta optimitzada per a representar a un ampli conjunt de reflectàncies
naturals sota il·luminació natural i donades a partir de la base dels cons humans. Els sensors
proposats permeten predir colors únics i les dades de World Color Survey independentment de
l’il·luminant utilitzant una funció compacta de singularitat. A més, s’estudien les diferents
famı́lies de sensors de banda estreta per reduir al mı́nim diferents mesures de percepció.
Aquest estudi ens porta a ampliar el procediment de spherical sampling de 3D a 6D.

Diverses ĺınies de recerca resten obertes, com ara, la mesura dels efectes de la utilització
dels sensors de banda estreta en el mètode de selecció d’il·luminant proposat, o la inserció
d’ informació espacial contextual per millorar la hipòtesi de categories. Finalment, explorar
com els sensors individuals es poden ajustar als colors d’una escena.

iii
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Abstract

Colour is derived from three physical properties: incident light, object reflectance and sensor
sensitivities. Incident light varies under natural conditions; hence, recovering scene illumi-
nant is an important issue in computational colour. One way to deal with this problem under
calibrated conditions is by following three steps, 1) building a narrow-band sensor basis to
accomplish the diagonal model, 2) building a feasible set of illuminants, and 3) defining
criteria to select the best illuminant. In this work we focus on colour constancy for natural
images by introducing perceptual criteria in the first and third stages.

To deal with the illuminant selection step, we hypothesize that basic colour categories can
be used as anchor categories to recover the best illuminant. These colour names are related
to how the human visual system has evolved to encode relevant natural colour statistics.
Therefore the recovered image provides the best representation of the scene labelled with
the basic colour terms. We demonstrate with several experiments how this selection criterion
achieves current state-of-art results in computational colour constancy. In addition to this
result, we psychophysically prove that usual angular error used in colour constancy does
not correlate with human preferences, and we propose a new perceptual colour constancy
evaluation.

The implementation of this selection criterion strongly relies on the use of a diagonal
model for illuminant change. Then, the second contribution focuses on building an appro-
priate narrow-band sensor basis to represent natural images. We propose to use the spectral
sharpening technique to compute a unique narrow-band basis optimized to represent a large
set of natural reflectances under natural illuminants and given in the basis of human cones.
The proposed sensors allow predicting unique hues and the World colour Survey data in-
dependently of the illuminant by using a compact singularity function. Additionally, we
studied different families of sharp sensors to minimize different perceptual measures. This
study brought us to extend the spherical sampling procedure from 3D to 6D.

Several research lines remain still open, such as, measuring the effects of using the com-
puted sharp sensors on the category hypothesis; or inserting spatial contextual information
to improve category hypothesis. Finally, to explore how individual sensors can be adjusted
to the colours in a scene.
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Chapter 1

Introduction

The goal of this thesis is the study of computational colour constancy for natural images.
Colour constancy is the ability of humans to perceive stable colours under different illumi-
nants. Computationally, colour constancy is defined as the estimation of the scene illuminant
given a single image that is an ill-posed problem. Colour constancy consists of estimating a
3× 3 matrix which represents the illuminant. In order to reduce the complexity of the prob-
lem, colour constancy methods can be studied at three different stages that can be solved
separately. The first stage is to build a narrow-band set of sensors to accomplish a diagonal
model of illuminant change, which converts the original 3 × 3 matrix into a diagonal one,
reducing in this way the number of unknowns to 3. Second stage consists of defining a set of
possible solutions for the problem. Finally, last stage consists of estimating the best illumi-
nant from the previous set. Particularly, in this work we tackle colour constancy problem by
considering data derived from psychophysical colour naming experiments to the first and the
third stages. The underlying idea is to use the information used in human representations
as an evolutionary coding of natural statistics.

1.1 Colour science

Colour is a very important cue in our daily life and in our culture. Colour from an evolution-
ary point of view has allowed us to distinguish fruits in the forest or predators in the jungle.
In Figure 1.1 we can see a colour image with a predator and the correspondent luminance
image. Living in a world in greyscale would hinder our ability to interact with the environ-
ment. At night, when colour information disappears, it is more difficult to recognise dangers.
From a cultural viewpoint, colour is inserted in many different communication codes. Green
signals correlate with an allowance to proceed, while red are assigned to a prohibition.

The human visual system (from now on HVS) acts at different stages and not all of
them are related to colour [95]. Here we roughly review the representation of colour from
our eyes to our brain. The eye captures the light using different types of cells. Some cells
react to different wavelengths, all of them located approximately between 400 nanometres

1
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(a) (b)

Figure 1.1: (Image courtesy of Beau Lotto)(a) Original image (b) luminance image.
Colour information allows us to distinguish the danger.

and 700 nanometres. We can see in Figure 1.2 that visible light is a very small part of the
electromagnetic radiation, which range from gamma rays up to radio waves.

Figure 1.2: Visible light compared with the rest of electromagnetic information.

Light sensitive cells are located at the retina. Retina is usually explained as a tissue
where images of the real world are projected. There are two different types of cells in the
retina: the cones and the rods. Rods (R) are stimulated at low intensity light and get
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saturated before the cones. They basically extract intensity information and are usually not
considered in colour perception. On the other hand, there are three different types of cones,
reacting lo large (L), medium (M) and short (S) wavelengths. The spectral absorption of
these cones depending on the wavelengths is shown in Figure 1.3. These different wavelengths
are usually related for simplicity to the colours red for the L cones, green for the M cones
and blue for the S cones.

Figure 1.3: Different cone and rod responses over the spectrum.

Rod and cone cells are not the only cells dealing with colour. In the lateral geniculate
nucleus (LGN) located in the thalamus (LGN is the primary processing center of our brain)
is where the opponent cells are located [28]. These cells take the information given by the
LMS cells and perform a centre-surround procedure. This step inserts an opponent coding
acting as three channels: intensity, red versus green and blue versus yellow. A scheme of this
combination is shown in Figure 1.4. Information from these opponent cells is later sent to
the visual cortex. The full mechanisms for colour processing in the brain are not completely
known yet.

Colorimetry is the field of physics that has mathematically specified colour perception.
The beginning of this science can be related to the Newton observations [86], but, a big
breakthrough appears with the matching experiments performed by Guild and Wright [56],
[121]. These experiments were based on the trichromatic theory that states that colour can
be modelled by only using three primaries [116] and considering the Grassman laws of colour
addition [55]. A particular experiment was performed using a bipartite matching field of
around two degrees of visual angle. The visual angle was selected in order to consider only
the fovea, and therefore, to be able to discard any information coming from the rods. The
experiment was defined as an observer-adjustable procedure: on one side of the field a test
colour was projected and on the other side, an observer-adjustable colour was set. The
experiment was performed by 7 observers [122]. From this experiment, the main institution
in the field, the Comission Internationale de l’ Éclaraige (CIE) defined the colour matching
functions r, g, b for a standard observer. From these functions they define three different
tristimulus values R,G, and B quantifying the amount of each colour perceived by a standard
observer from a surface with reflectance S(λ) and illuminant E(λ). This space is known as
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Figure 1.4: Opponent process scheme.

CIERGB and is given by.

R =

∫
E(λ)S(λ)r(λ)dλ

G =

∫
E(λ)S(λ)g(λ)dλ (1.1)

B =

∫
E(λ)S(λ)b(λ)dλ

(1.2)

However, these colour matching functions have some problems, a major one being the ex-
istence of negative values. From this problem CIEXYZ space was derived. This space
was committed to accomplish two specific goals: having all positive response in the colour-
matching functions x, y, z, and, having one of the colour-matching functions to be equal
to the photopic response function CIE V (λ). These functions are shown in Figure 1.5.(a)
Then, the different tristimulues values for X,Y , and Z are given by

X =

∫
E(λ)S(λ)x(λ)dλ

Y =

∫
E(λ)S(λ)y(λ)dλ (1.3)

Z =

∫
E(λ)S(λ)z(λ)dλ

(1.4)

From this CIEXYZ space, a chromaticity space can be defined by projecting onto the
X + Y + Z = 1 plane and avoiding one of these dimensions as

x =
X

X + Y + Z

y =
Y

X + Y + Z
(1.5)

(1.6)
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This chromaticity diagram (Figure 1.5.(b)) will represent a 2D projection of the gamut
of all different colours humans can see, since x, y, z represent a standard observer.
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Figure 1.5: (a) CIEXYZ colour matching functions (b) CIEXYZ chromaticity dia-
gram (right).

CIEXYZ space has been shown as a very useful space in terms of colour parametrisation.
However, it has a main drawback: it does not correlate with human similarity perception.
In order to counter this problem, CIE has been defining different spaces: CIELAB [98],
CIECAM97 [81] and CIECAM02 [96]. All these spaces are perceptually uniform, this means,
distances in the space correspond to perceptual distances. These spaces act as chromatic
adaptation models since they require to know the colour of the illuminant, that is, the
colour of the white point. Once the white point is obtained, these spaces are defined to be
completely independent from original light source. Every space has been defined trying to
overcome problems detected in the previous ones [31].

1.2 Image formation

Computer vision is a sub-field of artificial intelligence that tries to emulate human tasks
via the definition of specific engines. These tasks can vary from object recognition, object
tracking or object segmentation. In these tasks colour plays an important role, and then
is a key feature to be used in computer vision. Computational colour relies on an image
usually acquired with cameras based on three basic sensors. Trichromatic cameras capture
the light reflected by the scene using three different sensors which react to different physical
wavelengths. However, spectral information is not the only information that influences the
image formation process, also the geometry of the different surfaces in the scene interact
with the process.

A model capturing all these effects was defined by Shafer in [101]. This dichromatic
model describes the colour of a scene as a combination of diffuse and specular components.
These components are defined by the surface of the object, denoted as surface albedo (diffuse
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component) and the colour of the specularities (specular component). Mathematically, the
model is defined as

ρi = mb(n, s)

∫
E(λ)Cb(λ)Ri(λ)dλ+ms(n, s, v)

∫
E(λ)Cs(λ)Ri(λ)dλ (1.7)

where Ri(λ) represents the i-th sensor, E(λ) is the illuminant spectrum, Cb(λ) is the surface
albedo, Cs(λ) the specular colour. Finally, n is the surface patch normal, s the direction of
the incident light and v is the direction of the viewer. A scheme of this model is found in
Figure 1.6

Figure 1.6: Dichromatic model scheme.

The main problem of the dichromatic model is its complexity. For this reason, for
computer vision applications the geometry of the image and the specular component is
usually discarded , focusing only in the information given by the albedo.

ρi =

∫
E(λ)S(λ)Ri(λ)dλ (1.8)

where colour representation only depends on the sensor sensitivities, the colour of the illu-
minant conditions and the colour of the surface.

1.3 Colour constancy

One of the main properties of the human visual system is its colour constancy ability. How
colour constancy is achieved in HVS it is still not completely understood. It is usually defined
as the tendency of objects to appear the same colour even under changing illumination [66].
Several studies widely agree that colour constancy is not based on a single mechanism,
and these mechanisms spread over the different neural levels. In order to locate different
mechanisms in the scheme, Hurlbert and Wolf [67] defined three different classes:

Sensory: These mechanisms only require a simple linear transformation of the photore-
ceptors. Some authors defend that colour constancy is mainly achieved at this level [113].
Main sensory mechanisms are reduced to: chromatic adaptation to the mean, chromatic
adaptation to the variance and spatial contrast. This last mechanism is strongly supported
by the results obtained by Foster et al. [45]. These results state that cone-photoreceptor ratio
excitations produced by light from natural surfaces are statistically almost invariant under
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changes in illumination due to natural light. Therefore, they keep the cone-excitation ratios
invariant from the surfaces across illuminant changes helping in solving colour constancy.

Perceptual: These mechanisms require prior segmentation in order to find relevant
scene elements. Some perceptual cues are: 3D shapes [60], depth perception [118], mutual
reflections, chroma variance, specularities [71] and scene movement [119]

Cognitive: These mechanisms require recognition of objects in the scene. In this class
we have memory colour, that states that we tend to perceive an object’s colour influenced
by the colour stored in our memory. For example, we will see a banana as yellow, sky
as blue or grass as green [87]. Memory colour was firstly introduced by Hering in the
19th century [61]. Another cognitive cue will be the conciousness of illuminant change [4].
However, conciousness of illuminant change will be in the border between cognitive and
perceptual aspects, since it is related to the scene movement.

Experiments in colour constancy have been done using different paradigms. One of the
most widely used is defined via the adjustment of a particular patch (called test patch) dis-
played or projected under different illuminant conditions with a specific background. The
adjustment of the test patch can be done following different approaches [103]. Asymmetric
matching consists of adjusting the test patch viewed under one illuminant to another patch
in a second stimulus viewed under a different illuminant. Both stimulus can be seen simul-
taneously, that is, both appeared at the same time, or successively. Achromatic matching
consists of transforming the colour of the test patch to an achromatic colour. Colour naming
consists of converting the test patch onto one of a particular colour category.

1.4 Computational colour constancy

In this work we will focus on solving colour constancy from a computational point of view.
As we introduced previously, colour constancy is often defined as the ability of perceiving
colours stable under different lights. Therefore, we need to represent a banana yellow both
at midday, when the illumination is mainly bluish and at sunset, when the illumination is
reddish. Unfortunately, this information is not coped by a camera device. For example, in
Figure 1.7 we can perceive that the t-shirt worn by the woman in the middle is perceived as
orangish in the context of both images, although we can see that in isolated conditions the
t-shirt it purely green under the turquoise illuminant.

Figure 1.7: Colour constancy effect.

Computational colour constancy is an under-constrained problem and therefore it does
not have a unique solution. From a mathematical point of view, let us suppose we have an
object with reflectance S(λ) viewed under two illuminants E1(λ), E2(λ) and captured by a
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camera with sensitivities Ri(λ), i ∈ {1, 2, 3}. Then, the colours captured by the camera are
denoted as ρ1 and ρ2, where their components are given by

ρ1
i
=

∫
S(λ)E1(λ)Ri(λ)dλ

ρ2
i
=

∫
S(λ)E2(λ)Ri(λ)dλ (1.9)

(1.10)

The relation between these two values is usually modelled by a 3×3 matrix. That means,
we tackle it as a 9-dimensional problem.

ρ1 =




α δ ε
ζ β η
θ ϑ γ



 · ρ2 (1.11)

Equation 1.11 is crucial in order to solve computational colour constancy. Without loss
of generality we can consider E1(λ) as the canonical illuminant. The canonical illuminant
is the illuminant under which the colours appear in a trustworthy form (usually a white
illuminant). Then, if we wish to discount the colour of the illuminant from the image of a
scene it suffices to find the mapping that removes this colour. As an example, if an image
is captured under bluish light then all the recorded sensor responses are biased in the blue
direction and, in particular, a white surface will itself be bluish. If we can find the map
that goes from the blue light to a white counterpart then applying this map will remove
the colour cast. However, equation 1.11 has 9 components in a 3 × 3 matrix and colour
constancy, viewed from this viewpoint, is still a 9-dimensional problem.

A lot of research have been devoted to solve colour constancy from many different per-
spectives but there is not still a widely accepted solution. In this thesis we propose to frame
all colour constancy approaches as a three-stage process.

First step deals with the computation of a new basis of sensors in order to accomplish
the so-called von Kries or diagonal model of illuminant change [120], [75]. This means,
accomplishing that the illuminant change can be modelled as

ρ1 =




α 0 0
0 β 0
0 0 γ



 · ρ2 (1.12)

Equation 1.12 reduces the complexity of the problem by supposing that illumination
change is a process which operates in each sensor response channel independently. Then,
the 3× 3 original matrix is converted to a diagonal one greatly simplifying colour constancy
computation.

Second step deals with the definition of the set of plausible illuminants. This set is called
the feasible set. Plausible illuminants are determined by restrictions usually related to the
colour values that the corrected image can take. For example the gamut of the colours in
the output image should be inside the gamut of possible colours.

Finally, third step deals with the selection of the best illuminant map from the feasible set .
Different methods have been designed to perform this selection ranging from statistical to
physical approaches.
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A review of different methods following this framework is found in section 2. We define
this framework in order to locate the contributions of the thesis. In this thesis we have been
working in the first and the third steps. In both cases we have developed our contributions
by the use of colour naming data learned psychophysically.

1.5 Colour naming

Different psychophysical experiments have been proposed to explain the special responses to
some particular colours in our brain. The most influential one related to colour naming is
still the one performed by Berlin and Kay [12]. In this work, Berlin and Kay asked speakers
of 20 different languages of industrialised cultures to name different patches of the Munsell
book of colour. The selected patches consist of a set of Munsell reflectances spanning the
gamut of typical colour names. It consists of 40 hues spanning the colour circle, each printed
in 8 values. Those patches are usually shown as a 2D grid of colours where neighbouring
patches have similar hue and saturation (see Figure 1.8). Then, they analysed those patches
and extracted the conclusion that most evolved languages shared 11 colour terms. These
terms are: red, green, blue, yellow, orange, brown, pink and purple as chromatic colours and
white, grey and black as achromatic. Furthermore, they analysed written data for other 78
languages and also concluded that the number of colour terms is related to the evolution of
the culture associated.

Some further research based on this topic have been done by Sturges et al. [106], Boynton
et al. [17] and Benavente et al. [10] in order to locate the colours consistently named in a
reference space.

Figure 1.8: Munsell chips used by Berlin and Kay.

Berlin and Kay experiment has been further developed by Cook, Kay and Regier. Fol-
lowing the same procedure as that in the previous experiment, they launched the World
Colour Survey (WCS) data experiment [1]. In this new experiment they analysed 110 un-
written languages, using 24 native speakers and 330 Munsell chips (40 of them are the Berlin
and Kay ones). However, in this case, the experiment was not performed under controlled
conditions. The results of this experiment show that four universal chromatic colours arise:
red, green, blue and yellow. These colours also correspond to the unique hues found in some
physiological studies [73], [110]. In Figure 1.9 we plot the difference between Berlin and Kay
and WCS results.

Recently, new colour naming experiments are being done in on-line platforms [83], [82].
This new paradigm allows to reach people from very different scenarios which means uncon-
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(a) (b)

Figure 1.9: (a) Berlin and Kay psychophysical data. (b)WCS psychophysical data.

trolled conditions onto the stimulus but a higher number of subjects.

1.6 Thesis outline

In this thesis, we focus on computational colour constancy for natural images. The main
novelty in this work is the use of colour naming psychophysical data (see section 1.5) in order
to deal with colour constancy for natural images. Particularly, two main contributions are
presented. To report the work we have divided the thesis in two parts.

The first part of the thesis is devoted to the problem of Illuminant Selection. We define a
new colour constancy method which uses the basic colour term categories defined by Berlin
and Kay [12] as anchor points. This method will be explained in chapter 3. In chapter 4 we
have explored on selection criteria with a psychophysical experiment to test if usual physical
colour constancy measures adapt to human preferences.

The second part of the thesis, titled Sensor Sharpening, starts in chapter 5 where we
prove that by using some particular sharp sensors we can predict both results from the WCS
data and from the unique hues data. Moreover, the relation between these data and the
sensors is based on an achromatic measure. Finally, in chapter 6 we show how by using the
spherical sampling technique, we can find sharp sensors minimising a range of perceptual
measures.



Chapter 2

Computational colour constancy: a

review

In this section we review some of the most important works on the different stages of colour
constancy introduced on the previous chapter and which are in the basis of our work. Firstly,
we explain the different methods that have been used to provide sharper (more narrow-band)
sensors that allow the use of a diagonal model for illuminant change. We review in depth
four different sharpening methods and the spherical sampling technique that is a key step for
final improvements. Secondly, we review different approaches to construct a feasible set of
illuminants either if it is explicitly computed or implicitly used in different methods. Finally,
different approaches defined to estimate the colour of the illuminant are surveyed. They are
divided into statistical, probabilistic, physical and criteria-combination methods.

2.1 Providing a diagonal model

In the previous chapter we have outlined the von Kries law and the diagonal model for
colour constancy. They state that the illuminant change can be modelled by a process which
operates in each sensor response channel independently, that is,

ρ1 = D1,2ρ2 (2.1)

Then, the 3× 3 original matrix is converted to a diagonal one. However, most of the camera
sensors are very broad functions and the diagonal model does not perform properly in this
case. Then, the question that arises if it exists a set of sensors accomplishing equation 2.1.

The narrow-band sensors are the answer to this question. The narrow-band sensors are
such that for each wavelength only one of them is sensitive. Let us prove that under the
narrow-band assumption equation 2.1 holds. To this end, we suppose the extreme case where
sensors are only sensitive to a single wavelength (Dirac Delta functions). Then, we consider
the wavelength λ1 to which only the sensor R1(λ) is sensitive. In this case, equation 1.11
can be written as

11
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


E1(λ1)S(λ1)R1(λ1)

0
0



 =




α δ ε
ζ β η
θ ϑ γ



 ·




E2(λ1)S(λ1)R1(λ1)

0
0



 (2.2)

.

From this equation we find the following three equalities

E1(λ1)S(λ1)R1(λ1) = α · E2(λ1)S(λ1)R1(λ1)

0 = ζ · E2(λ1)S(λ1)R1(λ1) (2.3)

0 = θ · E2(λ1)S(λ1)R1(λ1)

.

Then,

α =
E1(λ1)

E2(λ1)
, ζ = 0 and θ = 0

.

Applying the same procedure to the wavelengths λ2 and λ3 were the second and third
sensors are sensitive we find δ = ε = η = ϑ = 0 and

β =
E1(λ2)

E2(λ2)
and γ =

E1(λ3)

E2(λ3)

and then the diagonal model holds.

We have proven that in the case of a set of narrow-band sensors the diagonal model
holds. But, how to convert the camera sensors into a set of sensors more narrow-band? The
solution to this problem has come through the spectral sharpening technique that is based
on the idea that there might exist a privileged linear combination of the camera sensors
with respect to which Equation 2.1 works. We can call this approach transformed diagonal
mapping. The remarkable and useful conclusion of the spectral sharpening work was that
even for broad-band sensor systems a diagonal matrix model of illuminant change could be
used. Mathematically, the equation defining a transformed diagonal mapping is:

Tp1
r
≈ D1,2Tp2

r
(2.4)

where r is defining different surface reflectances, T is usually referred to as sharpening
matrix and its respective sensors are referred to as sharp sensors [35]. This equation has
been solved in different ways, each of them leading to a different matrix T , and then defining
a different set of sharp sensors. In Figure 2.1 we can see (a) the Sigma Foveon D10 sensors,
(b) a set of narrow-band sensors and (c) a set of sharp sensors.

In this chapter we will explain four different methods defined to compute the matrix
T , and a final improvement in order to refine the results. We will also introduce some
psychophysically measured matrices that can be used as sharpening matrices. Finally, we
will define the usual error measure used to compare these methods.

2.1.1 Sensor-based spectral sharpening

Finlayson et al. [35] first defined the so-called Sensor-based spectral sharpening. The idea
underlying this method is that a sensor R(λ) can be sharpened in an interval [λ1, λ2] denoting
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Figure 2.1: (a) Sigma Foveon D10 sensors, (b) Narrow-band sensors, (c) Sharp
sensors.

wavelengths. The resulted sharp sensor can be denoted as Rt(λ)c, c being a coefficient vector.
It can be found by minimising

min(

∫

Φ

[R(λ)tc]2dλ+ µ{

∫

ω

[R(λ)tc]2dλ− 1}) (2.5)

where ω is the visible spectrum, Φ denotes wavelengths outside [λ1, λ2] and µ is a Lagrange
multiplier that constrains the integral of the resulting sensor to be 1. In other words, they
strengthen the percentage of the norm of sensor R(λ) lying in the interval [λ1, λ2] in relation
to all the other intervals.

To solve this problem for all the spectra the authors propose to define K intervals where
K is the number of sensors (in our case K = 3). These intervals do not intersect with each
other and cover all the spectra. Then, the kth column of matrix T will be the one that
minimises the equation 2.5 for this particular interval.

2.1.2 Perfect sharpening

Another approximation to tackle the problem is perfect sharpening. Perfect sharpening is
based on the work of Marimont and Wandell [80] where they explain the idea of illuminant
and reflectance dimensionality. A set of surface reflectances is n-dimensional if we can write
any reflectance S of the set as a linear combination of n basis functions Si

S(λ) =
n∑

i=1

σiSi(λ) (2.6)

Similarly, a set of illuminants is m-dimensional if we can define m basis functions Ei that
accomplish

E(λ) =
m∑

i=1

εiEi(λ) (2.7)

Based on this assumption, Finlayson et al. [33] have shown that if illuminants are two-
dimensional and reflectances three-dimensional, or vice versa, spectral sharpening is perfect.

Let us suppose that the set of reflectances is three dimensional (n = 3) and the set of
illuminants is two dimensional (n = 2). First, we need to remark, that under the assumptions
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stated above, a colour descriptor (Eq. 1.9) under a light E1 can be written using a lighting
matrix Λ(ε)

p1 = Λ(ε)σ (2.8)

σ being the vector obtained applying equation 2.6 to the surface and being Λ(ε)ij a 3 × 3
matrix

Λ(ε)ij =

∫
Si(λ)E

1(λ)Rj(λ) (2.9)

with E1(λ) computed following equation 2.7.

Then, without loss of generality, we can define E1 as the canonical light. As illuminants
are two dimensional we need a second illuminant E2(λ) independent from the canonical one
E1(λ) to span the space.

Associated with this illuminant will also be a new lighting matrix Λ2. This second lighting
matrix is some linear transform away from the first one, Λ2 = MΛ1, that is, M = Λ2[Λ1]−1.

Therefore, as E2(λ) and E1(λ) span the space, any other lighting matrix will be a
combination of Λ1 and MΛ1. For this reason, any colour descriptor under an illuminant
Ee(λ) = αE1(λ) + βE2(λ) can be written as

pe = [αI + βM ]Λ1σ = [αI + βM ]p1 (2.10)

where I is the identity matrix. Calculating the eigenvector decomposition of M

M = T−1DT (2.11)

and expressing the identity matrix in terms of T , I = T−1IT , they rewrite equation 2.10 as
a diagonal transform

Tpe = [αI + βD]Tp1 (2.12)

Finally, writing p1 in terms of pe

Tp1 = [αI + βD]−1Tpe (2.13)

Finlayson et al. also shown in that paper that this theoretical perfect sharpening method
works in practice.

2.1.3 Data-based sharpening for a pair of illuminants

Finlayson et al. [35] defined the data based sharpening which uses linear algebra methods to
directly solve for T by minimising the residual error between a pair of illuminants. To this
end, they define W 1 and W 2 as 3×N matrices containing the colour values for a set of N
different reflectances under two different illuminants E1 and E2.

TW 1 ≈ D1,2TW 2 (2.14)

where D1,2 is a diagonal matrix. Then, they solve this equation for D1,2 in a least-squares
sense. This can be done by the Moore-Penrose inverse

D1,2 = TW 1 [TW 2]+ (2.15)
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where []+ represent the pseudoinverse (see [54]). Rearranging equation 2.15, they arrive to

T−1D1,2T = W 1[W 2]+ (2.16)

Therefore, if U and V , are respectively the eigenvector and eigenvalue decompositions of
W 1[W 2]+ then T = U−1.

This method has a clear drawback: it only searches a solution for a pair of illuminants.
This means that, if we change one of the illuminants, the matrix T will change. For this
reason, Barnard et al. [6] proposed to introduce more flexibility onto the data-based sharp-
ening, by averaging over a set of illuminants (not only one), and introducing a parameter to
prioritise positivity.

2.1.4 Measurement tensor method

Chong et al. [25] , introduced a new data-based method which finds a matrix T for a complete
set of illuminants at the same time. This method is based on the measurement tensor. The
measurement tensor is defined as

Mkij =

∫
Rk(λ)Ei(λ)Sj(λ) (2.17)

where {Ei}i=1,··· ,I is a set of illuminants, {Sj}j=1,··· ,J is a set of reflectances and {Rk}k=1,··· ,K

are sensors. To solve the problem, they slice the measurement tensor by constant k, finding
different I × J matrices Γk = Mkij . After that, they prove:

• A measurement tensor supports colour constancy if and only if there exists a basis,
that, for all k, Γk is a rank 1 matrix

• A measurement tensor supports colour constancy if and only if it is a rank 3 tensor

where an order 3 tensor τ is rank N if N is the smallest integer such that there exist vectors
{an, bn, cn}n=1,··· ,N allowing decomposition as the sum of outer products

τ =

N∑

n=1

cn ◦ an ◦ bn (2.18)

We can rewrite this equation with our measurement Mkij tensor as

Mkij =
N∑

n=1

C ◦ A ◦ B (2.19)

Where the columns of A, B and C are composed by the different an, bn, and cn respectively
and C is the colour basis and therefore, T = C−1.

Then, the sharpening problem becomes equivalent to search for the Mkij rank 3 best
approximation. In order to find this rank 3 approximation authors apply a Trilinear Alternate
Least Squares (TALS) method [59] to equation 2.19. This method has the drawback of local
convergence. Also, TALS method needs initialisation values for two of their three matrices,
usually C being one of them.
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2.1.5 Spherical sampling

Spherical sampling defines all the different sensors on a combinatorial solution. Furthermore,
it also finds the geometrical relation between them. This is possible by defining a relation
between each sensor and a point in the n-sphere which allows the method to refine sharpening
matrices found by other methods.

We will define the method in an n-dimensional formulation (until now, it was usually
defined for 3 dimensions [39]). The definition of this technique as n-dimensional is due to
the fact that we will use it in chapter 6.

Spherical sampling can be defined as follows. Let us represent our sensors R as an m×n
matrix where m is the wavelength sampling and n the number of sensors in an orthogonal
basis. To this end, we can use the singular value decomposition (SVD) of these sensors

R = U · Σ · V t (2.20)

where U is an orthogonal matrix with dimension m × n, Σ is a diagonal n × n matrix
containing the singular values of matrix R and V t is an orthogonal n× n matrix. Then, U
is the basis we seek.

From this basis U , we can define a new set of sensors R (m × n), different from the
original sensors R, by multiplying the basis by any linear transformation P (n× n), which
simply consists of n sample points vectors, p1, · · · , pn located over the n-sphere. Then,

R = UP, P = [p1, · · · , pn]; (2.21)

We are interested in the relation between the original sensors R and the newly defined ones
R. Using equation 2.20 and 2.21 we find

R = UP = UΣV t(ΣV t)−1P = R(ΣV t)−1P. (2.22)

Therefore, relating this equation to the previous methods we have

T = ((ΣV t)−1P )t. (2.23)

We can also rearrange this equation in order to relate a transformation matrix T with a set
of points P over the sphere.

P = ΣV tT t. (2.24)

These last two equations show that we can relate a matrix T found by using any previous
methods to a set of points P located over the sphere. Then we can refine this matrix by
sampling points around the set P and computing back their matrix T . An example of this
for the case n = 3 is shown in Figure 2.2(a) where a set of points separated by a 10 degrees
distance is plotted and in Figure 2.2(b) where their corresponding sensors are plotted.

The formulation defined in this section means that in order to find all the different sen-
sors we only need to sample the different values P located over the n-sphere. This problem
has been widely studied in the 3-dimensional case [94], while its general n-dimensional for-
mulation (with n > 3) has not received as much attention. In this thesis we will use the
method of Lovisolo and Da Silva [77], which is able to work in n-dimensional spaces. We
mimic the explanation of this method in the appendix.
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Figure 2.2: Relation between points in the sphere and sensors (a) 10 degrees sam-
plings of points over the sphere and (b) sensor sensitivities corresponding to the
samplings in (a)

2.1.6 Other approaches

All the previous methods for sharp sensors have been defined in order to help in solving for
colour constancy. But, sharpening matrices related to these methods are not unique. Other
matrices have been derived from psychophysical experiments in order to do chromatic adap-
tation. Some examples are Bradford transform, Fairchild transform, CAT02 transform or
HPE transform [31]. These matrices also represent sharp sensors as was proved by Finlayson
and Susstrunk [39].

2.1.7 Usual error measure

To evaluate how well a particular sharpening method set works we will adopt the method
presented in [35]. A reference light E1 is chosen and the RGB values for a reference sensor set

are calculated for a large set of reflectances pE
1

r
. The reference sensor set could be the XYZ

colour matching functions or the sensitivities of a camera. These RGB values, henceforth
called descriptors, are the correct answer to colour constancy.

Given the corresponding RGB values under a second light E we find the diagonal matrix
D that maps these back to the reference lighting conditions. Of course the diagonal model
is not perfect and so we expect an error between each mapped RGB and its corresponding
descriptor. This percentage error is calculated as:

Error = 100 x
‖pE

1

r
−DpE

r
‖

‖pE1

r
‖

(2.25)

In all our experiments the diagonal components of D are simply the ratio of the sensor re-
sponses of the descriptor for a perfect white diffuser divided by the same white surface viewed
under the second light. Of course we can calculate an analogous error given a sharpening
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matrix T:

Error = 100 x
‖pE

1

r
− T−1DTpE

r
‖

‖pE1

r
‖

(2.26)

Now D is again calculated as the ratio of RGB values for a white surface under the two
lights but now with respect to sensors transformed by T . The above error is calculated for
many surfaces under many lights.

2.2 Building the feasible set

The construction of a feasible set of solutions is a usual stage in computational constancy
methods. The concept was firstly referred in the seminal work of Forsyth [42], where the
idea is introduced as the basic goal to solve the problem. It copes with the set of all possible
solutions, namely, the set of all possible mappings representing feasible illuminant changes.
Depending on the dimension of the mappings the feasible set can be in a 3D space for the
case of the diagonal model or a 9D space for full linear models.

The feasible set is explicitly computed in some methods such as Color in Perspective
[32], Edge Gamut Mapping [53] or Gamut Contrained Illuminant Estimation [37], where
their differences are derived from the differences in the assumptions that will constraint
this feasible set. Constraints are either applied onto the set of illuminants (Forsyth [42]) or
onto the set of likely reflectances (Finlayson [32]). Whatever assumption is used, the aim is
always to reduce the size of the feasible sets. There are some works focusing on a efficient
computation of the feasible set (Finlayson et al. [38]).

In some methods, such as Grey-World [21], Shades-of-Grey [40] or Grey-Edge [111] the
feasible set is not explicitly computed since they are based on assumptions addressed to
establish a selection criterion onto the set instead of trying to reduce its size. An important
distinction when computing the feasible set is derived from the conditions we are working
on.

Under calibrated conditions, that means, for the case where the camera sensitivities of
the acquisition device are known, the sensor sensitivities are the main constraint in reducing
the set of likely solutions. In this case the feasible set is defined by the set of illuminants that
map the gamut of the original image inside the canonical gamut. Let G(C) be the canonical
gamut provided by all the reflectances, the canonical illuminant and the sensor sensitivities
and I the original image represented as a 3×N matrix. Then the feasible set is defined as
the set of different mappings m such as

FS = {m : G(m · I) ⊂ G(C)} (2.27)

where G(m · I) is the gamut of the image corrected by the mapping m which is related to a
specific illuminant change. In this case the · operation stands for the application of a 1× 3
map onto all the image points. In the case of non-calibrated conditions, the feasible set is
defined as

FS = {e : G(m · I) ∈ G(RGB)} (2.28)

where G(RGB) is the complete sensor-dependent cube.



2.3. Illuminant selection 19

2.3 Illuminant selection

In section 2.1 we have reviewed different methods that might sharpen the sensors to achieve
a more accurate use of the diagonal model. In section 2.2 we have reviewed the methods
that explicitly build the feasible set of mappings. In this section we finish the review by
introducing the rest of the methods organised according to the type of criteria they use to
finally select an illuminant. We propose a taxonomy of methods or selection criteria that
is divided in four groups: statistical, probabilistic, physical and those based on criteria-
combination.

Statistical methods are based on basic criteria assuming some statistical properties
on the image content. In this group we have the criteria used in gamut-mapping methods.
The most visited approximations are Maximum Volume and Average. The former selects the
illuminant ê whose associated mapping maximises the image volume. Assuming the diagonal
model this is equal to

m̂ = margmaxi mi,1
·m

i,2
·m

i,3
(2.29)

where in mi,k i denotes the different mappings in the FS and k the different colour channels.
On the other hand, the Average heuristic selects the illuminant associated to the average
mapping of the FS.

m̂ = mean(mi,1,mi,2,mi,3) (2.30)

Other criteria similar to previous ones have been those related to the computation of a norm,
usually L2 and L1.

In this group of methods we also have those methods that rely on properties of the scenes
instead of on the properties of the corrected images. For example, Grey-World [21], which
assumes that scenes are grey in mean. Given an image I as a 3 × N matrix, where each
row, Ii, represent a colour channel it can be denoted as I = (I1, I2, I3)

T . The estimated
illuminant is given by

ê = (mean(I1),mean(I2),mean(I3)) (2.31)

A similar approach is themax-RGB method [75] that assumes the highest intensity values
of the image as the white point. Thus, the estimated illuminant is given by

ê = (max(I1),max(I2),max(I3)) (2.32)

Another approach with a similar selection criterion is the WhitePatch. In this case the
white point is equal to the RGB values of the image pixel having the maximum colour
module.

A generalisation of Grey-World and max-RGB was defined in Shades-of-Grey [40], which
generalises and outperforms the previous methods by using the Minkowski norm, Particu-
larly, an illuminant ê is considered as the scene illuminant if it accomplishes

(∫
Ipdx∫
dx

) 1

p

= k · ê (2.33)

where k is a constant. In particular, p = 1 is the Grey-World method, and p = ∞ is the
Max-RGB algorithm.
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Grey-Edge [111] extends Shades-of-Grey. In this case, the image derivatives are added to
the Minkowski norm. This generalisation improvies previous results. It is based on a similar
formulation

(∫ ∣∣∣∣
δIpdx

δdx

∣∣∣∣

) 1

p

| = k · ê (2.34)

Probabilistic methods are those based on the assumption that colour constancy can be
solved in the frame of a probability space, (Ω,F , P ), where Ω is the feasible set of illuminants,
F is the σ-algebra composed by elements for each illuminant individually, and

P (e|I) : Ω −→ [0, 1]

is the probability of having illuminant e given the image I .

Then, in these methods prior information is used to select the illuminant. For example,
Bayesian Colour Constancy [19] uses as prior information the fact that each surface can be
modelled as a truncated multivariate normal distribution. One of the main problems of this
work is its complexity, since it depends on the number of surfaces in the scene. Particularly,
in this paper they suppose 8 surfaces. The increase of this value also increases the complexity
of the algorithm. A generalisation for this method can be found in [51].

Voting methods, such as Illumination by Voting [100] which use the Probabilistic Hough
transform, compute the conditional probability of all the illuminants given a RGB value of
the image. That is,

ê = argmax
e

∑

p∈RGBim

Pr(e|p) (2.35)

Color-by-Correlation [36] uses as prior information the probability of a colour appears
under one particular illuminant. In particular, they learn the probability of a surface to ap-
pear under a particular illuminant and they build a correlation matrix with this information.
This method works in a chromaticity space and the illuminant is selected as the one that
accomplishes

ce = thresh2(thresh(chist(Cim))tMBayes)Cill) (2.36)

where

Cim are the image chromaticities.

Cill are the chromaticities for the set of selected illuminants.

MBayes is the correlation matrix.

chist(x) is an histogram in 2-Dimensions.

thres(x) is a binarisation to 1 for x > 0.

thres2(h) returns a vector with 0 in all positions except the one where the global maximum
is achieved, in this case it returns 1.

Notation provided in equation 2.36 is proposed in the same paper [36] as a general
framework for all computational colour constancy methods.
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Physics-based methods. Whilst all the previous reviewed methods are based on the
Lambertian simplification, here we have grouped the methods that assume the full dichro-
matic model of colour, and therefore, they also consider the reflection component.

Some examples of these physical methods are found in Funt et al. [49] that uses mutual
reflections to solve the problem, Klinker et al. [70] that uses both highlights and shading and
the method of Lee [76] which uses specular highlights to correct the illuminant.

Criteria combination Recently, some researchers have dealt with the idea of combining
different colour constancy methods by selecting the method that better perform for each
image. First attempt was defined by van de Weijer et al. [112]. In this paper, the selection
of the colour constancy solution is related to an image annotation task. The method is based
on Probabilistic Latent Semantic Analysis [62].

Gijsenij et al. [52] have recently proposed a method based on the Weibull statistics of the
natural images. That is, the statistics of the image determine which method is used. Other
authors, such as Bianco et al. [14], [15] have used different classification techniques, such as
decision forests, in order to select the appropriate method.

Finally, other methods have used a voted-for procedure in an image by dividing it in
multiple patches. These patches are defined to better accomplish the physical properties of
the different methods. An example of these methods is the one defined by Riess et al in [97].

2.4 Usual error measure

The usual error measure used to evaluate colour constancy algorithms is the angular error.
The angular error calculates the angular distance between the physical (real) illuminant and
the estimated illuminant. This measure does not take into account intensity information,
that is, it only measures chromaticity differences independently of the brightness. Let p

w
be

the physical white point (illuminant), and let p̂
w

be the estimated white point. Then, we
define the angular error between these two illuminants as

eang = acos

(
p
w
· p̂

w

‖p
w
‖‖p̂

w
‖

)

(2.37)

To evaluate the performance of different methods on large datasets, either the root mean
square error, the median or the mean on the angular error is computed. In this work we
mainly use the root mean square of the angular error since is the measure that punishes the
outliers.
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Chapter 3

Colour naming for colour constancy

Finding colour representations which are stable to illuminant changes is still an open problem
in computer vision. Until now most approaches have been based on physical constraints or
statistical assumptions derived from the scene, while very little attention has been paid to
the effects that selected illuminants have on the final colour image representation.

The novelty of this chapter is to propose perceptual constraints that are computed on
the corrected images. We define the category hypothesis, which weights the set of feasible
illuminants according to their ability to map the corrected image onto specific colours. Here
we choose these colours as the universal colour categories related to basic linguistic terms
which have been psychophysically measured. These colour categories encode natural colour
statistics, and their relevance across different cultures is indicated by the fact that they have
received a common colour name.

From this category hypothesis we propose a fast implementation that allows the sampling
of a large set of illuminants. Experiments prove that our method rivals current state-of-art
performance without the need for training algorithmic parameters. Additionally, the method
can be used as a framework to insert top-down information from other sources, thus opening
further research directions in solving for color constancy.

3.1 Introduction

Colour is derived from three components: the reflectance of the object, the sensitivity of
cones, and the illuminant spectra. Of these components, the illuminant spectrum is the
least stable. Illumination changes depending on different aspects: time of the day (daybreak,
midday, sunset), or indoor/outdoor situations, for example. Thus the problem for computer
vision is that the colour of an object depends on the light under which we are looking
at it. The human visual system solves this problem thanks to the so-called color constancy
property [65]. This property allows humans to identify the colour of an object independently
of the colour of the light source. Colour constancy is important for human vision, since colour
is a visual cue that helps in solving different visions tasks such as tracking, object recognition

25
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or categorisation. Therefore, several computational methods have tried to simulate human
color constancy abilities to stabilise machine color representations.

None of the computational approaches defined in section 2.3 have introduced perceptual
constraints. Consequently, very little attention has been paid to how the selected illuminant
affects the perception of the content of the corrected image. Evidence derived from experi-
mental psychology on natural images gives support to the conclusion that several different
perceptual mechanisms contribute to achieve constant images [65]. Different mechanisms
based on different visual cues such as the local and global contrast [74], [43], highlights [64],
mutual reflections [71], categorical or naming stability [88] and memory colour of known
objects [57], [58] are responsible for the almost perfect behaviour of the human constancy
system. In this thesis we focus on the definition of a colour constancy method that considers
the perceptual effects of categorisation on the corrected image.

In this chapter we concentrate on the naming stability cue. We propose the naming
hypothesis as a criterion to constrain the feasible illuminants. We propose to use the capa-
bility of categorising, or assigning basic colour names, in the corrected image as the basis for
weighting all feasible illuminants. In this sense, preferred illuminants will produce a colour
categorised image with useful properties for further recognition tasks. Moreover, our pro-
cess can be justified as it produces an image labelled with the colour categories that encode
natural colour statistics which have evolved as relevant across different cultures by receiving
a common colour name. The existence of the basic colour category terms was noted for the
first time by Berlin and Kay [12], who recorded 11 basic terms. These basic terms were
lately measured by Boynton and Olson [17] in psychophysical experiments.

Using the category hypothesis, we propose a computational approach that is a proba-
bilistic method similar to illuminant voting [100] or colour by correlation [36], but with two
essential novelties that we list below.

Firstly, the method gives a compact framework that allows prior-knowledge from learnt-
colour categories to be easily introduced. Illuminant selection is done through the Category
hypothesis, which is defined as the preference of illuminants that assign colour categories in
the corrected images. In particular, we want to stress that this new algorithm can also be
seen as a generalisation of simpler methods, such as, WhitePatch where we only consider the
white category. This opens up a new way of generalising simple methods to allow greater
complexity (i.e. not only by increasing their statistical complexity).

Secondly, we present a fast algorithm that builds a weighted feasible set for a fine sam-
pling of the feasible illuminants. This fast algorithm can also be seen as a fast implementation
of the Colour by Correlation approach [36] for the 3D case [8] in the particular case of a
diagonal model of illuminant change. This fast algorithm requires the representation of the
weighted feasible set in logarithm space. This in turn improves the illuminant selection step,
since multiple solutions can be easily considered using a compact representation.

To evaluate the performance of the proposed approach, we compare our results with the
existing state-of-the-art in terms of how well the illuminant is estimated. The results suggest
that our approach achieves the performance of the other methods, whilst also incorporating
the advantages mentioned above.

The chapter has been organised as follows. In section 3.2 we explain the basic colour
term categories. Afterwards, in section 3.3 we introduce the category hypothesis, and we
report the results compared to other current methods in section 3.4.
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3.2 Basic term categories

Basic colour term categories were first defined by Berlin and Kay [12], and they were deduced
from a large anthropological study based on speakers of 20 different languages and specific
documentation from a further 78 languages. They concluded that the universal basic colour
terms defined in most evolved languages are white, black, red, green, yellow, blue, brown,
purple, orange, pink and grey. In subsequent works, psychophysical experiments have gener-
ated data that allow these basic categories to be specified accurately [106], [17], [10]. These
datasets give 11 categories where colours have been labelled with a unique name. They are
obtained from the averaged judgements given by all subjects in the experiment.

Basic colour categories are derived from anthropological and psychophysical experiments
that bring us to the conclusion that relevant colours are those that receive a common colour
name across different cultures. A similar conclusion about the relevance of these specific
colour categories has also been derived from a biological model of the human colour sensors
[92]. This work provides strong evidence that colour coding in human vision favours these
colour categories. There are evidences that basic colour terms are likely to be encoding
fundamental natural colour statistics [123]. That makes sense in an evolutionary theory as
they would capture the most relevant information to survive.

In this work we make use of a mapping of these categories provided by Benavente-et
al. [10]. The first row in Figure 3.1 shows the chromaticity of the convex-hull of these
mapped colours at three different levels of intensity in the CIELab space. These polyhedron
contain the parts of the colour space that are judged as pure colours (or focal colours); i.e.
those colours named with a unique basic term. We will use these sets of colours as the anchor
categories that will determine the corrected images. These sets are the focal points (Fi) of
the corresponding colour. We use the CIELab space for Figure 3.1 for explanatory purposes.

In order to also encode common changes of these colours in real scenes, such as those in
shadowed areas or textured surfaces, or even colours reproduced in man-made objects, we are
going to experiment with some extensions of these basic categories, whilst not extending them
beyond the convex-hull of the basic terms. Therefore, we define our categories depending on
the distance to the focal points, whilst constraining them to remain inside the Convex Hull
of the focal terms. Thus, a category Cβ

i is defined as

Cβ
i = {p : d(p, Fi) < β, p ∈ CH(F )} (3.1)

where p is a point in RGB space, F = {Fi}i=1:11 is the set of focal colours presented in [10],
CH represents the convex hull of a set of points and d refers to the Euclidean distance.

Then, from these equations, we are able to define a family of category sets by changing the
β value. In Figure 3.1 we show some examples for these sets, where the first row represents
the original basic categories (β = 0) as horizontal cross-sections in Lab space (L = 25,
L = 45, and L = 65), and the second and third rows represent two different sets, β = 10
and β = 20 respectively. The grey background in all the different plots represents the global
convex hull, which is the growing limit. To discretise category membership we will use a
characteristic function defined as:

X
C

β
i

(p) =

{
1 if p ∈ Cβ

i , p 6∈ Cβ
j,j<i

0 otherwise
(3.2)

where Cβ = {Cβ
i }i=1:11, i encodes each one of the eleven basic terms, namely {white, black,
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(a) L = 25, β = 0 (b) L = 45, β = 0 (c) L = 65, β = 0

(d) L = 25, β = 10 (e) L = 45, β = 10 (f) L = 65, β = 10

(g) L = 25, β = 20 (h) L = 45, β = 20 (i) L = 65, β = 20

Figure 3.1: (a) colour name categories with luminance 25 in Lab space (b) colour
name categories with luminance 45 in Lab space (c) colour name categories with
luminance 65 in Lab space, (d), (e) and (f) first extension of the categories. (g),(h)
and (i) second extension.

red, green, yellow, blue, brown, purple, orange, pink and grey} and p is a colour representa-
tion vector.

3.3 Category methods

We base our approach on the idea that colour constancy aims to produce corrected images
where important contents are stable. We refer to these important contents as basic colour
categories. These anchor categories constitute prior knowledge that is useful for general
image understanding. Therefore we seek to correct images towards a new representation
where these basic categories are anchors. This idea is formulated in the following hypothesis
for colour constancy:

Category Hypothesis: Feasible illuminants can be weighted according to their ability to
anchor the colours of an image to basic colour categories.
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Figure 3.2: categorised original image (left), original image (center-left), corrected
image (center-right), categorised corrected image(right).

Thus, we will call Category Methods those that, applying this hypothesis, compute a
weighted feasible illuminant set according to the set of anchor categories being used, and
select one of them that allows us to obtain a corrected image whose colours falls into these
categories.

In Figure 3.2 we show some examples of the results provided by the proposed hypothesis
using the basic colour terms categories. The original images are shown in the second column,
while the first column presents the categorisation of these images. In the third column we
give the corrected images and their corrected categorisation is given in the fourth column.
Hence, from the first and the fourth column we can see how colour categorisation is changed,
from the original to the corrected image, towards a more colourful image representation that
in turn makes it more stable (e.g. sky is blue, the road is grey). Clearly, our proposal is
simply a bottom-up approach that pursues a corrected, or more stable, image that needs
further processing for full image understanding.

We will now explain our method in three parts: first, we will define the general mathe-
matical formulation; secondly, we will explain the fast implementation of this mathematical
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formulation; and finally, we will explain the illuminant selection criteria.

3.3.1 Mathematical formulation

Let us define P (e|I) as the probability of having illuminant e in image I . This is approxi-
mated as

P (e|I) ≈
f(e)∑

ě∈FS f(ě)
= k1 · f(e) (3.3)

where FS is the feasible set of illuminants (in the C-Rule sense, considering as canonical
gamut the whole RGB cube) and the function f(e) is defined in a voting procedure in the
same manner as Sapiro in [100]. This voting function is defined as

f(e) =
∑

p∈RGBI

P (e|p) (3.4)

where RGBI represents the different colours appearing in the image, and P (e|p) is the
probability of having illuminant e given colour p in the image. This probability is defined to
follow the category hypothesis introduced earlier, thus

P (e|p) = P (e|p, Cβ) =

∑
C

β
i
∈Cβ X

C
β
i

(p · diag(e)−1)
∑

C
β
i
∈Cβ

∑
q∈RGB(X

C
β
i

(q))
(3.5)

quantifies the ability of illuminant e to categorise colour p in the set of anchor categories

denoted as Cβ , and is normalised by the total amount of nameable colours. X
C

β
i

(x), defined

in equation 3.2, is responsible for counting the number of colours falling in each one of the
categories for the specific illuminant.

To simplify the previous formulation, the denominator in equation 3.5 is substituted by
a constant

k2 = 1/
∑

C
β
i
∈Cβ

∑

q∈RGB

(X
C

β
i

(q)) (3.6)

and we therefore rewrite P (e|I) as

P (e|I) ≈ k1 · k2
∑

p∈RGBI

∑

C
β
i
∈Cβ

X
C

β
i

(p · diag(e)−1). (3.7)

We want to highlight here, that this compact formulation could be used for a different
set of categories than those used in this paper. Indeed, existing colour constancy methods
can be incorporated within this framework. For instance, using white as a unique category
means that the method acts as a White-Patch algorithm, while taking all possible colour
values for a certain device as different categories behaves like the Color-by-Correlation [36]
solution in the diagonal case for a 3D colour space.
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3.3.2 Fast implementation

The main problem of this formulation is its cpu time, which is large due to the double
summation term. Therefore, in order to reach a fast implementation of the proposed voting
approach, we reformulate equation (3.7) by reordering sums and obtaining

P (e|I) ≈ k1 · k2 ·
∑

C
β
i
∈Cβ

∑

p∈RGBI

X
C

β
i

(p · diag(e)−1) (3.8)

in this way, the inner summation is equivalent to a product of two functions histn and X β
Ci

,
where histn is the normalised histogram of the image I and X

C
β
i

is the characteristic function

of a category Cβ
i . Both functions are defined over the complete RGB domain which allows

the reformulation of the previous equation as

P (e|I) ≈ k1 · k2 ·
∑

C
β
i
∈Cβ

∑

r∈RGB

histn(r · diag(e)−1) · X
C

β
i

(r). (3.9)

Note that from now on, the inner summation is over the set of possible RGB values
instead of over the values appearing in the image.

At this point we propose to estimate this probability by removing constants k1 and k2
and introducing a log monotonic function in the image domain. This implies that

P (e|I) ≈ k1 · k2 · P̂ (e|I)

∝ P̂ (e|I)

=
∑

C
β
i
∈Cβ

∑

r∈RGB

ĥistn(log(r · diag(e)−1)) · X̂
C

β
i

(log(r))

(3.10)

where the membership function and the histogram function have been redefined in log space

as X̂
C

β
i

(r) = X
C

β
i

(exp(r)) and ĥistn(x) = histn(exp(x)). Furthermore, considering that

taking logarithms transforms products into additions, we can write

P̂ (e|I) =
∑

C
β
i
∈Cβ

∑

r∈RGB

ĥistn(log(r) + diag(log(e))−1) · X̂
C

β
i

(log(r))

(3.11)

which brings us to compute a linear correlation of two functions

P̂ (e|I) =
∑

C
β
i
∈Cβ

(ĥistn ∗ X̂
C

β
i

)(e) (3.12)

that can be computed in the Fourier space as a simple product of functions. Using the Fast
Fourier Transform (FFT) this can be done with a computational cost O(n3 log(n)).
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3.3.3 Illuminant selection

In the foregoing sections we defined a computational framework that provides a weighted set
of feasible solutions. The proposed algorithm assigns different probabilities to all plausible
illuminants accordingly with the category hypothesis. The next step is to select the most
relevant illuminant by using some specific criterion. To evaluate the performance of the
hypothesis we set up experiments with two different criteria: i) selecting the illuminant with
the maximum probability, which is the most common approach in probabilistic methods; and
ii) selecting the illuminant by combining our feasible solutions with solutions provided by
other methods which are based on a complementary hypothesis. In this way we can evaluate
whether the category hypothesis can be improved by combining it with, for example, an
edge-based hypothesis. This combination criterion can be seamlessly integrated within the
proposed algorithm, which is another advantage of this framework. The use of a global
convolution in the log-RGB space is the basis that allows the probabilities for a large sample
of illuminants within the feasible set to be calculated, and allows us to work directly with
these probabilities.

Using a maximum criterion we can formulate Category Correlation methods (heretofore
CaC ) to deliver a unique solution, which is given by

ê = arg max
e∈FS

P (e|I) (3.13)

where ê is the estimated illuminant for the scene based on equation (3.3).

Using a combination criterion we are assuming that our weighted feasible set is providing
different plausible explanations of the corrected image. For instance, in some particular
images such as the bananas shown in Figure 3.3, we can see that disambiguating the scene
illuminant from the object reflectances is an unsolvable problem. In this case most of the
solutions in the feasible set could be equally plausible since they could correspond to different
ripeness of the fruit or different illuminants. The four images in Figure 3.3 have been obtained
from a clustering with standard k-means with four classes onto the feasible set and extracting
the illuminant with maximum probability as the representative of each cluster. In this case,
the original image was close to the green bananas given in solution (a).

Accordingly with the previous observation we can state that working with multiple so-
lutions can be an improvement to classical constancy approaches. One of the strengths of
our method relies on the fact that a large sample of likely illuminants has already been
computed. In this way we can extract multiple solutions by directly thresholding onto the
weighted feasible set. Then, a multiple solution set for a given image I is given by

Sα = {e ∈ FS : P (e|I) > α}, (3.14)

which denotes the set of illuminants having a probability higher than α. Providing multi-
ple solutions allows us to delegate the final selection either to other visual processes with
contextual information or to other top-down selective tasks. This approach has been used
in [112] where an illuminant is selected to improve a scene recognition task from a variety of
solutions from different constancy methods (and after a learning step). There are also other
methods selecting a unique solution from a set of precomputed ones [14], [15]. These last
methods use classification techniques such as decision forest to this end.

Here in this work, we propose a criterion that estimates the best illuminant by selecting
the solution from Sα = {Si}i=1,··· ,n that is the most voted-for by solutions derived from other
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(a) (b)

(c) (d)

Figure 3.3: Different feasible solutions for the same scene providing different expla-
nations of that scene.

methods based on different hypotheses and which are denoted as {Tj}j=1,··· ,m. Formally, we
select the most voted-for illuminant by computing

ê = Sarg maxi #{vj∈v:vj=i} (3.15)

where v = {vj}j=1,··· ,m encodes the solution of Sα that is closest to a solution in {Tj}j=1,··· ,m,
and

vj = argmin
i

ang(Si, Tj) (3.16)

where ang is the angular error distance between two given illuminants.

With this criterion we select an illuminant which has a high probability based on our own
hypothesis and is reinforced by being close to the solutions provided by other hypotheses.

3.4 Experiments

To evaluate our hypothesis we have run our method under different parameters varying the
category sets and the selection criteria. We have used two different datasets and we have
compared our results with current state-of-the-art.

We denote our method as CaCβ
sc where sc is the selection criterion used and β refers

to category threshold. The selection criterion will be m for selection based on maximum
probability and c for a combined selection. For both selection criteria the value of β takes
one out of four possible values: 0 (in order to use the basic categories), 10, 20 and 400.
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This last value has been defined in order to select the complete convex hull (grey polygon
in Figure 3.1). In all the experiments our methods have worked with a logRGB cube of 50
bins, that implies a sampling of 503 different illuminants.

Specifically for the combined criterion, we have selected our solutions by setting α =
0.95 · max(P (e/I)). We have combined these solutions with 24 solutions coming from dif-
ferent applications of the grey-edge hypothesis. We have used a wide range of statistical
combinations of this hypothesis by fixing the following parameters p = 1, 6, 11, 16, σ = 1, 3
and n = 0, 1, 2 where p is the Minkowski Norm, σ the smoothness parameter and n the
differentiation order

We compare our method with previous approaches. These methods are divided in two
groups, calibrated and no-calibrated methods. The first group includes C-Rule (maximum
volume (GM-MV) and average (GM-AVE)) [42] and Gamut Constrained illuminant estima-
tion (GCIE) [37]. In the second group we compare with Grey-Edge [111], Shades of grey [40],
Max-RGB [75], Grey-World [21], Color-by-Correlation [36] and Neural Networks [22].

We have run the Grey-Edge algorithm provided by the author [111], and have considered
the following set of parameters: 0 ≤ n ≤ 2, 0 ≤ σ ≤ 5, 0 ≤ p ≤ 15. For Shades-of-Gray the
values are 0 ≤ σ ≤ 5, 0 ≤ p ≤ 15. For the training of these two methods, we used 33% of
the images to set the parameters, and we applied these parameters to the rest of the images.
In this way, independence between training and testing sets is preserved.

Same experiments have been applied to two different images datasets that we list below:

Dataset 1. Real-World Images This dataset created by Ciurea and Funt [26] is com-
posed by images captured with a grey sphere in the image field of view. This sphere allows
to estimate the scene illuminant. In our experiments the ball has been excluded in order to
avoid any influence in the results. This image dataset is gamma corrected, therefore we have
removed this correction considering γ = 2.2 that is the typical value used in sRGB devices.
Furthermore, since this dataset was recorded by a video-camera, all the image scenes within
each of the 15 scenarios present a high correlation of contents. To avoid the effects derived
from this fact we have followed a similar procedure from previous reported experiments. In
particular, we have used the frames extracted in [13], that are the biggest independent image
dataset that can be extracted from the Ciurea-Funt dataset. The total amount of images
is 1135, but with a different number of images for each scenario. Both, for Grey-Edge and
Shades-of-Grey we have used 5 scenarios for training and 10 scenarios for testing.

Dataset 2. Controlled Indoor scenes: This dataset created at Simon Fraser University [9]
is composed by 321 indoor images. It consists of 31 scenes captured under 11 different con-
ditions, totalling 321 images. This dataset is formed by raw images, therefore no gamma
correction is needed. In this experiment we trained both Grey-Edge and Shades-of-Grey by
using 10 scenes for training and 21 for test.

In order to analyse if category hypothesis brings us to meaningful solutions we have used
the root mean square (RMS) of the angular error between the solution and the known scene
illuminant. Low RMS error rates implies that images are generally corrected in a good direc-
tion. In this work we present a first step in the introduction of colour categories to constraint
colour constancy, therefore we have based our analysis on how corrected solutions fall onto
the basic term categories.
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3.5 Results and discussion

Figure 3.4: Examples from a Real-World dataset. Original image (left), corrected
image (center), categorised corrected image (right).

The results obtained from the aforementioned experiments are summarised in Table 3.1.
The results are divided into three parts: our results, uncalibrated methods and calibrated
methods in this order. First rows of the table are related to our method. In particular,
from the first two rows we can observe that our method achieves state-of-the art results by
using a completely new hypothesis and with no training step that could set parameters to
the dataset content. In these first two rows we applied the basic method CaC0 that simply
uses the focal colours of the 11 basic colour categories. The combination criteria does not
introduce critical changes on the performance. In subsequent rows we study the effect on
the performance of our method when changing the basic categories.

In the second part of the table we report the performance of different uncalibrated
methods. From those methods, we have reported the results on the two datasets for the ones
where we could run the code, and for the rest of methods (Neural Networks [22] and Color-
by-Correlation [36]) we report the results provided in the literature that were just on dataset
3. For the case of calibrated methods we report the results for GM-MV and GM-AVE [42]
computed by us, and we have transcribed from previous works the results for GCIE-11 and
GCIE-87 [37]. A clear advantage is shown by calibrated methods which use the information
derived from knowing camera sensitivities.

Before to analyse the results obtained when changing size of the basic colour categories,
it is worth to note an important observation provided by experiments not reported here.
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Figure 3.5: Controlled indoor dataset. Original image (left), corrected image by
proposed method (center-left), points weighting the selected illuminant (center-right),
categorisation of corrected images (right)

Method Dataset 1 Dataset 2

CaC0

m
14.57◦ 8.82◦

CaC0

c
14.63◦ 8.19◦

CaC10

m 14.43◦ 8.29◦

CaC10
c 14.55◦ 7.66◦

CaC20

m 14.72◦ 7.34◦

CaC20

c 14.74◦ 7.23◦

CaC400
m 14.76◦ 7.23◦

CaC400

c 14.79◦ 7.05◦

Grey-Edge 14.62◦ 8.56◦

Shades-of-Grey 14.77◦ 8.73◦

Max-RGB 15.89◦ 11.76◦

Grey-World 15.97◦ 13.56◦

no-correction 20.32◦ 19.64◦

Colour by Correlation - 10.09◦

Neural Networks - 11.04◦

GCIE 87 lights - 7.11◦

GCIE 11 lights - 6.88◦

GM-MV - 6.89◦

GM-AVE - 6.86◦

Table 3.1: Angular error on the different datasets.
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Method Dataset 1 Dataset 2
CaC0

pb
11.91◦ 7.12◦

CaC10

pb
11.53◦ 6.27◦

CaC20

pb
11.81◦ 5.70◦

CaC400
pb

11.99◦ 5.54◦

Table 3.2: Angular error limit by selecting the best solution during the combination
on the different datasets.

Increasing the size of categories beyond the convex-hull of the basic colour categories conveys
in a high decrease of performance. This fact supports the idea of the adequacy of the basic
colour terms as centred anchors for a good adaptation to the most common image content.

As we can see from the results, for the case of a big real-world dataset (dataset 1) best
results are obtained with the smallest categories CaC0 and CaC10. This result agrees with
the general hypothesis of the method that defends that basic colour categories encode natural
colour statistics, that agrees with the content of dataset 1, which is large dataset formed by
a majority of natural images.

For the indoor dataset (dataset 2), the best results are achieved when we use the biggest
sizes of categories, that is, the full convex hull of the colour categories. This fact can
be explained by the high amount of non-natural and non-basic colours such as turquoise
or other intermediate colours appearing in big areas of the images. In general, man-made
objects present the property of having random colours (maybe non basic) in big homogeneous
surfaces (non-textured). The size of the basic colour categories usually agrees with their
texture appearance, a big green category correlates with highly textured green areas in
natural vegetation, while yellow and red correspond with small category volumes correlating
with a less frequent apparition in natural environments. Big homogeneous areas in man-
made objects imply histograms with sharp peaks which lead to an increase in the number
of solutions that can achieve a high weight. This obviously implies an increase in the error
measure. It is for this last reason that the combination criteria works very well in this dataset.
Many different interpretations are plausible, therefore the use of different cues becomes more
important. We can see how CaC400

c reaches almost the level of calibrated methods when the
categories are adapted to the dataset content.

Apart from the shown results, we want to outline a further advantage derived from the
method. The estimated illuminant provides us with an annotated image that informs about
which parts of the images have been selected as anchors and with which colour. In Figure
3.5 we show some results of CaC0

m, e.g, using basic categories and maximum selection,
for images in dataset 1. From left to right, first column shows the original image, second
column corresponds to the corrected image and third column display the categorised image.
In Figure 3.2 we show a similar example for dataset 2 with the same basic method. In
this case, the first and second columns show the original and corrected images respectively.
Third column shows the points that have been annotated with basic names in the selected
solution. Finally, the fourth column presents the categorisation of the corrected images with
basic terms.

Forthwith, we also computed the performance bound we can obtain by improving the
illuminant selection step in Sα. We want to emphasise again that all the images selected
in this set were highly categorised with basic colours due to our selection of the value α.
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The results for these performance bounds are shown in Table 3.2. These results reinforce
our hypothesis since they prove that a proper solution is included into the set of higher
categorised images.

The proposed method paves the way for further research related to the introduction of
top-down knowledge from the image content that can additionally constrain the number of
solutions and consequently allow a higher performance. By top-down knowledge we refer to
further processes on the image content that can provide clues to select which are the best
colour categories and even where they should be located in the image. Additional visual
cues informing about the existence of a tree in the image applies for specific locations to find
green colour in the image. To evaluate the effects of this kind of top-down knowledge onto
the performance of our method, we have done one further experiment, that is reported in
Table 3.3.

In this experiment we have applied a pre-computation step that has provided the basic
colour categories appearing in the image under the canonical illuminant. In this way, this
specific set of categories has been used to apply the basic algorithms to each image. In Table
3.3 we show the results of estimating the illuminant by selecting the maximum probability
from the feasible set built using specific categories for each image. We can see that by intro-
ducing information from other top-down visual processes the increase on the performance is
substantial.

Method Dataset 1 Dataset 2
CaC0

TD 11.51◦ 7.70◦

Table 3.3: Top-down approach.

3.6 Conclusions and further work

The main novelty of this work is the definition of a new hypothesis for colour constancy that
relies on a set of reflectances, or colour categories, that encode relevant colour information
in natural scenes. These categories are those that receive a name across different languages
and cultures. These colours are distributed around the achromatic reflectances and we
hypothesise that they can act as anchors for image correction.

We propose a colour constancy method that estimates the best illuminant according to
its ability to label image points with these basic colour categories. We use representatives for
these categories obtained from psychophysical experiments. The method we propose builds
a set of feasible illuminants that are weighted according to the hypothesis.

A fast implementation is easily defined by working in log-space. The proposed algorithm
allows one to obtain a large sampling of the feasible solutions which is the basis for a useful
framework. Having a set of multiple solutions provides different selection criteria and an
open framework to introduce new cues from complementary visual processes.

We show that our methods achieve current state of art with some advantages. Our
method is a purely bottom-up method providing a framework for further combination with
complementary visual information. The method is based on general psychophysical data that
can be modified depending on the application. Lastly, and most importantly, our results are
achieved without the need for a training step, as is required in many other approaches.
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The proposed method can be framed within the family of probabilistic methods that
estimates the illuminant by voting. The method can be seen as a generalisation of previous
approaches such as WhitePatch, which results from using a single achromatic category in
our method, or Color-by-Correlation (for the 3D case) where categories are represented by
the full set of reflectances used.

Further research is now possible to exploit the advantages of using the weighted feasible
set. Complementary visual cues, or constraints derived from specific visual tasks, can provide
further information for deciding on the final illuminant.
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Chapter 4

Psychophysical evaluation of colour

constancy algorithms

Performance evaluation for computational colour constancy algorithms has been usually done
by comparing the angular error between the estimated chromaticity and the chromaticity of
a canonical illuminant, which is highly dependent on the image dataset. However, recently,
some works have used perceptual constraints to estimate illuminants; in this case selection
is based on increasing the performance on the subsequent steps of the systems. In this
chapter we propose a new performance measure, the perceptual angular error. It evaluates
the performance of a colour constancy algorithm according to the perceptual preferences of
humans, or naturalness (instead of the actual optimal solution) and is independent of the
visual task. We show the results of a new psychophysical experiment comparing solutions
from three different colour constancy algorithms. Our results show that in more than half
of the judgements the preferred solution is not the one closest to the optimal solution. Our
experiments were performed on a new dataset of images acquired with a calibrated camera
with an attached neutral grey sphere, which better copes with the illuminant variations of
the scene.

4.1 Introduction

Colour constancy is the ability of the human visual system to perceive a stable representation
of colour despite illumination changes. Like other perceptual constancy capabilities of the
visual system, colour constancy is crucial for succeeding in many ecologically relevant visual
tasks such as food collection, detection of predators, etc. The importance of colour constancy
in biological vision is mirrored in computer vision applications, where success in a wide range
of visual tasks relies on achieving a high degree of illuminant invariance. In the last twenty
years, research in computational colour constancy has tried to recover the illuminant of a
scene from an acquired image.

41
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This has been shown to be a mathematically ill-posed problem and therefore does not
have a unique solution. A common computational approach to illuminant recovery (and
colour constancy in general) is to produce a list of possible illuminants (feasible solutions)
and then use some assumptions, based on the interactions of scene surfaces and illuminants
to select the most appropriate solution among all possible illuminants. Comparison studies
[5], [7] have ranked the performance of different algorithms, which usually depend on the
properties of the image dataset and the statistical measures used for the evaluation. It is
generally agreed that, although some algorithms may perform well in average, they may also
perform poorly for specific images. This is the reason why some authors [63] have proposed
a one-to-one evaluation of the algorithms on individual images. In this way, comparisons
become more independent of the chosen image dataset. However, the general conclusion
is that more research should be directed towards a combination of different methods, since
the performance of a method usually depends on the type of scene it deals with [23]. In all
these approaches, the evaluation of the performance of the algorithms has been based on
computing the angular error between the selected solution and the actual solution that is
provided by the computational colour constancy method.

Some recent proposals, like our section 3 or [109], [112], turn away from the usual ap-
proach and deal instead with multiple solutions delegating the selection of a unique solution
to a subsequent step that depends on high-level, task-related interpretations, such as the
ability to annotate the image content. In this example, the best solution would be the one
giving the best semantic annotation of the image content. It is in this kind of approach
where the need for a different evaluation emerges, since the performance depends on the
visual task and this can lead to an inability to compare different methods. Hence, to be able
to evaluate this performance and to compare it with other high-level methods, we propose
to explore a new evaluation procedure.

In summary, the goal of this chapter is to show the results of a new psychophysical
experiment following the lines of that presented in [115]. The previous results were confirmed,
that is, humans do not chose the minimum angular error solution as the more natural.
Furthermore, in this chapter we propose a new measure to reduce the gap between the error
measure and the humans’ preference. Our new experiment represents an improvement over
the old one in that it considers the uncertainty level of the observer responses and it uses
a new, improved image dataset. This new dataset has been built by using a neutral grey
sphere attached to a calibrated camera to better estimate the illuminant of the scene. We
have worked with the shades-of-grey [40] algorithm instead of CRule [42]. This decision has
been made on the basis that CRule is calibrated, whereas the other algorithms are not. This
chapter is divided as follows. In section 4.2 we present how the experiment has been driven.
Afterwards, in section 4.3 we show the results. Later on, in section 4.4 a new perceptual
measure to deal with the evaluation of colour constancy algorithms is presented. Finally, in
section 4.5, we sum up the conclusions.

4.2 Experimental setup

Subjects were presented with a pair of images (each one a different colour constancy solution)
on a CRT monitor and asked to select the image that seems ”most natural”. The term
”natural” was chosen not because it refers to natural objects but because it refers to natural
viewing conditions, implying the least amount of digital manipulation or global perception
of an illuminant. Figure 4.1 shows some exemplary pictures from the database. The pictures
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Figure 4.1: Images regularly selected in the experiment as natural (left) versus
images hardly ever selected (right).

on the left are examples of images selected as natural most of the time, while those on the
right are examples of images hardly ever selected as natural.

The global schematics of the experiment are shown in Figure 4.2. We used a set of 83
images from a new image dataset that was built for this experiment (the image collection de-
tails are explained in section 4.2.1). The camera calibration allows us to obtain the CIE1931
XYZ values for each pixel and consequently, we converted 83 images from CIE XYZ space to
CIE sRGB. Following this, we replaced the original illuminant by D65 using the chromaticity
values of the grey sphere that was present in all image scenes.

From the original images, 5 new pictures were created by re-illuminating the scene with
5 different illuminants. To this end we have used the chromatic values of each illuminant (3
Planckians: 4000K, 7000K, 10000K, and two arbitrary illuminants: Greenish (x = 0.3026,
y = 0.3547) and Purplish (x = 0.2724, y = 0.2458), totalling 415 images. Afterwards,
the three colour constancy algorithms (Grey-World [21], Shades-of-Grey [40] and MaxName
[115]) explained in section 4.2.2 were applied to the newly created images. Consequently, we
obtain one solution per test image per algorithm, totalling 1245 different solutions. These
solutions were converted back to CIE XYZ to be displayed on a calibrated CRT monitor
(Viewsonic P227f, which was tested to confirm its uniformity across the screen surface)
using a visual stimulus generator (Cambridge Research Systems ViSaGe). The monitor’s
white point chromaticity was (x = 0.315, y = 0.341) and its maximum luminance was
123.78 Cd/m2. The experiment was conducted in a dark room (i.e. the only light present
in the room came from the monitor itself).

The experiment was conducted on 10 näıve observers recruited among university students
and staff (none of the observers had previously seen the picture database). All observers were
tested for normal colour vision using the Ishihara and the Farnsworth Dichotomous Test (D-
15). Pairs of pictures (each obtained using one of two different colour constancy algorithms)
were presented one on top of the other on a grey background (31Cd/m2). The order and
position of the picture pairs was random. Each picture subtended 10.5 x 5.5 degrees to the
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Figure 4.2: Experiment schedule

observer and was viewed from 146 cm. This brings us to 1245 pairs of observations per
observer. No influence on picture (top or bottom) position in the observers’ decision was
found.

For each presentation, observers were asked to select the picture that seemed most nat-
ural, and to rate their selection by pressing a button on an IR button box. The set up (six
buttons) allowed observers to register how convinced they were of their choice (e.g. strongly
convinced, convinced, and marginally convinced). For example if an observer was strongly
convinced that the top image was more natural that the bottom one, (s)he would press but-
ton 3 (see Figure 4.2), if it was marginally convinced that the bottom picture was the most
natural it would press button 4 and so on. There was no time limit but observers took an
average of 2.5 seconds to respond to each choice. The total experiment lasted 90 minutes
approximately (divided in three sessions of 30 minutes each).

4.2.1 A new image dataset

To test the models we need a large image dataset of good quality natural scenes. From
a colorimetric point of view, the obvious choice is to produce hyperspectral imagery, to
reduce metameric effects. However, hyperspectral outdoor natural scenes are difficult to
acquire since the exposure times needed are long and its capture implies control over small
movements or changes in the scene, (not to talk of the financial cost of the equipment). There
are currently good quality image databases available (such as the hyperspectral dataset built
by Foster et al. [47] and Brelstaff et al. [20]), but they either contain specialised (i.e. non-
general) imagery or the number of scenes is not large enough for our purposes. For this
reason, and because metamerism is relatively rare in natural scenes [44], [107] we decided
to acquire our own dataset of 83 images (see Figure 4.3) using a trichromatic digital colour
camera (Sigma Foveon D10) calibrated to produce CIEXYZ pixel representations.

The camera was calibrated at Bristol University (UK) Experimental Psychology lab by
measuring its colour sensors’ spectral sensitivities using a set of 31 spectrally narrowband
interference filters, a constant-current incandescent light source and a TopCon SR1 telespec-
troradiometer (a process similar to that by others [89], [91]). This calibration procedure was
carried out by Dr. C. A. Parraga. The calibrated camera allows us to obtain a measure of the
CIE XYZ values for every pixel in the image. Images were acquired around Barcelona city at
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Figure 4.3: Image dataset under D65 illuminant.

Figure 4.4: Camera and grey sphere setup.

different times of the day and in three different days in July 2008. The weather was mostly
sunny with a few clouds. We mounted a grey ball in front of the camera (see Figure 4.4),
following the ideas of Ciurea et al. [26]. The ball was uniformly painted using several thin
layers of spray paint (Revell RAL7012-Matt), whose reflectance was approximately constant
across the camera’s response spectrum and its reflective properties were nearly Lambertian
(see Figure 4.5). The presence of the grey ball (originally located at the bottom-left corner
of every picture and subsequently cropped out) allows us to measure and manipulate the
colour of the illuminant. Images whose chromaticity distribution was not spatially uniform
(as measured on the grey ball) were discarded.

4.2.2 Selected colour constancy algorithms

In this section we briefly summarise the three methods we have selected for our analysis.
This explanation is a summary of that in section 2.3 for two of the methods. The third one,
is just an early stage of the method explained in the previous chapter. We have chosen two
well-known methods, Grey-World [21] and Shades-of-Grey [40], and a more recent method,
the MaxName algorithm [115]. The Grey-World algorithm (an uncalibrated method based on
a strong assumption about the scene) was selected because of its popularity in the literature.
The Shades-of-Grey algorithm (another uncalibrated algorithm) was selected because it con-
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Figure 4.5: Reflectance of the paint used on the ball.

siderably improves performance with respect to Grey-World (another uncalibrated algorithm
such as Grey-edge [111] could also have been used). Finally, MaxName is a previous version
of the CaC methods presented in chapter 3 and it was selected because it uses high-level
knowledge to correct the illuminant. We give a brief outline of these methods below.

Grey-World

It was proposed by Buchsbaum [21] and it is based on the hypothesis that mean chromaticity
of the scene corresponds to grey. Given an image I = (R,G,B)T as a function of RGB values,
and adopting the diagonal model of illuminant change [34], then an illuminant (α, β, γ)
accomplishes the Grey-World hypothesis if

∫
Idx∫
dx

= k · (α, β, γ) (4.1)

where k is a constant.

Shades-of-grey

It was proposed by Finlayson et al. [40]. This algorithm is a statistical extension of Grey-
World and MaxRGB [75] algorithms. It is based on Minkowski norm of images. An illumi-
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nant (α, β, γ) is considered as the scene illuminant if it accomplishes

(∫
Ipdx∫
dx

) 1

p

= k · (α, β, γ) (4.2)

where k is a constant. Actually, this is a family of methods where p = 1 is Grey-World
method, and p = ∞ is Max-RGB algorithm. In this case we have used p = 12, since it is the
best solution for our dataset.

MaxName

This algorithm is a previous stage of the one presented in chapter 3. It is based on giving
more weight to those illuminants that maximise the number of colour names in the scene.
That is, MaxName builds a weighted feasible set by considering nameable colours, this is
prior knowledge given by

µk =

∫

w

S(λ)E(λ)Rk(λ), k = R,G,B (4.3)

where, S(λ) are the surface reflectances having maximum probability of being labelled with a
basic colour term, also called focal reflectances (from the work of Benavente [11]). In addition
to the basic colour terms, we added a set of skin coloured reflectances. In Equation 4.3,
E(λ) is the power distribution of a D65 illuminant and Rk(λ) are the CIE RGB 1955 Colour
Matching Functions. We define µ as the set of all k-dimensional nameable colours obtained
from Equation 4.3. The number of elements of µ depends on the number of reflectances
used. Following this, we compute the Semantic Matrix, denoted as SM, which is a binary
representation of the colour space as a matrix, where a point is set to 1 if it represents a
nameable colour, that is, it belongs to µ, and 0 otherwise. Then, for a given input image, I ,
we compute all possible illuminant changes Iα,β,γ. For each one, we calculate its nameability
value. This is done by counting how many points of the mapped image are nameable colours
in SM and can be computed by a correlation in log space:

Nvalα,β,γ = log(Hbin(I) ∗ log(SM) (4.4)

In the previous equation, Hbin(I) is the binarised histogram of the image, Nval at the
position (α, β, γ) is the number of coincidences between the SM and Iα,β,γ . Nval is a 3-
dimensional matrix, depending on all the feasible maps, (α, β, γ). From this matrix, we
select the most feasible illuminant as the one that accomplishes:

(α, β, γ) = argmaxNvalα,β,γ (4.5)

that is, the one giving the maximum number of nameable colours.

4.3 Results

The results of the experiment validate those presented by Vazquez et al. [115], with a different
image dataset and a different set of algorithms. The main finding is that preferred solutions,
namely the more natural in the psychophysical experiment, do not always coincide with
solutions of minimum angular error. In fact, this agreement only happened in 43% of the
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Bottom Top

more more

natural natural

than top than bottom

Button 6 Button 5 Button 4 Button 3 Button 2 Button 1
Definitely Sufficiently Marginally Marginally Sufficiently Definitely

0 0.2 0.4 0.6 0.8 1

Table 4.1: Buttons codification.

observations, independently of the degree of certainty of the observers when making the
decision. Since the experimental procedure allows us to define a partition in the interval
[0, 1] to encode the subject selection and each observation represents a decision between two
images, then for each observation we label one image as the result from Method A, and the
other as the result from Method B (Method A and B are labelled as 1 and 0, respectively).
The confidence of the decision is considered at three different levels (the three buttons that
the subject was allowed to press (ordinal paired comparison [3])). For example, suppose that
a scene processed by Method A is presented on top of the screen and a second scene processed
by Method B is presented at the bottom (the physical position of the scenes was randomised
in each trial, but let’s consider an exemplary layout). If the subject thinks that the top
picture is more natural it will press one of the top buttons in Figure 4.2 according to how
much he/she is convinced. Suppose the subject presses button 3 (top-right: definitely more
natural), then the response is coded as 1. If the choice is button 2 (top-center: sufficiently
more natural) the response is coded as 0.8, etc. (see Table 4.1). If, on the contrary the
subject thinks the bottom picture (Method B) is more natural, then he/she will press a
button from the lower row. If he/she is marginally convinced, will pick button 4 (bottom-
left) and the response will be coded as 0.4 according to Table 4.1. Similarly if he/she is
strongly convinced, will press button 6 (bottom-right) and the response will be coded as 0.
In this way we collect not only the direction of the response but its certainty. Observer’s
certainty was found to be correlated (corr. coef. 0.726) to a simple measure of image
difference (the angular error between each image pair). This technique is similar to that
used by other researchers [2], [27], [41], [50].

We have computed two different measures of observer variability. The first measure is the
correlation coefficient between each individual subject and the average over all the observers
(in black in Figure 4.6). Table 4.2 shows this measure. The idea behind this analysis is
to detect outliers (subjects with a distribution of results significantly different to the rest
of the observers, i.e. low correlation). Our second measure is the coefficient of variation
(CV) [78], [79], which computes the difference between two statistical samples (see Table
4.2). Both measures were calculated for the whole 1245 observations (3 combinations of
colour constancy solutions x 415 observations per combination).

From this table, and from the distribution of the plots in Figure 4.6, we decided to omit
data from observer 6 (very low correlation coefficient and highest coefficient of variation) in
all subsequent analysis. As a first approach to analyse our results we computed the mean
of the observers’ responses for each pairwise comparison. We considered that a method was
selected if the mean of the encoded decisions, computed for all 9 observers, is greater than 0.5
(when the method was encoded as 1) or lower than 0.5 (when the method was encoded as 0).
The performance does not vary significantly if we do not consider the cases where the average
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Figure 4.6: Comparison to the mean observer (black line).

Observer 1 2 3 4 5
Correlation 0.54 0.57 0.59 0.55 0.52

CV 52.49% 57.96% 37.65% 52.28% 52.69%

Observer 6 7 8 9 10
Correlation 0.23 0.48 0.63 0.61 0.55

CV 9.85% 47.12% 51.13% 25.36% 42.81%

Table 4.2: Correlation between each observer and mean observer.

value is too close to the chance rate (e.g. averages between 0.45 and 0.55). The results of
these pairwise comparisons are given in Table 4.3. For each pair of methods, we show the
percentage of cases where it has been selected against the others. Thus, results in Table
4.3 can be interpreted as follows: each method (in rows) is preferred a certain percentage of
trials over the method in the columns. For example, Shades-of-Grey is preferred in 68.1% of
the trials against Grey-world.

The percentages in Table 4.3 show that the images produced by Shades-of-Grey and Max-
Name are preferred to those produced by Grey-World (68, 1% and 62, 4%). However, there
is no clear preference when compared against each other (50.6% Shades-of-Grey preference
vs. MaxName).

Versus
Selected Shades-of-Grey Grey-World Max-Name

Shades-of-Grey - 68.1% 50.6%
Grey-World 31.9% - 37.6%
MaxName 49.4% 62.4% -

Table 4.3: Results of the experiment in the 1-to-1 comparison.
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Method Wins
Shades-of.Grey 35.18%
Grey-World 16.33%
MaxName 39.28%

3-equally selected 8.92%

Table 4.4: Experiment results in a general comparison.

Method Wins
Shades-of.Grey 42.65%

MaxName 36.39%
Grey-World 20.96%

Table 4.5: Results using Thurstone’s Law of Comparative Judgement.

In Table 4.4 we show a global comparison of all algorithms (the percentages are computed
for all 415 images). A method was considered a ’winner’ for a given image if it was selected
in two of the three comparisons. Methods were evaluated in the same way as we did for
results in Table 4.3 (that is, a greater than a 0.5 mean value from all observers is encoded as
1). Evaluating this way, there are some cases where the three methods are equally selected
(this happens in 8.92% of the images). This analysis was formulated in order to remove
non-transitive comparisons (e.g. method A beats method B, method B beats method C and
method C beats method A). Hence, we can conclude from these straightforward analyses
that solutions from MaxName are preferred in general, but closely followed by Shades-of-
Grey (39.28% and 35.18% respectively). We can also state that Grey-World solutions are
the least preferred in general (with a low percentage of 16.63%). Moreover, the best angular
error solution is selected in 42.96% of the cases.

We have also calculated the Thurstone’s Law of Comparative Judgement [108] coefficients
from our data (Table 4.5), obtained from the ordinal pairwise comparisons. Using this
measure, results are not very different (Shades-of-Grey and MaxName are clearly better
than Grey-World although the ranking changes) and images with minimal angular error are
only selected in 45% of the cases.

Finally, we have computed two overall analyses (considering all scenes as one) in order
to extract a global ranking for our colour constancy methods: the Thurston’s Law of Com-
parative Judgement [108] and the Bradley-Terry [18] analysis. Table 4.6 shows the results of
the Bradley and Terry’s cumulative logit model for pairwise evaluations extended to ordinal
comparisons [3]. These results are shown on the ’Estimate’ column where the estimate ref-
erence has been set to 0 for the smallest value (Grey-World model). The standard error of
this ranking measure shows that the two best models (Shades-of-Grey and MaxName) are
better than Grey-World and arguably close to each other. Table 4.7 shows a similar analysis
using Thurstone’s Law of Comparative Judgement [108] and considering all scenes as one.

As we mentioned above, our experiment shows that images having minimum angular
error with respect to the canonical solution are selected in fewer than half of the observations
(when we ask people for the most natural image, the response, does not always correspond
to the optimal physical solution). Moreover, this result is maintained even if we discard
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Parameter DF Estimate Std. Er Wald 95% Chi-Sq Pr>
Conf. limits >ChiSq

Shades-of-Grey 1 1.609 1.2231 -0.7882 4.0063 1.73 0.1883
MaxName 1 1.0256 0.8435 -0.6278 2.6789 1.48 0.2241
Grey-World 0 0 0 0 0 . .

Table 4.6: Results using Bradley-Terry ordinal pairwise comparison analysis.

Parameter DF Estimate Std. Er Wald 95% Chi-Sq Pr>
Conf. limits >ChiSq

Shades-of-Grey 1 0.196 0.0031 0.19 0.0021 4040.2 <0.0001
MaxName 1 0.1283 0.0031 0.1223 0.1343 1743.22 <0.0001
Grey-World 0 0 0 0 0 . .

Table 4.7: Results using Thurstone’s law of comparative judgement binary pairwise
comparison analysis.

responses with low levels of certainty. In order to quantify this fact, in the next section we
will introduce a new measure to complement the current performance evaluation of colour
constancy algorithms.

4.4 Perceptual performance evaluation

Assuming the ill-posed nature of the problem, the difficulty of finding an optimal solution
and the results of the present experiment, we propose an approach to colour constancy
algorithms that involves human colour constancy by trying to match computational solutions
to perceived solutions. Hence, we propose a new evaluation measurement, the Perceptual
Angular Error, which is based on perceptual judgements of adequacy of a solution instead
of the physical solution. The approach that we propose in this work does not try to give an
alternative line of research to the current trends which focus on classifying scene contents
to efficiently combine different methods: here we try to complement these efforts from a
different point of view that we could consider as more ’top-down’, instead of the ’bottom-up’
nature of the usual research. As mentioned before, the most common performance evaluation
for colour constancy algorithms consists in measuring how close their proposed solution is
to the physical solution, independently of the other concerns. This has been computed as

eang = acos

(
p
w
· p̂

w

‖p
w
‖‖p̂

w
‖

)

(4.6)

which represents the angle between the actual white point of the scene illuminant,p
w
, and the

estimation of this point given by the colour constancy method, p̂
w
, which can be understood

as a chromaticity distance between the physical solution and the estimate. The current
consensus is that none of the current algorithms present a good performance on all the
images [48], and a combination of different algorithms offers a promising option for further
research. Our proposal here is to introduce a new measure, the perceptual angular error,
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Figure 4.7: Estimated perceptual angular error (between method estimations and
preferred illuminants).

epang , that would be computed in a similar way:

eang = acos

(
pp
w
· p̂

w

‖pp
w
‖‖p̂

w
‖

)
(4.7)

where pp
w
is the perceived white point of the scene (which should be measured psychophys-

ically) and p̂w is an estimation of this point, that is the result of any colour constancy method,
as in Equation 4.6. The difficulty of this new measurement arises from the complexity of
building a large image dataset, where , the perceived white point of the images has been
measured. In this work we propose a simple estimation of this perceived white point by con-
sidering the images preferred in the previous experiment. Hence, the perceived white point
is given by the images coming from the colour constancy solutions that have been preferred
by the observers. The preferred solutions, that is, the most natural solutions, can give us
an approximation to the perceived image white point. Making the above consideration, in
Figure 4.7 we can see how the estimation of the perceptual angular error works for the three
tested algorithms. In the abscissa we plot a ranking of the observations in order to get the
perceptual errors in descending order. In the ordinate we show the estimated perceptual
angular error for each created image (that is, 415 different inputs to the algorithms). A nu-
merical estimation of the perceptual angular error could be the area under the curves plotted
in Figure 4.7. In the figure we can see that both Shades-of-Grey and MaxName work quite
similarly, while Grey-World presents the highest perceptual error. This new measurement
agrees with the conclusion we summarised in the previous section and provides a comple-
mentary measure to evaluate colour constancy algorithms. In Figure 4.8 we show a similar
plot for the usual angular error.
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Figure 4.8: Angular error plot for the different methods on 415 images of the
dataset.

Mean RMS Median
Max-Name 7.64 8.84 6.78

Shades-of-Grey 7.84 9.70 5.95
Grey-World 10.05 12.70 7.75

Table 4.8: Angular error for the different methods on 415 images of the dataset.

In Tables 4.8 and 4.9 we show the different statistics on the computed angular errors. In
Table 4.8, the angular error between the estimated illuminant and the canonical illuminant
are shown. In this case, MaxName and Shades-of-Grey present better results than Grey-
World. In Table 4.9 equal statistics are computed for the estimated perceptual angular error.
The results on this table confirm the conclusions we obtained from Figure 4.7.

4.5 Conclusion

This chapter explores a new research line, the psychophysical evaluation of colour constancy
algorithms. Previous research points out the need to further explore the behaviour of high-
level constraints that are necessary for the selection of a feasible solution (to avoid the
dependency of current evaluations on the statistics of the image dataset). With this aim
in mind, we have performed a psychophysical experiment in order to compare three com-
putational colour constancy algorithms: Shades-of-Grey, Grey-World and MaxName. The
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Mean RMS Median
MaxName 3.86 6.02 2.61

Shades-of-Grey 3.79 5.66 2.86
Grey-World 6.70 9.01 5.85

Table 4.9: Estimated perceptual angular error for the different methods on 415
images of the dataset.

results of the experiment show that the Shades-of-grey and MaxName methods have quite
similar performance which is better than that obtained by the Grey-World method and that
in almost half of the judgements; subjects have preferred solutions that are not the closest
ones to the optimal solutions.

Considering that subjects do not prefer the optimal solutions in a large percentage of
judgements; we have introduced a new measure, based on the perceptual solutions to comple-
ment current evaluations: the Perceptual Angular Error. It tries to measure the proximity
of the computational solutions versus the human colour constancy solutions. The current
experiment allows the computation of an estimate of the perceptual angular error for the
three explored algorithms. However, our main conclusion is that further work should be
done in the line of building a large dataset of images linked to the perceptually preferred
judgements.

To this end a new, more complex experiment, perhaps related to the one proposed in [93],
must be done in order to obtain the perceptual solution of the images, independently of the
algorithms being judged.
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Chapter 5

A new sensor basis to predict

colour names and unique hues

In this chapter we define a new set of sensors which fit psychophysical data. These new
sensors are defined in order to predict specific tasks performed by the human visual system.
To this end, we base our work in a previous work done by Philipona and O’Regan. In this
work surface colour is defined by the relationship between the visually accessible information
under a set of different lights and the visually accessible information about the surface viewed
under the same set of lights. This relationship is a 3 × 3 matrix transform, and from its
eigenvalues, three reflection properties are derived. These reflection properties are related
to the World Colour Survey (WCS) data and the unique hues via a singularity index.

In this chapter we make two contributions. First, we prove that the Philipona and
O’Regan mathematical formulation is strongly related to spectral sharpening methods. Then,
inserting the spectral sharpening idea in the Philipona and O’Regan model allows us to de-
fine a new set of sharp sensors capable of predicting psychophysical data. We also develop
a new mathematical definition of singularity which has two additional properties to the one
of Philipona and O’Regan: it is compact and it is related to a well-known colour measure.

5.1 Introduction

Opponent space has been defined as a confrontation of nonmixable colours. That is, it is
impossible to perceive a reddish green or a yellowish blue. Red, green, yellow and blue are
considered ’cardinal’ colours and their hues are considered unique. In opponency theory [61]
it is proposed that colour is encoded in our brain using three axes. The first axis represents
the intensity, namely, black, grey and white. For convenience we can represent this channel
as an interval [0,1] where 0 and 1 are black and white respectively. The second axis called
red-green encodes values between these two colours: red might be coded by -1, green by +1
and 0 indicates an equilibrium point, that is, a colour that is neither reddish or greenish.
Finally, the third yellow-blue channel measures the relative proportions of yellow or blue
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in a stimulus (where again we can use the numbers in [-1,1] to describe yellowness through
the equilibrium point to blueness). In opponent theory yellow is perceived when the yellow-
blue channel has a strong yellow response and the red-green channel is in equilibrium. The
process to perceive red, green and blue can be analogously defined. However, there is not a
widely accepted theory explaining the uniqueness of these four colours, since the opponent
theory does not adequately predict hues perceived as unique [73], [110].

Whether the opponent theory is able to explain this fact or not, what is widely assumed
is the asymmetry in human perception of different colour surfaces. Specific colour properties,
such as red, green, yellow and blue, or possibly purple, orange and pink in other cultures,
hold a special status in perception. Explanations for this fact could be essentially found in
the neuronal representation of colour in the human visual system [91], or could be due to
cultural or linguistic reasons [69], but it is an open issue.

How this asymmetric perception can be achieved in the human visual system has been
studied by Philipona and O’Regan (from now on PO) [92]. In their work they explore the
hypothesis of a representation that copes with the reflection properties of surfaces indepen-
dently of the lighting conditions of the observation. They build a linear biological model by
finding a linear constraint between the trichromatic representation of the illuminant and the
trichromatic representation of the reflected light. This is a biological approach towards what
physicists define as reflectance: the relationship between the spectrum of light illuminating
a surface and the spectrum of light reflected by the surface. Practically, this is equivalent
to the relation between the RGB values of a surface under different lights and an achro-
matic surface viewed under the same light set. For each surface, this linear model finds a
matrix containing the reflectance properties which are illuminant invariant. They propose
the eigenvalues of this matrix as a triplet representing the inherent reflectance properties of
the surface. These coefficients are denoted as (rs1, r

s
2, r

s
3) where s represents the surface that

is being represented with these three coefficients.

These reflectance coefficients are used to compute a singularity index that will quantify
the degree of asymmetry of the corresponding surface. This index is built in such a way that
it allows predicting the psychophysical data of the unique hues or the colour names of the
WCS [1].

A major strength of PO formulation is that the reflection properties are independent
of the sensor basis chosen. It will work equally well given any combination of the original
human cones. A disadvantage is that the meaning of the reflection properties is not clear
(they do not simply correlate with redness, greenness and blueness for example). Indeed,
the three reflection parameters are without any explicit order.

In this chapter we generalise the PO biological model by defining a 3 × 3 matrix able
to substitute the eigenvectors matrix in their model for all the surfaces. Then, this matrix
represents a new set of sensors. In order to define these new sensors, we use the spectral
sharpening technique proving that its formulation is related to the PO biological model.

Moreover, we also develop a new mathematical definition of singularity overcoming the
drawbacks of the PO index. In particular, our measure will be compact, independent of the
order of the reflectance properties and related to achromaticness.

This chapter is organised as follow. In section 5.2 we explain the biological model of PO.
After this, in section 5.3 we formulate the singularity index defined by the same authors. In
section 5.4 we define our model based on a set of sharp sensors. This is followed by section
5.5 where we formulate our new compact singularity index. In section 5.6 we summarise the
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different results obtained.

5.2 Philipona and O’Regan biological model

The linear biological model introduced in [92] is built on the assumption that the human
vision system is able to extract the reflection properties of the world surfaces independently
of the lighting conditions of the observation. In other words, it delivers a canonical repre-
sentation of the reflectance.

This model is based on the computation of the LMS (or the CIE R,G,B) coordinates.
These coordinates represent physical properties of the light reflected by a surface reaching the
observer eye which lose part of the colour information due to the photopigments absorption.
The authors refer to this as the accessible information [92].

The PO model finds a matrix containing the reflectance properties for each surface.
This matrix is defined from the relation between the accessible information of the incident
illuminant and the accessible information of the reflected light. From this matrix the authors
are able to extract a colour triplet (reflectance) that is the colour of the surface independent
from the illuminant.

To build the data they select a wide number of illuminants and reflectances and a set of
photopigments sensitivities. For the photopigments sensitivities they used mainly the 10-deg
Stiles and Burch colour matching functions (CMFs) [104], but, they observed that by using
the Stockman and Sharpe [105] cone fundamentals no noticeable change is produced. That
is, they showed that both sensitivities were equivalent. For the set of illuminants (from now
on set E) they used the 99 daylight spectra from Romero et al. [99], a Gaussian sample of
200 spectra constructed from the basis functions S0, S1 and S2 derived by Judd et al. [68],
and the 239 daylight spectra from Chiao et al. [24]. Finally, the reflectances used are the
set of 1600 Munsell glossy chips from the Spectral Database of the University of Joensuu
Colour Group [90].

The authors define what they name the visually accessible information for a single surface
and a single light. Denoted as vse, the accessible information about the reflected light for a
given surface s is defined as

vse =

∫

ω

Ri(λ)E(λ)S(λ)dλ, i = 1, 2, 3 (5.1)

where e is related to the illuminant of the scene, λ is defining wavelengths, E(λ) is the spectral
power distribution of the light in each wavelength, Ri(λ) the absorption of photopigments
present in L,M and S photoreceptors respectively and S(λ) the reflectance of a surface.
Second, they define ue as the accessible information about the incident illuminant

ue =

∫

ω

Ri(λ)E(λ)dλ, i = 1, 2, 3 (5.2)

Authors repeat this for the N different lights defined. They arrange the N response vectors
for the surface in a 3 × N matrix, vs, and for the lights in a 3 × N matrix, u. These two
matrices are related by finding the best 3× 3 matrix transform As such that

vs ' As · u (5.3)
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Figure 5.1: General scheme of the PO biological model, where u and vs are respec-
tively the accessible information about the incident light and the accessible informa-
tion from the reflected light and As is the matrix that relates them

where the superscript s denotes dependence on a surface. Then, they solve for the matrix
As by linear regression.

As = vs[u]+ (5.4)

where []+ denotes the pseudoinverse. In Figure 5.1 we show a general scheme of the model.

Once the matrix As is found, they compute the eigenvalue/eigenvector decomposition of
matrix As, this is

As = UsRs(Us)−1 (5.5)

where Rs is a diagonal matrix containing the eigenvalues of As and Us is a 3 × 3 matrix
containing the respective eigenvectors. Then, the model can be rewritten as follows

vs ' UsRs(Us)−1 · u (5.6)

PO show in their paper that Us and Rs form a basis, and therefore, these eigenvalues
are a colour triplet relating the surface reflectance and a white reflectance. From now on,
we will denote these eigenvalues as a vector, rs, where the vector is composed by the values
in the diagonal of Rs. This triplet allows the definition of a formulation that explains the
location of WCS colour names and the unique hues as we will explain in section 5.5.

5.3 Philipona and O’Regan singularity index

PO propose a singularity index that correlates the reflection triplet found by their method
with the red, green, yellow and blue colour names found in the WCS data and with the
unique hues. They formulate this singularity index as follows. Let rs = (rs1, r

s
2, r

s
3) denote

the reflection properties of a surface. Without loss of generality it is possible to assume that
they are in decreasing order (rs1 ≥ rs2 ≥ rs3).

PO define βs
1 and βs

2 as:

βs
1 =

rs1
rs2

(5.7)

βs
2 =

rS2
rs3

(5.8)
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Finally, the singularity index is given by maximising:

SI = max

(
βs
1

max(βs
1)

,
βs
2

max(βs
2)

)
(5.9)

In summary, PO propose that colour names occur when this SI is high, that means that the
reflection properties are, in some sense, singular. A triplet of reflection values are said to be
singular when one or two of the values are close to 0 (and there is at least one value much
larger than 0).

This singularity index has two main drawbacks. First, the formulation is cumbersome,
and it requires the knowledge of the reflectance values for all the surfaces in order to be able
to normalise the output. Second, it is not related to any known property of colour. For these
reasons, in section 5.5 we define a new singularity index overcoming these problems.

5.4 Spectral sharpening to generalise the biological

model

In section 5.2 we have defined the PO biological model. We have shown that the model can
be explained by an equation of the form given in the equation 5.6

(Us)−1 · vs ' Rs(Us)−1 · u (5.10)

It is important to notice that in the PO model the basis of eigenvectors (Us) is different
for each surface. The question that arises here is if it is possible to find a matrix T that can
substitute the different (Us)−1 for all s. If such a matrix exists, it will be defining a new set
of sensors since, by linearity of the integral and using equation 5.1 and 5.2, we will have the
following relations

T ·

∫

ω

Ri(λ)E(λ)S(λ)dλ = Rs · T ·

∫

ω

Ri(λ)E(λ)dλ ⇒

⇒

∫

ω

(T ·Ri(λ))E(λ)S(λ)dλ = Rs ·

∫

ω

(T ·Ri(λ))E(λ)dλ (5.11)

We notice that equation 5.10 is related to the one of the transformed diagonal mapping
(equation 2.4). Then, we can find a sharpening matrix T for this problem applying the
data-based sharpening method (section 2.1.3) to equation 5.10

∆s = T · vs[T · u]+ (5.12)

Rearranging this last equation in order to assure that ∆s is diagonal we find

T−1∆sT = vs[u]+ (5.13)

Then, T is related to the eigenvector decomposition of

vs[u]+ = U∆sU−1 (5.14)

Therefore, T = U−1.
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Applying this method to the different surfaces will give us a set of s different matrices
{Ts} very similar to each other. In order to select the best matrix over the set we search for
the sharpening matrix Tσ that can substitute all the different Us by minimising the error

vs = TσR
s(Tσ)

−1u ∀s (5.15)

The selection of Tσ is based on two criteria. Firstly, we discard the different matrices
Ts that have complex values, and secondly, we select the matrix that obtains a singularity
index for ∆s values closest to the singularity index obtained by PO. Mathematically, let us
define, {Φl}l=1,··· ,L = {T ∈ Ts|∀tij ∈ T, tij ∈ <}. Then,

Tσ = argmax
l

corr(SI([rs1, r
s
2, r

s
3]), SI(Φl · v

s[Φl · u]
+)) (5.16)

where corr represents the lineal correlation coefficient.

The matrix Tσ defines a new set of sharp sensors predicting psychophysical data. The
sharp sensors obtained by applying Tσ are very similar to those shown in Figure 5.2.

The results in Figure 5.2 are the improved version of the sensors defined by Tσ by
applying spherical sampling (section 2.1.5). Using spherical sampling we can minimise the
error committed by Tσ. To this end, we define a new set of sharpening matrices {Γj}j=1,··· ,J

around the original matrix Tσ.

Again, we search the matrix whose reflection properties are close to those of PO. To this
end we first select matrices where (rs1, r

s
2, r

s
3) and ∆s (ordering the values) are sufficiently

close. This means, we reduce the set {Γj} into one called {Υk}k=1,··· ,K

{Υk} =





T ∈ Γj |

#S∑
s=1

d([rs1, r
s
2, r

s
3], T · vs[T · u]+)

#S
≤ α





(5.17)

where S is the set of reflectances and #S is the cardinality of the set.

Then, we apply the selection based on the correlation as before:

TB = argmax
k

corr(SI([rs1, r
s
2, r

s
3]), SI(Υk · vs[Υk · u]+)) (5.18)

By using this procedure we find the best sharpening matrix TB

TB =




1.2566 −1.1480 0.1235
−0.3057 1.6502 −0.3276
−0.0169 0.0219 1.0659



 (5.19)

we will call this matrix the biological sharpening matrix. This sharpening matrix defines the
new set of sensors that subsumes the PO biological model, which are shown in Figure 5.2

It is worth remarking here that by using our sensors we obtain the reflectance information
for each sensor. That is, the reflection properties are related to specific colour sensations
defined by a unique basis that can be understood as a linear combination of the cone sen-
sitivities. This allow us to avoid one of the biggest problems in the PO formulation, where
reflectance properties did not carry any information about which colour is representing each
value, since they do not refer to a unique basis.
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Figure 5.2: Sharp sensors predicting psychophysical data.

5.5 A new compact singularity index

In this section we propose a new singularity index that pursuits a simpler and more compact
formulation than the one proposed by PO (section 5.3) with some specific properties. The
first property we want to fulfil is that our new function should be independent of the order
of the values.The second property we want to fulfil is to normalise it independently of which
is the maximum value of the components. Our proposal is to increase the importance of a
particular coefficient over the other two by means of a mathematical function. To this end,
we propose to use a cubic function normalised by the product of the components, that is,
we compute the terms:

I1 =
(r1)

3

r1 · r2 · r3
(5.20)

I2 =
(r2)

3

r1 · r2 · r3
(5.21)

I3 =
(r3)

3

r1 · r2 · r3
(5.22)

Let us note that we we will no longer use the superscript s to relate reflection properties
with a particular surface.

These last functions allow as to normalise and boost the different coefficients. Then, these
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functions can be simply combined by a sum. In this case, if the surface has a singularity it
will be reflected in at least one of these three components, and it will eventually appear in
the sum, hence our Compact Singularity Index (CSI) is given by

CSI = I1 + I2 + I3 =
(r1)

3 + (r2)
3 + (r3)

3

r1 · r2 · r3
(5.23)

Let us now continue explaining different properties that can be derived. Let us note that
achromatic surfaces will have three equal reflection coefficients and will fall on the diagonal
axis of the space defined by these coefficients. Then, in this space, a chromatic measure can
be computed as the determinant of the following matrix

M =




r1 r2 r3
r2 r3 r1
r3 r1 r2



 (5.24)

that is given by

det(M) = (r1)
3 + (r2)

3 + (r3)
3 − 3 · r1 · r2 · r3 (5.25)

whose normalisation brings to the compact singularity function

det(M)

r1 · r2 · r3
=

(r1)
3 + (r2)

3 + (r3)
3 − 3 · r1 · r2 · r3

r1 · r2 · r3
(5.26)

=
(r1)

3 + (r2)
3 + (r3)

3

r1 · r2 · r3
− 3 (5.27)

∝
(r1)

3 + (r2)
3 + (r3)

3

r1 · r2 · r3
(5.28)

= CSI (5.29)

(5.30)

Another interesting property is the independence of our CSI from intensity if it is con-
sidered as a colour representation, that is

(s · r1)
3 + (s · r2)

3 + (s · r3)
3

(s · r1) · (s · r2) · (s · r3)
=

=
s3((r1)

3 + (r2)
3 + (r3)

3)

s3 · (r1 · r2 · r3)
=

(r1)
3 + (r2)

3 + (r3)
3

r1 · r2 · r3
(5.31)

Finally, we introduce another interesting property of this formulation, since it can be
seen as an approximation of the perceptual space given by

r1 = (ρ1)
1

3 , r2 = (ρ2)
1

3 , r3 = (ρ3)
1

3 (5.32)

Hence, by replacing equation 5.32 in equation 5.23 we found
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CSI =
(r1)

3 + (r2)
3 + (r3)

3

r1 · r2 · r3
=

ρ1 + ρ2 + ρ3

(ρ1)
1

3 (ρ2)
1

3 (ρ3)
1

3

=

=
ρ1 + ρ2 + ρ3

(ρ1 · ρ2 · ρ3)
1

3

∝
aritmean

geomean
(5.33)

where aritmean refers to the arithmetic mean and geomean refers to the geometric mean in
a perceptual space.

From our first index, another interesting analysis can be made by combining in a different
way the values of I1, I2 , I3. In particular we will define two other indices, and we will denote
them as the normalised compact singularity index and the simplified compact singularity
index

CSInorm =
I1

max(I1)
+

I2
max(I2)

+
I3

max(I3)
(5.34)

CSIsimp =
max((r1)

3, (r2)
3, (r3)

3)

r1 · r2 · r3
= max(I1, I2, I3) (5.35)

5.6 Results

PO showed that their model and singularity index are able to predict colour naming, unique
hues and hue cancellation by using three experiments. In this chapter we are going to use
the two first experiments of their paper.

Their first experiment was related to the fitting of the WCS data. PO computed their
singularity index in the 40 Munsell chips that are typically used in colour naming experi-
ments. They compared the results of their index with the data obtained for these particular
chips in the WCS data.

Their second experiment was related to the location of the unique hues. Unique hues
are defined as the wavelengths that human perceive without any trace of other tints. These
hues are usually found in experiments where observers face aperture colours. The stimuli
used in these experiments are generated by sending lights of controlled spectral composition
directly into the eye. PO found the unique hues estimated by their method as follows. They
computed the singularity index for all the surfaces in the Munsell book and those from
some other databases. They then related these singularities with the x,y 1931 values for
the respective surfaces. Finally they related the peaks of their index in the x, y space with
the wavelength associated to that point. In Table 5.1 we can see the different studies about
unique hues and the PO prediction (this table has been extracted from the PO paper).

5.6.1 Comparison of PO’s model vs SS model

This section tests whether our newly derived sensors account for the colour names and unique
hues in a similar manner as the PO biological model. To this end, we will use the singularity
index defined by PO for both models.

Let us start by fitting the WCS data. In Figure 5.3 we can observe the comparison
between the surface created by the singularity index using the PO model on the WCS grid
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Unique yellow Unique green
Dataset Subjects Mean(nm) Range(nm) Mean(nm) Range(nm)
Schefrin 50 577 568-589 509 488-536

Jordan-Mollon 97 – – 512 487-557
Volbrecht 100 – – 522 498-555

Webster (a) 51 576 572-580 544 491-565
Webster (b) 175 580 575-583 540 497-566
Webster (c) 105 576 571-581 539 493-567

PO Prediction – 575 570-580 540 510-560

Unique blue Unique red
Dataset Subjects Mean(nm) Range(nm) Mean(nm) Range(nm)
Schefrin 50 480 465-495 – –

Jordan-Mollon 97 – – – –
Volbrecht 100 – – – –

Webster (a) 51 477 467-485 EOS –
Webster (b) 175 479 474-485 605 596-700
Webster (c) 105 472 431-486 EOS –

PO Prediction – 465 450-480 625 590-EOS

Table 5.1: Unique hues found in the different experiments and the PO prediction.
EOS means End Of Spectrum.

(Figure 5.3.(a)) and the results of our sensors (Figure 5.3.(b)). We can observe that they
are almost identical. In Figure 5.4 the contour plots of the previous figures are shown. In
this way we can compare the location of the different maxima in the grid.

Let us also check the second experiment performed by PO in order to locate the unique
hues. To this end, as explained before, we are going to locate the singularity indices computed
using both models in the 1931 x, y space. In Figure 5.5 we show the singularity index for
the different x,y values for both models, and in Figure 5.6 we can observe a contour plot of
this singularity index.

Finally, with our new approach we obtain the spectral information of the sensors, there-
fore, we can apply the singularity index directly to these. In Figure 5.10.(a) we show the
spectral result for the singularity index applied directly to the sensors. We can observe how
the four unique hues pop out, and that they are very similar to the values in Table 5.1.

5.6.2 Comparison PO’s SI vs our CSI

In this section we show that our new compact singularity index fits the data as precisely
as the PO singularity index with the additional benefit that our index gives extra colour
information.

We begin with the comparison of how well the PO singularity index and our new index
fit the WCS data. In Figure 5.7 we can see the coloured surface representing the results of
the WCS experiment together with the contour lines for both indices. On Figure 5.7.(a) we
show the contour lines for the SI index proposed by PO and on Figure 5.7.(b) the contour
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(a) (b)

Figure 5.3: Prediction of the PO singularity index on the WCS data through the
hue axis (a) PO model results (b) sharp sensors.

(a) (b)

Figure 5.4: Prediction of the PO singularity index on the WCS data through the
hue-value axis (a) PO model results (b) sharp sensors results.
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(a) (b)

Figure 5.5: Prediction of the PO singularity index on the unique hues data on the
x,y chromaticity plane (a) PO model results (b) sharp sensors results.

(a) (b)

Figure 5.6: Prediction of the PO singularity index on the unique hues data on the
x,y plane plane (a) PO model results (b) sharp sensors results.
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(a) (b)

Figure 5.7: Comparison of the WCS data (background) versus: (a) the PO’s index,
(b) our index (right).

lines for our CSI index. We can see how our new index outperforms the previous one for the
blue colour, while the fitting of the rest is quite similar. Moreover in Figure 5.8.(a) we can
see the behaviour of our normalised index, where again blue is giving a better fitting than in
the PO index, but red in this case is fitted worse. Finally, in the simplified version (Figure
5.8.(b)) red is not detected correctly while blue is perfectly located.

We also tested the ability of our new compact singularity index to locate unique hues.
In this case, we have applied two procedures. The first procedure is the same used by PO
(related to the x, y space). Results for this procedure with the CSI index are shown in
Figure 5.9. Plots in this figure should be compared with Figures 5.5 and 5.6. The second
procedure consists of directly applying the different indices to the sharp sensors in order
to extract a spectral function locating the unique hues. In this case we applied the three
different versions of our index and the results are shown in Figure 5.10.(b),5.10.(c),5.10.(d).
The wavelength values where the unique hues arise for these indices are reported in Table
5.2.

5.6.3 Invariant reflectance properties on natural images

One of the main advantages of our formulation is the possibility of working on hyperspectral
images directly. This can be done by applying equation 5.11 to a multispectral image S(λ)
knowing that when using our new sensors the reflection properties can be found just by
dividing vs and u component by component.

We have computed the reflectance properties on some images of the multispectral dataset
acquired by Foster and Nascimento [47], [84]. In Figure 5.11 we show different reflection
properties for some images (left column) and their corresponding singularity index (right
column). We can appreciate how the singularity index provides the information of unique
hues and the focal colours from the scenes.
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(a) (b)

Figure 5.8: WCS Data (background) versus (a)our normalised index and (b) our
simplified index.

(a) (b)

Figure 5.9: CSI index in the x, y space: (a) surface plot, (b) contour plot.

Unique yellow Unique green
Index Mean(nm) Range(nm) Mean(nm) Range(nm)
CSI 574 567-577 544 538-554

Normalised CSI 574 567-577 544 538-554
Simplified CSI 573 568-580 544 537-550

PO 573 570-574 544 515-555

Unique blue Unique red
Index Mean(nm) Range(nm) Mean(nm) Range(nm)
CSI 467 452-475 624 610-EOS

Normalised CSI 467 450-476 624 615-EOS
Simplified CSI 467 460-480 624 620 -650

PO 468 456-470 623 610-625

Table 5.2: Unique hues located by our indices applied directly to the sensors versus
the Philipona index applied to the sensors. EOS means End Of Spectrum.
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Figure 5.10: Unique hues found by (the PO index) (b) our CSI index, (c) our
normalised index and (d) our simplified index (right).
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Figure 5.11: Reflection properties of some images of the Foster and Nascimento
dataset (left) and their singularity index (right.)
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5.7 Conclusions

The main novelty of this chapter is the definition of a new set of sensors using the spectral
sharpening technique. These new sharp sensors allow us to predict unique hues and WCS
data in the same manner as the PO model did.

An advantage of this application relies on the fact that we can obtain a unique basis to
represent all reflection properties of any surface, more independently than how they were
obtained in PO’s model, where reflection properties where defined in a different basis for
each surface.

In the PO model the appearance of a specific linguistic colour name was linked to the
notion of a singularity index. The singularity index was a function of the mapping taking
the response of a surface measured under all lights to corresponding responses for a white
surface. The mapping was a 3 by 3 matrix and the singularity function was large when the
eigenvalues of this matrix had at least one eigenvalue significantly smaller than the other
two. In our work the rather complex and indirect method of PO was replaced by finding a
single sharpen sensor basis with respect to which unique colours correspond to RGB values
which have a similar (yet much simpler) singularity property: at least one of the R, G and
B responses is relatively small. Our compact singularity index can be seen as an achromatic
measure, that is, colours with a high chromatic value in these reflection components are the
ones considered as unique hues and basic colour terms.
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Chapter 6

Experiments using spherical

sampling

In this chapter we define optimal combinations of sensors that better deal with some mea-
surements. We show that these new sensors are sharp and that they can be found by
the use of the spherical sampling technique (Section 2.1.5). This technique allows us to
obtain all the sharpening matrices close to a given one providing a refinement. In partic-
ular, we use it to minimise the CIE Delta E measure and maximise colour ratio stability.
Lastly, we extend the spherical sampling paradigm to the multispectral case, where the
objective is to model the interaction of light and surface without using all the spectra.

6.1 Introduction

In the previous chapters we have shown that the spectral sharpening procedure has been
effective in computational colour constancy for making the diagonal model work better. In
that case, the error measure used for selecting the best approximation has been usually based
on a least squares criteria (see section 2.1.7). In this chapter we apply spherical sampling
to other different computational colour problems where the solution is also a set of sharp
sensors. In particular the problems treated in this chapter are i) to find the sharpening
matrix that best minimises the CIE Delta E error measure ii) to find the sharpening matrix
that best maximises colour ratio stability and iii) to find the best sharpening matrix that
allows us to compute multispectra processing without using the whole spectra.

The first problem is related to finding the sharpening matrix that minimises the error
perceived by humans when using a diagonal model. The error measure usually defined takes
into account a minimisation criteria useful for computations. But, colour constancy is a
human property, and then, it is interesting to study which are the sharp sensors that better
correlate to human perception.

The second experiment is related to relational colour constancy. Relational colour con-
stancy is defined as the invariance of perceived ratios between the colours of surfaces under

75
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different illuminants. In other words, the ratio between colours is stable under different
illuminants. This is a different formulation from the approach followed in colour constancy
(see section 1.3). For this reason, this experiment complements the thesis by studying the
sharp sensors from a different colour constancy perspective.

Finally, the third experiment is useful in different computer graphics problems such as
rendering [30]. In these problems different calculations, like multiplications, over the entire
spectrum are carried out. Sharp sensors can be used in this problem in order to compute a
basis to represent the different spectral functions. Then, the different computations needed
can be done in this new basis reducing the complexity of the problem. Later on, the result
can be expressed back in a multispectral form.

In this chapter we show that the spherical sampling technique outperforms state-of-the
art in these three different problems.

6.2 Experiment 1: Minimising CIE Delta E

This experiment searches for the set of sharp sensors that best correlates with human per-
ception when applying the diagonal model. To this end, this experiment considers a min-
imisation related to a perceptually relevant space, in particular the CIELab space, instead
of the usual RGB space.

The experiment works as follows. We first calculate the colour descriptor for a reflectance
S(λ) under the D65 illuminant and the colour matching functions Rk following equation 1.9.
We denote this value as b. It is then converted to its CIELab representation, we denote it
as a

a = Lab(b) = Lab

(∫

ω

S(λ)D65(λ)Rk(λ)dλ

)
(6.1)

Alongside, we compute the value for the same reflectance S(λ) under another illuminant
E(λ). We denote it as c.

c =

∫

ω

S(λ)E(λ)Rk(λ)dλ (6.2)

By using equation 2.4 we find a transformation matrix T and a diagonal matrix D from
the colour Matching Functions that relate illuminant E with illuminant D65 in a diagonal
form. Thus, we can compute an approximation of b from the value c by converting this value
to the D65 illuminant. We denote this approximation as bE

bE = T−1 ·D · T · c (6.3)

Now, we also find an approximation to a by converting bE to CIELab. We call this new
approximation aE . The error between a and aE is defined by ∆ε, that is, the Euclidean
distance between them, which is a perceptual measure. Formally,

∆ε = ‖a− aE‖ = ‖Lab(b)− Lab(bE)‖ = ‖Lab(b)− Lab(T−1 ·D · T · c)‖ (6.4)

The experiment has been performed with three different datasets. All of them share the
same set of reflectances. These reflectances are the 1995 reflectances defined by Barnard et
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Figure 6.1: (a) Reflectances in the three datasets, (b) illuminants in dataset 1, (c)
illuminants in dataset 2, (d) illuminants in dataset r.

al. [9]. The set of reflectances is composed by the 24 Macbeth color checker patches, 1269
Munsell chips, 120 Dupont paint chips,170 natural objects [117], the 350 surfaces in Krinov
Dataset [72], and 57 additional surfaces.

The difference between the three datasets are the illuminant sets used. In the first dataset
we have used the 11 illuminants from Barnard et al. [9]. Illuminants in the second dataset
are a subset of the previous ones. They are the 8 illuminants which represent daylight
emulations. Finally, for dataset 3 we have defined a set of 6 planckian illuminants (4000K,
6000K, 8000K, 10000K, 12000K and 14000K).

In Figure 6.1(a) we can see an overlapped plot of the spectral composition of the re-
flectances, and the spectral composition of the illuminants for dataset 1, dataset 2 and
dataset 3 in Figures 6.1(b), 6.1(c),6.1(d) respectively.

The transformation matrices we have compared against our spherical sampling approach
are: Bradford, HPE, Fairchild and CAT02 as experimentally learned and the measurement
tensor method as one that is theoretically found. The initial colour basis matrix for the
measurement tensor method has been set to the identity matrix. In Table 6.1 we can see
how the spherical sharpening outperforms all the previous methods. Results are calculated
by computing the mean of ∆ε for all the surfaces.
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Method Dataset 1 Dataset 2 Dataset 3
Spherical sampling 2.20 0.93 0.64

Measurement Tensor 2.46 0.98 0.69
Bradford 2.59 1.14 0.84
Fairchild 2.32 1.12 0.85
Cat02 2.38 1.26 0.94
HPE 3.62 1.86 1.39

Table 6.1: Results of the first experiment in the three different datasets (measure:
mean ∆ε).
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Figure 6.2: Original sensors -dotted lines- compared to spherical sampling sensors
-solid lines- for the second dataset in the first experiment.

In order to have a quantified measure about how different are the new sensors from
the previous ones, we have computed the angular distance between the spherical sampling
sensors and each one of the others over the sphere ( equation 2.24). Results can be seen
in Table 6.2. Finally, in Figure 6.2 we can see the original sensors -dotted lines- versus the
sensors resulted from the spherical sampling method -solid lines-.

6.3 Experiment 2: Maximising colour ratio stability

Relational colour constancy assumes that the relations between the colours of the surfaces
are invariant [46]. This is quite a different idea compared with conventional colour constancy.
Relational colour constancy is related to Retinex. Different studies have corroborated the im-
portance of cone ratios in human colour constancy [45], [85], [16]. In order to find the sensors
that best achieve relational colour constancy we have designed an experiment maximising
colour ratio stability.

The experiment has been individually performed for each sensor, under the assumption
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Method Dataset 1 Dataset 2 Dataset 3

R G B R G B R G B

Meas. Tensor 5.47◦ 6.64◦ 0.43◦ 1.87◦ 1.25◦ 0.24◦ 0.19◦ 3.23◦ 1.34◦

Bradford 21.45◦ 10.08◦ 1.79◦ 25.50◦ 7.70◦ 1.42◦ 24.05◦ 11.22◦ 1.41◦

Fairchild 23.92◦ 8.48◦ 1.13◦ 27.94◦ 6.74◦ 2.00◦ 26.40◦ 10.51◦ 2.00◦

CAT02 27.42◦ 11.22◦ 0.78◦ 31.46◦ 9.18◦ 2.74◦ 29.97◦ 12.85◦ 3.74◦

HPE 38.41◦ 24.40◦ 0.13◦ 42.45◦ 21.82◦ 3.25◦ 41.06◦ 24.87◦ 3.25◦

Table 6.2: Angular distance between the sensors mentioned and the sensors found
by spherical sampling in the first experiment.

Method Dataset 1 Dataset 2 Dataset 3

R G B R G B R G B

Spherical s. 0.0569 0.1060 0.0595 0.0397 0.0606 0.0331 0.0585 0.0549 0.0395

Meas. Tensor 0.1174 0.3529 0.0779 0.1498 0.2209 0.2529 0.1818 0.2609 0.2775

Bradford 0.0838 0.1252 0.1598 0.0844 0.0688 0.1428 0.1022 0.0689 0.1342

Fairchild 0.0733 0.2767 0.2074 0.0676 0.2071 0.2132 0.0647 0.1944 0.1623

CAT02 0.0829 0.1139 0.1576 0.0792 0.0750 0.1817 0.0710 0.1259 0.1482

HPE 0.1171 0.1299 0.0660 0.1193 0.1233 0.0588 0.1162 0.1264 0.0588

Table 6.3: Results of the second experiment in the three different datasets.

that the ratio stability for one sensor is independent of the other two sensors.

Let us now define, a vector b (m × 1) containing the colours for a set of m reflectances
under the D65 illuminant with a given sensor (following equation 1.9). This means b =
[ρ1, · · · , ρm]. Then, we define the vector of colour ratios a, with dimension (m − 1)2 as
follows

a =

[
ρi
ρj

;
ρi

ρj+1
; · · ·

]
; ρi, ρj ∈ b, ρi 6= ρj . (6.5)

If we have a second vector of ratios for the same reflectances under a different illuminant
ae the total ratio error is defined by

ε =
1

n

n∑

e=1

‖a− ae‖

‖a‖
. (6.6)

We have performed this experiment with the same datasets as in experiment 1 and we
have used the same methods. The results showed in Table 6.3 are the mean of the ε measure.
In the table we can observe that spherical sampling outperforms all the other methods.

We have also computed the angular distance between the spherical sampling sensors and
the rest of the sensors. Results are reported in Table 6.4. Finally, we can also see in Figure
6.3 the original sensors compared to the sensors found by spherical sampling.
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Method Dataset 1 Dataset 2 Dataset 3

R G B R G B R G B

Meas. Tensor 14.22◦ 8.38◦ 4.29◦ 11.21◦ 7.81◦ 3.85◦ 25.24◦ 7.93◦ 3.85◦

Bradford 11.44◦ 1.26◦ 1.77◦ 14.37◦ 0.57◦ 1.32◦ 2.01◦ 1.07◦ 1.32◦

Fairchild 13.68◦ 3.83◦ 1.14◦ 16.71◦ 2.92◦ 0.74◦ 2.68◦ 3.78◦ 0.73◦

CAT02 17.26◦ 2.10◦ 0.83◦ 20.26◦ 1.59◦ 1.25◦ 6.30◦ 2.47◦ 1.25◦

HPE 28.49◦ 13.10◦ 0.16◦ 31.40◦ 13.88◦ 0.61◦ 17.72◦ 13.47◦ 0.61◦

Table 6.4: Angular distance between the sensors mentioned and the sensors found
by spherical sampling in the second experiment.
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Figure 6.3: Original sensors -dotted lines- compared to spherical sampling sensors
-solid lines- for the second dataset in the second experiment.
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6.4 Experiment 3: Multispectral case

Sharp sensors have also been proved to be useful in modelling the interaction of light and
surface without using all the spectra. In the work of Drew and Finlayson [30] they show that
given a set of basis functions extracted from the spectra, by sharpening this basis we can
model the interaction of light and surface with less complexity and also recover the spectra.

Let us suppose we have a set of reflectances {Si}i=1,··· ,I , a set of illuminants {Ej}j=1,··· ,J ,
and the CIE XYZ functions that we denote as R. Then,

ρ
i,j

=

∫

ω

Si(λ)Ej(λ)R(λ)dλ (6.7)

is the associated colour descriptor. Let us sample all the {Ej} and {Si} at n wavelengths.
Now we can construct a vector w of dimensions (n× 1)

w = diag(Ej) · Si (6.8)

We compute this vector for every possible combination of lights and surfaces. We create the
matrix W of dimension n× (I · J).

W = [w1, · · · , wI·J ] (6.9)

Then, we perform a singular value decomposition over this matrix, W = UΣV t, where
U is a n× n matrix, Σ a n× (I · J) and Σ a (I · J) × (I · J).

From this decomposition we can extract a basis for the values on W . This basis will be
formed by the first p columns of the matrix U . Then, Q = [U1, · · · , Up] has dimension n× p.
In our case, we use p = 6. Once we have these sensor basis Q, we compute the sharp sensor
basis Q̂. Here is where the different sharpening methods come into effect.

The goal is to check if the new sharp basis is good enough to recover the RGB values ρ
i,j
.

Let us now define an illuminant E of dimension n × 1 and a spectral function S of the
same dimension. They will be represented in the new basis as s and e, which will have
dimension 6× 1

s = Q̂tS (6.10)

and
e = Q̂tE (6.11)

Moreover, as Q̂ is not orthogonal, we need to use the pseudoinverse

Ê = Q̂+e (6.12)

and
Ŝ = Q̂+s (6.13)

Then, in this basis we can compute the vector v of dimension 6× 1

v = diag(e)s (6.14)

We can relate this vector v with an spectral composition V (dimension n× 1)

V̂ = Q̂+v (6.15)



82 EXPERIMENTS USING SPHERICAL SAMPLING

350 400 450 500 550 600 650 700 750 800
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

wavelengths

re
sp

on
se

s

350 400 450 500 550 600 650 700 750 800
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

wavelengths

re
sp

on
se

s

(a) (b)

Figure 6.4: (a) Basis functions for dataset 2 (b) Sharp functions for dataset 2.

Now, by considering the same sensitivities R used to compute equation 6.7, the RGB
values can be computed by

b = RtV = (RtQ̂+)v (6.16)

Then, we can find a matrix B = [b1, · · · , bI·J ] of recovered values. Then for a particular
ρ and its correspondent approximated solution b, the error measure is

∆ε = d(Lab(ρ), Lab(b)) (6.17)

where d is the euclidean distance.

We have compared in this experiment the spherical sampling versus two different methods
(one of them with two initialisations). These are sensor-based spectral sharpening L2 − L1

constrained [29] and measurement tensor extension to nD. This last method have two
different initialisations (I) with the identity as initial matrix and (II) with the solution of
spectral sharpening as initial matrix.

Particularly, for spherical sampling we have calculated 100.000.000 points over the 6D
sphere and we have done five iterations searching sensors that were in approximately 3◦ from
the previous solutions.

Results are expressed in the form of the mean of ∆ε and are shown in Table 6.5. We
have used the same datasets as in the previous experiments. Again, spherical sampling
outperforms the other methods. Furthermore, in Table 6.6 we show the minimal and the
maximal angular distance between the six sensors found by spherical sampling and the ones
for the other methods. Finally,in Figure 6.4 we can see (a) the original basis (Q) and (b)
the sharpen basis for the dataset 2.

6.5 Conclusions

Sensor sharpening methods have been proven of critical importance for handling problems
related to sensor calculations. Their most common application is the one related to colour
constancy and the Von Kries law which allows the reduction of the complexity of the illumi-
nation change problem from a 9-dimension problem to a 3-dimension one. For this reason,
most of the research in sensor sharpening has been focused in finding sharp sensors to tackle
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Method Dataset 1 Dataset 2 Dataset 3
Spherical sampling 11.51 2.14 2.09

Database sharpening L2-L1 16.18 12.37 7.27
Measurement tensor (I) 12.28 2.32 2.40
Measurement tensor (II) 12.28 2.28 159.20

Table 6.5: Results of the third experiment in the three different datasets.

Method Dataset 1 Dataset 2 Dataset 3

Min Max Min Max Min Max

Database sharpening 44.57◦ 114.02◦ 45.84◦ 66.25◦ 46.78◦ 65.50◦

Measurement tensor (I) 2.87◦ 13.40◦ 1.97◦ 14.18◦ 5.20◦ 10.61◦

Measurement tensor(II) 2.87◦ 13.40◦ 1.95◦ 14.18◦ 47.04◦ 169.13◦

Table 6.6: Angular distance between the sensors mentioned and the sensors found
by spherical sampling in the third experiment.

this particular problem. However, here we explore other applications that can be dealt by
using sharp sensors.

In this chapter we have firstly shown that, when the measure for evaluating these sensors
is not defined as a least squares minimisation, usual sharp sensors do not give the desired
solution. In this case, the use of spherical sampling becomes crucial in order to deal with
these new measures, i.e., CIE Delta E, or colour ratio stability. We have shown how spherical
sampling overcomes the state of the art in this problems.

Finally, we have extended the spherical sampling method to more than 3 dimensions.
This has allowed us to show that this method is also useful for modelling the interaction of
light and surface without considering the whole spectra.
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Chapter 7

Conclusions and further work

The main goal of this thesis was to introduce colour naming known results in order to deal
with computational colour constancy for natural images. In the process of this thesis, we
have tackled the problem from two different points of view. Firstly, we have worked on the
selection of the illuminant of the scene. Secondly, we have worked in the selection of a set
of sharp sensors that adapts to human colour naming categorisation. Then, our conclusions
will be also split in these two points of view. In this chapter, we also show future research
directions, that vary from the combination of the different results of this thesis, to the
extension of each of the contributions separately.

7.1 Conclusions

Computational colour constancy is an ill-posed problem. In this work we have advanced the
field by inserting psychophysically learned colour categories as an important information for
colour constancy. In the first part of the thesis, the one dealing with the illuminant selection,
we have made the following contributions:

Definition of a framework to introduce colour categorisation for computational

colour constancy

In particular, we have experimented with basic colour terms defined in [12]. Our approach
performs similarly to state-of-the-art methods, showing that basic colour names are useful
for solving colour constancy.

Definition of a new calibrated image dataset

Although the creation of the dataset was not a goal of this thesis itself, it has been developed
as an integral part of one of the projects of this thesis. This new dataset has three main
advantages over previous ones: i) It uses a calibrated camera, ii) the illuminant of the scene
is recorded in a grey-ball (although this was already done by Ciurea and Funt [26]) , iii) the
quality of images is higher than in previous image datasets.
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Definition of a psychophysical experiment in order to check if physical con-

stancy error measures adapt to the human perception

This experiment is based on a pairwise image comparison between the solutions of different
computational methods. The results have shown that the image with the best physical error
is only preferred by the observers in less than 50% of the cases.

Definition of a new perceptual constancy measure

Based on the previous result, we have defined a new colour constancy measure: the percep-
tual angular error. This measure copes with the preference of humans, and gives smaller
error to those solutions closest to the solutions chosen by the observers.

On the second part of the thesis, dealing with the use of sensor sharpening techniques,
the main contributions are:

Definition of a new basis of sharp sensors that predicts unique hues and colour

names

We have shown that by sensor sharpening we are able to generalise the recovery of the re-
flection properties defined by the PO’s biological model.

Definition of a new compact singularity index relating colour names and unique

hues with achromaticness

Related to the previous contribution, we have defined a new compact singularity index to
predict unique hues and colour names from our sharp sensors. This new compact singularity
index has two main advantages: i) it is a compact index and ii) it is related to a well-known
colour property, achromatricness.

Definition of some experiments to find the sharp sensors that best cope with

some perceptual measures

We have performed different experiments in order to find: a) the best sensors minimising
the CIE Delta E error and b) the best sensors minimising colour ratio stability.

Extension of the spherical sampling technique to n-D
We have extended the spherical sampling procedure to n dimensions in order to deal with
the problem of multispectral data recovery without spectra .

7.2 Further work

There is still a considerable body of work to be done in order to allow computer vision
applications to mirror HVS. Our work has opened several new research directions. The
thesis result with the most immediate impact is the insertion of the narrow band sensors
(defined in the second part of the thesis) into the category hypothesis. It connects both parts
of the thesis strengthening the importance of both results. We expect further improvements
in the CaC methods due to an improved performance of the diagonal model.

Another extension of this work can be derived from the insertion of spatial and contextual
information to improve the category hypothesis. Such additional data, that has not been
used yet, complements the colour information, since psychophysical results have shown that
context is very important in colour perception [102].
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Yet another way to continue with this research relies on the definition of individual
sensors that can be adjusted to the colours of a scene. The idea underlying this research
line is to find the best sensors for each image with the goal of better representing the most
important information. This research will be related to the one already started in [114].
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Appendix A

Appendix: Lovisolo and Da Silva

sphere sampling

The method proposed by Lovisolo and Da Silva [77] is based on the next assumption: when
we have a big number of points K, there is one set of vectors uniformly distributed on an
n-dimensional hyper-sphere that defines a tiling on the hyper-sphere by identical hypercubes
of dimension N-1.

To start with, remember that a point p over the n-sphere in spherical coordinates will be
represented as p = [1 ω1 · · ·ωn]. The equivalence to Cartesian coordinates is trivial. Then,
defining the length of each hypercube has δ, it can be defined as an addition of small variation
of this spherical coordinates ∆ω1

, · · · ,∆ωn as follows

δ = ∆ω1

δ = ∆ωj

j−1∑

i=1

sinωj , j = 2 : n− 1 (A.1)

It should be noted, that in this point given δ and a point ω1, · · · , ωn we can compute the
different values for ∆ω1

, · · · ,∆ωn . On the other side, it is possible to compute the length δ
assuming that the sum of the area for all the hypercubes shall be equivalent to the area of
the sphere. From this we have

An = Kδn−1 (A.2)

where K is the number of hypercubes or points we want to sample, and An is the area of
the sphere which can be computed as

An =
nπn/2

(n/2)!
for n even

An =
n2nπ(n−1)/2

(
n−1
2

)
!

n!
for n odd (A.3)

From all this information, Lovisolo and Da Silva proposed the next algorithm
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Figure A.1: Points sampled with the algorithm

1: compute ∆ω1
from equation A.1

2: for ω1 =
∆ω1

2
to π in increments of ∆ω1

do

3: compute ∆ω2
from equation A.1

4: for ω2 =
∆ω2

2
to π in increments of ∆ω2

do

5: ...
6: compute ∆ωn−2

from equation A.1

7: for ωn−2 =
∆ωn−2

2
to π in increments of ∆ωn−2

do

8: compute ∆ωn−1
from equation A.1

9: for ωn−1 =
∆ωn−1

2
to 2π in increments of ∆ωn−1

do

10: for i = 1...n − 1 do

11: compute xi = sinωw1
· · · sinωwi−1

cosωwi

12: end for

13: compute xn = sinωw1
· · · sinωwn−2

sinωwn−1

14: end for

15: end for

16: end for

17: end for

An example of points sampled with this algorithm: 2000 points in 3D can be seen in figure
A.
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