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Abstract 

The aim of any image restoration techniques is to recover the original image from the degraded observation. 

One of the most common degradation phenomena in images is motion blur. In case of blind image restoration 

accurate estimation of motion blur parameters is required for deblurring of such images. This paper proposed a 

novel technique for estimating the parameters of uniform motion blur using ridgelet transform. Initially, the 

energy of ridgelet coefficients is used to estimate the blur angle and then blur length is estimated using a radial 

basis function neural network. This work is tested on different barcode images with varying parameters of blur. 

The simulation results show that the proposed method improves the restoration performance. 
 

 

Key Words: Image Restoration, Motion Blur, Ridgelet Transform, Radial Basis Function Neural Network, 

Barcode Images. 

 

1 Introduction 

The barcode is one of the automatic identification technologies applied successfully in the world. Almost 

every consumer product has a unique one dimensional (1-D) or two dimensional (2-D) barcode for 

identification. Barcodes encode a series of characters or symbols to hold explicit information and a database 

key. With the use of a barcode laser scanner, product information such as manufacturing details and price 

can be easily accessed. Consumer can obtain information about a product at home or in a supermarket, with a 

scanning device that can decode the barcode, and a communication device that retrieves the information 

from a consumer product server. The ease of use of mobile phones with camera facility gives a portable 

platform for decoding barcode rather than the use of the traditional laser scanner which has lack of 

portability [1, 2]. Camera phones can take an image of the barcode and after that it can communicate to a 

consumer product server to access information related with the product.  However, using a camera phone in 

such applications is challenging due to factors such as geometric distortion, noise, and blurring. Image 

blurring is frequently an issue that affects the performance of a barcode identification system. 
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Two main causes of blurring are motion and defocus blur [3, 4]. Motion blur appears due to the relative 

motion between the camera and object while the defocus blur appears due to the inaccurate focal length 

adjustment at the time of image capturing. Blurring induces the degradation of image quality, specifically for 

barcode images where the encoded information is easily lost due to blur. An image deconvolution technique 

refers as non-blind deconvolution, if blur kernel information is available. In case of blind deconvolution [5], 

blur kernel is not known. Blind image deconvolution problem has been categorized into two groups. In the 

first group, we can put those methods, in which the point spread function (PSF) of blur is estimated in first 

step and then degraded image is restored using any of the classical restoration methods such as Wiener 

filtering in subsequent step. In the methods of second group, PSF estimation and image restoration are 

achieved simultaneously. The work presented in this paper falls in the former category, where PSF 

parameters are estimated before image restoration. 

Cannon [6] proposed a technique to identify the blur parameters using power spectrum of many sub 

images by dividing blurred image into different blocks. Fabian et al. [7] proposed a method based on 

Cannon’s method. Initially, they applied spectral subtraction method to reduce high level noise then 

transformed improved spectral magnitude function to cepastral domain for identification of blur parameters. 

Chang et al. [8] proposed a method using the bispectrum of blurred image. In this method blur parameters 

are obtained using the central slice of the bispectrum. Rekleitis [9] suggested a method to estimate the optical 

flow map of a blurred image using information from the motion blur. He applied steerable filters to estimate 

motion blur angle and 1-D cepstrum to find blur length. Yitzhaky et al. [10] used autocorrelation function of 

derivative image based on the examination that image characteristics along the direction of motion blur 

remain dissimilar from the characteristic in other directions. Lokhande et al. [11] estimated parameters of 

motion blur by using periodic patterns in Frequency domain. They proposed blur direction identification 

using Hough transform and blur length estimation by collapsing the 2-D spectrum into 1-D spectrum. 

Aizenberg et al. [12] presented a work that identifies blur type, estimates blur parameters and perform image 

restoration using neural network. Ratnakar et al. [13] offered an approach to estimate the motion blur 

parameters using Gabor filter for blur direction and Radial Basis Function Neural Network (RBFNN) for 

blur length with sum of Fourier coefficients as features. Dobes et al. [14] presented a fast method of finding 

motion blur length and direction. This method computes the power spectrum of the image gradient in the 

frequency spectrum. The orientation of blur is found using Radon transform and the distance between the 

neighbouring stripes in power spectrum is used to estimate the blur length. Finally, the image is deblurred 

using estimated parameters and Lucy-Richardson algorithm. Fang et al. [15] proposed another method 

consisting of Hann windowing and histogram equalization as pre-processing steps. Jian-Feng et al. [16] 

developed an approach based on Framelet for blind deblurring of motion blurred image. Wang et al. [17] 

presented the concept of quasi-cepstrum.  They estimated uniform linear motion blur kernel parameters using 

amplitude spectrum and quasi-cepstrum.  Ratnakar et al. [18] modeled the blur length detection problem as a 

multiclass classification problem and used support vector machine. Shamik et al. [19] compared the 

performance of various parameter estimation techniques and showed that performance of the existing 

algorithms deteriorate in noisy conditions.  

Though there are large amount of work reported, no method is completely accurate. Researchers are still 

active in this field, in order to improve the restoration performance by searching for robust method of blur 

parameters estimation. In this paper, we introduce a new multi-resolution feature extraction technique based 

on the discrete ridgelet transform. The theory of ridgelets revealed that it is very good at representing edges 

in comparison to wavelets which is an efficient transform for detecting point discontinuities but not efficient 

for the geometric properties of structures and regularity of edges. The ridgelet transform overcomes has been 

successfully used in object classification, seismic imaging, and image de-noising. However, we have not 

found any application of ridgelets for blur identification. 

The rest of the paper is structured as follows. Section 2 describes the image degradation model. Section 3 

and 4 briefly discuss ridgelet transform and radial basis function neural network. In section 5, the overall 

methodology is discussed. Section 6 presents the simulation results of parameter estimation. Section 7 

discusses use deblurring algorithm. Finally in section 8, conclusions and future work are discussed. 
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2 Image Degradation Model 

The image degradation process is modeled by the following convolution process [3, 4] 

                                                                                                     

where        is the degraded image,        is the uncorrupted original image,        is the point spread 

function (PSF) that caused the degradation and        is the additive noise in spatial domain. Since, 

convolution in spatial domain is equal to the multiplication in frequency domain, equation (1) can be written 

as 

                                                                                                      

where       is the degraded image,        is the uncorrupted original image,        is the optical 

transfer function that caused the degradation and        is the additive noise in frequency domain. In order 

to develop reliable blur detection, it is necessary to understand process of the image degradation. 

Degradation function may be due to improper opening and closing of shutter, atmospheric turbulence, out of 

focus of lens or due to motion blur. The noise and degradation functions have contradicting effects on the 

image spectrum. The degradation function produces averaging effect on the image data and act as low pass 

filters, whereas noise often introduces additive broad band signals in the image data. 

When an object or the camera is moved during light exposure, a motion blurred image is produced. The 

motion blur can be in the form of translation, rotation, and sudden change of the scale or some combinations 

of these forms. When the scene to be recorded translates relative to the camera at a constant velocity (vrelative) 

under an angle of   radians with the horizontal axis during the exposure interval [0, texposure], the distortion is 

one dimensional. Defining the length of motion as                            the PSF for uniform motion 

blur in spatial domain can be described as  

         
 
 

 
             

 

 
     

 

 
      

                                                       

                                                         (3) 

The frequency response of h, is a SINC function given by 

                                                                                                     

The PSF estimation techniques are applied to estimate two parameters length ( ) and angle ( ). In this 

work we have considered the uniform motion blur and ignore the additive noise in image restoration model. 

3 Ridgelet Transform 

Images are generally described via orthogonal, non-redundant transforms like wavelet or discrete cosine 

transform. Wavelets provide a strong method to identify point singularities but these are not able to represent 

singularities along lines efficiently. Radon transform is the dominant method to detect lines. Ridgelet can be 

viewed as a wavelet analysis in Radon domain so the ridgelet transform achieves very robust representation 

of linear singularities of images [20].  Hence, ridgelet transform in image analysis is attractive since 

singularities are often joined together along edges or contours in images. Therefore, they can offer an 

important contribution in order to detect and represent lines, which are fundamental structures in spectrum of 

motion blurred images. Arivazhagan et al. [21] used features derived from sub-bands of the ridgelet 

decomposition for classification of texture images. Huang et al. [22] proposed a rotation invariant feature 

based on the combination of ridgelet, a directional non-separable wavelet transform, and Fourier transforms 

for texture classification. Suoping et al. [23] proposed a method which extracts wave direction from sea 

surface images based on ridgelet transform. Zhang et al. [24] presented a method which calculates 

approximately swash velocity from near shore video images. In this work a computational algorithm based 

on ridgelet transform is proposed. Energy of ridgelet coefficients is calculated using variance statistics and a 

peak angle is extracted as the direction of the linear feature of wave swash fronts. Given an integrable 

bivariate function       , its continuous ridgelet transform (CRT) in R
2
 is defined by [25]  
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For each      , each       and each           . This function is constant along lines          
                  Where the ridgelet basis function             in 2-D is defined from a wavelet-type 1-D 

function      as 

            
 

  
  

               

 
                                                                       

The CRT appears same as 2-D continuous wavelet transform (CWT) except that the point parameters of 

wavelet i.e.       are replaced by line parameters i.e.        In other words, the basis function of multiscale 

wavelet and ridgelet transform are related as  

Wavelet:                         , Ridgelet:                         

As a consequence, wavelets are very efficient to represent isolated point singularities, whereas ridgelets 

are very efficient to signify singularities along lines. In fact, one can observe ridgelets as an approach of 

concatenating 1-D wavelets along lines. In 2-D, points and lines are linked via the Radon transform, 

consequently the wavelet and ridgelet transforms are linked via the Radon transform in ridgelet transform. 

The Radon transform for an image        is the collection of line integrals indexed by                   
and is given as 

                                       
 

  

 

  
                                                (7) 

where   is the dirac distribution. Thus, the ridgelet transform can be represented in terms of the Radon 

transform as 

                                                                                                                   

 

  

 

where   stands for the orientation of Radon transform and   is a variable parameter measures 

perpendicular distance of a line from origin. Therefore, the basic approach for calculating the ridgelet 

transform is to take a 1-D wavelet transform along the slices (projections) in Radon space. According to 

projection-slice theorem Radon transform can be achieved by applying 1-D inverse Fourier transform to the 

2-D Fourier transform restricted to radials lines passing through origin. A schematic diagram of the radon 

transform and ridgelet transform with relationship with various transforms is shown in Figures 1 and 2.  

 
 

Figure 1: Radon Transform Figure 2: Ridgelet Transform 

 

A sym4 wavelet with 4 level decomposition is used in this work. ‘sym4’ is used throughout the work 

because it gives the highest energy difference between sharp image and its blurred version in comparison to 

other wavelet filters like haar, db1, db2, sym2, coif1, coif2 and meyer with least number of coefficients. 

Symlets are also known as least asymmetrical (LA) wavelets because they are nearly but not exactly 

symmetrical. These are compactly supported wavelets with the highest number of vanishing moments for a 

given support width. In the standard notation symN, N is the order. The main property of this filter family is 
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the near-linear phase of its filters, when considered in terms of the frequency response. The phase function of 

the least asymmetric filters generated by the symlets have the smallest maximum deviation in frequency 

from the best fitting linear phase function. This is an excellent feature if we are concerned in an accurate 

localization of some incident like local phase coherence disrupt by blur. 

4  Radial Basis Function Neural Network 

Function approximation is a widely acceptable uses of artificial neural networks. Generally, in 

approximation problem deals with establishing a relation between one or more input variables and single 

output variable. Radial Basis Functions are initially used in the field of approximation theory for 

multivariable interpolation problems. Broomhead et al. [26] and Moody et al. [27] were the first to make use 

of the radial basis functions in the implementation of neural networks. Afterwards, RBFNN has wide range 

of applications, such as pattern classification [28], fault detection [29, 30], system identification [31], 

nonlinear function approximation [32], image restoration [33-35], speech recognition [36], and time-series 

prediction [37]. Basically these networks are feed-forward networks which use a supervised learning 

algorithm. It consists of a single hidden layer of one or multiple units whose activation function is Gaussian 

or some other basis kernel function. Regardless of similarity to back propagation in many respects, radial 

basis function networks have a number of advantages. The significant features of RBF neural networks are as 

follows. 

i. Contain more compact topology [38]. 

ii. Universal predictors [39]. 

iii. Having best approximation property [40]. 

iv. Fast learning speed due to locally tuned neurons [27]. 

In general, a RBF neural net consists of three layers; where the first layer accepts input vectors, second 

layer consists of the radial basis functions as hidden layer and last layer gives output. The inputs of hidden 

layer are the linear combinations of scalar weights and the input vector                   
 , where the 

scalar weights are usually assigned unity values. Thus, the whole input vector appears to each neuron in the 

hidden layer. The incoming vectors are mapping by the radial basis functions in each hidden node. The 

output layer yields a vector                     for m outputs by linear combination of the outputs of 

the hidden nodes to produce the final output. The network output is obtained by 

               

 

   

                                                                                                          

where      is the final output,      denotes the radial basis function of the i-th hidden node,    denotes 

the hidden-to-output weight corresponding to the i-th hidden node, and   is the total number of hidden 

nodes. A radial basis function is a multidimensional function that describes the distance between a given 

input vector and a pre-defined centre vector. There are different types of radial basis function. In this work, 

the standard Gaussian nonlinear basis function is used, which is defined as 

       
  

      
 

   
  

                                                                                                                     

where    and    denote the center (mean) and spread width (standard deviation) of the i-th node, 

respectively.  

5  Image Deblurring Algorithm 

In the approach presented in this paper, a given blurred barcode image is analyzed to find out the angle 

and length of the motion blur. The blur is modeled with the help of these two motion blur parameters [41]. 

The blurring process can be viewed as a linear convolution of the original image with that blur kernel; and it 

can be removed by reversing this operation. First of all in a preprocessing step, a blurred image is resized to 
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256  256 to reduce the computation cost, and then a RGB image to the grayscale conversion is performed. 

As explained, in section 5.1 the blur direction is determined by performing a Ridgelet transform on the 

logarithmic power spectrum of the Hann windowed barcode image. Next, in section 5.2 the blur length is 

estimated using RBFNN as regression tool with energy of ridgelet coefficients as features. In the last step as 

explained in section 7, the PSF is calculated and Lucy-Richardson algorithm is applied to deconvolute the 

image. Figure 3 shows an overview of the motion deblurring algorithm.  

Figure 3: Overview of the image deblurring algorithm 

 

         Preprocessing 

 

Blurred Barcode image 

 

  Resized Barcode 

Image 

 

   

Gray Scale image 

  

 
Masking with Hann 

window 

 

 

Log Power Spectrum 

                                                               Motion Blur Angle Estimation 

 

 

Ridgelet Transform 

  

 

 

Analysis of peak in energy distribution 

 

 

Blur Angle 

Motion   Blur Length Estimation Deconvolution(Lucy-Richardson Algorithm) 

 

Training and Testing using Radial Basis Function 

Neural Network  Blur Length 

 

 

Deblurred image 

 



69                                    S. Tiwari et al. / Electronic Letters on Computer Vision and Image Analysis 13(3):63-80; 2014 

 

5.1 Estimation of Motion Blur Angle 

If we convert the blurred image in frequency domain, we can extract the motion blur parameters from 

Fourier spectrum. Figure 4 shows the effect of motion blur on the Fourier spectrum of original image. 

Frequency response of motion blurred image shows the dominant parallel lines orthogonal to the motion 

orientation with very low values [12, 13 and 14]. So, the task of estimating the motion orientation is 

analogous to the task of calculating orientation of these parallel lines. To find the line direction, we can apply 

Ridgelet transform. 

 

  

(a) (b) 

  

(c) (d) 

Figure 4: (a) Original image (b) Blurred image with motion length 10 pixels and motion orientation 45
0
 (c) 

Fourier spectrum of original image (d) Fourier spectrum of blurred image 

 

Radon transform of a function is bound to coincide with the direction of linear singularity. When image 

       is integrated along   , linear singularities changed into point singularities. A 1-D wavelet is fully 

competent in detection of point singularities. In the same manner, ridgelet is able to detect singularities along 

lines. Ridgelet transform can efficiently detect the line feature. Applying the ridgelet transform to the image 

with linear features, when the direction of the straight line coincides with a certain ridgelet direction, the 

ridgelet energy along this direction has highest energy. Therefore, the energy of the projection at this 

direction is maximum. This technique can be used to determine line orientation in an image. To estimate the 

motion blur angle first find the logarithmic power spectrum of Hann windowed image. After that, the 

ridgelet transform in interval       with 1° increments is computed to take a 1-D wavelet transform along 
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the slices in Radon domain of Fourier image. The energy (i.e., sum of coefficients) of the projection is 

calculated at all directions for the motion blurred barcode image with angle 45
0
 and length 10. 4-level 

wavelet decomposition gives one approximation (ca4) and four detail coefficients (cd4, cd3, cd2 and cd1). 

Figures 5(a) to 5(e) demonstrate the energies for ca4, cd4, cd3, cd2 and cd1 components, respectively. The 

two components cd2 and cd1 with minimum energy caused mainly by image noises are discarded while sum 

of energies with ca4, cd4 and cd3 components is calculated. After above calculation, the peak of ridgelet 

coefficient energy is corresponding to motion blur angle. Figure 5 shows the energy of ridgelet coefficients 

at each angle for power spectrum of blurred image as given in Figure 4 (d). It is evident that peak of energies 

is at angle 45
0
, which is the motion blur angle. 

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 

Figure 5: (a)-(e) Energy distribution of Ridgelet coefficients for ca4, cd4, cd3, cd2, and cd1 

respectively. (f) sum of energies for ca4, cd4 and cd3 

 

The motion blur angle detection algorithm can be summarized as follows 

i. Preprocess the input blurred barcode image. 

ii. Perform Hann Windowing over        to remove boundary artifacts. 

iii. Compute the Fourier transform        of step2 image. 



S. Tiwari et al. / Electronic Letters on Computer Vision and Image Analysis 13(3):63-80; 2014                                    72 

iv. Compute the log power spectrum of         
v. For a set of angles                     , where         , with 1 degree spaced intervals,  

         compute the normalized Radon vectors at these angles. 

vi. Apply a 4-level 1-D DWT on the Radon vectors to obtain the ridgelet coefficients. 

vii. Find the sum of energies of ridgelet coefficient for vectors of each orientation. 

viii. Find the maximum energy which is corresponding to motion blur angle. 

 

5.2 Estimation of Motion Blur Length 

The steps of the algorithm for motion blur length identification are detailed in Figure 6. These are six 

major steps: image acquisition, preprocessing, ridgelet transform, calculation of mean energy, designing of 

RBFNN system and result analysis. 

In the initial step, we have applied fast discrete ridgelet transform as explained in section three to pre-

processed motion blurred barcode images. Once these transformed images acquired, the method demands the 

extraction of features. Therefore, the mean of energy for each decomposition (i.e. ca4, cd4, cd3, cd2, and 

cd1) have been calculated in the next step to prepare the training and testing database. Finally with this 

feature database training and testing performed using RBFNN. Ridgelet transform using ‘sym4’ wavelet 

filter of level 4 is applied to a barcode image to obtain its coefficients. These coefficients are then used to 

form the features of that image. After achieving the ridgelet coefficients the energy related with each scale 

independently. The energy of a scale is calculated by the sum of absolute values of ridgelet coefficients. So, 

we obtain a feature vector                 
  for each of the barcode image. We propose the use of 

feature vector   in order to establish the relationship between energy of ridgelet transform coefficients and 

motion blur length L. 

 

 

An original barcode image as in Figure 4 (a) is blurred artificially by a uniform motion blur with 

parameter   whose value ranging from 1 to 20 and fixed angle of 0 degree. It is found that as the   increases, 

values of features in vector     decreases. The relationship between normalized features    and   are shown 

in Figure 7. It shows that when   increases these features decrease monotonously. So, we can estimate 

motion blur length from extracted energy features of the blurred image after establishing the relationship 

between   and  . Figures 8 and 9 show the plots using energy features    and      for three different images. 

Though, every image has the monotonous curve between     and   , but they are not superposed as shown in 

these figures. Therefore, for an unknown blurred image the value of   can not be estimated accurately 

because the curve of the given image is unknown. 

It is evident from Figures 8 and 9 that incorrect results would be obtained, if any energy feature    of one 

image is used to estimate   according curve of another image. So that establishing the simple relationship 

between   and    is not sufficient to estimate motion parameter   of unknown image. It requires a complex 

Preprocessing 

 

 
RBF Neural Network 

Blurred Image  
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Find Ridgelet Transformed 

Images 

 
Calculate Energy Features 

 

Testing Sample Collection 

 

Find Ridgelet Transformed 

Images 

Calculate Energy Features 

 

Training patterns  Test patterns  
        

Results  
Figure 6: Motion blur length identification frame–work 
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mapping between features and motion blur length with generalization ability. Neural networks can be used to 

resolve these issues. One of the significant features of neural nets is their ability to generalize. This reveals 

that a successfully trained neural network can classify data from the same class as the learning data that it has 

never seen before. 

 

 

Figure 7: The relationship between E1-5 and L 

 

Figure 8: The relationship between energy feature E1 and L for three different images. 

 

Figure 9: The relationship between energy feature E2 and L for three different images. 
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6  Simulation Results 

The performance of the proposed technique has been evaluated using many camera based 1-D barcode 

images. The WWU Muenster Barcode Database [44] of barcode images has been used in this work, which 

consist of numerous 1-D barcode images captured by camera. To carry out the experimental work, uniform 

motion blur is introduced synthetically in the barcode images. To test the proposed algorithm for angle 

estimation an example of barcode image shown in Figure10 was blurred from angle in the range [0, 180) 

with step size of 10
0
. The estimated angles were recorded for image with motion lengths 10 and 20 pixels as 

in Figures 11(a) and 11(b). The results show accuracy over the methods proposed in [9], [11] and [13]. The 

tests are run on the same image for motion length estimation with varying length from 1 to 20 pixels with 

blur angle 0 and 90 degrees. We have used newrbe function available in Matlab neural network toolbox, 

which designs a radial basis network with zero error in the design vectors. The inputs to the RBF network 

neurons are the sum of energies features and output value is the blur length ( ). Newrbe creates a precise 

model of neural networks, which can automatically decide the number of hidden layer, making predictions 

more accurate. The radius value (known as spread) of the function is varied for best performance of the RBF 

network. Principally, the larger spread is, the smoother the function approximation. Too large a spread means 

a lot of neurons are required to fit a fast-changing function. Too small a spread means many neurons are 

required to fit a smooth function, and the network might not generalize well. In this work, we have set the 

goal mse to 0.01 and tested the model for varying spread values in range .1 to 2. The spread value with best 

performance is found 1.2. The results shown in Figures 12(a) and 12(b) demonstrate robustness of proposed 

method in comparison to methods in [9] and [13]. 

 

  

(a) (b) 

Figure 10: The original barcode image (a) and an example of a blurred image (b) with the length of the 

motion blur is 20 pixels and  = 30 degree. 

To carry out extensive experiment for motion blur angle estimation, we have selected first 15 barcode 

images from database. Then, all the images were artificially blurred with angle in the range [0, 180) with step 

of 10
0 

and motion blur length 10 and 20 pixels. So, total 270 blurred images are formed synthetically. The 

estimated angles were recorded for all the images with motion lengths 10 and 20 pixels separately using the 

proposed method.  Table 1 presents the summary of results. To carry out extensive experiment for motion 

blur length estimation, we have applied the proposed method on 50 1-D barcode images that were artificially 

degraded by lengths of motion blur in the range 1 ≤ L ≤ 20 pixels with angle 0
0
 and 90

0
 separately. So, 1000 

degraded images are obtained for each blur angle. Out of 1000 blurred images 500 images are used for 

training and all the images are utilized for testing. Table 2 presents the summary of results for length 

estimation. In these tables, the columns named “angle tolerance” and “length tolerance” illustrate the 

absolute value of errors (i.e. difference between the real values and the estimated values of the angle and 

length), respectively. The low values of the mean absolute error and standard deviation of errors show the 

high accuracy of our method in comparison to methods in [9] and [13]. 
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(a) 

 

(b) 

Figure 11: The average error in angle estimation for the Ridgelet transform and other methods. In (a) the 

motion blur length is10 pixels and in (b) the motion blur length is 20 pixels. 

 

 

(a) 
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(b) 

Figure12: The average error in length estimation for the Ridgelet transform and other methods. In (a) the 

motion blur angle is 0 degree and in (b) the motion blur angle is 90 degree. 

 

Table 1: Simulation results of our and other algorithms on 270 degraded barcode images (256 × 256) for 

angle estimation with blur lengths 10 and 20 pixels 

Cases 

Angle tolerance(in degree) 

Blur Length L=10 Blur Length L=20 

Steerable filter 

method[9] 

Hough 

transform 

method [11] 

Gabor filter 

method [13] 

Proposed 

method 

Steerable filter 

method[9] 

Hough 

transform 

method [11] 

Gabor filter 

method [13] 

Proposed 

method 

Best 

estimate 
0 0 0 0 0 0 0 0 

Worst 

estimate 
14 10 10 7 12 4 4 6 

Average 

estimate 
4.61 2.21 1.62 0.86 3.83 1.78 1.23 0.64 

Standard 

deviation 
3.13 1.81 0.92 1.31 2.65 1.34 .78 1.36 

 

Table 2: Simulation results of proposed and other algorithms on 1000 degraded barcode images (256 × 256) 

with blur angles 0 and 90 degrees 

Cases 

Length  tolerance(in pixels) 

Blur angle =0 degree Blur angle =90 degree 

Sum of Fourier 

coefficients 

method[13] 

Cepstrum method 

[9] 

Proposed 

method 

Sum of Fourier 

coefficients method[13] 

Cepstrum 

method [9] 

Proposed 

method 

Best 

estimate 
0 0 0 0 0 0 

Worst 

estimate 
3 3 1 2 3 1 

Average 

estimate 
0.40 0.56 0.01 0.33 0.54 0.03 

Standard 

deviation 
0.57 0.78 0.08 0.49 0.82 0.16 
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7  Image Deblurring 

In the last step, we have applied the deblurring algorithm using the estimated parameters to remove the 

blur artefact. A significant application of blur parameters identification is image restoration. Estimated blur 

PSF can be used to deblur a blurred image. We use Lucy-Richardson (L-R) algorithm for deblurring. This 

algorithm is developed independently by [42] and [43] and it is a nonlinear and non-blind method. 

The L-R has been derived from Bayesian probability hypothesis where image information is measured to 

be random quantities that are assumed to have a certain possibility of being formed from a family of other 

possible random quantities. The equation of the L-R algorithm is  

                    
      

        
                                                                   

where           is the new estimate from the previous one         ,        is the blurred image,   is the 

number of the step in the iteration, H is the blur filter (PSF) and    is the adjoint of  . In order to reduce 

noise amplification, which is a general problem of maximum likelihood methods, it is common practice to 

introduce a dampening threshold below which further iterations are (locally) suppressed. Otherwise high 

iteration numbers introduce artifacts to originally smooth image regions.  

Figures 13(a-c) and 14(a-c) shows the restoration result of images using L-R method with estimated blur 

parameters after 10 and 15 iterations respectively. The images in Figures 13 and 14 clearly demonstrate that 

the reconstruction is able to produce good results. Text that could not even be identified as such becomes 

readable again, and individual elements of the barcodes become clearly distinguishable. Peak signal-to-noise 

ratio (PSNR in dB) is used as the quantitative parameter to evaluate the proposed scheme. The blurred image 

shown in Figure 13(b) has PSNR 15.32 dB, whereas after restoration as shown in Figure 13(c) has improved 

to 26.34 dB. The blurred image shown in Figure 14(b) has PSNR 17.84 dB, while after restoration as shown 

in Figure 14(c) has improved to 24.12 dB PSNR. 

8 Conclusion 

In this paper, we have proposed a proficient method for uniform motion blur parameter estimation for 

blind restoration of motion blurred barcode images. By considering the fact that barcode images have high 

linear singularities, ridgelet transform has been utilized in this method. The simulation results show the 

improved performance over other parameter estimating method. The main advantage of the suggested 

method is that it is more robust because ridgelet transform has an excellent high directional sensitivity and 

anisotropy for linear singularities in comparison to other direction filters. In future this work can be extended 

by considering the presence of noise in blurred images and real blurred images. 
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(a) (b) (c) 

Figure13: (a) original barcode image, (b) an example of a blurred barcode image with the length of the blur 

as 10 pixels and  = 90 degree (PSNR = 15.32 dB) and (c) restored barcode image using Lucy-Richardson 

algorithm after 10 iterations with estimated parameters length as 10 and  = 91
 
degree (PSNR = 26.34 dB). 

 

   
(a) (b) (c) 

Figure14: (a) original barcode image, (b) an example of a blurred barcode image with the blur length as 15 

pixels and  = 30 degree (PSNR = 17.84 dB) and (c) restored barcode image using Lucy-Richardson 

algorithm after 15 iterations with estimated parameters length as 15 and  = 25 degree (PSNR = 24.12 dB). 
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