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Resumo O objeto principal desta tese é o estudo de algoritmos de proces-
samento e representação automáticos de dados, em particular de in-
formação obtida por sensores montados a bordo de veículos (2D e
3D), com aplicação em contexto de sistemas de apoio à condução.
O trabalho foca alguns dos problemas que, quer os sistemas de con-
dução automática (AD), quer os sistemas avançados de apoio à con-
dução (ADAS), enfrentam hoje em dia. O documento é composto por
duas partes. A primeira descreve o projeto, construção e desenvolvi-
mento de três protótipos robóticos, incluindo pormenores associados
aos sensores montados a bordo dos robôs, algoritmos e arquitecturas
de software. Estes robôs foram utilizados como plataformas de en-
saios para testar e validar as técnicas propostas. Para além disso, par-
ticiparam em várias competições de condução autónoma tendo obtido
muito bons resultados. A segunda parte deste documento apresenta
vários algoritmos empregues na geração de representações intermé-
dias de dados sensoriais. Estes podem ser utilizados para melhorar
técnicas já existentes de reconhecimento de padrões, deteção ou nave-
gação, e por este meio contribuir para futuras aplicações no âmbito dos
AD ou ADAS. Dado que os veículos autónomos contêm uma grande
quantidade de sensores de diferentes naturezas, representações inter-
médias são particularmente adequadas, pois podem lidar com proble-
mas relacionados com as diversas naturezas dos dados (2D, 3D, fo-
tométrica, etc.), com o carácter assíncrono dos dados (multiplos sen-
sores a enviar dados a diferentes frequências), ou com o alinhamento
dos dados (problemas de calibração, diferentes sensores a disponi-
bilizar diferentes medições para um mesmo objeto). Neste âmbito,
são propostas novas técnicas para a computação de uma represen-
tação multi-câmara multi-modal de transformação de perspectiva in-
versa, para a execução de correcção de côr entre imagens de forma a
obter mosaicos de qualidade, ou para a geração de uma representação
de cena baseada em primitivas poligonais, capaz de lidar com grandes
quantidades de dados 3D e 2D, tendo inclusivamente a capacidade
de refinar a representação à medida que novos dados sensoriais são
recebidos.





Keywords Autonomous Driving, Advanced Driver Assistance Systems, Robotics,
Color Correction, 3D Reconstruction, Autonomous Vehicles.

Abstract The main object of this thesis is the study of algorithms for automatic in-
formation processing and representation, in particular information pro-
vided by onboard sensors (2D and 3D), to be used in the context of
driving assistance. The work focuses on some of the problems facing
todays Autonomous Driving (AD) systems and Advanced Drivers As-
sistance Systems (ADAS). The document is composed of two parts.
The first part describes the design, construction and development of
three robotic prototypes, including remarks about onboard sensors, al-
gorithms and software architectures. These robots were used as test
beds for testing and validating the developed techniques; additionally,
they have participated in several autonomous driving competitions with
very good results. The second part of this document presents sev-
eral algorithms for generating intermediate representations of the raw
sensor data. They can be used to enhance existing pattern recogni-
tion, detection or navigation techniques, and may thus benefit future
AD or ADAS applications. Since vehicles often contain a large amount
of sensors of different natures, intermediate representations are parti-
cularly advantageous; they can be used for tackling problems related
with the diverse nature of the data (2D, 3D, photometric, etc.), with the
asynchrony of the data (multiple sensors streaming data at different
frequencies), or with the alignment of the data (calibration issues, dif-
ferent sensors providing different measurements of the same object).
Within this scope, novel techniques are proposed for computing a multi-
camera multi-modal inverse perspective mapping representation, exe-
cuting color correction between images for obtaining quality mosaics, or
to produce a scene representation based on polygonal primitives that
can cope with very large amounts of 3D and 2D data, including the
ability of refining the representation as new information is continuously
received.
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Chapter 1

Introduction

Mobility is a cornerstone of nowadays society. Many people spend a considerable part of their day

travelling from place to place. It is expected that they do so with comfort and, most importantly,

with safety. However, more than 3000 deaths occur each day due to road accidents, worldwide. The

principal causes for road accidents are well documented. Nonetheless, the solution to the problem is

quite complex. It involves actions on different levels, from reshaping traffic laws, to making roads

and cars safer, or to change the awareness of people to the responsability of driving.

Let us consider the problem of how to improve the safety of vehicles. Most people have been

in a situation where a passanger suddenly warns the driver about a potential crash and, by doing so,

an accident is avoided. In fact, driver distraction is one of the most common causes for accidents.

Sometimes there are no additional passengers or they are not paying attention to the road. Let us

suppose that it is the vehicle itself that is capable of perceiving the road, and that it can aknowledge

potentially dangerous situations. Equipped with these capabilities, cars may cease to be blind driven

machines and turn into ever vigilant automatic copilots. Faced with a dangerous situation, the vehicle

may issue a warning to the driver or, in severe cases, even take control of the brake or steering systems.

Automatic scene awareness should make a significant impact on the overall safety of vehicles. To see

the environment around them, vehicles must be equipped with onboard sensors. The information they

provide is then processed in order to grasp an understanding of the scene.

In this thesis, the focus is the study of algorithms that process data from onboard sensors and

generate information about the road scene. The potential applications are both Autonomous Driving

(AD) as well as Advanced Drivers Assistance Systems (ADAS). In AD applications, it is expected

that the automatic systems take full control of the vehicle, i.e., the sytems must drive the vehicle

without any human intervention, whereas in ADAS applications, those systems should monitor the

actions of the drivers and intervene only when necessary. Although ADAS applications should most

likely be the first to be implemented in vehicles, AD research is very interesting as a setting for

testing the robustness of the systems. Anyhow, AD and ADAS algorithms share the same design and

implementation details, as well as the same ultimate goal which is to make the vehicle aware of the

1



2 1.Introduction

road.

From the research made in both AD and ADAS, there one significant conclusion: no sensor

is sufficient by itself. Because of this, recent trends focus on sensor fusion techniques. There are

two distinct alternatives to the problem of fusing information from two or more sensors. The first

option is to process the data from each sensor separately, drawing conclusions for each indivudual

analysis, and then fuse the informations generated by the analysis of the data of each sensor. This is

called late fusion. The second option is to merge the raw data from all sensors, and then try to take

conclusions from a holistic analysis of the entire data. This is called early fusion. Althouhg there

are advantages and disadvantages for each of the approaches, in the work presented in this thesis

an early fusion strategy is endorsed. In particular, the work that will be presented focused on the

developement of several strategies for obtaining representations of the raw data that can be usefull

for subsequent processing algorithms. Questions on which should be an adequate representation are

addressed, as well as methodologies to cope with data assyncrony, large size, and of different nature.

These proposed representations are referred to as intermediate representations, in the sense that they

are intended to stand between the raw sensor data and the subsequent processing algotithms.

Section 1.1 provides an overall view of the impact of road traffic accidents in society. It also refers

the concerns of global organizations such as the United Nations, the World Health Organization, or

the European Union on this topic. Section 1.2 formulates the objectives of the thesis. Finally, the

structure of this document is described in section 1.3.

1.1 Motivation

The General Assembly of the United Nations resolution 64/255 proclaimed 2011-2020 the Decade

of Action for Road Safety [United Nations 2010]. The goal is to stabilize and then reduce the fore

casted level of global road fatalities by increasing activities conducted at national, regional and global

levels. Resolution 64/255, requested the World Health Organization and the United Nations regional

commissions, in cooperation with the United Nations Road Safety Collaboration and other stakehold-

ers, to prepare a Plan of Action for the Decade as a guiding document to support the implementation

of its objectives.

The reasons for this concern are unfortunately very obvious: each year nearly 1.3 million people

die as a result of a road traffic collision. Worldwide, twenty to fifty million more people per year

sustain non-fatal injuries from a collision, and these injuries are an important cause of disability

worldwide [United Nations & World Health Organization 2011]. Road traffic injuries are among the

three leading causes of death for people between 5 and 44 years of age, and they are predicted to

become the fifth leading cause of death in the world, resulting in an estimated 2.4 million fatalities

each year [United Nations & World Health Organization 2011]. Other estimates for the future are

also very concerning. The evolution of DALY (Disability-adjusted life year, a health-gap measure
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Table 1.1: Source [World Health Organization 2004]. Change in rank order of DALYs for the ten

leading causes of the global burden of disease.

1990 2020

Rank Disease or injury Rank Disease or injury

1 Lower respiratory infections 1 Ischaemic heart disease

2 Diarrhoeal disease 2 Unipolar major depression

3 Perinatal conditions 3 Road traffic injuries

4 Unipolar major depression 4 Cerebrovascular disease

5 Ischaemic heart disease 5 Chronic obstructive pulmonary disease

6 Cerebrovascular disease 6 Lower respiratory infections

7 Tuberculosis 7 Tuberculosis

8 Measles 8 War

9 Road traffic injuries 9 Diarrhoeal disease

10 Congenital abnormalities 10 HIV

that combines information on the number of years lost from premature death with the loss of health

from disability) shows that road traffic accidents will become one of the major causes for loss of

quality of life [World Health Organization 2004] (Table 1.1).

In the European Union, although the numbers have been decreasing in the last decade, the fact is

that in 2010, road traffic accidents were responsible for 35000 fatalities and 1.5 million injured. Figure

1.1 shows the numbers of fatalities, injuries and accidents in the European Union over the last decade.

With regards to the situation in Portugal, in 2010, in spite of the 0.2% slight decrease in the number

of road accidents with victims in mainland roads (35426), the resulting number of victims increased

also slightly, to 47302 (+0.3% when compared with 2009). In 2010 there were 937 fatalities, 2475 se-

riously injured victims and the 43890 lightly injured victims [Instituto Nacional de Estatística 2011].

The economic consequences of motor vehicle crashes are also devastating. The eco-

nomic losses have been estimated between 1% and 3% of the Gross National Product, reach-

ing a total over 500 billion US dollars per year worldwide. Reducing road casualties and

fatalities will reduce suffering, unlock growth and free resources for more productive use

[United Nations & World Health Organization 2011].

Figure 1.2 provides some more detailed information on the problem. It shows that the majority of

accidents occur in rural roads (Fig. 1.2 (a)), involve cars or taxies (Fig. 1.2 (c)), and that about four

out of every five accidents occur in dry weather (Fig. 1.2 (b)).

According to [European Commission, Directorate-General for Energy and Transports 2001], the

main causes for accidents have been clearly defined:

• Excessive or inappropriate speed, the cause of about a third of fatal and serious accidents.

• The consumption of alcohol and drugs or fatigue. Drinking and driving is responsible for about

10000 deaths each year.

• Failure to wear a seat belt or crash helmet is a major aggravating factor in accidents. If the rate
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Figure 1.1: Source [European Road Safety Observatory 2011]. Fatalities, accidents and injured per

year in the EU countries.

of seat-belt use could be increased everywhere to the best international rate, more than 7000

lives would be saved each year.

• The lack of sufficient protection provided by vehicles in the event of an impact. Analysis of

accidents shows that, if all cars were designed to provide protection equivalent to that of the

best cars in the same class in the event of an accident, half of fatal and disabling injuries could

be avoided.

• High-risk accident sites (black spots).

• Non-compliance with driving and rest times by commercial drivers.

• Poor visibility of other users or an insufficient field of vision for the driver. The lack of visibility

in the blind spot towards the rear of vehicles alone causes 500 deaths a year.

The Global Plan for the Decade of Action for Road Safety 2011-2020

[United Nations & World Health Organization 2011] was the result of a combined effort of the

United Nations, the World Health Organization and other stakeholders to address the problem of

road safety. It serves as a tool to support the development of national and local plans of action, while

simultaneously providing a framework to allow coordinated activities at regional and global levels.

The plan suggests activities to be taken under five pillars of action:

• Pillar 1, Road safety management;

• Pillar 2, Safer roads and mobility;
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(a) (b)

(c)

Figure 1.2: Source [European Road Safety Observatory 2011]. Share of fatalities as a function of:

(a) type of road; (b) weather conditions; (c) type of vehicle. Data for EU countries, 2009.

• Pillar 3, Safer vehicles;

• Pillar 4, Safer road users;

• Pillar 5, Post-crash response.
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The problems addressed in this thesis are embodied on Pillar 3. We discuss and propose state of

the art technologies that ultimately may enhance the safety of vehicles. The plan is organized so that

each Pillar is broken into seven actions. Actions number six and seven recommend:

• Action 6, encourage application of pedestrian protection regulations and increased research into

safety technologies designed to reduce risks to vulnerable road users;

• Action 7, encourage managers of governments and private sector fleets to purchase, operate

and maintain vehicles that offer advanced safety technologies and high levels of occupant pro-

tection.

In sum, the main motivation of this work is that it addresses a very significant problem worldwide.

It is also interesting to note that the work developed is aimed at objectives declared as important by

the international community.

1.2 Objectives

As described in section 1.1, the magnitude of the problem of road accidents, as well as the human and

economic consequences, are all very concerning. In the scientific community, there is a discussion

on whether a technological development effort should be applied to the road infrastructures or to the

vehicles themselves. Considering the statistics given in Fig. 1.2 (a) one finds that the majority of

accidents occur in rural (non highway) roads. In those roads the technological development of the

infrastructures seems less likely: it would be expected that the first areas to receive smart infrastruc-

tures would be cities and highways. This supports the approach of developing onboard technology

that requires no changes in the infrastructures. In Fig. 1.2 (b) it is possible to see that 80% of fatalities

occur in dry weather conditions. Discussions on the robustness of onboard sensors in rough weather

conditions like snow or rain are thus less important, since that a system that works well in dry weather

conditions would have a very large impact. Finally, Fig 1.2 (c) shows that the majority of fatalities

involve cars, taxis and other large size vehicles as trucks or lorries. This is also an important factor,

since that onboard sensors and computational resources can easily be installed on these type of vehi-

cles. Smaller vehicles like motorcycles or motor-less vehicles present a problem for the technologies

that will be discussed. Given all the topics discussed before, it is plausible to assume that technology

that can be placed onboard vehicles and contrives to make them safer, will certainly have a large

positive impact of the problem of road accidents. Such technologies are now at an early stage of

development. Current ADAS commercial applications include several systems, but none that focuses

on computing a global description of the scene around the vehicle. The ultimate goal of this work is

thus to develop new algorithms that are capable of processing onboard sensor data and provide a high

level understanding of the road scene.

The objectives of the work presented in this thesis were the following:
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• To develop perception based algorithms that process onboard sensor data and generate infor-

mation about the road scene;

• To develop and integrate basic software functionalities in the autonomous driving robotic pro-

totypes that allows them to participate in autonomous driving competitions;

• To test and assess the effectiveness of the proposed algorithms on a full scale vehicle;

• To develop alternative data representations that may cope with multiple sensors and that im-

prove the effectiveness of subsequent processing algorithms.

The first three objectives are addressed in chapters 3, 4 and 5. The fourth objective is addressed

in chapters 6 through 11.

1.3 Thesis Structure

This thesis is composed of twelve chapters. Chapter 2 provides a state of the art on autonomous vehi-

cles. Then, the topics addressed in the following chapters may be divided into two parts. The first part

contains chapters 3 and 4. Chapter 3 describes three robotic prototypes. The author has contributed

to the design, construction and development of these robots. The robots are designed to execute au-

tonomous driving tasks, and have participated in several autonomous driving competitions. Chapter

4 addresses the software architectures used in those robots. Some of the software architectures were

developed at the Laboratory of Automation and Robotics, where the author has carried out the work.

Some other software architectures were just adapted and implemented on several robotic prototypes.

The second part of the thesis proposes algorithms for computing scene representations from on-

board sensors. Chapter 5 presents an Inverse Perspective Mapping (IPM) methodology for computing

a bird’s eye view of the road from multiple cameras, using a Laser Range Finder (LRF) sensor to as-

sist the computation. Chapter 6 presents several algorithms for performing the color correction of

images. The objective is to obtain good quality, artifact free image mosaics. Chapters 7, 8, 9, 10

and 11 are partial descriptions of a complete scene representation algorithm that was developed. The

algorithm is designed to compute a scene representation using as input data from a 3D laser and sev-

eral images. The algorithm uses the 3D data to generate a geometric model of the scene, and then

applies texture to the model using the images. Additionally, the model of the scene may evolve if

newer (and better) data is received. Chapter 7 describes the dataset that is used, along with some 3D

data preprocessing algorithms. In chapter 8 the algorithm that generates a geometric model of the

scene is described. The refinement mechanism for the geometric model is then presented in chapter

9. Techniques for texture mapping the model are discussed in chapter 10, and chapter 11 addresses

the problem of how to evolve the photometric representation when new images are received. Finally,

conclusions are drawn in chapter 12.
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Some additional remarks should be made on the conventions used in this document. The core

chapters of this document (chapters 3 through 11) are structured with a small preamble at the begin-

ning, that briefly describes the chapter. Then, there are always two sections: introduction and related

work, that describe the specific problem for each chapter. At the end of each chapter there is section

where specific conclusions on the topic are drawn. Throughout the thesis, some figures and graphs

present results describing the processing time of algorithms. Unless otherwise noted, those results

were obtained using a computer with an Intel i7 processor. There are several figures that contain an

indication of the coordinate frames. Unless otherwise noted, coordinate frames represented in figures

use the following convention. The red color line represents the X axis, the green line, the Y axis,

and the blue, the Z axis. Axes are not represented by an arrow, but rather by a line. The positive

direction of the axes may be inferred from the origin of the coordinate system and the tip of the line

that represents the axis.
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Chapter 2

State of the Art

As discussed in chapter 1, this thesis focuses on two main subjects. The first part contains a des-

cription of the developed robotic prototypes, and the second part presents intermediate scene repre-

sentation algorithms. Throghout the thesis, the problems associated with Autonomous Driving (AD)

and Advanced Drivers Assistance Systems (ADAS) are the common ground. Because of this, the

choice was to provide a state of the art on autonomous vehicles in this chapter, and to include a re-

lated work section inside each chapter that adresses more specifically each particular topic. Hence,

the descriptions made in this chapter are limited to real size vehicles that can perform autonomous

driving tasks.

2.1 Milestones Achieved in Autonomous Driving

Driverless vehicle concepts and trials have been created and run by dozens of companies and univer-

sities over the last 35 years. Below is a brief overview of some of the major milestones and more

successful efforts, based on [Keyes 2011].

• 1977: Tsukuba Mechanical Engineering Lab in Japan ran a driverless car on a dedicated,

marked course. It navigated by following white street markers and traveled at speeds of up

to 30 km/h.

• 1980s: Mercedes-Benz tested a vision-guided robot van, designed by Ernst Dickmanns and his

team at the Bundeswehr University Munich, that achieved 100 km/h on trafficless streets.

• 1987-1995: The European Commission funded the 800 million Euro EUREKA Programme for

European Traffic of Highest Efficiency and Unprecedented Safety (PROMETHEUS) Project

on autonomous vehicles.

• 1980s: The Defense Advanced Research Projects Agency (DARPA) funded Autonomous Land
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Vehicle in the United States achieved the first road-following demonstration using laser, radar

and computer vision. The vehicle drove at speeds up to 30 km/h.

• 1987: HRL Laboratories demonstrated the first offroad map and sensor based autonomous

navigation on the ALV vehicle. The vehicle traveled over 200 meters at 3 km/h on complex

terrain with steep slopes, ravines, large rocks and vegetation.

• 1994: Daimler-Benz and Ernst Dickmanns put two semi-autonomous vehicles, VaMP and Vita-

2, on the road which drove more than 1000 Km on a three-lane highway in heavy traffic at

speeds up to 130 km/h. The vehicles were capable of autonomous driving in free lanes, convoy

driving, lane changing and passing.

• 1995: A Mercedes-Benz Ernst Dickmanns autonomous car took a 1600 Km trip from Munich to

Copenhagen and back. The car reached speeds exceeding 175 km/h on the German Autobahn.

Its longest stretch of driving without human intervention was approximately 158 km.

• 1995: The Navlab project by Carnegie Mellon University traveled 5000 Km on a "No Hands

Across America" trip. Only the steering was autonomous, the throttle and brakes were human-

controlled.

• 1996-2001: Alberto Broggi of the University of Parma ran the ARGO Project, which allowed

a driverless car to follow painted lane markings in a highway. The project ended with a six

day, 2000 Km trip on the motorways of northern Italy named MilleMiglia in Automatico. The

car averaged 90 km/h. The longest distance traveled without human intervention was 54 km.

The vehicle used only two black and white video cameras and stereoscopic vision algorithms

to track its surroundings.

• 2004: The 2004 DARPA Grand Challenge was held on March 13 in the Mojave Desert; it was

the first long distance competition for driverless cars in the world. The contest sponsored by

DARPA offered a prize of one million US dollars. The challenge consisted of a 240 Km route

filled with twists, turns, and obstacles. None of the robot vehicles finished the route. Carnegie

Mellon University’s Red Team traveled the farthest distance, completing a 11 Km of the course.

• 2005: the 2005 DARPA Grand Challenge was held on October 8. Twenty three of the twenty

four competitors traveled farther than the winner of the previous year did, and five challengers

completed the full course. The winning team, based on time, was the Stanford Racing Team

led by Sebastian Thrun.

• 2007: The 2007 DARPA Urban Challenge took place on November 3. The course was 96 Km

long and had to be completed in less than 6 hours. Since this was an urban test, all vehicles were

required to obey all traffic regulations while negotiating the course. Six vehicles completed the
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course. The two million US dollar winner was Tartan Racing, a joint effort between Carnegie

Mellon University and General Motors Corporation.

• 2008-2011: Rio Tinto and Komatsu run a fleet of five fully autonomous 300 ton dump trucks at

the Rio Tinto mines in Australia. After running 24 hours a day for over two years the fleet was

doubled to ten trucks.

• 2010: The VisLab Intercontinental Autonomous Challenge (VIAC) was run. It consisted of

four autonomous vans traveling 13000 Km from Italy to China. A lead van first ran each route

with significant human intervention. The following vans used the data collected by the lead van

in order to run the course with less human intervention.

• 2010: Google driverless cars travel over 480000 Km on California roads, including toll roads,

rural roads, Lombard Street and city streets.

2.2 Research Groups in Autonomous Driving

This section lists some of the most relevant research groups in the scope of AD worldwide. Obviously,

the selection of which projects should be included in the following description is not consensual.

There are several tenths of projects worldwide that researched on autonomous driving. Because it is

not possible to describe them all in detail, we have decided to describe only those projects that have

somehow pioneered AD research. Another criteria is based on choosing the projects that have won

major robotic competitions or that have achieved significant landmarks in the field.

The Robotics Institute, Carnegie Mellon University

Carnegie Mellon University has pioneered the research in AD with the Navlab project. Navlab

[Thorpe et al. 1991] is a series of autonomous and semi-autonomous vehicles developed by teams

from The Robotics Institute at the School of Computer Science, Carnegie Mellon University. The

vehicles were mainly semi-autonomous, though some were fully autonomous and required no human

input. Navlab 1 (Fig. 2.1 (a)) was built in 1986 using a Chevrolet panel van. The van had 5 racks

of computer hardware, including 3 Sun workstations, video hardware, GPS receiver, and a Warp su-

percomputer. Navlab 2 [Coulter & Mueller 1994] was built in 1990 using a US Army HMMWV.

Computer power was uprated for this new vehicle with three Sparc 10 computers, for high level data

processing, and two 68000-based computers used for low level control. The Hummer was capable

of driving both off or on road. Several additional prototypes followed, adding up to a total of eleven

prototypes.

The project became well known in 1990 after the Navlab 5, a Pontiac Trans Sport completed

a trek named "No Hands Across America" driving autonomously more than 98% of the way
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(a) (b)

(c) (d)

Figure 2.1: Four prototypes from Carnegie Mellon University: (a) Navlab I; (b) Sandstorm; (c) Boss;

and (d) Highlander.

across the United States from coast-to-coast. The vehicles were equipped with cameras and the

focus of the project was on road following [Kanade et al. 1986], navigation and obstacle avoid-

ance [Thorpe et al. 1988]. Some data sets have been released and are now publicly available

[Wang et al. 2004]. This project has been thoroughly funded by the United States Military.

In 2004, with the advent of the DARPA Challenge, the Tartan Racing team was created to partic-

ipate in the competition [Urmson et al. 2004]. Two prototypes were developed, Sandstorm Fig. 2.1

(b) and Highlander Fig. 2.1 (d).

Sandstorm is a heavily modified 1986 HMMWV. It competed in the DARPA Grand Challenge

in 2004 and 2005. Although it did not complete the challenge, Sandstorm qualified in first position

in the 2004 DARPA Grand Challenge. It traveled the fastest and farthest (12 Km) during the 2004

race before colliding with a sand embankment. The sensors used by Sandstorm in 2004 included

three fixed Laser Range Finder (LRF) units, one steerable LRF (in the globe on top), a Radar unit

(developed in collaboration with the Duke University Robotics Team), and a pair of cameras for stereo

vision. Sandstorm also had a GPS and an inertial navigation system for determining the geographical

position; the system was an Applanix POS LV system. Since the 2004 race, Sandstorm has been
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continuously tested and modified, logging data along hundreds of kilometers. The 2005 version of

Sandstorm used six fixed LRF units, the steerable LRF, and short and long range Radars. Sandstorm

competed in the 2005 DARPA Grand Challenge. It finished the race in 7 hours and 5 minutes, in the

second position out of the five vehicles that completed the course [Urmson et al. 2006].

Highlander is a heavily modified 1999 HUMMER H1. It competed in the 2005 DARPA Grand

Challenge [Urmson et al. 2007]. The sensors used by Highlander include several LRF units, one

steerable LRF, GPS and an inertial navigation system (Applanix POS LV). Highlander competed in

the 2005 DARPA Grand Challenge, and finished in 7 hours and 14 minutes, placing third out of the

five vehicles to complete the course. It was preceded, in second place, by Sandstorm, its sister vehicle.

For the 2007 DARPA Urban Challenge, the Tartan Racing team developed a new prototype called

Boss (Fig. 2.1 (c)) [Urmson et al. 2008]. It was a Chevy Tahoe with over 500000 lines of code

designed to autonomously navigate in town and in traffic [Urmson et al. 2009]. Boss used percep-

tion, planning and behavioral software to reason about traffic and take appropriate actions while

proceeding safely to a destination. It was equipped with more than a dozen LRF, cameras and

radars to view the world. High level route planning determined the best path through a road net-

work [Likhachev & Ferguson 2009]. Motion planning requires consideration of the static and dy-

namic obstacles detected by perception [Darms et al. 2009], as well as lane and road boundary in-

formation, parking lot boundaries, stop lines, speed limits, and similar requirements. Defensive

driving skills allowed Boss to avoid crashes [Ferguson et al. 2008b] [Ferguson et al. 2008c]. Ac-

cording to the Tartan Racing team, Boss is capable of performing the following maneuvers: follow

rules of the road; detect and track other vehicles at long ranges; find a spot and park in a park-

ing lot; obey intersection precedence rules; follow vehicles at a safe distance; and react to dynamic

conditions like blocked roads or broken down vehicles. Boss has won the 2007 DARPA Urban Chal-

lenge [Urmson & Whittaker 2008].

University of Munich

The VaMoRs project, which stands for Versuchsfahrzeug fuer autonome Mobilitaet und Rechnerse-

hen, Test Vehicle for Autonomous Mobility and Computer Vision, was also one of the first projects

to have successfully achieved autonomous driving experiments. The project initiated in the eight-

ies decade, where the team from the Bundeswehr University of Munich equipped a Mercedes-Benz

van with cameras and other sensors (Fig. 2.2 (a)). The 5-ton van was re-engineered such that it

was possible to control the steering wheel, throttle, and brakes through computer commands based

on real-time evaluation of image sequences. Software was written that translated the sensory data

into appropriate driving commands. For safety reasons, initial experiments in Bavaria took place

on streets without traffic. Since 1986 the Robot Car VaMoRs managed to drive autonomously at

speeds up to 96 km/h. One of the challenges in high-speed autonomous driving arises through the

rapidly changing visual street scenes. In the eighties and nineties, computers were much slower
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(a) (b)

Figure 2.2: Two prototypes from the VaMoRs project: (a) VaMoRs; (b) VaMP.

than they are today. Therefore, sophisticated computer vision strategies were necessary to react

in real time. The team approached the problem through an innovative approach to dynamic vi-

sion. Spatio temporal models were used right from the beginning, in what was called a 4D ap-

proach [Dickmanns & Mysliwetz 1992]. The system did not require to store previous images but was

able to yield estimates of all 3D velocity components of several agents on the road.

The focus of the research was done in vision systems, particularly multi camera active perception

systems [Dickmanns 2004] [Dickmanns 2012]. The EMS vision system, Expectation-based, Multi-

focal, Saccadic vision, [Gregor et al. 2002] included attention control with artificial saccadic move-

ments of the platform carrying the cameras and allowed the system to focus its attention on the most

relevant details of the visual input. In 1987, the European car manufacturing industries launched the

PROMETHEUS. The initially planned autonomous lateral guidance by buried cables was dropped

and substituted by the much more flexible machine vision approach proposed by Dickmanns, and

partially encouraged by his successes. Most of the major car companies participated and so did the

VaMoRs team, with the Daimler-Benz. Substantial progress was made. In particular, robot cars

learned to drive in traffic under various conditions. An accompanying human driver with a "red but-

ton" made sure the robot vehicle could not get out of control and become a danger to the public. Since

1992, driving in public traffic was standard.

In 1994, two new prototype autonomous S-Class Mercedes-Benz achieved an important land-

mark. During the final presentation of the PROMETHEUS project in October 1994 on Autoroute 1

near the airport Charles-de-Gaulle in Paris, with guests onboard, the twin vehicles of Daimler-Benz

(VITA-2) and the Bundeswehr University VaMP (Fig. 2.2 (b)) drove more than 1000 Km on the three-

lane highway in standard heavy traffic at speeds up to 130 km/h [Thomanek & Dickmanns 1995].

Driving in free lanes, convoy driving with distance keeping depending on speed, and lane changes

left and right with autonomous passing have been demonstrated.
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A second landmark was a 1758 Km trip in the fall of 1995 from Munich in Bavaria to Odense

in Denmark to a project meeting and back. Both longitudinal and lateral guidance were performed

autonomously by vision. On highways, the robot achieved speeds exceeding 175 km/h, with an

average human intervention every 9 km. The longest autonomously driven stretch reached 158 km.

The system used black and white video cameras. In total, 95% autonomous driving (considering the

distance) was achieved.

In the years that followed, the VaMoRs prototype was used to develop the capabilities needed for

driving on networks of minor and unsealed roads and for cross-country driving including avoidance

of negative obstacles like ditches [Baten et al. 1998].

VisLab, Parma University

At the Dipartimento di Ingegneria dell’Informazione, Università di Parma, the VisLab group started

their research activities on the topic of AD in the early nineties. At that time, only a very few labora-

tories worldwide were investigating the applicability of artificial vision onboard of moving vehicles.

Also, no hardware architecture was able to deliver sufficient processing power to run real-time image

processing algorithms. To cope with this issue the group developed their own hardware architecture,

named PAPRICA, for PArallel PRocessor for Image Checking and Analysis, based on 256 single-bit

processing elements working in SIMD fashion, and installed it onboard of a mobile laboratory to

develop and test some initial concepts in the field of intelligent vehicles [Bertozzi & Broggi 1999].

These activities were funded by PROMETHEUS, which ended with a demonstration in October 1994,

in France. The experience not only provided the ground for new ideas on computer vision techniques,

but the typical problems of the automotive environment were also investigated, creating a strong

know-how on the application of artificial vision in the real world. In 1996, the group developed a real

vehicle prototype named ARGO [Broggi et al. 2000] (Fig. 2.3 (a)), a Lancia Thema passenger car

which was equipped with vision sensors, processing systems, and vehicle actuators. In parallel, they

developed the necessary software and hardware that made it able to drive autonomously on standard

roads. In 1998, the six day long demonstration of the ARGO capabilities was a milestone MilleMiglia

in Automatico. In that experience, 94% of a 2000 Km journey were driven autonomously. ARGO

was able to follow the road, overtake slower traffic, locate obstacles, and follow the vehicle in front.

This was the first experiment of a vehicle running autonomously with vision as the only sensor and a

low cost off-the-shelf processing system.

Anchored in these results, VisLab was offered a series of research opportunities by many car man-

ufacturers or automotive suppliers. VisLab has conducted research on applications such as pedestrian

detection and night vision to increment road safety, using thermal imagery. In 2004, VisLab part-

nered with the TerraMax truck corporation to take part in the DARPA Grand Challenge and DARPA

Urban Challenge. In 2005, the TerraMax vehicle [Chen et al. 2009], a 14 ton truck (Fig. 2.3 (b)),

was one of only 5 vehicles worldwide to complete the challenge and reach the end of the 220 Km
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(a) (b)

(c) (d)

Figure 2.3: Four prototypes from the VisLab group: (a) ARGO; (b) TerraMax; (a) BRAiVE; and (d)

one of the four vehicles used on the VIAC challenge.

off road race in the Mojave desert. In 2007, TerraMax was qualified for the DARPA Urban Chal-

lenge [Broggi et al. 2010]. In January 2006, at the US Army base in Yuma, Arizona, VisLab, in

partnership with Oshkosh Truck Corporation and Rockwell Collins, demonstrated a new prototype

vehicle to the US military: a concept vehicle able to reach a predefined destination, unload, and get

back to the starting point with no human intervention.

In 2007 a local non profit organization, Fondazione Cassa di Risparmio decided to partially sup-

port VisLab activities, which allowed VisLab to acquire a new vehicle, equip it with sensors, and

continue the research. The new prototype’s name is BRAiVE (Fig. 2.3 (c)). It was equipped with 10

cameras, 5 LRF, 16 laser beams, GPS, INS, and complete x-by-wire provided by partner MANDO,

from South Korea. BRAiVE flew to China in 2009 for the official presentation at the IEEE Intelligent

Vehicles Symposium 2009, where it demonstrated fully automatic features.

In 2008 VisLab was selected by the European Research Council (ERC) to receive an advanced

grant (approximately 2 million US dollars) to support research in the following 5 years. As a result, in

2010 the group embarked on driving four vehicles autonomously from Italy to China with no human

intervention. This challenge was called VIAC [Bertozzi et al. 2011]. Soon after this, VisLab was
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awarded a second ERC grant to industrialize some of the results obtained and successfully tested on

the VIAC vehicles.

Artificial Intelligence Lab, Stanford University

Stanford Racing Team was Stanford University’s response to the DARPA Grand Challenge launched

in 2004. The Stanford Racing Team started its work in July 2004, supported by a consortium of

companies located in the San Francisco Bay Area, as well as car manufacturer Volkswagen.

In 2004, the Stanley robotic vehicle (Fig. 2.4 (a)) was operational. Stanley’s original frame was

a standard European diesel model Volkswagen Touareg provided by Volkswagen for the competition.

The Stanford Racing Team choose the Touareg for its drive by wire control system which could be

adapted (which was done so by Volkswagen) to be run directly from an onboard computer without

the use of actuators or servo motors. It is important to note however, that the steering wheel was

driven by an electric motor and the gear shifting accomplished with a hydraulic piston. To navigate,

Stanley used five roof mounted LRF units to build a 3D map of the environment, complementing the

position sensing GPS system. An internal guidance system utilizing gyroscopes and accelerometers

monitored the orientation of the vehicle and also served to supplement GPS and other sensor data.

Additional guidance data was provided by a video camera used to observe driving conditions out to

eighty meters, beyond the range of the LRFs and to ensure room enough for acceleration. Stanley

also had sensors installed in a wheel to act as an odometer in case of loss of GPS signal, such as when

driving through a tunnel. To process the sensor data and execute decisions, Stanley was equipped with

six low-power 1.6 GHz Intel Pentium M based computers in the trunk, running different versions of

the Linux operating system. The software was composed of over 100000 lines of code, run by Stanley

to interpret sensor data and execute navigation decisions. Stanley was characterized by a machine

learning based approach to obstacle detection. Data from the LRFs was fused with images from the

vision system to perform more distant look ahead. If a path of drivable terrain could not be detected

for at least 40 meters in front of the vehicle, speed was decreased [Stavens et al. 2007] and the LRFs

used to locate a safe passage [Dolgov et al. 2010]. To correct a common error made by Stanley early

in development, the Stanford Racing Team created a log of "human reactions and decisions" and fed

the data into a learning algorithm tied to the vehicle’s controls [Patel et al. 2005]. This action served

to greatly reduce Stanley’s errors. The computer log of humans driving also made Stanley more

accurate in detecting shadows, a problem that had caused many of the vehicle failures in the 2004

DARPA Grand Challenge. In 2005, Stanley competed in the 2005 DARPA Grand Challenge. It won

the competition [Montemerlo et al. 2006] [Thrun et al. 2006b] [Thrun et al. 2006a].

In 2007, the Stanford Racing Team competed in the DARPA Urban Challenge with Junior

[Montemerlo et al. 2008] (Fig. 2.4 (b)). Junior was a modified 2006 Passat wagon, equipped with

a four-cylinder turbo diesel injection engine. The 140 horsepower vehicle was equipped with a lim-

ited torque steering motor, an electronic brake booster, electronic throttle, gear shifter, parking brake,
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(a) (b)

(c)

Figure 2.4: Three prototypes from the Stanford University: (a) Stanley; (b) Junior; and (c) Google

Driverless Car.

and turn signals. A custom interface board was developed to provide computer control over each of

these vehicle elements. The engine provided electric power to Junior’s computing system through

a high-current prototype alternator, supported by a battery-backed electronically controlled power

system. For development purposes, the cabin is equipped with switches that enable a human driver

to switch on / off various electronic interface components. For example, a human developer could

choose the computer to control the steering wheel and turn signals while retaining manual control

over the throttle and the vehicle brakes. For inertial navigation, an Applanix POS LV 420 system

provides real-time integration of multiple dual-frequency GPS receivers, including a GPS azimuth

heading measurement subsystem, a high performance inertial measurement unit, wheel hodometry

via a distance measurement unit, and the Omnistar satellite-based Virtual Base Station service. The

real-time position and orientation errors of this system were typically below 100 cm and 0.1 deg,

respectively. Two side-facing and a forward-pointed LRF laser sensors provide measurements of the

adjacent three-dimensional road structure and infrared reflectivity measurements of the road surface
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for lane marking detection. In addition, a 3D laser range finder provided a large number of range

measurements around the vehicle.

Junior’s software architecture was designed as a data driven pipeline in which individual modules

process information asynchronously. The same software architecture was employed successfully by

Junior’s predecessor Stanley in the 2005 challenge. Each module communicates with other modules

via an anonymous publish subscribe message passing protocol, based Inter Process Communications

(IPC) [Simmons & Apfelbaum 1998]. Modules subscribe to message streams from other modules,

which are then sent asynchronously. The result of the computation of a module may then be published

to other modules. In this way, each module is processing data at all times, acting as a pipeline. The

time delay between entry of sensor data into the pipeline to the effect on the vehicle’s actuators was

approximately 300 milliseconds. Junior finished second in the DARPA Urban challenge.

These achievements led to Stanford’s cooperation with Google, and ultimately development of

Google Driverless Car (Fig. 2.4 (c)). Google Driverless Car is a project by Google that involves

developing technology for driverless cars.

Other Institutions

As discussed before, it is a very difficult task to list all the research groups that are working or have

worked in AD. Boosted by the support of the very strong German automotive industry, relevant

work has also been carried out by several other German Universities, namely the Artificial Intelli-

gence Group of the Freie University of Berlin. These have carried out a demonstration where an

autonomous vehicle travelled the city of Berlin [Wang et al. 2011]. The FZI lab from Karlsruhe Uni-

versity is developing what they call cognitive cars, which can execute risk assessments in complex

traffic situations [Kumpakeaw & Dillmann 2007] [Vacek et al. 2007].

In France, the National Institute for Research in Computer Science and Control has also ad-

dressed several problems connected with autonomous driving for some years now [Diosi et al. 2011].

In the United Kingdom, the University of Oxford also has their own robotic car prototype

[Mathibela et al. 2012], while in Spain the University of Alcalá, in Madrid, has done several demon-

strations with an autonomous vehicle [Sotelo et al. 2004].

In the United States, several other institutions have also researched on autonomous driving: the

Massachusetts Institute of Technology has also participated in the DARPA Challenge competitions,

finishing fourth in the 2007 edition with the Talos vehicle [Huang et al. 2011]. This vehicle will

be described in detail in chapters 7, since the data sets provided by the vehicle will be used for

validating some of the proposed algorithms. The team from Cornell University has also competed in

the 2007 Urban Challenge, using novel probabilistic inference algorithms. These technologies were

integrated into a modified stock SUV chassis for the Urban Challenge. Several other participations

in the DARPA Challenge included a team from University of Central Florida, Virginia Tech, Caltech,

and many others.
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The first, full scale autonomous / semi autonomous vehicle operational in Portugal was developed

at the Laboratory of Automation and Robotics of the University of Aveiro. The AtlasCar is a mod-

ified 1995 Ford Escort, equipped with several LRF and cameras, and adapted to have drive by wire

capabilities. Since a portion of the development of this vehicle was included in the current Ph.D.

work, the vehicle will be described in detail in chapter 3.

2.3 Autonomous Driving Competitions

This section is devoted to describe some of the most important autonomous driving competitions

featuring full scale vehicles. The reason for the highlight of this topic is that robotic competitions have

largely contrived for the development of the field of AD. While traditional project application and

selection funding mechanisms also contribute for the advances in the field, the fact is that competitions

such as the DARPA Grand Challenges have boosted the effort of the research community, both in

quantity and quality, like never before. Because of this, the following lines describe some of the

most significant robotic competitions designed for full scale autonomous vehicles. Additionally, the

Autonomous Driving Competition (ADC) of the Portuguese Robotics Open (PRO) will be described,

since that some of the following chapters describe algorithms designed to solve the challenges posed

by that competition.

The DARPA Challenge was the first long distance competition for driverless cars in the world.

In the past, research efforts in the field of driverless cars followed a more traditional commercial

or academic approach with individual funding to research institutions. The United States Congress

authorized DARPA to offer a prize money of one million US dollars for the first Grand Challenge to

facilitate robotic development, with the ultimate goal of making one third of ground military forces

autonomous by 2015. Following the 2004 event, the director of DARPA, announced that the total

prize money had been increased to two million for the next event. The competition was open to

teams and organizations from around the world, although with the limitation of having at least one

US citizen on the roster. Teams have participated from high schools, universities, businesses and

other organizations. More than 100 teams registered in the first year, bringing a wide variety of

technological skills to the race. In the second year, 195 teams from 36 US states and 4 foreign

countries entered the race. In 2005, the challenge was composed of three narrow tunnels and several

sharp left and right turns. The race concluded through Beer Bottle Pass, a mountain pass with a cliff

on one side and a rock wall on the other. The vehicles were given a set of GPS way points, just a few

hours before the race start. The robots were expected to pass all way points, transversing obstacles

and selecting the best path between way points. Table 2.1 lists the teams that were able to complete

the challenge in 2005.

The DARPA Urban Challenge competition took place on November 3, 2007 at the site of the

now decommissioned George Air Force Base, in California. The course involved a 96 Km urban

Miguel Armando Riem de Oliveira Ph.D. Thesis



2.State of the Art 21

Table 2.1: Results of the DARPA Grand Challenge, 2005 edition [Wikipedia 2004]. The Table only

shows the teams that completed the challenge.

Vehicle Team Name Team Home Time Taken (h:m) Result

Stanley Stanford Racing Stanford University, California 6:54 First place

Sandstorm Red Team Carnegie Mellon University, Pittsburgh 7:05 Second place

Highlander Red Team Carnegie Mellon University, Pittsburgh 7:14 Third place

Kat-5 Team Gray The Gray Insurance Company, Louisiana 7:30 Fourth place

TerraMax Team TerraMax Oshkosh Truck Corporation, Wisconsin 12:51 Fifth place

Table 2.2: Results of the DARPA Urban Challenge, 2007 [Wikipedia 2004]. The Table only shows

the teams that completed the challenge.

Vehicle Team Name Team Home Time Taken (h:m) Result

Boss Tartan Racing Carnegie Mellon University, Pittsburgh 4:10:20 1st Place

Junior Stanford Racing Stanford University, California 4:29:28 2nd Place

VictorTango Odin Virginia Tech, Virginia 4:36:38 3rd Place

Talos MIT MIT, Massachusetts 6:00:00 4th Place

Little Ben Ben Franklin University of Pennsylvania, Philadelphia (1) (2)

Skynet Cornell Cornell University, New York (1) (2)

(1) No official time;
(2) One of six teams to finish the course;

area course, to be completed in less than 6 hours. Rules included obeying all traffic regulations while

negotiating with other traffic and obstacles and merging into traffic. Unlike previous challenges, the

2007 Urban Challenge organizers divided competitors into two groups. All teams from each group

travelled the race circuit simultaneously. Teams were given maps sparsely charting the way points

that defined the competition courses. At least one team, Tartan Racing, enhanced the maps through

the insertion of additional extrapolated way points for improved navigation. Table 2.2 lists the teams

that were able to complete the challenge in 2007. Figure 2.5 shows a satellite view of the scenario in

which the DARPA Urban Challenge competition took place.

European Land Robot Trial (ELROB) is a European event which demonstrates the abilities of

modern robots (www.elrob.org). The ELROB is not designed as a competition, like the US DARPA

Grand Challenge, but a pure demonstration of what European robotics is able to achieve today. The

scenarios are designed to simulate real world missions, be it military or civilian ones. There are no

artificial constraints set to this scenarios to ease the task for the robots like for example very visible

road markings. The first ELROB was organized in 2006 by the German Federal Armed Forces and

took place on the infantry training area near Hammelburg. The goal of the first trial was to boost the

development of unmanned ground vehicles that could be used in military missions on short notice.

The ELROB is setup as an annual event and alternates between a military and a civilian focus each

year. European Robotics and the NATO Research Task Group Military Applications for Multi-Robot
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Figure 2.5: A satellite view of the Darpa Urban Challenge competition area, the George Air Force

Base in Victorville, California. Pictures of some locations in the scenario are also displayed. The

image on the left shows the race start and finish site.

Systems came up with the idea for ELROB in the year 2004. European Robotics aims to bridge the gap

between defence and security users, industry and research in the field of ground robotics. Only teams

from Europe are allowed. Both teams of commercial and academic backgrounds have participated. In

the previous editions of the trial, the participating teams are mostly composed of teams from Germany.

The competition started in 2006, and is now holding its eight event in September 2013, in Germany.

The Portuguese Robotics Open (PRO) is a robotic competitions event that takes plane every year

in Portugal. One of the major competitions within the event is the Autonomous Driving Competition

(ADC). The ADC is a race like challenge composed of three rounds. Robots must drive through

the road-like scenario (Fig. 2.6 shows schematics, Fig. 2.7 shows photographs) as fast as possible.

However, they must do so abiding to several rules. When robots fail to comply with the rules, they are

given a penalty time corresponding to the infraction. The final score is the time taken to transverse

the course added to the total penalty time. The three rounds of the competition are organized so that

the complexity of the challenge increases from round to round. The first round is a speed trial, where

robots must travel the course without leaving the road and stop at the cross area after completing two
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laps. In the second round, robots must turn left or right at the intersection based on the commands

given by the traffic lights panels (Fig. 2.6 (b)). Additionally, an obstacle in placed on the track on

an unknown position (Fig. 2.6 (c)). Having completed to entire course, the robot must stop at the

parking spot (Fig. 2.6 (d)). The challenge may also contain traffic signs (Fig. 2.6 (e)) that indicate,

for example, that the robot should drive in a particular lane. In the final round, a road maintenance

area (Fig. 2.6 (c)) and a tunnel (Fig. 2.6 (a)) are added to the scenario. Throughout the years of

history of the competition very few teams have successfully completed all three rounds.

(a)

(b) (c)

(d) (e)

Figure 2.6: Schematics of the ADC: (a) the full scenario; (b) traffic lights; (c) road maintenance and

obstacle; (d) cross walk and parking zone; (e) traffic signs.
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(a)

(b) (c)

(d) (e)

Figure 2.7: Pictures of the ADC: (a) the scenario at PRO 2006; (b) traffic lights; (c) tunnel; (d)

obstacles and traffic signs; (e) road maintenance area.
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2.4 The Near Future of Autonomous Driving

Previous sections have shown that there is a vast number of research institutions working on AD and

ADAS systems. Associated with them, and also doing independent research, almost all car manufac-

turer has also been addressing the problem for several years now. Furthermore, several automotive

component manufacturers like Bosch or Omrom have also been funding their own research. The

question is why, after several decades, thousands of dedicated researchers and significant funding,

are autonomous vehicles not a reality in nowadays roads. Yes, there have been significant advances

in the field. From the milestones that have been achieved, it seems plausible to assume that a fully

autonomous vehicle should be in grasp of our scientific and technological capabilities within the next

decade, if not at present time. However, up to this moment, the fact is that this is still not a reality. The

most recent vehicles are equipped with several ADAS systems, but there is no commercially available

vehicle with full AD capabilities.

Although AD and ADAS are sometimes presented as separate fields of research, in fact they are

tightly coupled. Typically, in ADAS, a human driver interference or cooperation with the systems

is considered. In the other case, AD systems do not count on the driver to assist or overrun deci-

sions made by the autonomous systems or subsystems. However, in both cases the core objective

is to develop algorithms that make a computer system understand a road traffic scenario. It is only

in the applications scope that these two fields of research vary: while ADAS uses these algorithms

to assist or help a human driver in his task, in AD these are a sub group of a larger computer pro-

gram that makes use of the information they produce for driving a car without human intervention.

ADAS systems are designed to operate in different ways, according to the state of the vehicle and the

surroundings. Three layers of operation or system status may be defined, each signaled with a color:

• Green status: assigned when the system does not detect or predicts any dangerous situation;

• Yellow Status: occurs whenever the system computes a dangerous situation that requires a

mandatory action from the driver within the next few seconds. In this case, an alarm should be

conveyed to the driver;

• Red Status: in this case, the dangerous situation is sure to occur. The system is aware that,

given the dynamic capabilities of the vehicle, a crash is eminent. In such cases the systems may

take control of the vehicle to try to mitigate as much as possible the consequences of a crash.

As an example, suppose that a vehicle is travelling on a highway. The road is a straight lane,

and the vehicle is equipped with a range measuring sensor that provides a real time estimate of the

position and velocity of the obstacles in front of it. The driver is driving at a constant speed. The

road ahead is blocked by another vehicle which is stopped due to a malfunction. At a large distance,

the driver may continue at present speed. Hence, the system is in green status. At a certain point,
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the system realizes that the driver should have began to decrease speed, in order to approach the

stopped car at a low speed. At this point, the system shifts to the yellow status, and a warning can be

granted to the driver, asking him to decrease speed. If, regardless of the warning, the driver does not

decrease the vehicle’s speed, the situation will come to a point where the crash between both vehicles

is unavoidable because the maximum braking deceleration is not sufficient to stop the vehicle before

the crash. In this case, the system enters a red status, and takes control of the brake, decelerating the

vehicle as much as it can, in order to mitigate the consequences of the accident.

Obviously, unlike in AD, in the field of ADAS, there is the additional problem of defining the

thresholds for these system status. Also, there is the problem of defining which are the adequate

actions for a given situation. Suppose the example described above: during the yellow status, should

the vehicle warn the driver of an eminent danger situation. And, if so, how should the warning be

conveyed to the driver. There are several possibilities, from a sound warning to a flash light in the

instrument pannel, etc. Such a system must be very carefully devised, because there is the chance

that the driver gets further distracted by the warning itself and, because of it, is unable to execute the

necessary actions to avoid the red status, and therefore, the crash. It is in this area of research, the

human vehicle interface, that ADAS most distinguishes itself from AD. However, the point that we

wanted to make is that the core technologies are the same for both fields. Imagine that an ADAS

system, that constantly monitors the driver’s actions, is so efficient that it always can devise the

appropriate driving actions for all situations. In such a case, the replacement of the human driver by

a fully autonomous system would be a very easy task.

Another question that often is raised in the AD and ADAS communities is that any AD or ADAS

system must be fault free, before it can be applied to commercial vehicles. Ultimately, no system

is completely fault free. Yet the general opinion is that those that could be installed on autonomous

vehicles should have such properties. Obviously, commercial systems should have a very low failure

probability, and special efforts should be endeavored to avoid faults as much as possible. But in our

opinion, the fault probability threshold necessary to consider their application to commercial vehicles

is not of zero failure probability, but rather a smaller failure probability than that of the average of

human drivers. Of course that a death caused by a failure of an autonomous system would have a very

large impact on the media and in the general public opinion and this is a concern to the researchers

in the field. However, from a statistical standpoint, if autonomous systems would cause a smaller

amount of accidents, they would in fact be saving lives.

Given all these considerations, the question is why have not the automotive manufacturers yet

introduced autonomous driving systems in commercial vehicles. There are several factors that have

delayed or even stalled the process. Some of them are listed in the following lines.

Miguel Armando Riem de Oliveira Ph.D. Thesis



2.State of the Art 27

Sensors

Grasping a complete or at least sufficient amount of data from the road scenario and from the agents

involved requires a very large set of sensors. Recent AD robotic prototypes display a vast array

of radars, LRF, sonars, monocular visible and infrared cameras, stereo cameras, 3D lasers, time

of flight cameras, GPS, inertial measurement units and other sensors. In general, all these sensors

have undergone significant advances in recent years, making them more effective, precise and robust.

This has certainly been a factor that delayed the development of AD capabilities. One symptomatic

example is the Velodyne LIDAR [Velodyne 2012]. The Velodyne is a 3D LRF that produces 1.3

million range measurements per second, all around the vehicle. Apart from the notable exceptions

from the DARPA challenges of 2004 and 2005 (although these competitions did not involve coping

with urban traffic) and the VisLab group, the fact is that Velodyne seems to be a standard in current

autonomous vehicles. It should be noticed that this sensor was developed relatively recently, in 2007.

Hardware

As discussed, AD applications require that the vehicles are equipped with vast amounts of sensors.

As a consequence, the amount of data received is also very large. Also, because the road scenarios

are highly dynamic environments the AD systems have real time demands. The conjunction of both

these factors led to the necessity of having very powerful computers onboard the vehicles, and to the

fact that, for many years, the available hardware capabilities were insufficient to comply with these

demands.

Recognition Systems

In order to understand the traffic, autonomous systems employ several algorithms for recognizing

the agents that move about the road scene. In the field of pattern recognition, many algorithms

have been proposed throughout the years to perform visual detection of pedestrians, lane markings,

other vehicles, traffic signals, etc. There have been significant advances, and the systems now have

very high hit rates (number of detected entities over the total number of entities), sometimes of over

99%. The problem has been related with the number of false positives, that is, the number of falsely

detected entities over the total number of detection attempts. By today’s standards, values under 1%

are considered very interesting. However, within the context of AD, these performances could be still

not sufficient. Suppose a pedestrian detection system that has a 0.1% false alarm rate. Whenever a

pedestrian is detected, the system warns the driver of the danger associated with a nearby pedestrian.

With a false alarm rate of 0.1%, the system is expected to falsely detect a pedestrian every 1000

detection attempts. If we consider that the system is processing images streaming from a camera at

30Hz, this means that a false detection would occur every 35 seconds. No driver would buy a system

that would wrongly warn him every 30 seconds. In conclusion, the current state of the art on visual
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recognition of the road entities, in particular the level of false alarms, is still orders of magnitude

away from what would be necessary for their application to autonomous systems. These problems

have been partially solved by the inclusion of additional sensors like LRF, or the conditional display

of the warning by monitoring the drivers gaze, for example, the system issues warnings only when a

pedestrian is detected and the driver’s gaze is not aimed in that direction.

Legal Issues

One thing that has certainly hampered the release of commercial vehicles with AD capabilities is

the fact that it is forbidden by law in the entire European Union and most of the United States. In

June 2011, the United States state of Nevada passed a law permitting the operation of driverless cars

in Nevada. Google has been lobbying for driverless car laws. The Nevada law went into effect on

March 1, 2012, and the Nevada Department of Motor Vehicles issued the first license for a self driven

car in May 2012. The license was issued to a Toyota Prius modified with Google’s experimental

driverless technology. In August 2012, the team announced that they have completed over 480000

km autonomous driving with an accident free record. As of September 2012, three states have passed

laws permitting driverless cars: Nevada, Florida and California. In Europe, with the lobbying from

the powerful automotive industries, it is very possible that several countries will follow.

Another problem that is difficult to handle is that of legal responsibility, in particular for dealing

with insurance contracts. In the case of an accident caused by an AD system, who is juridically

accountable: the human passenger (that was not driving), the vehicle owner, the system manufacturer,

the car manufacturer. It is a delicate issue that still remains to be solved.

2.5 Conclusions

This chapter presented several AD concepts that were proposed throughout the last three decades.

Although at first sight it seems that there are several AD projects that are in conditions of developing

an autonomous vehicle for a commercial application, the fact is that most experiences described be-

fore have been achieved under special conditions and unrealistic constraints. Many involve trafficless

or controlled traffic setups, and others have a human monitoring the system and intervening when

necessary. A commercial solution for an everyday autonomous driving vehicle is very near, but there

are still some issues mostly related with the robustness of the systems that need to be addressed.
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Chapter 3

Robot Prototypes

This chapter presents three robotic prototypes developed at the Laboratory of Automation and

Robotics of the University of Aveiro. Section 3.2 describes the Atlas2000 prototype; section 3.3

describes the AtlasMV, and finally, section 3.4 describes the AtlasCar. Additionally, some of the

algorithms that were developed specifically for the competitions are presented in section 3.5. Sec-

tion 3.6 presents the results the robots have obtained in the competitions and section 3.7 draws some

conclusions.

3.1 Introduction

During the course of the work, several perception based algorithms were developed. They were imple-

mented on the robots for assessing their performance in realistic scenarios. In this way, the prototypes

proved to be very valuable test beds for assessing the efficiency of the proposed algorithms. Over the

past years, these prototypes have also participated in several robotic competitions integrated in the

Portuguese Robotics Open (PRO) [PRO 2012]. For each prototype, a description of the mechanical

and electronic components is given. Additionally, some of the algorithms that were developed for the

robots are briefly discussed.

3.2 Atlas2000

The Atlas2000 robot was designed and built in 2005 [Oliveira et al. 2005]. At that time, it was the

first robot presented at the Autonomous Driving Competition (ADC) to have a structure similar to

that of a car, with two rear wheels providing traction and two front wheels for steering. The platform

was adapted from a one to four scale model. One of the advantages of the robot were the stability

provided by the car like structure, as well as a new redesigned Linux based software. On the side of

disadvantages, the Atlas2000 has mostly its size. It is often the largest vehicle in the ADC, which

29
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(a) (b) (c) (d)

(e) (f ) (g)

Figure 3.1: The Atlas2000 autonomous robot. The robot participated in the PRO of 2005 (a), 2006

(b), 2007 (c), 2008 (d), 2009 (e), 2010 (f ), 2011 (g).

makes it harder to execute obstacle avoidance maneuvers or road maintenance area navigation. Nev-

ertheless, throughout its long seven years record of participations in the ADC, the Atlas2000 achieved

notable positions: it was first in 2006, 2007, 2008 and 2011. Also, this robot never finished worse

than second place. Figure 3.1 shows the various versions of the Atlas2000 throughout the years it

participated in the competitions. The next sections will briefly discuss the mechanical, electronic,

and sensorial components of the Atlas2000.
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(a) (b)

(c)

Figure 3.2: An overview of Atlas2000: (a) The basic structural platform; (b) traction system; (c)

steering system.

3.2.1 Mechanical Components

As said before, the Atlas2000’s basic structure was adapted from a one to four scale model. It is shown

in Fig. 3.2 (c). A 300W DC motor is used for traction coupled to a mechanical differential (Fig. 3.2

(a)). The Ackerman like steering is powered by a DC servo motor (Fig. 3.2 (b)). A braking system is

installed near the mechanical differential in order to ensure sufficient braking capabilities (Fig. 3.3).

The system is composed of a brake disk and a brake piston, which is actuated by a solenoid. Hence,

unlike in the AtlasMV in which the brake command has several command positions, the system of

the Atlas2000 can only brake or not brake. The mechanical structure suffered only minor changes

throughout the years, since it proved to be quite robust and effective.
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Figure 3.3: The braking mechanism of the Atlas2000.

3.2.2 Electronic Components

For the interface with the traction and steering motors, a custom designed micro controller board is

used. It connects to the computer using RS232 communication. The digital input and outputs are in-

terfaced using an additional micro controller board with a second RS232 connection to the computer.

The digital outputs are responsible for the brake and lights activation. Digital inputs, in other hand,

receive readings from digital auxiliary sensors. Figure 3.4 shows the electronics components of the

robot.

3.2.3 Sensors

The initial version of the Atlas2000 robot used two cameras. One was directed towards the front of

the robot so that it could capture a view of the road. The second camera was pointed at the traffic

lights. This early version of the robot’s sensors is shown in Fig. 3.5 (a).

In 2006, the ADC was changed to a scenario where the road contained two lanes instead of the

previous single lane. Since the road became much wider, a single camera was not sufficient (even

when equipped with wide angle lenses) to grab an image of the entire track. Because of this, a second

camera was added to the road viewing system. The two road facing cameras provided a complete

view of the entire road. Figure 3.5 (b) shows the structure containing the two road facing cameras.

In 2011, driven by the successful Laser Range Finder (LRF) approach of the AtlasMV, the Atlas2000

was equipped with a LRF. This equipment is also shown in Fig. 3.5 (b).
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Figure 3.4: The electronic components of the Atlas2000.

(a) (b)

Figure 3.5: The sensors onboard the Atlas2000: (a) 2005; (b) 2011.

Miguel Armando Riem de Oliveira Ph.D. Thesis



34 3.Robot Prototypes

3.3 AtlasMV

The AtlasMV is a small scale robotic prototype designed to compete in the PRO. Its project and

design had the objective of building a smaller are more maneuverable robot than the Atlas2000, since

the latest had significant disadvantages in the ADC due to its size. The AtlasMV showed significant

improvements both in the mechanical as well as in the electronic components with respect to its

predecessor. Its smaller design and improved steering mechanism led to a larger maximum turn

radius, and the modular electronics design proved more robust than previous solutions.

The design and development of the AtlasMV began in 2007, and the robot had its first appearance

in the PRO of 2008, where it achieved the third overall place in the competition. Since then, the

AtlasMV proved to be one of the most advanced robots in the competition, winning several editions

of the ADC and bringing many technological innovations to the competition. Some examples are

the multi camera based inverse perspective mapping framework which significantly improved the

robustness of the perception algorithms, new lane marker detection algorithms running on the top

view images, a laser range finder to detect obstacles and, perhaps most importantly, a new software

architecture based on Carnegie Mellon Robot Navigation Toolkit (CARMEN). The robot participated

in the ADC editions 2008, 2009, 2010 and 2011. Section 3.6 will provide a detailed description of

the results obtained by the robot. Throughout the years, the robot underwent several transformations.

In Fig. 3.6 it is possible to see pictures of the robot in each of the versions presented for competition.

Sections 3.3.1 and 3.3.2 will describe the several mechanical and electronic components of the

AtlasMV. In section 3.3.3 the sensors that are installed onboard the robot are presented.

(a) (b) (c) (d)

Figure 3.6: The AtlasMV autonomous robot. The robot participated in the PRO of 2008 (a), 2009 (b),

2010 (c) and 2011 (d).
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Figure 3.7: An overview of the custom made parts of the AtlasMV robot.

3.3.1 Mechanical Components

The AtlasMV project started in 2007. During that year, development of both the mechanical and

electronic components of the robot was initiated. Unlike the Atlas2000, the AtlasMV was entirely

developed from scratch. Several dozens of mechanical parts were machined purposely for the robot.

Figure 3.7 shows some of them. The robot is designed as a two layer structure, as shown in Fig. 3.8.

The bottom layer accommodates the steering system, the traction system, the batteries and several

electronic controllers. The upper layer accommodates the electronic boards, the cameras support

structure, the LRF, and the laptop.

The steering system is an Ackerman inspired system with two wheels in front, and is powered by

a servo motor. It is shown in Fig. 3.9 (a). The traction system (Fig. 3.9 (b)) is powered by a 300W

DC motor, coupled to a planetary differential system. The vehicle is capable of reaching speeds of

around three meters per second. It weights around 30Kg, which is quite heavy when compared to

other robots from the competition. Because of this it does not have the same acceleration capabilities

as other robots. Figure 3.9 (c) shows both systems mounted on the platform.
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(a) (b)

Figure 3.8: An overview of AtlasMV: (a) bottom layer. (b) upper layer.

Due of the large weight, one of the main problems was that the braking capabilities of the robot

were not adequate. For this reason a braking system was designed and added to the robot. The

(a) (b)

(c)

Figure 3.9: The mechanical components of the AtlasMV: (a) steering mechanism; (b) traction mech-

anism: (c) both systems mounted on the platform.
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(a) (b)

(c)

(d)

Figure 3.10: The compressed air braking system of the AtlasMV: (a) pistons and supporting frame;

(b) structure already mounted; (c) the compressed air reservoir; (d) the compressed air circuit (blue

tubes).

Miguel Armando Riem de Oliveira Ph.D. Thesis



38 3.Robot Prototypes

system was initially composed of two brake disks mounted in the front wheels (Fig. 3.10 (b)). The

disk pads (Fig. 3.10 (a)) were actuated by a pressurized air system. The system was controlled

by an electro valve that pressurized the circuit and the braking pads, allowing the robot to quickly

decrease speed. One of the problems with this system was that air pressure was lost in the pads

which meant the vehicle required a compressed air reservoir in order to operate over time. This is

shown in Fig. 3.10 (c). Figure 3.10 (d) shows the pneumatic system onboard the robot. Later, in

2009, the pneumatic system was replaced by a hydraulic one. Also, two additional brake disks were

mounted on the rear wheels. These changes solved the autonomy problem. In the previous version,

the compressed air reservoir had to be refueled every half an hour. With the hydraulic system, there

is only a need for a yearly maintenance procedure. Also, because the oil is much less compressible

than air, the hydraulic system proved more efficient. Currently, the AtlasMV is capable of braking

very fast, which contributes to the good overall performance of the system.

Throughout the years, the mechanical structure proved very reliable. Apart from the braking

system, the structure suffered very few changes. The reliability of the mechanical structure of the

AtlasMV was a key factor to the good performances accomplished by the robot.

3.3.2 Electronic Components

The electronic components onboard the AtlasMV include of the shelf components as well as custom

designed boards. The off the shelf electronic components are located in the bottom layer of the

robot and include the Pan and Tilt Unit (PTU) controller and the traction motor controller. The

custom boards are located in the upper layer. The motherboard was especially designed to provide

a modular philosophy to the system (Fig. 3.11 (a)). It provides common electric signals to other

boards, including power and electric signals. Other boards are plugged in as shown in Fig. 3.11 (b).

The boards serve mainly as an interface between the computer and the motors or sensors. Motor

control is achieved by RS232 serial communication between the computer and a microcontroller,

which then controls the motors according to the higher level commands. Other boards are designed

to stabilize power lines, control relays, acquire analogic and digital signals. Due to constant problems

with custom designed electronics equipment, in more recent versions of the robot, the trend has been

to remove as much as possible complex tasks from the microcontrollers. In 2011, the latest version

of the AtlasMV performed direct RS232 communication between the laptop and both the traction

and sterring motors. Custom electronics is now mainly used for the aquisition of electric signals,

and control of custom equipments. One example is the light signals control board, in which the

computer communicates to the microcontroller what should be the state of the lights of the robot,

e.g., turn, brake and head lights. The microcontroller then acts on relays that turn on or off the lights.

Compared to previous years, the 2011 version was far more robust to communication and control

problems of the motors. In total, there are six custom boards onboard the AtlasMV. Motor control,

lights signal control and activation boards, power board, relay board, and distance sensors board.
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(a)

(b)

(c) (d)

(e) (f )

Figure 3.11: The electronic boards of the AtlasMV: (a) main board; (b) main board with other boards

mounted; (c) distance sensors board; (d); power distribution board; (e) motor control board; (f ) lights

control board.
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(a) (b)

(c) (d)

Figure 3.12: The sensors onboard the AtlasMV: (a) motor controlled camera support; (b) laser range

finder; (c) early version, 2008; (d) recent version, 2011.

3.3.3 Sensors

For perceiving the environment around it, the AtlasMV uses both vision and a LRF. In the 2008

version, the robot was equipped with four Firewire cameras, mounted on top of an active perception

PTU. This structure is shown in Fig 3.12 (a), and mounted on the robot in Fig. 3.12 (c). The

two cameras mounted on the center of the structure, vertically aligned, compose the traffic lights

recognition system. The cameras have different focal length distances, which enables one of the
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cameras to have a peripheral view of the scene and another to collect a high resolution foveal view

of the scene. The peripheral camera is used to locate the traffic lights panel and then, using this

information, the foveated camera is pointed towards the traffic lights for recognition. Regarding

the recognition and control algorithms, more details are provided in section 3.5. The two cameras

positioned on the side of the structure are used to obtain a complete view of the road. Given the

dimensions of the vehicle and the road, it is not possible to use a single camera to view the entire

lateral extension of the road. Therefore, the two side cameras are used to provide partial views of

the road. These views are then fused into a single image, using a multi camera Inverse Perspective

Mapping (IPM) algorithm. More details on this are provided both in section 3.5 and chapter 5.

In 2009 the AtlasMV was equipped with a LRF. The sensor is mounted on the front of the robot

(Fig. 3.12 (b)), and provides range measurements on a plane parallel to the road, approximately 25

centimeters higher. The LRF equipment gave the AtlasMV obstacle avoidance capabilities which had

not been seen until then. The robot was capable of not only avoiding obstacles but also of tracking

and pursuing moving obstacles. The sensor provided a much more robust sensing of the obstacle,

the tunnel and the road maintenance area pins. Previous vision based color segmentation approaches

were replaced by the LRF based approach.

In 2010, the side cameras used for viewing the road were mounted on a fixed structure. The traffic

lights recognition system was composed of a single camera mounted on a PTU.

3.4 AtlasCar

The AtlasCar (http://atlas.web.ua.pt/) [Santos et al. 2010] is an autonomous vehicle prototype deve-

loped by the group for Robotics and Automation from the Department of Mechanical Engineering at

the University of Aveiro. It is a common vehicle equipped with several sensors and actuators. Sensors

are used to perceive the environment in and around the vehicle, and actuators to control the vehicle in

accordance with commands provided by the computer.

The challenge in developing such a system comprises many scientific issues in data acquisition,

processing, fusion and interpretation, as well as efficient storage and data flow, but also many other

engineering concerns have risen such as selecting an adequate software architecutre for the system.

The purpose of such an equipped vehicle is to collect multi sensor data from road scenarios, which

is then used to create models for enhanced perception and data fusion. The main points driving this

project are:

• Sensorial redundancy using different physical principles;

• Capability of massive data logging, including multiple sensor time and spatial registration;

• Scalability of hardware and software solutions;

Miguel Armando Riem de Oliveira Ph.D. Thesis



42 3.Robot Prototypes

Figure 3.13: The AtlasCar autonomous vehicle.

• Power autonomy and safety both by surging mechanical power from the car engine and proper

interface for using wall socket power when parked;

• Maintain the cars legal conformity and compatible with human driving.

Before reaching real world autonomous driving, intelligent vehicles must first have robust per-

ception capabilities. This accounts both for information from the external environment and agents,

and also the vehicle own status. Besides these sources of data, intelligent vehicles will also monitor

the driver actions and, to the extent possible, his state of awareness. All this concurs to create un-

precedented safety and assistance during road driving. Due to the complexity of the dynamics of the

environment, sensorial redundancy must be used. The first step is then to equip a vehicle with a large

amount of sensors and collect data from road like environments. The AtlasCar is capable of logging

massive amounts of multi sensor data, to be processed offline. This opens many fronts of research

in data interpretation, fusion and integration. When the algorithms are developed, the AtlasCar will

serve as a first test platform. Ultimately, the AtlasCar is expected to demonstrate autonomous driving

capabilities.

The project started in 2009, with the installation of a power generation and management module

and an array of sensors. The chosen platform was a standard gasoline-powered Ford Escort Wagon

with 75 horse power, a 460 liter trunk, manual gear and autonomy of more than 500 km. The first
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(a) (b) (c)

Figure 3.14: (a) the engine compartment before the installation of the secondary alternator; (b) the

engine compartment with the new alternator installed, visible in the bottom left part of the image; (c)

a CAD drawing of the alternators in their new configuration. Source [Santos et al. 2010].

public appearance of the AtlasCar was at the PRO 2010 in Leiria, Portugal, on April of 2010. From

there onward, the vehicle has made several demonstrations at a varied set of events. It is the first full

scale autonomous vehicle developed in Portugal. Figure 3.13 shows the AtlasCar.

The objectives of the AtlasCar project consist in the research and development of Advanced

Drivers Assistance Systems (ADAS) and of Autonomous Driving (AD) technologies. In this sense,

the AtlasCar is a mobile laboratory for multi sensor data acquisition of real road scenarios. These

data sets are publicly available to the scientific community. Since this prototype was used in many

experiments, either for acquiring data or to test algorithms, it makes sense to provide a detailed

description of the platform.

3.4.1 Mechanical and Electronic Components

To ensure power supply, a second alternator driven by the vehicle propulsion engine was installed on

the engine compartment. This was achieved by redesigning the mechanical electric power generation

inside the engine compartment, as shown in Fig 3.14. This redesign consisted of relocating the

original alternator to a higher position in order to get room for the new generator, which supplies

1.2 to 2.5 kW, depending on engine rpms [Santos et al. 2010].

The DC output from the alternator is directed to a battery which serves as a buffer, and is then

converted to a higher-voltage line (220V, AC) through an inverter. Finally, the power chain ends at an

UPS to ensure a properly stabilized power throughput. This stabilized power output is driven to the

electric panel. The electric panel is composed of three modules, two power regulators at 12V DC and

24V DC which feed different types of devices and sensors and a PLC. Currently, the task of the PLC

is mainly to allow a software-based reset and power switching capabilities of sensors and other hard-

ware. Computers and monitors are supplied directly from the UPS. In sum, onboard the vehicle there

are 220V AC, 12V DC and 24V DC. These options are sufficient for all the sensors, computers and

actuators installed. Figure 3.15 shows the power stabilization modules installed in the trunk. Figure
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3.16 shows a diagram of the power distribution and switching onboard the vehicle along with the main

component connections. To allow versatility, the system is also prepared to operate directly from a

regular wall power socket for in-house developments [Rocha 2011]. In [Montemerlo et al. 2008]

and [Miller et al. 2009], similar configurations were devised to provide power generation.

3.4.2 Sensors

As discussed before, one of the objectives of the AtlasCar project is to provide a mobile platform for

obtaining vasts amount of multi sensorial data. Hence, the number of sensors onboard the vehicle

should be as large as possible. Figure 3.17 shows a scheme of the sensors onboard the AtlasCar. It

is equipped with five cameras, four lasers, a GPS and an inertial measurement unit. The following

sections will describe in detail the sensors mounted onboard the AtlasCar.

Lasers

There are two Sick LMS151 Lasers mounted on each side of the front bumper, such that the scan

plane is parallel to the ground plane. They are shown in Fig. 3.17 (C). These sensors measure in

a 270 degrees plane at 50 Hz, and have a maximum range of 50 meters. The Hokuyo UTM30LX

laser is mounted on the roof of the car pointing towards the road. It is marked in Fig. 3.17 (H).

The laser takes measurements has a 30 meters range on a 270 degrees span, at a maximum output

frequency of 40 Hz. Finally, a Sick LMS200 (Fig. 3.17, (D)) is mounted on top of a rotating platform

in the roof of the car. The laser is capable of taking range measures on a 180 degree plane, up to

20 meters and 20 Hz. When the laser rotates, so does the scan plane. This enables the vehicle to

obtain 3D measurements all around its frontal hemisphere. Although the number of lasers onboard

the AtlasCar is scarce when compared for example with the Darpa Challenge competitors, they do

(a) (b)

Figure 3.15: (a) The power stabilization equipment onboard the AtlasCar: from left to right, the

inverter, the UPS, the buffer battery; (b) The final installation of the AtlasCar trunk. Inside the white

boxes are the AC-DC power converters and the PLC.
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Figure 3.16: A schematic of the power supply lines of the AtlasCar. Source [Santos et al. 2010].

Figure 3.17: The AtlasCar full scale robotic platform. It is equipped with an active perception unit

(A), a stereo rig (B), four LRF (C, D, H), a thermal vision camera (F), GPS (G) and an inertial

measurement unit (E).

provide a reasonable cover of range measurements around the car. Figures 3.18 and 3.19 show the

coverage of each of the lasers.

Cameras

There are three cameras mounted on the AtlasCar. They are all facing the front of the vehicle. Figure

3.17 (B) shows a Point Grey Research Bumblebee XB3 Stereo Camera (XB3). The three cameras
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Figure 3.18: Coverage of the lasers mounted onboard the AtlasCar. The scan plane of each laser is

depicted in different colors: (blue) right bumper; (green) left bumper; (magenta) center top roof; (red)

rotating laser mounted on the roof.

Figure 3.19: Coverage of the 3D laser scanner mounted on the roof. Several possible positions are

displayed.
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Figure 3.20: Images from the XB3 camera. These three images are used for two stereo pairs.

Figure 3.21: Images from the peripheral and foveated cameras

on the stereo rig provide two stereo pairs. Images have resolution of 1280×960 at a frequency of 15

Hz. Using these two stereo pairs, additional range measurements are made available to subsequent

perception algorithms. The stereo rig uses 3.2 millimeters lenses which provides a complete view of

the road. Figure 3.20 shows images from the cameras on the stereo rig.

Two Point Grey Research Flea2 cameras are mounted on top of a Directed Perception PTUD46

PTU. These form what is called the active perception unit (Figure 3.17 (B)). The two cameras provide

images of 1280X980 resolution at 30 Hz and have different lenses, 4 and 12 millimeters focal distance.

Hence, while one camera displays wide view images of the whole scene, the second camera outputs

high detail images of small areas. The PTU is able to, given an order by the computer, point the

cameras towards any object of interest in front of the car. Figure 3.21 shows images from both these

cameras.

Proprioceptive Sensors

These sensors include all the equipments taking measurements of the internal status of the vehicle. A

Magellan GPS is employed to obtain a global position Figure 3.17 (G), while an Xsens MTI inertial

measurement unit provides estimates for the vehicle’s egomotion. A second PLC is installed in the

AtlasCar. It is used to communicate with several hardware modules installed all around the vehicle.

They measure, amongst others, the position of the wheels and the angle of the steer, for odometry
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estimation, the engines RPMs, the positions of the pedals and the status of the lights.

3.5 Algorithms

This section presents some of the algorithms developed for the Atlas2000 and AtlasMV robots, par-

ticularly for the ADC competition. Four topics are addressed: fusion of vision and LRF sensors,

section 3.5.1, road detection, section 3.5.2, navigation of the road maintenance area, section 3.5.3 and

path planning, section 3.5.4.

3.5.1 Sensor Fusion

In the context of the ADC, the problem of fusing information from multiple sensors became an issue

when it was necessary to use two cameras to view the road. Later, with the addition of a LRF, it was

also necessary to obtain a representation where both visual and laser information could be processed.

The first approach to the problem, in 2006, was quite simplistic: to perform a manual calibration

[Oliveira & Santos 2007]. An application was developed that permitted the user to change several

parameters from both cameras in real time and see the resulting mosaic obtained from merging the

images from both cameras. The parameters consisted of a description of each camera’s pin hole model

parameters, along with the barrel distortion model coefficients. An additional parameter defined the

horizontal distance (in pixels) of the overlap of both images. Figure 3.22 (a) shows the calibration

application. After calibration, the set of values for those parameters was saved and used during the

competition. During runtime execution, the algorithm produces a mosaic of both cameras in real

time. An example is shown in Fig. 3.22 (b). Once computed, the mosaic is used for detecting the

road, the cross walk, obstacles, etc. All other recognition algorithms are computed using the mosaic

as input. As shown in Fig. 3.22 (b), the images from the two cameras do not entirely overlap. Also,

there is no absolute metric information. Obviously the size of objects in the image provides hints

of their real size. However, it is not possible to have exact size or distance measurements using this

mosaic. Although this image fusion approach is a very simplistic approach, the fact is that that the

road recognition algorithm was capable of using this information as input to accurately detect the

road. The Atlas2000 used this approach from 2006 until 2010.

In 2008, a new algorithm for the fusion of the navigation cameras on the AtlasMV was in-

troduced [Oliveira & Santos 2008b]. The algorithm uses the IPM technique to map images from

two cameras onto a single, bird’s eye view of the road. The technique consists of transforming

the images taken into a new reference frame where the perspective effect is corrected. This refer-

ence frame is usually defined on the road plane, so that the resulting images become a top view

of the road. One of the advantages of IPM is that the subsequent perception algorithms can be

computed in a 2D synthesized world, which significantly eases the tuning of convolution filters

size [McCall & Trivedi 2005], the stability of neural network’s inputs [Pomerleau 1995], or the de-
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tection of features of interest [Bertozzi et al. 1997]. The technique requires some a priori knowl-

edge, namely, the geometric transformation relating the cameras’ and road reference frames. This

is equivalent to state that the camera’s position, orientation and intrinsic parameters must be known

before hand. Commonly, the IPM technique also assumes that the road ahead is flat, that is, all

pixels from the input image are views of points in the real world from the XoY plane of the road’s

reference frame. This assumption is a core issue of IPM. If undertaken by mistake, due to the pres-

(a)

(b)

Figure 3.22: Non metric fusion of images: (a) manual calibration application for configuring the non

metric fusion; (b) a mosaic obtained by fusion of two images. Source [Oliveira & Santos 2007]
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(a) (b) (c)

Figure 3.23: Metric fusion of images using IPM: (a) image from the left camera; (b) image from the

right camera; (c) bird’s eye view of the road.

ence of other vehicles, pedestrians, obstacles, or steep slopes in the road, the IPM produces wrong

representations in the undistorted image. This problem is addressed by several researchers on this

field [Bertozzi & Broggi 1998] [Broggi et al. 2006] [Labayrade et al. 2005]. Figure 3.23 shows an

example of an IPM operation using the two navigation cameras onboard the AtlasMV. The advantage

of the composite image obtained is that it is possible to accurately relate a distance in pixels to a

metric distance in the real world. This technique was a large step forward with respect to the previous

non metric image fusion, since it became possible to assess metric distances and use these to execute

more complex motion planning algorithms. Also, with this technique the images from both cameras

are accurately registered. The phantom artifacts that appeared due to a wrong registration in the pre-

vious technique (see Fig. 3.22 (b)) are solved with this approach. Another advantage is that, since

IPM corrects distortion in the images associated with perspective, the road painted patterns appear

now unchanged in the bird’s eye image. The perspective corrected images show the road markings

with the same shape, regardless of the point from which they are observed. This opened new possibil-

ities for the detection of road markings (lane delimiters, cross and park zone markers) using template

matching techniques. Some of them will be presented in the next sections.

During the first two years of its participation in the ADC competition, the cameras onboard the

AtlasMV were mounted on a PTU unit. This system was described in section 3.3.3. It is shown in Fig.

3.12 (a) and (c). The PTU changes position according to commands provided by an RS232 communi-

cations link. This means that the camera’s orientation with respect to the road could be changed in real

time. However, IPM technique requires as input the position of each camera with respect to the road.

Moving the PTU meant moving the cameras, which in turn changed the inputs of the IPM processing.

To solve this issue, a Denavit Hartenberg [Hartenberg & Denavit 1955] [Hartenberg & Denavit 1964]

kinematic chain was defined that enabled the computation of each camera’s position and orientation,

given the PTU’s position. Figure 3.24 (c) shows a diagram of the kinematics chain. The advantage of

this technique was that it was possible to change the orientation of the cameras (by moving the PTU)

and still produce a bird’s eye view of the road. Figure 3.25 shows three examples of IPM images

obtained from different positions set in the PTU.
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(a) (b) (c)

Figure 3.24: The Denavit Hartenberg kinematics chain for one of the cameras of the AtlasMV: (a)

the cameras support structure; (b) a detail of the camera’s mounting; (c) a diagram of the kinematics

chain.

(a) (b)

(c)

Figure 3.25: Images produced by IPM using different positions of the PTU: (a) pan angle 0 degrees,

tilt angle -30 degrees; (b) pan angle 0 degrees, tilt angle -45 degrees; (c) pan angle 30 degrees, tilt

angle -30 degrees.

Another advantage of the IPM technique is that, since the image has a metric nature, it is possible

to overlay range measurements onto it. These measurements are provided by the range measuring

sensor, which is registered with the cameras. This was done in 2009, where the measurements of the

LRF onboard the AtlasMV were fused with the bird’s eye view representation of the road. Figure

3.26 shows the output of this algorithm. It is possible to see that the legs standing in front of the robot
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(a) (b)

(c)

Figure 3.26: Overlaying laser range measurements onto the IPM image: (a) image from left camera;

(b) image from right camera; (c) bird’s eye view with laser range measurements (red dots).

are not only viewed by the cameras but also signaled (as red dots in Fig. 3.26 (c)) by the LRF. This

algorithm will be detailed in chapter 5. It was also presented in [Oliveira & Santos 2008a].

3.5.2 Road Detection

This section describes some of the approaches that were attempted to perform the task of detecting the

road. Two algorithms will be described. First, a flood fill based algorithm that searches for the area

inside the road. Second, a line detection algorithm that was used by the AtlasMV in 2008 and 2009.

Unlike in the previous approach, in this case the approach is to detect the lane markers that delimit the

road, instead of the region contained by them. Only a brief description of the algorithms is provided

in this section. Further details are given in [Oliveira et al. 2005] and [Oliveira & Santos 2007].

The first algorithm uses a set of sequential flood fill operations to filter the area that is contained

inside the road. It relies on the connectivity of the lane markers that define the boundaries of the road.

First, the image from the road (Fig. 3.27 (a)) is binarized (Fig. 3.27 (b)). Then, a line is added to

the image to cap the upper part of the road, and a flood fill operation is initiated from inside the road

(Fig. 3.27 (c)). The region above the line is erased (Fig. 3.27 (d)) and a second flood fill operation is

executed, this time using the outside of the road as a seed (Fig. 3.27 (e)). Finally, the negative of this

image is used to mask the area contained inside the road (Fig. 3.27 (f )).
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(a) (b)

(c) (d)

(e) (f )

Figure 3.27: Flood fill based road detection: (a) original image; (b) binarized image; (c) flood fill

from inside the road; (d) erase upper region of the image; (e) flood fill from outside the road; (f ) final

mask of the region contained by the road.

The flood fill based algorithm was used in the Atlas2000 until 2010, and was a cornerstone of the

achievements of that robot. Figure 3.28 shows the output of the algorithm for several road configura-

tions.

The second algorithm here described approaches the problem of road detection from a different

angle [Oliveira & Santos 2008c]. Instead of detecting the region contained inside the road delimiting

lines, it tries to find the lines. The algorithm works on top of the IPM image described in section

3.5.1. The reason for that is that the removal of the perspective effect makes the lines to have a

constant width. There are many other examples of the usage of IPM for easing the road detection.

Some examples are [Bertozzi & Broggi 1998], [Kim & Pollefeys 2008]. The IPM image is processed

using a morphological top hat operation. The top hat enables the extraction of the lines in demanding

illumination conditions, such as shadows. The size of the structuring element used in the top hat

operation was defined considering that the IPM image represents accurate geometrical information: it

is defined with the radius slightly larger than the road lines’ width. Figure 3.29 (a) shows the result of
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(a)

(b) (c)

Figure 3.28: Road detection using a flood fill based algorithm: (a) intersection; (b) right turn; (c)

approaching the cross.

a top hat operation over an IPM image. The next step is to generate what is called brightness profile,

in order to search for possible lane marker candidates in the image. An horizontal line is scanned over

the top hat image. The scanned line is used to extract an intensity profile in the top hat image. This

signal is then clustered into several groups after the definition of a maximum gradient value. Figure

3.29 (b) shows the brightness profile and the clusters of the top hat image shown in Fig. 3.29 (a). The

clustered groups are then filtered to check whether their average brightness is higher than their left

and right neighbors. Groups that do not have this property are discarded.

Each group that was not discarded represents a possible intersection of a road line marker with the

scan line. The middle point of each group is then employed as a seed point to a flood fill operation,

reconstructing the candidate line from that point. This operation generates sets of line candidates,

that is, Boolean images of the same size as the IPM image, where the pixels that have been filled are

marker as true, and all others as false. The images of the candidate lines go through a search routine

that finds several relevant points on the given line candidate. The search routine consists of finding,

for a set of equally vertically spaced scans, the coordinate of the first white pixel that is found on a

right to left scan. The output of this procedure is a vector of points that are on the right border of the

line. Then the segment defined by each two consecutive border points is computed and the orientation
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(a) (b)

Figure 3.29: (a) the result of a top hat operation on the IPM image; (b) the brightness profile generated

after the top hat image.

Figure 3.30: A diagram of the search routine that in ran over each candidate group.

angles are calculated. The vectors normal to those directions (angles) define the line orientation trend

throughout the image. Finally, for each normal vector, a correspondent one-pixel wide line segment

is defined up to the adequate image limits and its intersection with the Boolean mask is computed,

providing an indication of the line width at each point. Figure 3.30 shows a diagram of the search

routine.

The final stage of the algorithm is to compute a large set of statistics from the description of each

line candidate, and to compare them with standard values, thus deciding whether or not the candidate

line is validated as a line. One example of a relevant statistic is the average standard deviation of the

width of the line. A lane marking does not change its width. Hence, there should be a typical value

for the average that should match the standard size for the line’s width, and the standard deviation

should be small, since the line’s width does not change significantly. Figure 3.31 (a) shows one of the
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(a) (b)

Figure 3.31: Testing a line candidate: (a) computing several statistical descriptors; (b) testing a

candidate (green accepted as lane marker, red discarded).

(a) (b)

Figure 3.32: Lane marker detection on the ADC: (a) a left turn; (b) a right turn.

candidate lines of the image, and the values of the statistical descriptors computed for that line (for

further details on these descriptors see [Oliveira & Santos 2008c]). Figure 3.31 (b) shows three lines:

the two signaled in green are considered lane markers, while the one in red is discarded.

This algorithm was used in the AtlasMV robot in 2008 and 2009. Figure 3.32 shows the results

of the line detection algorithm in the AtlasMV. The algorithm was also tested in images of real roads

with satisfactory results. Figure 3.33 shows some results of the algorithm in these cases.

3.5.3 Road Maintenance Area

One of the most challenging tasks of the ADC is to deal with the road maintenance area. This

area is defined by a set of road maintenance cones, coloured orange and white (see Fig. 2.6 (c)

and Fig.2.7 (e)). Because the cones have a white stripe in the middle, it is not possible to segment

them completely in the image by using a simple color segmentation. As a consequence, the road

maintenance navigation algorithm must be able to cope with partial cone detection. Two algorithms
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Figure 3.33: Examples of the lane marker detection in images from real roads.

have been developed to address this problem: one that uses the original perspective deformed image

(non metric sensor fusion) [Oliveira & Santos 2011], and another that takes advantage of the geometry

corrected top view image of the road (metric sensor fusion).

The main problem is that, after orange color segmentation, the base of the cones appear uncon-

nected from top of the cones. Because of this, a simple search from left to right, for segmented orange,

will not keep a geometrically accurate representation of the road when regions of the top of the cones

are found. To solve this, a method that discards the top region of the cones was implemented. It is

assumed that the robot is lying inside the road, that is, that it is in between the path defined by the

cones. A polar transformation of the orange segmented pixels is computed, using as anchor the as-
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(a) (b)

Figure 3.34: Road maintenance area detection: (a) polar representation of the orange segmented mask

(in yellow) and convex hull (blue); same information reprojected to Cartesian space.

sumed robot position (the middle bottom of the image). The polar representation of the colour mask is

shown on Fig. 3.34 (a). The next step is to compute the convex hull of that polar representation (Fig.

3.34 (b)). The lower polyline of the convex hull always stops at the base of the cones. By extracting

this line and then converting it back to Cartesian coordinates, it is possible to obtain a representation

of the base of the cones. The region that is bounded by the reprojected convex hull is an obstacle

free region, which the robot uses to plan the motion. Figure 3.35 shows a sequence where the robot

navigates through the road maintenance area. The detected obstacle free region is shown in blue.

A second algorithm was developed to execute road maintenance area navigation from bird’s eye

images. The objective is to classify the segmented orange pixels as belonging to right or left side

cones. To achieve this, a simple dilation-based algorithm is performed. Dilation of the colour seg-

mentation mask is performed a certain number of times, until only two regions exist. The outcome

produces a new image with two separate blobs. These blobs result from the merging, through dilation,

of the colour segmented portions of the cones to the left and to the right of the robot. A radial search

for the left and right masks is then executed in order to find the base of the cones. Figure 3.36 (a)

shows a schematic of the radial search for the left side mask. Figure 3.36 (b) shows the detection of

the left side (blue) and right side (red) regions signaling the bases of the cones.

These algorithms were used until 2008. In 2009, with the inclusion of a LRF onboard the At-

lasMV, the vision based detection of road maintenance pins was replaced by the direct LRF measure-

ments.
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(a) (b)

(c) (d)

Figure 3.35: A sequence of navigation inside the road maintenance area, from (a) to (b) to (c) to (d).

In the images, the obstacle free region is shown in blue and the orange detected color is marked in

yellow.

Figure 3.36: (a) A radial search over the left side dilated cone mask; (b) the detection of the bases of

the cones on the left (blue) and on the right (red).

3.5.4 Path Planning

This section describes an algorithm that was used in the Atlas robots to execute path planning. Path

planning is the task of computing where the robot should go, given a description of the scene around it.

In the case of a road following robot, there should be of course a representation of the road’s position

with respect to the robot. Additionally, information on the position (and possibly the velocity) of

obstacles is also important. The objective of a path planning algorithm is to compute a path that

avoids collisions with obstacles while at the same time brings the robot to a predefined position and

orientation.

In general, path planning has been thoroughly studied by the robotics community. In
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[Laumond 1998] and [Ferguson et al. 2008b], extensive reviews on this topic are provided. How-

ever, while the state of the art in path planning in general has reached a high level of maturity, its

adjustment to the problem at hand is cumbersome. In fact several details make most of the classic

path planning methods unfit to tackle the ADC, namely:

• The fact that the robot travels at high speed (in relation to the scale of the scenario) demands

that the path planning is fast to process;

• The reduced field of view of the robot (2 to 3 meters to the front) discards the usage

of complex paths based on splines [Ferguson et al. 2008b] [Ferguson et al. 2008a], clothoids

[Khosla 2002], or others;

• The fact that classic obstacle avoidance techniques such as Vector Field Histograms do not

account for the non-holonomic nature of a car-like robot;

• The nonexistence of a global map (or of a large enough local one) in addition to the fact that the

information present in it is sparse discards techniques based on occupation grids and similar

techniques (most of the cells would have an unknown state).

Because of these specifications, we have developed a custom path planning algorithm for the

robots [Oliveira et al. 2012]. Unlike traditional path planning algorithms, where an exact path from

the starting position to the goal is defined, the proposed approach used a top down approach, in the

sense that it found, from a discrete set of paths, the one that takes the robot to the goal. Obviously,

this approach will generate an approximate solution. However, given the real time constraints of the

competition along with the need to re-plan very frequently, this was found to be a very good solution

to the problem of path planning. As discussed, this is not a path planning algorithm but more a local,

short term evaluator of the best path for a robot. The algorithm starts by generating a set of possible

paths using a non-holonomic vehicle model for the robot. Each path represents a possible heading of

the robot. In a first stage of development, to account for simplicity and fast processing, these paths

were first order curves, i.e., circumference arcs. In a second stage, composite curves were added.

The algorithm builds up a snapshot of the current view of the world appropriated for subsequent

processing. It does this by creating a desired path on the desired lane of the road in the form of a list

of position and heading values, which are called attractor points. These points are not connected using

splines or other methods. They can be viewed as beacons sparsely positioned on the lane, indicating

the preferred position and heading of the robot. At the same time, laser obstacles are represented as

a list of repelling points. In sum, the path planning algorithm will receive the position of the lane

markers and of laser obstacles from the perception modules. Lane markers and laser obstacles are all

registered in the instantaneous vehicle reference frame.

In this section, we will use two kind of descriptors for computing the optimum trajectory. These

descriptors are in one case defined as a unitary vector and in the other as a 2D point. All descriptors are

Miguel Armando Riem de Oliveira Ph.D. Thesis



3.Robot Prototypes 61

Figure 3.37: The non-holonomic model of the vehicle is used to define the paths the robot will execute

as a function of the angle imposed on the steering wheels.

defined in the instantaneous vehicle reference system. Bold symbols will represent unitary vectors,

i.e., X = [x y θ], while 2D points, will be represented as X = [x y]. Throughout this section we

will use the sub-indices notation to refer to the components of the vector or point. For example, Xθ

refers to the angle θ of vector X, while Xy refers to the y component of point X. Left super indexes

will notate the trajectory to which the variable belongs to. Right super indexes notate the index of the

variable.

The non-holonomic vehicle model (Fig. 3.37) is used to generate a set of possible trajectories for

the robot. Each trajectory or path is defined by a set of trajectory nodes. From the observation of Fig.

3.37 it is clear that:

R =
D

tan(α)
. (3.1)

Hence, based on the steering direction α, it is possible to calculate the path that will be executed

by the vehicle. Let ζ represent a path. The radius R of the instant center of rotation ICR. Given the

arc length A, it is possible to calculate the angle β by:

β =
A

R
. (3.2)

Let a unitary vector Π represent the cartesian coordinates that lie on path ζ. The coordinates are

given by:

Π =

[
Πx

Πy

]
=

[
R· sin(β)

R−R· cos(β)

]
, (3.3)
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combining equations (3.1), (3.2) and (3.3) results in:

[
Πx

Πy

]
=

⎡
⎣ D

tan(α) · sin
(A·tan(α)

D

)
D

tan(α) ·
(
1− cos

(A·tan(α)
D

))
⎤
⎦ . (3.4)

For paths steering to the right, i.e., when α < 0, the value of Πy becomes symmetric of what is

given in (3.4). The expression is only valid for α ∈ [−90,+90], which is perfectly adequate for most

of the vehicles. Equation (3.4) is used to generate all paths and path nodes. The planner generates a

set of paths, each is referred to as jζ. For computation simplification purposes, each path is segmented

into linear pieces and represented by a set of m nodes, notated as jΠ ∈ {jΠ0,j Π1, ...,j Πm}. The

discrete array of paths and their nodes are defined by setting values for the number of paths, the wheel

angle of the first path α0 and the angular spacing between paths (Δα). Hence, the steering angle of a

path jζ will be defined by:

jα = 0α+ j·Δα. (3.5)

The number of nodes for each path is defined by specifying the number of nodes and the arc

length (A) between consecutive nodes. The ith node jΠi will have an associated arc length segment

given by:

jAi = i·A. (3.6)

Applying jα and jAi into equation (3.4) provides the (x, y) coordinates of all path nodes. To

determine the orientation of the node we compute the angle formed between the line segment defined

by the current and the next node, and the vertical direction. Hence, the orientation of node i, jΠi
θ is

given by:

jΠi
θ = atan

(
jhΠi+1

y − jΠi
y

jΠi+1
x − jΠi

x

)
. (3.7)

Figure 3.38 shows an example of a set of paths and their nodes. Although the trajectories, the

number of nodes in each trajectory, the Δα and A may change in runtime, they are considered equal

for all paths, that is, all paths are equally spaced in wheel angle and will have the same number of

nodes, which are in turn equally spaced by a constant arc length. Paths and their nodes are uniformly

distributed across the provided limits. The methodology here proposed allows the user (or other

higher level processes) to easily generate a large set of trajectories, using these small number of pa-

rameters. Different road scenarios have distinct requirements in terms of possible paths. For example

a highway scenario, where a vehicle is traveling at high speed surely requires long trajectories to be

tested, but the angular span of the vehicle’s steering wheel is limited: in this case, a large value for

A and number of nodes would generate long trajectories, while a small number of trajectories with
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Figure 3.38: An example of a set of paths defined using equally spaced wheel angle and arc length

between nodes.

the proper value for Δα would create a small angular span. In urban scenarios, small speed and hard

turns are required: a small value of A will create short paths, while a large number of trajectories

would provide trajectories with hard turns.

While the path planning module is executing, there are several perception modules running in

parallel. When a perception module identifies a laser obstacle or the position of a lane marker, this

information is is sent to the path planning module. However, the position of obstacles or lane markers

must be represented in a way that is adequate for the path planning module. The conversion of the

data into a suited representation generates what are called the navigation markers. They are computed

from a given description of the scenario around the robot, i.e. from the information provided by the

perception modules, and from a set of driving directives, which define what should be the navigation

behavior. They are then used to compute several scores that will describe how good is a path for the

current scenario. This process is an intermediate layer between the perception of the environment and

the subsequent evaluation of all paths and selection of the optimum path.

There are two types of Navigation Markers: repelling and attractor points. Repelling points are
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Figure 3.39: The several navigation markers for a common road scenario. The road is described

by the left, central and right points, Lk, Ck and Rk, represented by the triangles in the figure. The

attractor points (Ak, represented as circles in the figure) are generated using the central lane marker

points combined with the road width (Λ) and the desired lane positioning behavior directive (Γ).

Laser obstacles generate repelling points (Uk) and are represented by circles with a cross.

computed after the laser obstacles positions generated using the data reduction algorithm. They have

no information regarding orientation. For a given iteration of the path planner, there will be a list of

U repelling points, defined as:

Uk = [Ukx,U
k
y ]. , ∀k = 0, ..., N, (3.8)

where N is the number of repelling points. Attractor points are, on the other hand, generated after

the feature detectors that produce information regarding the road’s positioning. The lane marker

detection algorithms output a description of the road. This description consists of representing each

of the three lane markings (left, central and right) as a list of points in the robot’s reference frame.

Let Lk = [Lkx,L
k
y ], C

k = [Ckx,C
k
y ] and Rk = [Rkx,R

k
y ] represent the lane marking descriptions. While

the repelling point’s position is obtained directly from the obstacles present in the laser scans, the

location of the attractor points is dependent on the driving directive. The path planner module is

informed constantly by another higher level process of the desired lane positioning behavior (Γ).

This directive is defined as: Γ = −1, to drive on the left lane, Γ = 0, to drive on the center of the

road and Γ = 1, to drive on the right lane. Since all the lane marker detection modules produce a

standardized description of the road, the information of the left central and right lane markers is for

now redundant. Currently, we use the central lane marker’s description C to generate the attractor
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points. Let the unitary vector A notate the attractor points. Using the directive Γ combined width the

road width Λ (assumed to be known a priori) the attractor points are defined as:

Ak =

⎡
⎢⎣ Ak

x

Ak
y

Ak
θ

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣
Ckx +

Γ·Λ
4
· cos(Ak

θ)

Cky +
Γ·Λ
4
· sin(Ak

θ)

atan

(
Cky − Ck−1

y

Ckx − Ck−1
x

)

⎤
⎥⎥⎥⎥⎥⎥⎦ . (3.9)

Figure 3.39 depicts the Navigation Markers in a typical right turn scenario.

Once Navigation Markers are generated after the perception and several possible paths have been

computed, the goal now is to find which of those paths is the more adequate for the current scenario.

To perform this task, several evaluation functions Ω are employed. Each evaluation function returns

normalized score Ω̂ that ascertains how well the path suits the criteria evaluated by the function. There

are four evaluation functions, which will be described bellow. In many of the following evaluations

it will be necessary to compute, for a given trajectory node Πi, the closest navigation marker: for

example, what is the closest attractor point to a certain trajectory node. Let function map(i) be the

function that retrieves the index k of the closest navigation marker to node i. It is defined as:

Figure 3.40: An example of the calculation of Ω1 for nodes 2Πi−1 and 2Πi. For each node, the

minimum distance to all attractor points is selected (represented with a solid line). Then the average

of these minima is calculated. In this figure the Ω1 criteria will have the following score arrangement:

Ω̂1(jζ) > Ω̂1(...ζ) > Ω̂1(2ζ) > Ω̂1(1ζ).
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map(i) = argmink

(√
(jΠi

x − Ak
x)

2
+ (jΠi

y − Ak
y)

2

)
. (3.10)

Ω1: Average distance to attractor points

This criteria measures a path’s average distance to the attractor points and evaluates how close a path

is to the attractor points. A perfect score means that the path is coincident with all the attractor points.

For each path jζ, the criterion is calculated as a function of the average distance between all path

nodes and the closest attractor point to each node:

Ω1(jζ) =

N∑
i=0

(√
(jΠi

x − Amap(i)
x )

2
+ (jΠi

y − Amap(i)
y )

2

)
N

, (3.11)

where N is the number of trajectory nodes. The normalized evaluation score Ω̂1 is obtained using

the maximum admissible value as a normalizing factor. In our implementation, this value is set as the

road’s width Λ:

Ω̂1(jζ) = 1−
max

(
Ω1(jζ),Λ

)
Λ

. (3.12)

Figure 3.40 shows an example of the Ω1 calculation.

Ω2: Average angular difference to attractor points

This criterion measures the path average angular difference to the attractor points (Ω2) and evaluates

how compliant the path is to the attractor points heading. A perfect score means that the path drives the

robot along the direction defined by the attractor points. For each path jζ, the criterion is calculated as

follows by measuring the average angular difference between each node’s orientation and the closest

attractor point’s orientation:

Ω2(jζ) =

N∑
i=0

|(jΠi
θ − Au(i)

θ )|

N
, (3.13)

where N is the number of nodes of the path. To obtain the final score for this evaluation a normaliza-

tion is computed using the maximum admissible angular difference. In our case, we set this value to

180 degrees:

Ω̂2(jζ) = 1−
max

(
Ω2(jζ), π

)
π

. (3.14)
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Figure 3.41 depicts how Ω2(jζ) values are computed.

Ω3: Average laser obstacle clearance

This criterion measures a path’s average distance to the laser obstacles repelling points (Ω3). It

evaluates how close path jζ is to the laser obstacles repelling points Uk:

Ω3(jζ) =

N∑
i=0

f(i)

N
, (3.15)

where N corresponds to the number of nodes and f(i) is a function that avoids local minima that

typically occurs in the middle of two obstacles, the minimum distance from each path node to all

repelling points is compared to a predefined variable that defines the saturation threshold for the

obstacle clearance Φ:

f(i) =

{
d(i), if d(i) > Φ

0, otherwise
, (3.16)

where d(i) is a function that retrieves the value of the distance from the path node i to the closest

repelling point:

Figure 3.41: Calculation of Ω2 scores. For each node, the minimum angular difference to the closest

attractor points is selected. Then the average of these minima is calculated. In this figure, because

higher index trajectories suit better the attractor points heading, the following occurs: Ω̂2(jζ) >
Ω̂2(...ζ) > Ω̂2(2ζ) > Ω̂2(1ζ).
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Figure 3.42: Calculation of Ω3 scores. For each node, the minimum distance to the closest repelling

points is selected. Then the average of these minima is calculated. In this figure the Ω̂3(jζ) score will

be the highest of all trajectories, since path jζ is the one with best laser obstacle clearance.

d(i) =
√(

jΠi
x − U

map(i)
x

)2
+
(
jΠi

y − U
map(i)
y

)2
. (3.17)

The normalized score is obtained as usual:

Ω̂3(jζ) = 1−
max

(
Ω3(jζ),Φ

)
Φ

. (3.18)

Figure 3.42 shows an example of the calculation of this evaluation criteria.

Ω4: Free space

The final evaluation criteria is used to guarantee that the selected path is collision free. This is done

by measuring the possible collisions of a path with the laser obstacles. In order to do so, a polyline

representation of the robot for each path node is created using the width of the robot as a reference. As

described, laser obstacles are defined by a set of points. Figure 3.43 shows a laser obstacle composed

of three points, U1, U2 and U3. A set of line segments for each path node jΠi is defined as jΥi.

In Figure 3.43, set 2Υ1 is composed of the lines: P1P2, P2P3, P3P4, P4P1 and also of the line
2Π12Π2. The free space analysis consists of searching for intersections between the lines defined by

Miguel Armando Riem de Oliveira Ph.D. Thesis



3.Robot Prototypes 69

Figure 3.43: Polyline representation of the robot using the robot width as an estimate for defining

several line segments. They are then tested for intersection with the lines defined by consecutive laser

obstacles repulsor points U. In this case, path 2ζ intersects with the laser obstacle (marked by stars),

which leads to a score Ω̂4(jζ) = 0.

consecutive laser obstacle points with the lines in the set jΥi:

Ω4(jζ) = jAu, (3.19)

where jAu is the arc length of node index u (see eq. (3.6)), and u is the index of the node with

maximum arc length that does not collide with an obstacle:

u =

{
argmaxi

(
{jΠi}

)
, if ¬ intr(Li−1Li,Υi)

0, otherwise
, (3.20)

where intr is a function that tests for the intersection of the two groups of line segments and returns

true if an intersection occurs. The evaluations returns maximum arc length distance that each path

may accomplish before it collides with an obstacle. If the trajectory is collision free, the arc length

of the most distant node is returned. Since we employ only first order paths, sometimes a path that

will lead to a collision very far away from the robot may still be interesting to follow, up to a certain

moment. In these cases, the path should not be discarded immediately. To handle this, the free

space evaluation employs the notion of minimum safety distance Ψ which can be ascertained as the

minimum arc length distance for a path where no collisions occur, in order to validate this path. The

normalized value of this criteria is given as:
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Table 3.1: Path planning parameters values used on the AtlasMV.

Parameter Equation Value on AtlasMV
Φ (3.18) 110% of half the robot’s width

Ψ (3.21) 1.5 meters

w1 (3.21) 0.25

w2 (3.21) 0.25

w3 (3.21) 0.5

Ω̂4(jζ) =

{
1, if Ω4(jζ) > Ψ

0, otherwise
(3.21)

The final score of a path is defined using a weighted average of the three first evaluations. In the

case of the free space analysis, it is used to discard a path that will lead to a collision. We propose the

following expression for obtaining a path overall score (
j
ζ̂):

j
ζ̂ = Ω̂4(jζ)·

⎡
⎢⎣ w1

w2

w3

⎤
⎥⎦ ·
⎡
⎢⎣ Ω̂1(jζ)

Ω̂2(jζ)

Ω̂3(jζ)

⎤
⎥⎦ , (3.22)

where wi is the weight corresponding to each criteria. In order to have a normalized overall score, the

weights must add up to 1. The ratio between w1 and w2 defines the reactivity of the path, i.e., when

w1 >> w2 the paths that rapidly bring the robot close to the attractor points will have better scores.

The trade off is that the robot may be close to the desired position but without the desired orientation.

Figure 3.44: Some examples of path evaluation. The paths are represented by the green arcs. The

highest scoring path is highlighted in yellow.
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Figure 3.45: Some examples of path evaluation in obstacle populated scenarios. The paths are rep-

resented by the green arcs. The highest scoring path is highlighted in orange, and the laser obstacles

are represented by the thick magenta lines.

On the other hand, if w1 << w2 then the best scored paths will have an orientation similar to that of

the attractor points, and the algorithm will bring the robot smoothly to the attractor points but with

more guarantees of having the desired orientation. The selection of the path to impose on the robot

is obtained by finding the highest score amongst all paths. These weights where empirically tuned as

presented below.

The path planning algorithm described in the previous sections was successfully applied to the

Atlas2000 and AtlasMV. The parameters of the motion planning algorithm were tuned empirically.

The values are of course dependent on the scale of the robots as well as other characteristics such as

maximum velocity or maximum wheel turn angle. However, we found that tuning these parameters

is not a very difficult task. They have meaningful functionalities and clear influence on the robot’s

navigation behavior. This helps an user to quickly find a good compromise for the values of these

parameters. In fact, the same algorithm was used for the two robots, without requiring much effort

in tunning the parameters. For reference, Table 3.1 shows the values of the parameters that are used

in the AtlasMV. Figure 3.44 shows some examples of the path planner in obstacle free environments.

Figure 3.45 shows the performance of the path planner in a scenario populated by obstacles. In both

cases the algorithm is able to select the most adequate path.

The algorithm has been thoroughly tested in the ATLAS robots during the ADC of the PRO.

The Atlas robots have won the last six editions of the competition, i.e., from 2006 to 2011. This

shows that these robots are very capable of navigating in complex scenarios. The presented path

planing algorithm is a cornerstone of these capabilities. The algorithm is computed in less than 5

milliseconds (on a Dual Core 2.5GHz HP 8510p) which enables real time execution.
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The algorithm was later extended to use composite trajectories, and implemented on a Robot

Operating System (ROS) framework. Figure 3.46 shows examples of the paths that are typically

predefined for testing in the ADC competition. Figure 3.46 (a) shows paths that are used during

turns. Figure 3.46 (b) shows paths that are used to change lanes. Figure 3.46 (c) shows emergency

paths, where the robot moves backward to gain space. Several of these paths are also used. Finally,

Fig. 3.46 (d) shows a similar set of paths to what is shown in Fig. 3.46 (b), with the difference that

the number of nodes per path is much higher. Figure 3.47 shows some examples of the path planning

algorithms in action. The blue circle represents the attractor point. The path highlighted in green is the

path that is chosen as the best path. In Fig. 3.47 (a) the attractor point is on the left side of the vehicle.

Because of this, the path that leads the robot closest to the attractor point is the path on the left. In Fig.

3.47 (b), the attractor point is positioned on the right side. Since both the middle trajectory and the

right side trajectory are both at the same distance to the attractor point, the criteria that defines which

trajectory is chosen is the desired orientation of the robot. In Fig. Fig. 3.47 (b), the desired direction

(a) (b)

(c) (d)

Figure 3.46: Typical predefined paths used in the ADC: (a) turn scenarios; (b) lane change scenarios;

(c) emergency maneuvers; (d) same as in (b) but paths have twice as many nodes.

Miguel Armando Riem de Oliveira Ph.D. Thesis



3.Robot Prototypes 73

(indicated by a green arrow near the attractor point) is aimed vertically. Hence, the middle trajectory

is the most adequate. In Fig. 3.47 (c), the attractor desired orientation is different, which makes the

right side trajectory to be elected. Finally, in Fig. 3.47 (d) an example with an obstacle is shown. The

obstacle is represented by the red lines to the front right of the vehicle. Although the attractor point

still remains on the right side of the vehicle, the fact is that both the middle and right side trajectories

would lead to a collision with the obstacle. Because of this, the left side trajectory, the only without

collision, is selected.

(a) (b)

(c) (d)

Figure 3.47: Some examples of path evaluation, attractor point is represented by the blue circle,

obstacle by the red lines.
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3.6 Results

Previous sections have presented the Atlas robotic prototypes. This section presents the results that

those robots have achieved throughout the eight years of participations in the competitions. The

Atlas2000 and the AtlasMV have participated in the ADC since 2005. The AtlasCar participated in

another competition in the PRO 2010 called Freebots.

Regarding the ADC, Table 3.2 lists the robots that finished in first, second and third place in the

competition from 2001 to 2012. As can be seen some of the most relevant Portuguese institutions

have participated in the competition. It is also interesting to note that, during the twelve years of the

history, the competition has always been won 11 times by a team from the University of Aveiro. The

exception is the year 2012, where a private team has achieved first place. The Atlas robots entered

competition in 2003, with the AtlasII. This robot is not described in this chapter. It consisted of a

different platform, with a single steering wheel at the front. This prototype achieved fourth place in

2003 and then third place in 2004. In 2005, the new Atlas2000 entered the competition achieving

second place. In the following six years, the Atlas robots have dominated the competition always

achieving first place and inclusively achieving first and second place in 2009, 2010 and 2011.

Table 3.3 summarizes the participations of the Atlas2000 throughout its long seven year record of

participations. The Atlas2000 robot entered competition in 2005, achieving a second place. In 2006,

Table 3.2: Robots positioned in the first three places, ADCs since 2001. Robots signaled in blue were

developed by the Laboratory of Automation and Robotics, University of Aveiro.

Year 1st place 2nd place 3rd place

2001 (9) [PRO 2001] Cyclop (3) IQ 2001 (5) Bender (8)

2002 [PRO 2002] Capicua (3) Prometeu (8) Quinamawheel

2003 [PRO 2003] Charrua (3) MAde in Agueda (1) Runner (2)

2004 [PRO 2004] Made in Agueda (1) Runner (2) ATLASII

2005 [PRO 2005] Made in Agueda (1) ATLASIII RobIEETA(3)

2006 [PRO 2006] ATLASIV PROJECTO VERSA (4) ROTA2006 (3)

2007 [PRO 2007] ATLAS 2007 ROTA 2007 (3) GFORCE(5)

2008 [PRO 2008] ATLAS 2008 RASTEIRINHO (5) ATLAS MV

2009 [PRO 2009] ATLAS MV2 ATLAS 2009 BEAGLE (6)

2010 [PRO 2010] ATLAS MV3 ATLAS 2010 Zinguer 2010(3)

2011 [PRO 2011] ATLAS 2011 ATLAS MV4 Zinguer 2011 (3)

2012 (9) [PRO 2012] Quattro(7) Formula UM TD1 (8) Formula UM TD2(8)

(1) Escola Superior de Tecnologia e Gestão, Águeda, Universidade de Aveiro;
(2) Laboratório de Sistemas Autónomos, Instituto Superior de Engenharia do Porto;
(3) Instituto de Engenharia Electrónica e Telemática da Universidade de Aveiro;
(4) Faculdade de Engenharia, Universidade do Porto;
(5) Instituto Superior Técnico, Universidade Técnica de Lisboa;
(6) Instituto de Educação e Desenvolvimento da Maia;
(7) Private team;
(8) Universidade do Minho;
(9) The Atlas robots did not participate in the 2001 and the 2012 competitions.
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Table 3.3: Results of the participations of the Atlas2000 in the ADCs.

Time per round (sec)

Year 1st 2nd 3rd Total Position

2005 (1) 74 140 – (2) 214 2nd

2006 56 160 108 (4) 324 1st

2007 43 141 122 306 1st

2008 51 173 197 421 1st

2009 42 (3) 158 587 787 2nd

2010 47 117 271 435 2nd

2011 86 132 136 354 1st

(1) The road scenario had a different configuration

in 2005, with a shorter circuit and a single lane

http://robotics.dem.uc.pt/web/.
(2) The time for this round was not available in 2005.
(3) First round all time fastest time.
(4) Third round all time fastest time.

Table 3.4: Results of the participations of the AtlasMV in the ADCs.

Time per round (sec)

Year 1st 2nd 3rd Total Position

2008 51 177 634 862 3rd

2009 54 176 170 400 1st

2010 45 102 (1) 130 277(2) 1st

2011 68 126 308 502 2nd

(1) Second round all time fastest time.
(2) Total of the three rounds all time fastest time.

2007 and 2008 it won the first place, achievement repeated also in 2011. It is also interesting to note

that the Atlas2000 has never finished less than in second place. Up to this day the Atlas2000 still

retains the all time record for fastest first and third rounds.

The AtlasMV entered competition in 2008, achieving an overall third place. Then, in 2009 and

2010, the robot won the ADC competition. Up to this day, it holds the record for fastest second round

time as well as fastest overall time in the history of the competition. Table 3.4 summarizes the results

achieved by the AtlasMV.

Finally, the AtlasCar has participated in the Freebots competition of the PRO in 2011, and

achieved the first place (http://robotica2011.ist.utl.pt/en/competitions/freebots/).

3.7 Conclusions

This chapter presented in detail, the Atlas2000, AtlasMV and AtlasCar robotic prototypes. The At-

las2000 and AtlasMV have participated in the ADC having achieved the first place a total of six times.
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The AtlasCar was the first full scale autonomous vehicle created in Portugal. Additionally, it won the

Freebots competitions at the PRO 2011.

The participation in the development of these prototypes provides a broad insight of the challenges

of designing an autonomous driving platform. Also, the robots were used to test and validate several

of the perception algorithms also presented in this chapter.
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Chapter 4

Software Architectures

This chapter will discuss the software architectures used in the robots from the Atlas series. In section

4.2, an overview of the related work is provided. Then, section 4.3 gives a detailed description of the

Laboratory of Automation and Robotics Toolkit (LARtk). The implementations of the LARtk on the

AtlasMV robot and of the Robot Operating System (ROS) on the AtlasCar are presented in sections

4.4 and 4.5. Finally, conclusions are given in section 4.6.

4.1 Introduction

One of the most important components of a robot is the software. A common problem in the pro-

gramming of autonomous robots is that programs tend to be very large, sometimes reaching tenths of

thousands of code lines. Hence, the development and maintenance of very large codes becomes diffi-

cult. This section describes the software architectures used is the Atlas robots and how they were used

to facilitate the development of algorithms. The first solution, implemented in 2004 on the Atlas2000

and used until 2009, was a binary file compiled from dozens of source and header files. It was a single,

monolithic code, where tasks were defined in sequence. The code had about 8 thousand lines of code,

and the interdependency between software modules was very high: for example, a change in the im-

age preprocessing stage could have unexpected results in the programs state machine. Furthermore,

only one of the team members was able to rewrite or improve the code. Simultaneous development

was almost impossible. Another disadvantage was that, since a single executable was running with

all the required tasks, if a runtime crash occurred, the robot would loose all its functionalities. Since

tasks were executed in a sequential order, a procedure for manually tunning the time each task would

take was necessary and very intricate.

The solution for the maintenance and development of very large programs is not to have large

programs. Keep them simple and relatively small. In 2008, a new software infrastructure was imple-

mented on the AtlasMV. It was used until 2011. This software infrastructure is based on the Carnegie

Mellon Robot Navigation Toolkit (CARMEN) [Montemerlo et al. 2003a]. Some of the functional-
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ities of CARMEN have later been extended in the LARtk, developed at Laboratory of Automation

and Robotics, University of Aveiro. A more recent software architecture was implemented on the

AtlasCar. It is called ROS.

4.2 Related Work

The need for a modular software framework has long been viewed as necessary in the robotics com-

munity. One of the reasons is that a modular framework allows very simple code reuse. Another

is that it has a very good potential for mixing real time execution with simulation. Since modules

exchange information in the form of messages, it is very simple to record the output of a module by

recording the messages it sent. If the recorded data is then played back, a receiving module will run

just as if the other was also running. In this way, it is possible to mix runtime execution with offline

simulations. There have been several attempts to come up with a standard framework, that the ma-

jority of people can use. Since the idea is to separate a robot’s functionalities into several programs

or modules, one of the important parts of any framework is how data is exchanged between modules.

This is commonly referred to as inter process communications. Inter process communication is an

extensively studied topic with broad applicability. There are several recurring themes in existing sys-

tems. Publish subscribe models are the most commonly used as described in [Newman 2003]. TCP

socket communications are the most common transport. Most of these systems employ a centralized

hub for message routing, although there is an exception in [Huang et al. 2010]. Some of the frame-

works available will be described in the following lines. Special emphasis is given to the ROS toolkit,

since it is nowadays a standard in robotic development and is the framework used in the AtlasCar

prototype.

4.2.1 Lightweight Communications and Marshalling

Lightweight Communications and Marshalling (LCM) is a set of libraries and tools for message

passing and data marshalling, targeted at real time systems where high bandwidth and low latency

are critical. It provides a publish / subscribe message passing model and automatic marshalling /

unmarshalling code generation with bindings for applications in a variety of programming languages.

It was originally designed and used by the Massachusetts Institute of Technology (MIT) Darpa Urban

Challenge Team as its message passing system [Huang et al. 2010]. LCM is designed for tightly-

coupled systems connected via a dedicated local-area network. It is not intended for message passing

over the Internet. It has been developed for soft real-time systems: its default messaging model

permits dropping messages in order to minimize the latency of new messages. It uses UDP multicast

as a low-latency but unreliable transport, thus avoiding the need for a centralized hub. Finally, the way

in which LCM is perhaps most distinctive from other systems is in its emphasis on debugging and

analysis. For example, while all systems provide some mechanism for delivering a message from one
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module to another, few provide a way to easily debug and inspect the actual messages transmitted.

4.2.2 Carnegie Mellon Robot Navigation Toolkit

CARMEN is an open source collection of software for mobile robot control . It is composed of mod-

ular software, designed to provide basic navigation primitives including: base and sensor control, log-

ging, obstacle avoidance, localization, path planning, and mapping [Montemerlo et al. 2003b]. The

idea is that robot tasks or functionalities are disassembled into smaller programs which are compiled

and ran independently. In CARMEN, these programs are called modules. Information exchange is

made through a central module that dispatches messages from one module to another, using an Inter

Process Communications (IPC) [Simmons & Apfelbaum 1998]. The modules that receive the mes-

sages are called subscribers or listeners, while the ones that send messages are named publishers or

servers. The advantage of a modular software architecture is that the code for each module is simple,

compiled independently. The data flow is done based on standardized messages, which facilitates

code development. For example, a developer writing an image processing algorithm does not have to

write or even understand the code inside a camera acquisition driver module, it merely subscribes or

listens to the image and processes it when a message is received. In CARMEN, messages are sent via

socket connections, and are defined as a C/C++ structure in header files common both to the sender

and the receiver modules. IPC links the sender with the receiver(s) of a particular message. The

sender module call a send routine providing a pointer to the C/C++ structure where the message is

defined. Then, the structure is parsed (marshalled) into a byte array and sent through the socket. The

receiver module unparses (unmarshalls) the byte array and copies it to a similar structure, where the

information is replicated. Marshalling is the process of transforming the message into a configurable

easily reversible linear byte array. Messages are defined as C language structures, but before being

sent must previously be transformed, i.e., marshalled, into byte arrays. To be marshalled, the format

of the message structure must first be defined in a header file common both to the receiver and the

sender.

4.2.3 Robot Operating System

ROS is a software framework for robot software development, providing operating system like func-

tionality on a heterogeneous computer cluster. It was originally developed in 2007 under the name

Switchyard by the Stanford Artificial Intelligence Laboratory. ROS provides standard operating sys-

tem services such as hardware abstraction, low-level device control, implementation of commonly

used functionality, message-passing between processes, and package management. It is based on a

graph architecture where processing takes place in nodes that may receive, post and multiplex sensor,

control, state, planning, actuator and other messages. ROS is currently the standard robotic toolkit.

Some application examples are [Zaman et al. 2011] and [DeMarco et al. 2011]. In ROS, a novel
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nomenclature was created to describe the information exchange and overall framework. A brief des-

cription of the framework and the nomenclature is given to ease the comprehension of the following

sections. First a short description of how the code is organized and how it should be compiled and

linked is given. Second, an explanation of the runtime execution, and how they transfer information

is provided.

Programs are grouped into packages. A package is a collection of programs and/or libraries that

perform a certain function. All the files of a package are contained by a parent directory with the name

of the package. Inside the parent directory there are several subdirectories: src, where the source code

is stored; include, for the headers that are to be viewed by other packages, which occurs if the package

contains a library; lib, where the compiled libraries are stored; bin, which contains the binaries; and

msg, which is the folder that contains the definition of messages. Inside the parent directory there are

also a manifest.xml and a CMakeList.txt files. The first acts as a declaration of the package’s depen-

dencies of other packages. It is also where compiler and linker flags for other packages that depend

on it are defined. The second file contains instructions for a standard CMake compilation. ROS au-

tomatically adds compiler and linker flags from other dependent packages declared in the manifest

to the compilation execution. This is somewhat different from standard compilation methodologies,

where a programmer that is developing a certain package must find which flags are required so that its

code properly includes and links with another code. In ROS, a package that is going to be included or

linked against other codes has the responsibility to declare in its manifest which are the required com-

pilation flags and these are automatically inserted into the compilation execution of any dependent

module. Hence, code dependencies are very clear and simple, which eases the task of a programmer.

A make instruction automatically compiles the dependencies if it is required.

ROS proved to be a significant advance with respect to its predecessor, CARMEN IPC. Com-

plex message exchange setups may be easily programmed. Deadlocks and program freezes, which

occurred in CARMEN IPC, where never observed in ROS. A great number of packages are available

to use in ROS, covering many topics. It also includes a very advanced visualisation package, the 3D

visualization environment for robots using ROS (RVIZ).

Information Exchange

In runtime execution, several binaries are executed. As discussed, in ROS binaries are grouped into

packages. ROS keeps track of where the parent directories of every installed package are located.

Hence, it is possible to execute binaries using a simple instruction rosrun package binary which calls

the binary binary located in the binaries subdirectory of the package parent directory, i.e., /{package

parent directory}/bin/. A binary that is executed is designated as node. A node is a running instance of

a binary that receives or sends information to other nodes. Note that a single binary may be executed

several times and generate several nodes.

Two nodes exchange information when the first declared an advertisement of a particular mes-
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sage, via a topic name, and the second as subscribed to that topic name [Cousins et al. 2010b]

[Cousins et al. 2010a]. A topic is an identification of a message within the runtime structure of ROS.

Messages may also have different types, depending on the information they contain. The sender node

is called a publisher node, and the receiver node is designated a subscriber node. To deal with the

asynchronism of the nodes, ROS implements message queues both on the publisher and subscriber.

Message queues are first in, first out buffers, that store messages until a node is ready to send or

receive them. ROS showed a significant increase in robustness in regards to the transfer of large

size messages when compared to CARMEN IPC. The message transmission mechanism involves

marshalling and unmarshalling of the C++ structures from and to a byte array, like in IPC, but these

operations are completely automated in ROS and are transparent for the programmer. There is a

high level of flexibility and code re-usability inherent to this framework. To show this, a small but

somewhat complex message exchange setup was programmed in ROS.

There are three nodes, A, B and C. Node B publishes messages on topic Topic_B and does not

receive messages. In this sense, node B is a pure publisher node. Node C publishes Topic_C mes-

sages and subscribes to topics /Topic_A2 and /Topic_B. Node A publishes two topics, /Topic_A1 and

/Topic_A2. It subscribes its own /Topic_A2 as well as a /Topic_B. Nodes A and C may be considered

hybrid publisher subscriber nodes. Figure 4.1 (a) shows the described setup. Now let the cycle fre-

quencies of the nodes be 30, 10 and 20 Hz, for nodes A, B and C, respectively. Node B is programmed

to publish /Topic_B at its cycle frequency, 10 Hz. Node A publishes /Topic_A2 at its cycle frequency,

30 Hz, and is programmed to publish /Topic_A1 twenty milliseconds upon receiving a message on

/Topic_B. Node C is programmed to publish five messages on /Topic_C in rapid succession but only

when it has received at least one message from each of the topics /Topic_B and /Topic_A1.

Figure 4.1 (b) shows a record of the message traffic using this described setup. As expected,

messages of Topic_B and Topic_A2 occur at the respective nodes cycle frequencies. Messages on

(a)

(b)

Figure 4.1: An example of three nodes exchanging messages. a) the message exchange setup, with

nodes signalled as ellipses and topics as squares; (b) a log of the message traffic for each topic.

Horizontal scale in seconds.
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topic Topic_A1 are sent twenty milliseconds after a Topic_B is sent. Finally, five messages of Topic_C

are sent on the set conditions. This example shows how fairly complex message exchange setups may

be easily programmed in ROS, including hybrid publish subscribers and semaphores for message

publishing.

Besides the publish subscribe paradigm presented before, ROS also supports a server client archi-

tecture, referred to as the server query method in section 4.3. There is, however a slight difference in

the comparison. In CARMEN IPC, there was a centralized parameter server called param_daemon.

This program served global parameters to all other nodes, which acted as clients. In ROS, the para-

meter server is decentralized. Every node acts as a server for its own parameters. This provides extra

flexibility and the decentralized communications also improve performance.

Coordinate frames

A common issue in programming robots is how to handle the multitude of coordinates frames present

in a robot. Data may be captured with respect to a certain coordinate frame, but an analysis on a

different coordinate frame is commonly more interesting. This occurs quite often in sensor fusion

applications. The problem is solved using geometric transformations. Geometric transformations are

matrices, composed by a rotation and a translation components, that are able to transform a point

or vector from one coordinate system to another. In many robotic applications, several coordinate

frames are connected sequentially. For example, in a robotic arm with shoulder, elbow and wrist,

the joint encoders provide transformations from the shoulder to the elbow, and from the elbow to the

wrist. However, it is very common that other transformations are also required. Transformations that

may be obtained from the assembly of sub transformations. In this example, the shoulder to the wrist

transformation could be computed from the combination of the shoulder to elbow and elbow to wrist

transformations. Geometric transformations may be assembled to generate global transformations:

let iTj be the geometric transformation from reference frame i to j. Let three coordinate frames,

i.e., r1, r2 and r3 be connected by transformations r1Tr2 and r2Tr3. It is possible to obtain the

transformation from coordinate frame r1 to r3 with the following:

r1Tr3 =
r1 Tr2 ×r2 Tr3 (4.1)

The formulation in eq. (4.1) may be generalized for any number of coordinate frames, provided

there is a tree that connects unequivocally every frame pair. In robotic applications, a second problem

arises when the transformations change over time. It is the case of any any robot with moving parts.

Let iTt
j be the transformation from frame i to j measured at time t. Equation (4.1) becomes:

r1Ttq
r3 =

r1 Tta
r2 ×r2 Ttb

r3 (4.2)

note that eq. (4.2) is only valid if both transformations are taken at the same time, i.e., if ta = tb.
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In this case, the resulting transformation is only valid for the same time, i.e., tq = ta = tb. If the

sensors that measure the transformations over time are not synchronized, then, ta �= tb. Therefore

eq. (4.2) can only be applied when the transformation is static. Furthermore, the user might require

the transformation at a particular time, one that does not correspond to any of the measurements. To

solve this, interpolation techniques on quaternions are applied. Note that quaternion and geometric

transformations matrices are representations that can be bidirectionally converted from one to the

other. Therefore, the notation iqt
j is equivalent to iTt

j , and refers to the equivalent unit quaternion to

the transformation matrix. The Spherical Linear Interpolation (SLERP) [Eberly & Shoemake 2004]

refers to constant-speed motion along a unit-radius great circle arc, given the ends. Let iq0
j and iq1

j

be two unit quaternions, and slerp a function that retrieves the interpolated quaternion, given by:

slerp(iqa
j ,

i qb
j , α) =

i qa
j ((

iqa
j )

−1 · iqb
j)

α (4.3)

where α is an interpolation parameter, defined from 0 to 1. If α = 0 or α = 1 the returned quaternions

are iqa
j or iqb

j , respectively. With this tool it is possible to sought a transformation at a particular time,

as long as at least two transformations from before and after the query time tq are stored. Equation

(4.2) is adapted to:

r1Ttq
r3 = slerp(r1Tta1

r2 ,r1Tta2
r2 , tq)× slerp(r2Ttb1

r3 ,
r2Ttb2

r3 , tq) (4.4)

where ta1 < tq < ta2 and tb1 < tq < tb2, which are the transformations that must be

stored, and retrieved when an interpolation is desired. Using this methodology, the ROS tf pack-

age [Foote et al. 2012] lets the user keep track of multiple coordinate frames over time. It maintains

the relationship between coordinate frames in a tree structure buffered in time, and lets the user trans-

form points, vectors, etc., between any two coordinate frames at any desired query time.

In ROS, there is a special group of messages for containing sensor data. They are called sensor

messages. Sensor messages contain a header field. The header stores the time at which the message

is generated as well as an identification string for the coordinate frame from where the data was col-

lected. During runtime, several ROS nodes publish sensor data messages to other modules that are

interested in those messages. Each sensor data message is attached to a particular coordinate frame.

When necessary, a package may ask for a transformation between reference frames at a particular

time. ROS reconstructs the connection tree using the frame signaled in the sensor message and the

desired frame, and computes the sub transformations required for assembling the desired transforma-

tion. Then it collects the closest measured transformation messages for each sub transformation, uses

SLERP interpolation and finally assembles the requested transformation.

Figure 4.2 (a) shows a small example of a robot with three links, link1, link2 and link3. Two

joints are defined: joint1, that connects link1 with link2 and joint2, that connects link2 with link3, as

depicted in the frames connection tree in Fig. 4.2 (b).
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(a) (b)

Figure 4.2: A small two joint robot for case studying the tf ROS package. (a) a scheme of the robot

with the annotated links; (b) the connection tree of the links.

(a)

(b)

Figure 4.3: (a) A diagram of the nodes running; (b) the frequency of messages published by the

nodes.

Figure 4.3 (a) shows a diagram of the nodes in execution. The state of each joint in published

by a particular joint_publisher node. These nodes publish the current angle of the respective joint,

in the joint_states message, as well as a second message signaling that they have published the joint

state, the joint_publish messages. The nodes publish both messages at the same time. However, node

joint1_publisher is publishing messages at 10 Hz, while node joint2_publisher is publishing at 20

Hz. A record of the traffic of messages is displayed in Fig. 4.3 (b). A third node, the state publisher,

uses a description of the robot to compute the transformations from link1 to link2 and from link2 to

link3 nodes based on the state of each joint.
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(a) (b)

(c) (d)

Figure 4.4: Movement of the joints: (a) Time 0 seconds, Joint 1 at 0 degrees, Joint 2 at 0 degrees;

(b) Time 2 seconds, Joint 1 at 25 degrees, Joint 2 at -25 degrees; (c) Time 4 seconds, Joint 1 at 50

degrees, Joint 2 at -50 degrees; (d) Time 6 seconds, Joint 1 at 75 degrees, Joint 2 at -75 degrees;

During the test, the first joint, joint1, is programmed to change from 0 to 75 degrees, while joint2

goes from 0 to -75 degrees. Figure 4.3 shows some images of the robot. Using SLERP sub transform

interpolation and assembly for several query times, an animation is built that ROS is able to cope with

asynchronous, partial transforms data and provides a very useful tool to handle most frame related

problems in robotic applications.

Unified Robot Description File

The Unified Robot Description Format (URDF) is an XML specification to describe a robot

[Meeussen et al. 2012]. The specifications are intended as general as possible, but there is a limita-

tion that only tree structures can be represented, ruling out all parallel robots. Also, the specification

assumes the robot consists of rigid links connected by joints; flexible elements are not supported.

The URDF specification covers kinematic and dynamic description, a visual representation, and a

collision model of the robot. The description of a robot consists of a set of link elements, and a

set of joint elements connecting the links together. There are additional extensions to the format to

handle transmissions, sensor and gazebo elements. The latest two are used for generating a robot

simulation under the Gazebo 3D multi robot simulator [Koenig & Howard 2012]. The URDF of the

robot is plugged into ROS as a global parameter, which can be consulted by any node. The advantage

Miguel Armando Riem de Oliveira Ph.D. Thesis



86 4.Software Architectures

of an URDF is to have an unique, standard description of the robot, which is used both for runtime

execution, simulation and visualization.

3D visualization environment for robots using ROS

RVIZ is a 3D visualization environment for robots [Hershberger & Faust 2012]. It is integrated into

ROS. RVIZ can display customizable views of various types of robot data, and can show the dif-

ference between the physical world and what the robot is actually seeing. It draws a robot using the

description contained in the URDF. It has several built in types of messages that can be subscribed for

visualisation: 3D point clouds, camera data, maps, robot poses and inclusively it can display meshes

created by other softwares (collada, stl, Ogre). Custom shapes like arrows, points, spheres or cubes

are drawn using the markers special built in type, acting like a remote OpenGL node. RVIZ not only

draws received messages but is also capable of providing a graphical user interface. This is done

using interactive markers, which use bi directional ROS based communications between the node and

RVIZ in order to let a user operate on the displayed environment.

Figure 4.5 shows a 3D view of the AtlasCar using RVIZ. A one Degree of Freedom (DOF)

interactive marker is also visible near the roof mounted rotating laser, that is capable of setting the

desired position of the laser.

4.2.4 Others

Other examples of open source robot control toolkits are Player Stage and Mobile Robot Program-

ming Toolkit. Player Stage is a robot device server that provides network transparent robot con-

trol [Gerkey et al. 2003]. Player seeks to constrain controller design as little as possible. It is de-

vice independent, non locking and language and style neutral. Stage is a lightweight, highly config-

urable robot simulator that supports large populations. Player Stage is a community Free Software

project. Mobile Robot Programming Toolkit [Blanco et al. 2012] provides C++ developers an exten-

sive, portable and tested set of libraries and applications which cover the most common data structures

and algorithms employed in a number of mobile robotics research areas. Key points in the design of

MRPT are efficiency and re-usability of code. The libraries include classes for easily managing 3D ge-

ometry, probability density functions over many predefined variables, Bayesian inference, computer

vision, SLAM, path planning and obstacle avoidance, and 3D visualization. Gathering, manipulating

and inspecting very large robotic datasets efficiently is another goal of MRPT, supported by several

classes and applications. The Mobile Robot Programming Toolkit was started at the University of

Màlaga, Spain.
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Figure 4.5: A 3D model of the AtlasCar and its onboard sensors visualised using RVIZ and the

AtlasCar URDF. An interactive marker (red circle) enables the user to set the desired laser position.

4.3 Laboratory of Automation and Robotics Toolkit

The LARtk is an extension of CARMEN developed at the Laboratory of Robotics and Automation of

the University of Aveiro. In LARtk, some functionalities have been added to the CARMEN package,

especially concerning the transferring of large size messages. This chapter will describe the problems

that existed in the original CARMEN version, and how those were solved in LARtk.

As in CARMEN, the system architecture relies on separate modules, i.e., computer processes that

run in parallel. These modules were divided from the previous architecture bearing in mind that each

would contain a simple task. Each module processes the information received and outputs the result.

Hence, the way information must travel from one module to the other is a critical issue. Communicat-

ing with the sensors often requires constant monitoring by the process running on the computer. This

new architecture uses small, dedicated modules that handle hardware and communicate with other

parallel modules via IPC. The modular architecture is also more robust, because redundant parallel

modules may compensate fails of others. Also, because the IPC based communication is performed

through TCP/IP connections, messages can be easily exchanged between processes running in dif-

ferent machines. Hence, the entire program may be distributed in several computers, increasing the

computational power of the robots, if so required. This is usually an important issue when running

real time vision-based algorithms.
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The LARtk software architecture has proven fully scalable since any modules can be added or

suppressed without compromising the global operability. The encapsulation of information in prede-

fined messages, by dividing the code into small task oriented modules and experimenting different

forms of information exchange, proved to be a great improvement. The IPC framework available at

the CARMEN community proved reliable except for some limitations regarding the transmission of

large messages at a high frequency. This was overcome with the development of a mixed method

that involved the well known shared memory intercommunication together with IPC structures and

functions.

The modular architecture allows to continuously increase the system complexity without chang-

ing whatever was previously implemented. Besides this scalable nature, the resulting architecture

represents a unified approach that makes it hardware-independent where each machine simply relies

on small specific modules. The implementation of the LARtk described in this section will focus

particularly on image efficient transfer among processes for real-time autonomous navigation.

The increasing affordability of more advanced sensors and devices induces researchers to include

them on their mobile robots for more robust perception and navigation abilities. However, and due

also to the disparity of standards and protocols, adding up off-the-shelf equipment along with custom

designed boards or devices is not always a straightforward task. Moreover, keeping the pace in

software development when there are changes in the team of programmers is often a nuisance for

project managers.

4.3.1 Information Exchange

The information exchanged among modules must be classified so that a module receives only what

it actually requires, and not everything else. This is accomplished by encapsulating information into

messages. A module interested in some particular information can then ask to receive a specific

message. On the other hand, a module that produces some specific output can periodically send a

message containing a certain type of information. Message exchanging can be done in several ways.

The simplest method is called publish/subscribe (Figure 4.6).

In this scenario, the publisher module generates information that is packed into a message of type

"A". All modules interested in the information contained in message type "A" should subscribe to it.

When that information is available, the publisher module publishes the message and it is dispatched

by IPC to all modules that have previously subscribed to it. One disadvantage of this setup is that it

Figure 4.6: A simple publish subscribe setup.

Miguel Armando Riem de Oliveira Ph.D. Thesis



4.Software Architectures 89

Figure 4.7: An example of a time sequence (vertical axis) of a publish/subscribe message exchange.

The publishing module (on the left) has a faster cycle time (represented by the brackets) than the

subscriber module (on the right). Because of this, the subscriber module receives two messages while

it is still processing the first one.

is required that the subscriber module handles all the received messages. This may become critical if

the publisher module has a shorter cycle time than the one of the subscriber. Figure 4.7 shows a case

where this occurs.

In this scenario, since the subscriber takes very long to process the messages, there is going to

be a growing queue of messages that, at some point, will overflow and cause the IPC central module

to crash. This was observed in practice, especially for large messages (hundreds of kilobytes). The

publish/subscribe message exchange methodology should be considered only if the subscriber module

is faster than the publisher, or if the handling of the message reception performed by the subscriber

is a very fast routine. For this reason, it is not advisable to send large messages containing laser

scans or especially images using this methodology. The publish/subscribe method is appropriated

for exchanging only small size messages or for fast processing modules. However this is not always

the case. For example, the cameras installed on AtlasMV robot produce 320× 240, 3 channels RGB

images at 30 Hz. This means that a module performing image acquisition generates approximately 7

Megabytes of information every second. Also, the subscriber modules that perform image processing

tend to be the slowest. In laboratory experiments, publishing such a large amount of information

caused IPC to overload and crash during our tests. This occurred especially when the subscriber

Miguel Armando Riem de Oliveira Ph.D. Thesis



90 4.Software Architectures

Figure 4.8: A query respond with heartbeat setup.

module was not able to handle the information flow on time. These limitations can be solved using a

second methodology available in IPC: the server query paradigm. In this case, the server module will

send a message only when asked for by the querier module. Hence, the frequency of message traffic

is defined by the receiver module, the querier.

To support this message exchange configuration, three messages types are defined: a heartbeat,

a query and a response message (Fig. 4.8). The heartbeat message is sent by the server module

and indicates that new information is available. It it is a very small message, a mere notification

to whomever is interested that new information is ready to be sent on request. Heartbeat messages

are broadcasted by the server module, using the publish/subscribe methodology and because they

are small they can be sent to many subscribers at high frequencies. The query message is also very

small. It is sent by the querier module to the server in a peer to peer communication. After sending

the query message, the query module waits for the response. The response message can be large

(could contain an image, for example), and is sent by the server to the query module only in reply

to a query. The response also works based on a peer to peer mechanism. The response message

is where the actual information is sent, both heartbeat and query messages serve message traffic

management purposes. Though more complex, this setup is particularly useful for transmitting large

messages since that transmission only occurs when the querier module actually needs the information,

reducing unnecessary message traffic. If the querier module is faster than the server module, heartbeat

messages ensure that no query is done unless new information is available on the server side. The

flow of messages is shown in Fig. 4.9. Heartbeat and queries are control messages that synchronize

both modules so the information is exchanged only when actually needed. The complexity increase

is compensated by the reduction of large message traffic. This setup should only be employed when

the messages to be exchanged are large.

The disadvantage of the heartbeat/query/response method presented in Figs. 4.8 and 4.9 is that

because messages are queried by a specific module, the server must send a response message for each

specific query, since both the query and the response messages are implemented via a peer to peer

communication. If the server module is meant to send large amounts of information to several querier

modules, the message traffic would increase as many times as the number of receiving modules. The

combination of the number of query modules and the message size may reach a point where the server
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Figure 4.9: A query response time flow. Heartbeat messages (dotted line) are published whenever

the server module (on the left) generates new information. The query module (on the right) queries

the information (dashed line) only when it actually requires it. A query message is followed by a

response message with the actual data.

module may not be able to respond to all queries on time.

To solve this particular problem, a new method has been devised using the functionalities of IPC’s

marshall unmarshall routines. In this particular information exchange setup, the server module allo-

cates a shared memory segment with the size of the message, and then stores the message directly onto

the shared memory by marshalling the data into the memory address. After this operation, a heartbeat

message is published indicating that new information is available. The query module attaches to the

memory segment and unmarshalls the information to local structure. For the query module to attach

to the shared memory, the address and size of this memory must be known. For this purpose a new

message is defined containing the required shared memory information. This message is queried to

the server during the initialization procedures of the query module. Afterwards, whenever a heartbeat

is received, the query module may, whenever it requires new information, unmarshall the data from

the shared memory address and work with a copy of the data. This procedure is shown in Fig. 4.10.

A limitation of this method is that, because it is not based on TCP/IP, it does not work when

the processes run on separate machines. Another glitch is that on large messages, there is some

possibility that the query module may be still reading part of the message while the server is writing.

This may lead to reading messages that are actually a combination of two different messages. In our

particular case, since we use this setup mostly to transfer images, this is problematic. Nonetheless, this
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Figure 4.10: A query response time flow using shared memory. The query module (on the right)

queries for the shared memory id (dashed arrow). The server module (on the left) responds with

the information (dotted arrow). The query process then attaches itself to the shared memory and

unmarshalls the data whenever a heartbeat is received.

method is very efficient for transferring large messages across multiple processes, since it addresses

the majority of the problems present in the previous setups.

4.3.2 Data Logging and Playback

In order to allow simulation with real data, a logger/playback software was developed. The software

logs IPC messages that are transmitted by the sensor modules into data files; the software was in-

spired in the CARMEN logger module but uses a different data storage method. Each log consists

of two files, the first serves as a header file (logheader) containing only witch messages were logged

and their timestamps, the second file contains the contents of the messages (logdata). Messages are

first marshalled into to a byte array and then saved on the data file, the position in the file where the

byte array starts is also saved in the log header file. The logger is able to log simple publish-subscribe

messages and also more complicated query-server messages such as the ones exchanged through a

shared memory (when efficiency is required). The playback module starts off by indexing all mes-

sages in the log header file and once playback starts it reads the necessary message data, converts it

back from byte array to message format, and publishes it. Using this method, modules that subscribe

the logged messages do not know that they are using logged data and not real time data, and thus

allows for simulation with real data.
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4.4 The LARtk on the AtlasMV

The LAR toolkit software architecture was implemented on the AtlasMV in 2009. By 2011, the

robustness and efficiency of the architecture led to the implementation on the Atlas2000. This section

describes the modules, i.e., the processes, that are usually run on the AtlasMV, using the LARtk

infrastructure for message exchanging. The modules can be roughly divided into three categories:

hardware interface, perception and planning. The first is responsible for the interaction with the

hardware: data acquisition and motor command. The perception layer processes the acquired data.

The last category is dedicated to the reasoning capabilities of the robots. It makes use of all the

detected features and, based on the context, will plan and execute the robot’s behavior.

The camera acquisition module (Fig. 4.11) communicates with IEEE 1394 Firewire cameras

using the libcd1394 library. This library provides a complete high level application programming

interface for developers who wish to control IEEE 1394 based cameras that conform to the 1394-

based Digital Camera Specifications. All three message exchange formats were developed for the

LARtk. The most commonly used is the query respond based on shared memory.

This module also controls the camera parameters. Brightness, saturation, white balance, shutter

speed and others can be set in real time. The module is also capable of handing out distortion corrected

images taken from wide angle lens cameras, given a chessboard calibration output. On-board the

AtlasMV three instances of this code are running simultaneously, one for each camera.

The laser acquisition module (Fig. 4.12) acquires laser data from the laser and sends the infor-

mation to other modules. The laser on-board the AtlasMV uses SCIP2.0 communication protocol

standard. The manufacturers API was used to develop this module.

Several parameters can be set at startup: angular resolution, start/end scan angle, among others.

It is also possible to use any one of the three information exchange methods.

The PTU control module (Fig. 4.13) is slightly different from the two previous ones. While

the laser and camera acquisition modules only send information to other modules, the PTU control,

besides sending the status of the device, also receives command messages. The PTU status messages

indicate the position speed and acceleration of the joints. Command messages are used to command

the PTU to a particular position. Hence, this module is capable of commanding the pan and tilt unit

Figure 4.11: The Camera acquisition module.
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Figure 4.12: The laser acquisition module.

based on orders received from other modules.

Figure 4.13: The PTU control module.

Because both the status and command messages are small, only the publish/subscribe method has

been implemented. If a module requires information on the state of PTU it subscribes to the state

messages. If, on the other hand, a module wishes to command the PTU position or speed, it should

publish a command message. During startup, the PTU control module subscribes to the command

message. It is actually possible to have different modules competing for the command of the PTU if

they both send command messages. The PTU module will receive all the messages and execute them

sequentially by order of arrival.

The base module (Fig. 4.14) is responsible for interfacing with the robot motors and electronics.

Similarly to the PTU control, this module is also a publisher since it sends robot status messages and

a subscriber because it abides to command messages.

Command messages define the steering and speed of the robot. The AtlasMV base module com-

Figure 4.14: The base module.
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Figure 4.15: The remote operation module.

municates with robot electronics using RS232 communications protocol. It translates that information

given in the command messages to the specific robot hardware communication protocols. In this way,

if a different robot is used, most of the code remains unchanged, and only a different base module

is written to translate command messages to hardware specific orders. This module also publishes a

status message containing information about the robot current speed, steering angle, lights’ state and

digital inputs readings.

The remote operation module (Fig. 4.15) is a driver module for a gamepad or joystick. It allows a

user to remote control the robot. Actions on the gamepad are translated to a robot command message.

The module does not have any specific publication/subscription routines. It simply makes use of the

routines implemented by each of the modules it wants to control. Using this module it is possible to

remote control the speed, steering, lights and the Pan and Tilt Unit (PTU).

The Sound Player module (Fig. 4.16) is capable of generating audio output. For synchronization

purposes, it can also inform other modules if it is busy playing a sound. Any module can require a

sound message to be played by publishing a sound command message which defines identification

of the media to be played. Upon receiving the command, the sound player makes use of Libao

library functions to reproduce it. The sound player module indicates its status (busy or available) by

publishing a status message. This module allows improved user/robot interactivity and also provides

debug facilities.

The inverse perspective mapping module (Fig. 4.17) subscribes image from two cameras and the

PTU status. It fuses the images from the cameras by projecting them to the ground plane. The PTU

Figure 4.16: The sound player module.
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Figure 4.17: The inverse perspective mapping module.

status is used to assess the position of the cameras with respect to the ground plane: because cameras

are mounted on the PTU, camera positions are a function of the PTU’s orientation. In a late version,

this module also subscribes to laser messages to produce a laser assisted inverse perspective mapped

image. It creates a common reference representation of the measurements taken, whether they are

images or range scans.

The module can fuse several images captured from multiple cameras along with laser information,

generating enhanced images of the road, in a birds eye view perspective. This algorithm will be

described in detail in chapter 5. Figure 4.18 shows an inverse perspective mapped image obtained by

merging the images of two different cameras. This module uses a rectangular region, to define the area

where the robot is interested on receiving sensory data. If one particular sensor collects information

from outside this area, this information is clipped from the fused image. The ultimate goal of this

task is to find a common representation for a multitude of sensor types and/or configurations. This

ensures that, no matter the specific sensorial setup of a given robot, it is reshaped into a common

reference. The advantage here is that subsequent modules (like feature extractors, road detectors,

obstacle detectors) can rely on a constant, predefined representation of the data and work without

need for reconfiguration.

Figure 4.18: The output of the inverse perspective mapping module.
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4.5 The ROS on the AtlasCar

For the purpose of launching multiple nodes, the ROS launch tool is used. Roslaunch is a tool for

easily launching multiple ROS nodes locally and remotely via SSH, as well as setting parameters on

the Parameter Server. It includes options to automatically respawn processes that have already died.

Roslaunch takes in one or more XML configuration files (with the .launch extension) that specify the

parameters to set and nodes to launch, as well as the machines that they should be run on. Roslaunch

launches local processes and kills them using POSIX signals, but it does not guarantee any particular

order to the startup of nodes.

For the moment, the software running on the AtlasCar runs on a single machine. The software

nodes are organized in groups according to the functionalities they provide. It launches all modules

that are related to the vehicle’s electronics, as well as some core functionalities that are required to

be running before other nodes are launched. For convenience, nodes and messages names are also

organized using name spaces. There are several name spaces defined, for instance: /vhc the vehicle

name space is for entities related with the vehicle’s electronic modules or mechanical structure; /trf

the transformations name space, which is employed where information is related to the coordinate

frames of the robot.

4.5.1 Coordinate Frames

The AtlasCar uses the ROS framework. Because it is equipped with many sensors, several coordinate

frames were defined in the vehicle. Some extra coordinate frames were defined to facilitate the

measuring of transformations with respect to others, or to incorporate ego motion estimation.

The on-board coordinate frames represented in Fig. 4.19 are described bellow:

• Coordinate frames from sensors are contained in the sensor messages frame identification

fields:

/atc/laser/right_bumper, defined at the center of the Sick LMS 151 laser mounted on the

right side of the vehicle;

/atc/laser/left_bumper, defined at the center of the Sick LMS 151 laser mounted on the left

side of the vehicle;

/atc/laser/center_top_roof, defined at the center of the Hokuyo UTM30LX laser mounted

on the roof of the vehicle, pointing towards the road;

/atc/imu/xsens, defined at the inertial measurement unit, located on the roof of the vehicle;

/atc/camera/xb3/right, the right camera of the trinocular stereo pair, on the roof of the

vehicle facing the road in front;

/atc/camera/xb3/center, the center camera of the trinocular stereo pair, on the roof of the

vehicle facing the road in front;
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(a)

(b)

Figure 4.19: A diagram of the several coordinate frames defined on the AtlasCar.(a) isometric view;

(b) top view; The XYZ axis are represented in red green and blue colors respectively.

Miguel Armando Riem de Oliveira Ph.D. Thesis



4.Software Architectures 99

Sensors

S te reo  Camera

Lasers

Active Perception Unit

Auxiliary Frames

Egomotion

ptu /base ptu/pan_block ptu/tilt_block

cam/peripheral

cam/foveated

vhc/bumper

las/3D

imu/xsens

las/left

las/right

las/roof

scam/xb3/r ight

gps/magelan

vhc/lwheel

vhc/ rwheel

scam/xb3/center

scam/xb3/left

world

vhc/rear_axis vhc/ground

vhc/center_axis

Figure 4.20: A diagram of the tree structure of all the coordinate frames define on-board the AtlasCar.

/atc/camera/xb3/left, the left camera of the trinocular stereo pair, on the roof of the vehicle

facing the road in front;

/atc/camera/flea/peripheral, the wide angle camera mounted on top of the pan and tilt unit;

/atc/camera/flea/peripheral, the tele-objective camera mounted above the peripheral ca-

mera;

• Mobile Coordinate frames may move over time and provide greater coverage of the scene by

the sensors mounted on top of these platforms:

/atc/laser/roof_rotating, defined at the center of the Sick LMS 200 laser mounted on

the rotating platform located on the roof of the vehicle. This frame rotates around the

/atc/laser/roof_rotating_base frame;
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/atc/ptu/pan_block, rotates around the /atc/ptu/base according to the pan angle;

/atc/ptu/tilt_block, rotates around the /atc/ptu/pan_block according to the tilt angle;

/atc/vehicle/left_wheel, defined at the left wheel of the vehicle, changes position according

to the steering wheel.

/atc/vehicle/left_wheel, defined at the right wheel of the vehicle, changes position accord-

ing to the steering wheel.

• Auxiliary coordinate frames are frames defined for convenience, they facilitate measuring static

transforms or are useful for analysing coordinates of objects with respect to the vehicle:

/atc/ptu/base is the support coordinate frame for the PTU equipment;

/atc/laser/roof_rotating/base, the support coordinate frame for the rotating laser equip-

ment;

/atc/vehicle/center_bumper, useful for assessing how distant are objects from the front of

the vehicle;

/atc/vehicle/ground, useful for assessing if objects lie on the road plane;

/atc/vehicle/rear_axis, used for ego motion estimation.

The connection tree that defines every sub transformation between pairs of coordinate frames is

shown in Fig. 4.20. As seen, there are many coordinate frames defined for the AtlasCar. The ROS

framework helps to keep track of every defined coordinate frame and makes transformations from any

coordinate frame transparent to the programmer.

4.5.2 Vehicle Interface and Control

The first group of modules is the vehicle and transformations layer, represented in Fig. 4.21. The

launch files for this layer sets a global parameter of interest to many other modules, the location in

the operating system of the URDF file. The following nodes are launched:

• device_mapper is a node which maps the devices connected to the computer. Many of the

mounted sensors communicate via USB. The Linux operating system mounts the USB devices

in /tty/USB{number} ports. Since the order of mounting is arbitrary a specific equipment may

be mounted on any of the ports. The device_mapper node reads a description of the robots

sensors and compares it with the ports mounted in the operating system. The description is

done in a xml file where several attributes may be specified for each sensor. Normally, only

the serial number of the sensor is required. The device_mapper compares each of the sensors

description against all mounted ports, when serial numbers match, it creates a global parameter

indicating that the equipment should connect to the identified USB port;
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Vehicle Electronics Interface (/vhc)

Coordinate Frames Transforms (/trf)

Vehicle Manual Control (/vhc)

Device Mapper

/device_mapper

/vhc/driver/node /vhc/driver/status

/vhc/gamepad/direct
/vhc/plc/command

/vhc/joints_gui /trf/joints

/vhc/velocity/node /vhc/velocity/status

/ t r f / robot_sta te /trf/frames

/vhc/plc/node /vhc/plc/status

/vhc/gamepad/high

Figure 4.21: The Computation graph of the Vehicle Electronics Interface, Vehicle Manual Control,

Coordinate Frames Transforms and Device Mapper layers. These are basic functionalities of the

AtlasCar. In this diagram, nodes are represented as ellipses and messages as rectangles.

• Vehicle Electronics Interface, /vhc name space, groups all the interface nodes that communicate

with the vehicle electronics:

/vhc/plc/node is the node responsible for communicating with the Programmable Logic

Controller (PLC) device. Communications are based on Ethernet protocol. The node pub-

lishes /vhc/plc/status messages, where all the information collected from the PLC is contained.

The PCL provides information about the pedals, steering wheel and gearbox actuator sys-

tems: pedals and steering wheel positions, gearbox position, the state of the headlights, tail

lights, turn signals and emergency light; This node also sends command orders to the PLC,

to set the vehicle’s speed, direction, and others. For this purpose, the node subscribes to the

/vhc/plc/command message. Hence, any node may directly control the vehicle by publishing

these control messages;

/vhc/driver/node is a node that communicates through Ethernet protocol with a custom

designed electronics board. The board collects data about the drivers behaviour, namely it

measures the force that the driver is using to push the pedals and steering wheel. It is de-

signed to collect data from the human driving behaviour. The node publishes /vhc/driver/status

messages;

/vhc/velocity/node is a node that communicates with an electronic board that reads the

encoder mounted on the rear left wheel of the car. Communications are based on Ethernet, and

the node publishes the measured velocity of the vehicle in the /vhc/velocity/status message;

• Vehicle Manual Control, /vhc name space, groups all the nodes that enable a manual control of

the vehicle:

/vhc/gamepad/direct is a node that communicates with common joystick gamepad and

sends the user inputs to the /vhc/plc/node through the /vhc/plc/command message. The position
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of the sticks in the gamepad are mapped to the desired position of the pedals and steering wheel;

/vhc/gamepad/high is a node that communicates with common joystick gamepad and sends

the user inputs to the /vhc/plc/node, just like the /vhc/gamepad/direct node. The difference is

that this node implements a high level control of the vehicle for the desired speed. The position

of the sticks is not directly linked to the position of the pedals. Instead, the user input defines

the desired speed and accordingly the /vhc/plc/node computes the desired clutch, throttle and

brake pedal positions;

/vhc/joints_gui is a node that enables the user to manually define the position of the joints;

• Coordinate frames transforms, /trf name space, groups all nodes that manage the transforma-

tions between the on-board coordinate frames. The /trf/robot_state is a robot state publisher

node [Meeussen 2012]. The robot state publisher package computes the transformations asso-

ciated with every coordinate frame of a robot. The package takes the joint angles of the robot

(in this case in the form of /trf/joints messages) as input and publishes the 3D poses of the robot

links as /trf/frames messages, using a kinematic tree model of the robot defined in URDF file.

This node runs an instance of the robot state publisher configured for the AtlasCar.

4.5.3 Cameras

The cameras mounted on top of the PTU, the right roof peripheral and right roof foveated cameras,

are grouped into the cameras layer, name space /cam. Figure 4.22 shows the computation graph. Each

camera functionality contains a /snr/cam/node, a camera1394 package [O’Quin & Tossell 2012] that

is responsible for capturing images from the camera, setting image resolution, white balance, satura-

Right Roof Peripheral Camera (/snr/cam/0)

Right  Roof Foveated Camera ( /snr/cam/1)

/snr/cam/1/node

/snr/cam/1/camera_info

/snr/cam/1/ image_raw

/snr/cam/1/image_proc

/snr/cam/1/image_rect

/snr/cam/1/image_rect_color

/snr/cam/1/image_color

/snr/cam/1/image_mono

/snr/cam/0/node

/snr/cam/0/ image_raw

/snr/cam/0/camera_info

/snr/cam/0/image_proc

/snr/cam/0/image_rect

/snr/cam/0/image_rect_color

/snr/cam/0/image_mono

/snr/cam/0/image_color

Figure 4.22: Camera layer computation graph.
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tion, and every other camera parameters. This node publishes the images in the /snr/cam/image_raw

messages, as well as information about the calibration of the camera in the /snr/cam/camera_info

message. The calibration information contains the intrinsic parameters of the camera, as well as

the pinhole model distortion coefficients. It is obtained using an Open Source Computer Vision

Library (OPENCV) [Asbach et al. 2012] chessboard calibration, available in the camera calibration

package [Bowman & Mihelich 2012], and stored in a calibration file. In runtime, the calibration file

is read and /snr/cam/camera_info messages are published.

The /snr/image_proc node [Mihelich et al. 2012a] is meant to lay between the camera driver

and vision processing nodes. It removes camera distortion from the raw image stream, publishing

/snr/cam/image_rect messages, and, if necessary, converts Bayer or YUV422 format image data to

color. It publishes both color and mono images, and also supports real time compression of images

before publishing.

4.5.4 Stereo Camera

The stereo camera layer uses the /scam name space. It is composed by two stereo pairs based on

the three cameras of the XB3 camera. The first stereo pair is constituted by the left and center

Point Grey Research Bumblebee XB3 Stereo Camera (XB3) cameras. It has a smaller baseline

and is called short (name space /snr/scam/short). The second stereo pair, designated wide (name

space /snr/scam/wide) is composed by the left and right cameras of the XB3 device. Both stereo

pairs are calibrated using the camera calibration package [Bowman & Mihelich 2012]. Figure 4.23

shows the computation graph of the stereo processing layer. The /snr/scam/xb3 node communicates

with the camera using IEEE1394 protocol. It publishes four image messages, two for each stereo

pair, as well as camera_info messages for each image. The short and wide stereo processing nodes

(/snr/scam/short/stereo_image_proc and /snr/scam/wide/stereo_image_proc) [Mihelich et al. 2012b]

compute the rectified images using the information of the camera_info messages, and use them

to compute the disparity images (/snr/scam/ short/stereo_image _proc/disparity and /snr/scam/wide

/stereo _image_proc/disparity) and 3D point clouds (/snr/scam/short/stereo _image_proc/points2 and

/snr/scam/wide/ stereo _image_proc/points2).

Figure 4.24 shows the disparity maps obtained using the stereo processing layer. Figure 4.25

shows the 3D point clouds obtained using the stereo processing layer.

4.5.5 Pan and Tilt Unit

The PTU layer is organized as depicted in Fig. 4.26. The /snr name space refers the sensors, the

/snr/ptu/ctrl is related to the control of the PTU. There are two distinct methods for controlling the

PTU position. The first is to directly impose the angle of the joints. This is referred to as direct

control. The second is called foveation control, where the cameras mounted on top of the PTU must

point towards a given a 3D position, the target. This functionality is useful when detailed visual
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Stereo Camera  Base  (snr /scam)

Short Pair  Stereo Processing (/snr/scam/short)

Wide Pair Stereo Processing (/snr/scam/wide)

/snr/scam/wide/stereo_image_proc

/snr/scam/wide/left / image_rect

/snr/scam/wide/right/image_rect_color

/snr/scam/wide/disparity

/snr/scam/wide/left/image_color

/snr/scam/wide/left/image_rect_color

/snr/scam/wide/points2

/snr/scam/wide/right/image_color

/snr/scam/wide/right/ image_rect

/snr/scam/wide/right/ image_mono

/snr/scam/wide/left / image_mono

/snr/scam/short /s tereo_image_proc

/snr/scam/short/right/image_rect_color

/snr/scam/short/left/image_rect_color

/snr/scam/short /points2

/snr/scam/short/ left / image_mono

/snr/scam/short/disparity

/snr/scam/short /r ight/ image_mono

/snr/scam/short /r ight/ image_rect

/snr/scam/short/right/image_color

/snr/scam/short/left/image_color

/snr/scam/short/ left / image_rect

/snr/scam/xb3

/snr/scam/wide/left / image_raw

/snr/scam/wide/right/camera_info

/snr/scam/short/left/camera_info
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Figure 4.23: Stereo camera layer
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(a) (b) (c)

Figure 4.24: Stereo processing on the AtlasCar. (a) the image from the left camera, common to both

stereo pairs; (b) the disparity image of the short stereo pair; (c) the disparity image of the wide stereo

pair.

(a)

(b) (c)

Figure 4.25: Point clouds obtained from stereo. (a) fake colors showing the stereo pair provenience

of each point (red short, green wide pair) ; (b) and (c) the same scene with true textures.

information of an object is required. The object might be detected by the lasers, for example, and

given its 3D position, the foveation controller can position the cameras to capture high level of detail

images of the object.

• /snr/ptu/node is the node that communicates through RS232 protocol with the PTU. It controls

the PTU position according to /snr/ptu/command messages, which may come from the direct
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PTU Control By Target (/snr/ptu/ctlr/bytarget)

PTU Direct Control (/snr/ptu/ctlr/direct) PTU Hardware Driver (/snr/ptu/)

Foveation Control (/snr/ptu/)
/snr/ptu/ctr l /bytarget /snr /ptu/c t r l /bytarget / target

/snr /ptu/command /snr /p tu/node

/snr/ptu/foveation_control

/ trf /frames

/snr/ptu/ctrl/direct

Figure 4.26: The computation graph of the PTU control layer.

Figure 4.27: Direct control of the PTU.

control or the foveation control nodes.

• /snr/ctrl/direct sets the PTU joint angles directly through the /snr/ptu/command message.

• /snr/ctrl/foveation_control sets the PTU joint angles through the /snr/ptu/command message

so that the cameras mounted on top of the PTU point towards a 3D position given by the

/snr/ptu/ctrl/bytarget/target message.

• /snr/ctrl/bytarget defines the target position for the /snr/ptu/foveation_control

Figure 4.27 shows some images where the PTU is controlled using direct control, and Fig. 4.28

shows a foveation control sequence.

4.5.6 Planar Laser Range Finders

The laser processing layer includes the three fixed lasers: bumper left and right and center top

roof. The Sick LMS 151 lasers, name spaces /snr/las/2 and /snr/las/3, use the LMS1xx pack-

age [Banachowicz 2012]. Communications are base of Ethernet protocol. The Hokuyo UTM30LX

laser, name space /snr/las/0, uses the ROS Hokuyo laser driver [Gerkey et al. 2012]. Figure 4.29

shows the computation graph of the lasers layer.
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(a) (b) (c)

Figure 4.28: PTU foveation control. In this sequence, the target marker (green ball) is moved from

right to left (top to bottom sequence in the figure); (a) a 3D visualisation of the PTU and the marker;

(b) the image from the peripheral camera; (c) the image from the foveated camera.

Center Top Roof Laser (/snr/las/1)

Left Bumper Laser (/snr/las/2)

Right Bumper Laser (/snr/las/3)

/snr/ las/3/node /snr/las/3/scan

/snr/ las/2/node /snr/las/2/scan

/snr/ las/1/node

/snr/las/1/scan

/snr / las /1 /node/parameter_updates

/diagnostics

/snr/ las/1/node/parameter_descript ions

Figure 4.29: Planar laser range finders layer.
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Roof Rotating Laser (/snr/las/0)

Rotating Device Electronics (/snr/las3d)Rotating Device Control (/snr/las3d/ctrl)

/snr/las3d/ctrl /node /snr/ las3d/command /snr/ las3d/node /trf/joints

/snr/ las/0/node /snr/las/0/scan

Figure 4.30: The computation graph of the 3D laser range finder layer.

4.5.7 3D Laser Range Finder

The 3D laser is mounted on the roof of the AtlasCar. Figure 4.30 shows the corresponding compu-

tation graph. Laser scan messages (/snr/las/0/scan) are provided by the /snr/las/0/node, a driver that

communicates with the laser using RS422 serial protocol [Derenick 2012]. The rotating device is

controlled by the /snr/las3d/node using RS232 serial protocol. This node publishes the rotation angle

as a /trf/joints message. It subscribes to snr/las3d/command messages that define the desired position

or a constant rotation speed. The /snr/las3d/ctrl/node uses a RVIZ graphical user interface to let the

user select the desired position or velocity. Figure 4.31 shows four laser scans of a scene obtained

with different rotations on the device.

Using the ROS framework, the reconstruction of 3D point clouds is straightforward. Since the

/snr/las3d/0/node is continuously publishing /trf/joints messages, the /trf/robot_state node (see Fig.

4.21) uses this information to periodically publish transforms from the las/3D coordinate frame to

the /vhc/bumper coordinate frame (see Fig. 4.21). A node that is performing reconstruction accumu-

Figure 4.31: The laser scans obtained with the 3D laser on different positions.
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(a)

(b)

Figure 4.32: 3D reconstruction using the 3D laser on-board the AtlasCar. (a) reconstructed scene

obtained by the accumulation of several scans show in Fig. 4.31; (b) the same scene with fake colors.

lates laser scans and transforms each scan to a particular vehicle coordinate frame (for example the

/vhc/bumper). Since each laser scan message has an associated time stamp, the transformation of each

scan will be performed with respect to the corresponding the laser position at that time, generating a

3D point cloud (section 4.2.3). Figure 4.32 shows the reconstructed scene obtained by accumulating

several scans.
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4.5.8 Multi Target Tracking

The AtlasCar uses an adaptation of a Kalman filter based algorithm [Almeida & Santos 2010], that

was developed for tracking objects on a single laser scan, i.e., on a single plane. In the AtlasCar, four

different laser scanners produce different scans in different planes, as shown in Fig. 4.33. Figure 4.34

shows the computation graph of the multi target tracking layer. All laser scan messages provided by

the laser layer are subscribed by the /pcp/fus/planar_pc/node node. This node will fuse the informa-

tion from the laser scans based on some parameters. First, a tracking plane is defined. The tracking

plane is the plane where laser measurements are considered, drawn in Fig. 4.33. The node filters out

all points from the laser scans that have a distance greater than a predetermined threshold, and ac-

cumulates the remaining laser scans points into a single 3D point cloud (/pcp/fus/planar_pc/points).

Thus, it is possible to make use of portions of laser scans that have scanning planes not coincident

with the tracking plane. Figure 4.35 shows and example of the filtering mechanism of the planar

point cloud fusion algorithm. The /pcp/trk/mtt/node uses the /pcp/fus/planar_pc/points message to

track all obstacles viewed in a scene. Figure 4.36 shows a sequence where a group of persons moving

in front of the vehicle are tracked. The group of persons first appear behind the white vehicle and are

Figure 4.33: Multi target tracking. The four on-board laser scanners provide laser scans on different

planes: (yellow) right bumper laser; (blue) left bumper laser; (red) center roof laser; (magenta) rotat-

ing laser; The tracking is performed on a plane, in this case defined on the XY plane of the vehicle

center bumper frame, represented by the grey grid.
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Lasers

Generat ion of  planar  t racking data Multi  target tracking

/snr/ las/2/node /snr/las/2/scan

/ t r f / robot_sta te /trf/frames

/pcp/ t rk/mtt /node /pcp/ t rk/mtt / targets/pcp/fus/planar_pc/node /pcp/fus/planar_pc/points

/snr/ las/3/node /snr/las/3/scan

/snr/ las/1/node /snr/las/1/scan

/snr/ las/0/node /snr/las/0/scan

Figure 4.34: The computation graph of the multi target tracking layer.

classified as a single obstacle label 2155, since one of them is occluding the others (top row). In the

following sequences, the id of the group is kept since the obstacle 2155 is tracked.

(a) (b)

Figure 4.35: An example of the planar point cloud fusion. (a) a scene showing all the laser scans and

the tracking plane; (b) the same scene with the points included in the fused point cloud signaled as

green spheres.
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(a) (b)

Figure 4.36: A tracking sequence (top to bottom). (a) A 3D representation of the scene; (b) the image

taken from the scene.
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4.6 Conclusions

This chapter has described the CARMEN, LARtk and ROS software architectures. The LARtk soft-

ware architecture was employed in the AtlasMV robot series from 2009 onward, and the ROS frame-

work is now being used as the base architecture for the development in the AtlasCar. Both software

architectures have shown to be a significant advance in terms of code reuse, simultaneous develop-

ment, and debugging tools. Nowadays, ROS may be viewed as a standard for robotic development.

The application of this toolkit to the Atlas2000 and AtlasMV series has already started in 2012.
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Chapter 5

Inverse Perspective Mapping

The current chapter proposes a solution to address the limitations of the Inverse Perspective Mapping

(IPM) methodology. The algorithm works by finding the mappable pixels in the image through a

novel multi-modal framework. A polygon in the 3D road plane is obtained by the combined use of

image properties and a Laser Range Finder (LRF). The 2D and 3D information is then employed to

define the projection boundaries in the image and hence, the region of mappable pixels.

This chapter begins with an introduction to IPM (section 5.1), followed by a brief review of

the state of the art on the topic of IPM (section 5.2). Then, section 5.3 presents the classical IPM

algorithm. Relevant coordinate frames are introduced in section 5.4. The proposed approach is

described in detail in sections 5.5. Results and conclusions are given in sections 5.6 and 5.7.

5.1 Introduction

Over the past years IPM has been successfully applied to several problems in the field of Intelligent

Transportation Systems. In brief, the method consists of mapping images to a new coordinate system

where perspective effects are removed. The removal of perspective associated effects facilitates road

and obstacle detection and also assists in free space estimation. The current chapter addresses two

significant limitations of classical approaches for Inverse Perspective Mapping:

• the presence of obstacles on the road;

• the loss of mapping accuracy during hard turns or demanding brake or acceleration maneuvers.

These limitations can be solved using a multi-modal approach, where information from a laser

range finder is fused with the data from the camera. In this chapter, we will present an approach that is

also able to cope with several cameras with different lenses or image resolutions. Furthermore, it can

deal with dynamic viewpoints, i.e., to map images taken from moving cameras. As will be shown, the
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proposed algorithm reduces computation time and increases the mapping accuracy when compared

with the classical IPM.

The past decades have witnessed a high pace of development in video based road or lane detection

algorithms. These have achieved considerable improvements over the existing methods of traffic data

collection and road traffic monitoring as well as produced extensive applications in the related field of

autonomous vehicle guidance, mainly for determining the vehicle’s relative position in the lane and

for obstacle detection [Kastrinaki et al. 2003]. Over the last years, many researchers have employed

the IPM technique as a part of the presented algorithms.

IPM uses information from the camera’s position and orientation towards the road to produce a

bird’s eye view image where perspective effects are removed. The correction of perspective allows

much more efficient and robust road detection, lane marker tracking, or pattern recognition algorithms

to be implemented. In fact, it has been employed not only with the purpose of detecting the vehicle’s

position towards the road but also with many other applications (e.g., obstacle detection, free space

estimation, pedestrian detection).

Despite the dedicated attention from the research community, the classic IPM method still

presents some limitations when applied to the context of onboard road mapping. It works under

three core assumptions: flat road, rigid body transformation from the camera to the road and road free

of obstacles. Since the road plane must be coincident with the vehicle reference system (or a rigid

body transformation from one to the other is assumed), pitch and roll variations from the host vehicle

are neglected. The presence of obstacles such as other vehicles, buildings or pedestrians disrupt the

mapping of IPM, because all projected pixels are assumed to be on the road plane, including the ones

from the obstacles.

As will be shown, the inverse projection (image to 3D world, i.e., pixels to 3D points) has

a much higher computational cost than the direct projection (from 3D world to image). The

classical approaches presented for IPM make no considerations on this topic (e.g., [Aly 2008],

[McCall et al. 2004], [Muad et al. 2004]). In the current chapter, the calculations for finding the map-

pable pixels are made in the real world and then directly projected to the image. Results will show

that by computing a priori which pixels are to be inverse projected saves computation time as well as

increases the accuracy.

5.2 Related Work

Over the last decades, IPM has been successfully applied to several problems especially in the

field of Intelligent Transportation Systems. Although it was some years ago that authors be-

gan to mention the advantages of IPM (e.g., [Mallot et al. 1991], [Pomerleau 1995]), several re-

cent publications (e.g., [Ehlgen et al. 2008], [Fang et al. 2009], [Li & Hai 2011]) show that this

is still a topic of interest to the robotics, computer vision and intelligent transportation sys-
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tems communities. The core application of IPM is the determination of the vehicle’s posi-

tion with respect to the road, commonly referred to as road detection or lane marker detec-

tion. There are several examples of using IPM for assisting road detection in the literature (e.g.,

[McCall & Trivedi 2005], [Muad et al. 2004], [Dornaika et al. 2011], [Guo et al. 2009]). The usage

of IPM onboard a vehicle may also aid other automatic detection systems such as generic obstacle

detection [Bertozzi et al. 1997] [Bertozzi & Broggi 1998], free space estimation [Tuohy et al. 2010]

[Cerri & Grisleri 2005] pedestrian detection [Ma et al. 2007] [Broggi et al. 2008] or optical flow

computation [Tan et al. 2006].

The IPM method receives as input the image from the camera, the 6D position of the camera with

respect to the road reference system (i.e., extrinsic parameters), and a description of the properties of

the lens (i.e., intrinsic parameters). Under the assumption that the road ahead of the vehicle is flat,

that there is a fixed rigid body transformation from the camera to the road’s reference frames, and that

there are no obstacles present, the input image pixels are mapped to the road reference system and

a new image is produced where perspective effects are removed. The image that is produced by the

IPM will be henceforward named simply IPM image. Considering on-board road detection setups,

cameras are usually mounted somewhere close to the rear view mirror inside the vehicle, facing to the

road in front of it. The camera’s position and orientation induces perspective associated effects to the

captured road images. The IPM technique consists of transforming the images, mapping the pixels

to a new reference frame where the perspective effect is corrected. This reference frame is usually

defined on the road plane, so that the resulting images become a top view of the road. Figure 5.1(a)

shows an example of a road scene; Figure 5.1(b) depicts the input image captured by the camera; and

Fig. 5.1(c) represents the image produced using IPM.

One of the advantages of IPM is that the subsequent perception algorithms can be computed in

the IPM resulting image, that is defined in a new reference system in which the geometric properties

of road painted patterns are independent from the perspective of the camera, i.e., from the position of

the camera. In [Pomerleau 1995], the authors claim that the parallelization of road features is crucial

for curvature determination. Another advantage is that since the perspective effect associates different

meanings to different image pixels, depending on their position in the image, after the removal of the

perspective effect, each pixel represents the same portion of the road, allowing a homogeneous dis-

tribution of the information among the pixels of the resulting IPM image [Bertozzi & Broggi 1998].

Other authors have also employed steerable filters for lane markings detection and sustain that fil-

tering on the IPM image allowing a single kernel size to be used over the entire area of inter-

est [McCall & Trivedi 2005]. Furthermore, since images are mapped to a new reference system,

several cameras may be used to produce a single IPM image mosaicing. There are some multi-

camera IPM applications described in the literature [Bertozzi & Broggi 1998] [Guo et al. 2009]. It

should also be noted that IPM requires no explicit feature detection, which contributes to the ro-

bustness and also that some special dedicated hardware systems are being developed to perform this

Miguel Armando Riem de Oliveira Ph.D. Thesis



118 5.Inverse Perspective Mapping

(a)

(b) (c)

Figure 5.1: (a) A typical road scene with a camera mounted on the host vehicle facing the road. The

camera reference system is labelled XcYcZc and the road reference system is labelled XrYrZr. (b)

An example of an image captured by the camera. This image is used as input to IPM. (c) The output

image of IPM. Since the road is viewed from above no perspective distortion is present.

operation [Luo et al. 2009].

Given this, it is fair to say that IPM is a keystone in the development of on-board video processing

systems. It assists or is very frequently a primary step in road modelling, obstacle and pedestrian

detection, free space estimation and many other advanced drivers assistance systems.

Despite the advantages of IPM, the current state of the art on this method has some significative

limitations, especially due to the following classical assumptions:

• Assumption 1: there must be a fixed rigid body transformation from the camera to the road’s

reference system.

• Assumption 2: the road must be free of obstacles.

• Assumption 3: the road must be flat.

Regarding Assumption 1, since the road plane must be coincident with the camera reference

system (or a fixed rigid body transformation from one to the other is assumed), pitch and roll vari-

ations from the host vehicle are neglected. Pitch variations occur during demanding brake or accel-

eration maneuvers, while roll changes are expected to appear during hard turns. When the vehicle
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(a)

(b)

(c) (d)

Figure 5.2: Some examples of problems with the current IPM method. The input image (a) is pro-

jected with a small error in pitch estimation, which results in an IPM image where lines are not

parallel (c). In (b), the presence of other vehicles also disrupts the resulting IPM image (d).

rolls or pitches the cameras 6D position with respect to the road changes. This problem has been

identified in [Coulombeau & Laurgeau 2002], [Labayrade & Aubert 2003], [Dornaika et al. 2011]

[Nieto et al. 2007]. Hence, during these maneuvers, IPM’s effectiveness is expected to drop. In fact,

some authors claim that even a small error in the vehicle’s roll/pitch estimation leads to a massive

terrain classification error, forcing the vehicle off the road [Thrun et al. 2006a].

In respect to Assumption 2, the presence of obstacles such as other vehicles, buildings or pedes-

trians will disrupt the mapping of IPM, because all pixels from the input image are assumed to be on

the road plane. In automotive applications it is unfeasible to assume an obstacle free scenario.

Concerning Assumption 3, the approximation of the road surface to a plane is more acceptable.

Nonetheless, in some roads, this may also be a factor for low IPM accuracy. However, this problem

is less influent than the other two described before and is out of the scope of this chapter.
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Figure 5.2 shows IPM images produced with an error in pitch estimation (a) and (c). It also shows

a typical IPM image when other vehicles are present (b) and (d).

In sum, the IPM requires prior knowledge of the camera’s 6D position, namely, the geometric

transformation relating the cameras and road reference frames. This is equivalent to state that the

cameras position, orientation and intrinsic parameters must be known before hand. IPM is also com-

puted under the assumption that no other obstacles are viewed by the camera. These assumptions are

a core issue of IPM. If undertaken by mistake, due to the presence of other vehicles, pedestrians,

obstacles, or steep slopes in the road, the IPM produces wrong representations in the corrected image.

Let cRr be the classical 3× 3 rotation matrix in 3D and cTr be the 3× 1 translation vector in 3D

that relates two reference systems. Their combination maps a point in the 3D road reference system

Qr = [ X Y Z ]T to a point in the camera’s coordinate system Qc = [ X Y Z ]T :

Qc =
cRr ·Qr +

cTr. (5.1)

Let K be the intrinsic parameters matrix of a given camera, represented as:

K =

⎡
⎢⎣ αx β x0

0 αy y0

0 0 1

⎤
⎥⎦ , (5.2)

where αx and αy are the lens scaling factors in both directions, x0 and y0 the principal point coordi-

nates in pixels and β the skewness factor. These parameters can be obtained by an offline calibration

since they are constant for each camera-lens setup.

The projection of an arbitrary 3D point Q = [ X Y Z ]T to a point qh = [ u v w ]T in

the camera’s homogeneous image coordinate system, is described as:

qh = K · cRr ·Q + cTr, (5.3)

Finally, the coordinates of a pixel q = [ x y ]T are obtained by adjusting the homogeneous

coordinates with the scaling factor w:

q =
qh

w
. (5.4)

For simplification purposes, the current chapter will use the following notation:

K · cRr = P =

⎡
⎢⎣ p11 p12 p13

p21 p22 p23

p31 p32 p33

⎤
⎥⎦ , (5.5)

The above formulation may describe the projection of a point to a pixel in the image (direct

projection), or it may be used to obtain the 3D point from the pixel coordinates (inverse projection).
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The direct projection (dp) may be formulated as dp : R3 → Z2, Q → q. In the case of IPM,

what is sought is the 3D coordinates of a given pixel. This is the inverse projection (ip), defined as

ip : Z2 → R3, q → Q.

5.3 Classical Inverse Perspective Mapping

This section introduces the mathematical models used for IPM projections. Both the direct and inverse

projections are reviewed. the direct and inverse projections.

As discussed in 5.2, the direct projection aims at obtaining the pixel coordinates of a 3D world

point projected to the image. Equation (5.3) may then be rewritten as:

⎡
⎢⎣ u

v

w

⎤
⎥⎦ =

⎡
⎢⎣ p11 p12 p13

p21 p22 p23

p31 p32 p33

⎤
⎥⎦
⎡
⎢⎣ X

Y

Z

⎤
⎥⎦+

⎡
⎢⎣ t1

t2

t3

⎤
⎥⎦ . (5.6)

which can be arranged as:

⎡
⎢⎢⎢⎢⎣

u

v

w

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

αxD1 + x0D3 +X(αxR12 + x0R31) + Y (αxR12 + x0R32) + Z(αxR13 + x0R33)

αyD2 + y0D3 +X(αyR21 + y0R31) + Y (αyR22 + y0R32) + Z(αyR23 + y0R33)

D3 +XR31 + Y R32 + ZR33

⎤
⎥⎥⎥⎥⎦ ,

(5.7)

Using (5.4), we get the two equations that define the direct projection dp

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
x =

p11X + p12Y + p13Z + t1
p31X + p32Y + p33Z + t3

y =
p21X + p22Y + p23Z + t2
p31X + p32Y + p33Z + t3

, (5.8)

this system of equations defines the direct projection of a point in the world reference system Q =

[ X Y Z ]T to a pixel in image coordinates q = [ x y ]T .

The inverse projection is the problem of obtaining the real world coordinates of a point from a

pixel in the image. The problem is under-defined, since the three real world coordinates are sought

from only two pixel coordinates. In IPM, the system is completed by defining the plane onto which

the pixel is projected. Let an arbitrary plane, defined as:

Π : aX + bY + cZ + d = 0, (5.9)

be the plane that contains the projection of the pixel. The system of equations in (5.3) may be extended
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to include the constraint of the projection plane, defined in (5.9):

w

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x

y

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p11 p12 p13 0

p21 p22 p23 0

p31 p32 p33 0

a b c d

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X

Y

Z

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

t1

t2

t3

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (5.10)

rearranging this formulation, the equations for inverse perspective mapping can be obtained. First,

variable d may be moved inside the translation vector:

w

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x

y

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p11 p12 p13 0

p21 p22 p23 0

p31 p32 p33 0

a b c 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X

Y

Z

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

t1

t2

t3

d

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (5.11)

then, equation (5.11) may be rearranged:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−t1

−t2

−t3

−d

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p11 p12 p13 0

p21 p22 p23 0

p31 p32 p33 0

a b c 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X

Y

Z

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
− w

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x

y

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (5.12)

and finally, the vector of pixel coordinates can be embedded inside the projection matrix:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−t1

−t2

−t3

−d

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p11 p12 p13 −x

p21 p22 p23 −y

p31 p32 p33 −1

a b c 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X

Y

Z

w

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (5.13)

rearranging the system of equations results in the inverse projection (ip) of a pixel to a known plane:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X

Y

Z

w

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p11 p12 p13 −x

p21 p22 p23 −y

p31 p32 p33 −1

a b c 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−t1

−t2

−t3

−d

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (5.14)

this is a valid solution whenever matrix A is invertible and not singular. In other words, the projection

formulation is invalid when the projection plane and the image plane are parallel and the projection

plane is behind the image plane. The term behind will be clarified in section 5.5.1 with the introduc-

tion of the half space of projection.

5.4 Road and Vehicle Coordinate frames

In the classic IPM formulation the camera and road reference systems have a known fixed trans-

formation between them (Assumption 1). The IPM projection will transform the pixels from the

camera to the road reference system. When the road and camera reference systems are assumed

to be coincident (or with a fixed transformation), pitch and roll variations from the vehicle towards

the road are neglected. Pitch variations occur during demanding brake or acceleration maneuvers,

while roll changes are expected to appear during hard turns (e.g., [Coulombeau & Laurgeau 2002],

[Labayrade & Aubert 2003], [Dornaika et al. 2011]). Hence, in between these maneuvers, IPM’s ef-

fectiveness is expected to drop.

In the current chapter we propose to add an additional reference system, the vehicle reference sys-

tem. The vehicle reference system is fixed to the host vehicle. It is the reference system to which all

sensors on the vehicle are related. Therefore, a fixed, rigid body transform is used to perform trans-

formations between the camera and the vehicle reference systems. Hence, three reference systems

are used: the camera system XcYcZc, the road reference system XrYrZr and the vehicle reference

system XvYvZv. Figure 5.3 shows the reference systems for the vehicle, road and camera.

The general camera to road reference systems transformation was introduced in eq. (5.1). Let the

rotation and translation matrixes of equation (5.1) be assembled into a global transformation matrix
cHr in homogenous format, so that:

Qc =
cHr ·Qr, (5.15)

the global transformation from the camera to the road is obtained as the product of a fixed camera to

vehicle transformation and a dynamic (pitch, roll, therefore time dependent) vehicle to road transfor-

mation.
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Figure 5.3: A typical road scene. The host vehicle has a camera mounted on the roof. Note that the

figure shows the reference systems of both the vehicle and the road, since they may not coincide.

Qc =
cHv · vHr(t) ·Qr. (5.16)

In the general mathematical model proposed here, the classic IPM approach may still be used:
vHr(t) is constant for all values of t, i.e., the coefficients of (5.9) are defined to represent the XvYv

plane Πroad : ar = br = dr = 0 and cr = 1; or the road plane may be actually detected, if vHr(t)

is estimated over time using stereo or laser sensors pointed towards the road, i.e., some estimation

function of the parameters in (5.9) is running continuously. An example of real time estimation of

road to vehicle transformation is presented in [Sappa et al. 2008].

5.5 Proposed Approach

IPM is the application of (5.14) to the pixels in the image. However, in a given image, not all pixels

may be interesting or even possible to project. The current work addresses this problem by using a

laser sensor to detect mappable regions, together with a set of criteria to select which pixels should

be mapped. The following subsections present the different criteria used to find which pixels in an

image are possible to be projected.

5.5.1 Half Space of Projection

Expression (5.14) is the mathematical solution of the intersection of the optical ray of a given pixel

with the road plane. Because of this, a pixel above the horizon line in the image will be projected to

the back of the camera’s plane. Figure 5.4 shows the projection rays of two pixels, one is projectable

and the other should be discarded.
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Figure 5.4: An example of a pixel that cannot be projected (green) since its optical ray intersects the

road plane on the back of the image plane. Inversely, the pixel in red is projectable.

Although the presented solution is a valid mathematical solution, for the proposed model, how-

ever, the unprojectable pixels must be handled in accordance. This is done by first computing the

image plane. The image plane divides the three-dimensional Euclidean space into two parts. One of

them is called half space of projection. It is defined as the region of the Euclidian space where all

points contained by it may be virtually projected into the image plane. The image plane is defined as

Πimage : ai ·X + bi ·Y + ci ·Z + di = 0; it is obtained as follows: Let M0, M1 and M2 be three non

collinear points in the XrYr plane of the road reference system. As an example M0 = [ 0 0 0 ]T ,

M1 = [ 1 0 0 ]T and M2 = [ 0 1 0 ]T . The points are projected from the cameras reference

frame by means of the transformation matrix defined in (5.1). In the camera’s reference system, those

points are contained by the image plane and may be used to define two vectors whose cross product

defines the vector normal to the image plane:

⎡
⎢⎣ ai

bi

ci

⎤
⎥⎦ =

[
CRV ·M0 − CRV ·M1

]
⊗
[
CRV ·M0 − CRV ·M2

]
, (5.17)

where⊗ denotes the cross product. The remaining image plane parameter di is obtained by substitut-

ing in the plane equation one of the projected points:

di = −(ai ·X0 + bi · Y0 + ci · Z0). (5.18)
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Figure 5.5: The half space of projection computed after the image plane.

Having the parameters of the image plane, and a test point Qt = [ Xt Yt Zt ]T that is sure

to be inside the half space of projection (for example a point a couple of meters in front of the host

vehicle), a test is devised to assess if a point Q = [ X Y Z ]T belongs to the half space of

projection (denoted as Π+
image):

⎧⎨
⎩Q ∈ Π+

image, if (ai ·Xt + bi · Yt + ci · Zt + di)× (ai ·X + bi · Y + ci · Z + di) > 0

Q /∈ Π+
image, if (ai ·Xt + bi · Yt + ci · Zt + di)× (ai ·X + bi · Y + ci · Z + di) ≤ 0

.

(5.19)

The half space of projection in (5.19) is shown in Fig 5.5. It is used to define projectable polygons

in 3D, as detailed in the following sections.

5.5.2 Desired Area of Perception

For an autonomous system it is important to define the area of perception that it requires to effectively

navigate. A very large perception area increase the computational cost, while a small perception area

might make the system unfit to handle quick variations in the road scenario. This section addresses

the desired perception limits: how the programmer can effectively set an area of interest for the

host vehicle to perform the IPM operation. In the case of a vehicle travelling in urban scenarios for

example, perhaps 30 meters of view range are sufficient. The desired area of perception is formally

defined as a polygon ψdap in the road’s projection plane. This polygon must be contained in the half

space of projection (ψdap ⊂ Π+
image). Figure 5.6 shows an example of an area of perception.
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Currently, ψdap is set as a four vertices polygon, defining, in the road plane, a rectangle in front

of the host vehicle. The rectangle’s side in the direction of the vehicle’s movement may dynamically

increase size in depending on the vehicle speed.

5.5.3 Image boundaries

Besides the desired area of perception, other regions of the road plane must be defined in order to

perform an effective IPM operation. The camera lens properties and orientation towards the road

plane define a possible area of projection. Let γ be the list of pixels in the image boundaries, obtained

from all image pixels q that are in accordance with:

q =

[
x

y

]
∈ γ, ∀x ∈ {1,W} ∨ y ∈ {1, H}, (5.20)

where W , H are the image width and height respectively. The boundaries of the image are then

projected to the road plane using the inverse projection ip from (5.14), and the real world coordinates

of the image boundary pixels Γ are obtained. The half space of projection is again used to assert the

validity of 3D points.

Γ = ip(γ), ∀ip(γ) ∈ Π+
image (5.21)

The list of world points Γ are used to form the vertices of the polygon ψΓ (an illustration is shown

in Fig. 5.7).

Figure 5.6: The desired area of perception, polygon (ψdap) in green. All vertices of this polygon

should contained by the half space of projection, according to (5.19).
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5.5.4 Laser Generated Polygon

The IPM technique requires that the road surface seen from the cameras is flat. This might not always

be the case, particularly when other vehicles or obstacles lie on the road, as shown in the IPM resulting

images published by some authors [McCall & Trivedi 2005, Bertozzi & Broggi 1998, Aly 2008]. In

these examples, artifacts are generated in the regions of the image where the flat road assumption fails.

Vehicles are mapped as if they had been painted on the road (see Fig. 5.2 (b and d)). Some authors

have taken advantage of this phenomenon to detect obstacles in the road, by using the differences

in two IPM images, from a pair of stereo cameras [Bertozzi & Broggi 1998]. This method is called

stereo IPM. Although the latest is a valid approach, the fact is that calibration issues tend to disrupt

the perfect mapping of stereo images. Because of this, it may sometimes be difficult to distinguish if

disparities in the IPM stereo are due to a sub-optimum calibration or to an obstacle that lies on the road

surface. There is also work related to sensor integration using both vision and laser in autonomous

vehicles [Broggi et al. 2006], but in this case the objective was to enhance obstacle detection. Figure

5.8 shows a typical urban road scenario with several obstacles near the host vehicle.

Let Qlaser = [ Xlaser Ylaser Zlaser ]T be the 3D points obtained by the LRF, referenced in

the world coordinate system. Assuming that objects picked up by the laser are vertical, the coordinates

where obstacles touch the floor, i.e., the object baseline Qbln, is obtained by the vertical projection of

laser points onto the road plane:

Qbln =

⎡
⎢⎢⎢⎢⎣

Xlaser

Ylaser

−(ar ·Xlaser + br · Ylaser + dr)

cr

⎤
⎥⎥⎥⎥⎦ . (5.22)

The laser generated polygon ψlaser is defined by the list of vertices at generic coordinates given

Figure 5.7: The projection of image boundary pixels onto the road plane results in the image bound-

aries polygon (ψΓ).
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by Qbln.

5.5.5 Image Projection Polygon

As stated in the beginning of this chapter, the core of IPM method is the application (5.14) to the

pixels in the image that are known to be on the projection plane. The objective is to be able to define

for the input image which pixels are possible (and desirable) to map. The proposed approach defines

three polygons in the road plane: a polygon defining the desired area of perception (ψdap), a polygon

corresponding to the boundaries of the image (ψΓ) and a polygon defining the laser scanned objects

(ψlaser). The resultant projection polygon (ψprojection) is obtained by the intersection of the three

other polygons:

ψprojection = ψdap

⋂
ψΓ

⋂
ψlaser, (5.23)

where
⋂

represents polygon intersection. The projection polygon is composed of a list of vertices,

i.e., 3D points defined the road reference system. The vertices defined in the road reference system

are direct projected to the image plane using eq. (5.8). The result is a list of 2D vertices that define

a polygon in the image plane. This is called the image projection polygon. Inside the polygon are all

pixels that should be mapped using IPM. Since perspective transformation is an affine transformation,

the image projection polygon is calculated as the direct projection of the vertices of the projection

polygon in the road plane.

Figure 5.8: A typical urban road scenario with several obstacles near the host vehicle.
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(a)

(b)

Figure 5.9: A road scenario with several obstacles: isometric view (a) and top view (b). The pro-

jection polygon (ψprojection) is shown in red. It is obtained by the interception of the desired area

of perception (ψdap) in green, the image boundaries polygon (ψΓ) in blue and the laser generated

polygon (ψlaser) in yellow.

5.6 Results

Several experiments have been devised to obtain quantitative results of the proposed IPM method-

ology. First, the platforms used to obtain the results are presented: a dual camera pan and tilt unit

(PTU), a small scale robot and finally, a full scale autonomous vehicle. The computational perfor-

mance of the proposed approach is compared to the classic IPM using a measure of the accuracy of

IPM. Results are presented for the accuracy of the proposed approach. Also, a comparative study

of the classic IPM versus the laser assisted IPM shows that the accuracy of the latest is much bet-

ter when obstacles appear in the area of projection. Finally, this section ends with some qualitative

results, providing images of IPM from onboard cameras of a full scale vehicle.
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5.6.1 Test Platforms

In order to assess the performance of the proposed methodology, the AtlasMV and AtlasCar test

platforms where used (Fig. 5.10).

Figure 5.10 (a) shows the dual camera PTU. The servo actuated PTU controlled through RS232

serial protocol was used so that the IPM is tested when the cameras move into different positions. The

cameras have different lenses and also different image resolution. Camera 0 has a wide angle lenses

and a resolution of 800 × 600 pixels, while Camera 1 has a tele lens and a resolution of 320 × 240

pixels. This platform is used to assess the computational performance of the proposed approach. The

time taken to perform IPM on both cameras is measured, during a test where the PTU moves the

cameras to different positions.

Figure 5.10 (c) shows the ATLASMV robotic platform. It is a small scale autonomous robot built

for participating in an autonomous driving competition. It is equipped with four cameras and a LRF.

The side cameras (Fig. 5.10 (b)), used to map the road in front of the robot, have wide angle lenses

and produce images with a resolution of 320 × 240 pixels. The ATLASMV is used in two tests: one

for measuring the accuracy of IPM, another to assess the effects of using the LRF to assist IPM. The

quantitative results obtained from the accuracy of IPM are calculated using a color calibrated grid

(shown in Fig. 5.10 (c), below the robot and, in Fig. 5.11, viewed from the cameras).

The grid is a 3 × 1 meters sheet of chapter marked with a special colored pattern. The grid is

positioned in a known position in front of the cameras. Using the position and rotation of the cameras

with respect to the calibration grid, a virtual image of the grid is produced to overlap the resultant IPM

image. This virtual image of the grid serves as a test mask for measuring the IPM accuracy (ηIPM ):

after projection using IPM, pixels are labelled with a color that should match the color of the virtual

image. The accuracy of the projection is obtained as the ratio between correctly projected pixels and

(a) (b) (c)

Figure 5.10: Two of the test platforms used for testing the proposed approach: dual camera PTU unit

(a); the ATLASMV small scale robot (c), equipped with a LRF and a multi-camera perception unit

(b).
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(a) (b) (c)

Figure 5.11: The entire projection obtained using Camera 0 of the ATLASMV test platform (a). The

correctly projected pixels (b). Pixels that where incorrectly projected (c). Bellow each image, an

enlarged region of the pixels in shown.

the total projected pixels:

ηIPM =
number_of_correct_projections

total_number_of_projections
(5.24)

Figure 5.11 (a) shows all the pixels of a given projection. Pixels classified as correctly and incor-

rectly projected are displayed in Fig. 5.11 (b) and (c) respectively. Also, the virtual grid is overlayed

onto the images.

5.6.2 Computational Performance

The computational performance of the IPM transformation has been a concern of some authors

[Bertozzi et al. 1997] [Evans & Kim 1998]. Its implementation on onboard systems requires real time

performance from the systems. In order to test the performance of the proposed approach, the dual

camera PTU setup was used (Fig. 5.10 (a)).

In a classic IPM, all pixels in a given image are inverse projected, i.e., eq. (5.14) is applied to

all pixels. On the other hand, the proposed approach first computes the image projection polygon,

and then applies (5.14) only to the pixels that should be projected. The computational demand of

an IPM operation depends on the amount of projected pixels, which in turn depends on the camera’s

pose towards the projection plane. For example, a camera pointing to the sky will have only a small

amount of pixels viewing the road plane.

To compare the performance of classic IPM with the proposed approach a 14 second test sequence

was devised. Since the orientation of the camera’s towards the road plane changes the amount of

projectable pixels, during the 14 seconds of the test, the PTU is ordered to go to specific positions:
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(a) (b) (c) (d)

Figure 5.12: Some key frames of the test sequence. First row: images taken from Camera 0, the

blue area is the area of projected pixels, the red is the area outside the desired area of perception and

the green area is the area outside the half plane of projection; Second row: a map of the projection.

Projected/unprojected pixels from Camera 0 in green/red. Projected/unprojected pixels from Camera
1 in magenta/blue; Third row: the IPM resulting image after mapping both cameras. In columns,

different snapshots of the test sequence: 0 (a), 2 (b), 5.5 (c) and 12 (d) seconds.

• State 1 (0-5.5 seconds) the PTU is moving upwards. This causes an increasingly smaller

amount of mappable pixels for both cameras;

• Stage 2 (5.5-8.5 seconds) moves the PTU down and the inverse phenomena occurs;

• Stage 3 (8.5-14 seconds) maintains a fixed tilt and the PTU pans increasingly to the left, which

will make Camera 1 to have increasingly less mappable pixels.

Figure 5.12 shows some IPM resulting images of key points in the test sequence. Figure 5.13 (a)

compares the projection time of both cameras using the classic IPM and the proposed approach. Fig-

ure 5.13 (b) indicates the amount of projected pixels and the time saved using the proposed approach

in relation to the classic IPM.

From 0 to 5.5 seconds, the PTU is moving upwards and so the pitch angle of the cameras is

changing. This is observable in the difference of mapping in Fig. 5.12 (a), (b) (c). Figure 5.13 (b)

shows a reduction in the number of projected pixels for each camera. In Fig. 5.13 (a), a reduction

of IPM projection time using the proposed approach is clearly noted. Camera 0 takes more time

to project than Camera 1 because the resolution of the images is different (800 × 600 pixels and

320× 240 pixels, respectively).
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(a) (b)

Figure 5.13: (a) Time taken to perform the IPM projection for both cameras. The classic IPM time and

the time of the proposed approach are shown. (b) Percentage of time saved and number of projected

pixels. Proposed approach compared to the classic approach. Key frames of Fig. 5.12 signaled as the

vertical black lines.

From 5.5 to 8.5 seconds the PTU is moving downwards and the effects are the inverse.

From 8.5 to 14 seconds the change in pan angle causes Camera 1 to view increasingly less of the

desired area of perception. Figure 5.13 (b) shows a decrease in the number of projected pixels during

this period.

5.6.3 IPM Accuracy

Although many researchers have employed the IPM operation in order to ease the road

recognition process, e.g., [Bertozzi & Broggi 1998], [Bertozzi et al. 1997], [Broggi et al. 2006] or

[Broggi et al. 2008] , the fact is that no reporting of the accuracy of each implementation was found

in the literature. Despite some insights on the topic of accuracy measurement for general projec-

tive geometry [Evans & Kim 1998], [Fang et al. 2009], a method had to be devised for this particular

application to provide a quantitative analysis of the proposed method. For this experience the dual

camera PTU setup was used (Fig. 5.10 (a)). The calibration grid presented in section 5.6.1 was em-

ployed and an accuracy of ηIPM = 0.85 was achieved for the system. Because the current chapter is

the first to present such quantitative results, a measure of the quality of this value is not possible.

The second experiment is intended to assess how important is to have accurate measures of the

camera’s position and orientation with the road plane. In other words, how does the uncertainty of the

camera pose estimation reflect on the final accuracy of the projection. For this purpose, errors in the

yaw and pitch angles of the camera were introduced, and the IPM accuracy was calculated. Figure

5.14 shows the resulting IPM of mappings with some errors (a), (b), (d) and (e) and the resulting
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(a) (b) (c) (d) (e)

Figure 5.14: The resulting IPM projection when errors in yaw (a), (b) and in pitch (d), (e) are in-

troduced in the calculation. The reference projection, where no errors were introduced, is shown in

(c).

Figure 5.15: IPM accuracy (ηIPM ) scores for errors in camera pose. Results are presented for errors

in yaw and pitch angles.

image with no errors (c).

Figure 5.15 shows the decrease in IPM accuracy with the increase of error in yaw and pitch. The

pitch angle is the most relevant for the projection accuracy, since a half degree error changes the

accuracy from 0.85 to 0.30. Variations in yaw also drop the accuracy value to 0.30, but only after

a 3.5 degree deviation. This is consistent with the concerns of several researchers worldwide that

mention onboard camera’s pitch estimation to be a cumbersome problem. In [Thrun et al. 2006a], for
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example, it is stated that "a small error in the vehicle’s roll/pitch estimation leads to a massive terrain

classification error forcing the vehicle off the road. Such situations occur even for roll/pitch errors

below 0.5 degrees".

5.6.4 IPM Accuracy using Laser Range Finder

In order to test the usage of the LRF on the IPM projection the ATLASMV robot was used. An obstacle

with 0.2 meters height (green box in Fig. 5.10 (c)) was placed over the calibration grid in front of the

robot at several distances and in several positions (to the left, right or in front of the robot). For each

(a) (b) (c) (d)

Figure 5.16: Obstacle positioned at: (a) 0.3 meters in front; (b) 0.5 meters to the left; (c) 0.75 meters

to the right; and (d) 1.5 meters in front.

Figure 5.17: IPM accuracy (ηIPM ) for the classic IPM (dotted lines) and the proposed approach

(dashed lines)
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obstacle position the accuracy was computed. Figure 5.17 shows the ηIPM results both for the classic

and the proposed IPM approach.

The laser polygon introduced in section 5.5.4 is able to classify pixels that view the obstacle as

unmappable. Because of this, the proposed IPM approach (Fig. 5.17, dashed lines) consistently gets

better accuracy results than the classic IPM (Fig. 5.17, dotted lines). When the obstacle is very close

(0.3 meters, Fig. 5.16 (a)), using a classic IPM operation would be catastrophic (0.33 accuracy ratio)

but the proposed approach remains accurate enough (0.75). Figure 5.16 shows the IPM resultant

images for some of the tested scenarios.

5.6.5 Tests in Real Environments

For the final validation of the proposed approach, several tests in real road scenarios with a full scale

vehicle were done. The test platform used was the AtlasCar (Fig. 3.17). The platform is equipped

with three cameras (each with a different focal distance lens) and several lasers. Several hours of

data from urban and highway roads were used for validating the algorithm. The proposed approach

is less time consuming, is able to deal with pitch/roll variations due to brake/turning maneuvers, and

using the LRF copes with obstacles present in the projection area. Figure 5.18 provides a qualitative

comparison of the classical IPM with the proposed multi-modal IPM. It is possible to observe that in

the presence of other vehicles or obstacles, the classical IPM produces several artifacts on the resultant

image. On the contrary, the multi-modal approach to IPM is able to cope with obstacles and removes

them from the resultant image. Even in free road scenarios, as is the case of Fig. 5.18 (fourth line),

the artifacts produced by the parked cars could reduce the effectiveness of a road detection approach.

The flexibility of the proposed approach can also handle the usage of several input cameras. In

Fig. 5.19, the three cameras onboard the AtlasCar, each with different focal distance lenses, are used

to obtain a more detailed mapping of the road. Figure 5.19 (a) shows images from the three cameras.

The IPM is mapped to the road plane and the distribution of pixels supplied by each camera is shown

in Fig. 5.19 (b). Using a single camera to map the road (the green camera), shows the classical

problems of lack of accuracy at long distances (the yellow traffic pattern in Fig. 5.19 (c)). However,

if multiple cameras are employed, the tele-camera (blue camera) can provide a high resolution view

at long distances, which leads to a high resolution view of the yellow pattern of the road (Fig. 5.19

(d)).

Several video sequences showing results from classical and proposed IPM can be found at http://

lars.mec.ua.pt/public/Media/mriem/ipm/.
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Figure 5.18: Comparison of the classical IPM (middle column) with the proposed multi-modal IPM

(right column). The input image (left column) shows the image projection polygon highlighted in

yellow. Four examples are shown, one in each row.

5.7 Conclusions

The current chapter presents a flexible mathematical model to perform IPM. The model is able to

cope with pitch and roll interferences from the host vehicle by decoupling the road reference frame

from the vehicle reference frame. Polygons generated from the image boundaries, the laser obstacles

and the desired area of perception are computed in the road plane. The combination of these polygons,

which is called the projection polygon, is then directly projected to the image plane and the image

projection polygon is obtained. The image projection polygon indicates, in the image coordinate
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(a) (b) (c) (d)

Figure 5.19: Using the proposed IPM approach in real scenarios. (a) Images of the three cameras

onboard the AtlasCar; (b) The distribution of mapping for each camera ; (c) IPM using just green

camera; (d) IPM using all cameras

system, which pixels are to be mapped through IPM, saving computation time.

Different test platforms (from a small scale robot to a full scale vehicle) were used to obtain

quantitative and qualitative results. Results show that the proposed approach is computed in less time

than the classic IPM, and that the proposed approach has higher IPM accuracy in the presence of

obstacles. A study of the influence of errors in the camera’s pose estimation to the IPM projection

accuracy is also presented. Finally, several hours of data both from urban roads and highways were

qualitatively analyzed and show that the proposed approach is robust and efficient.
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Chapter 6

Photometric Calibration

This chapter presents three alternative methodologies for computing a photometric calibration be-

tween image pairs. Photometric calibration, also known as color correction, is an important step

towards the objective of obtaining fine quality multi-image mosaics.

This chapter starts with an introduction to the problem of photometric calibration (section 6.1),

followed by the state of the art on the topic of photometric registration (section 6.2). Then, three

alternative approaches to the problem of color correction are presented. In section 6.3 a Mean shift

based approach is proposed, section 6.4 presents an alternative method based on the usage of 3D

Gaussian mixture models and, finally, section 6.5 proposes a probabilistic approach to the problem of

color correction using sets of truncated Gaussians. In all three sections, results will be presented to

compare the effectiveness of each algorithm with the state of the art. Finally, conclusions are given

in section 6.6.

6.1 Introduction

Image mosaicking applications require both geometrical and photometric registrations between the

images that compose the mosaic. In this chapter, several different approaches to the problem of cor-

recting the photometric disparities of the images that compose a mosaic. Recent years have proven

the importance of image mosaicking. This area of research and other similar variations such as image

compositing and stitching have found a vast field of applications ranging from satellite or aerial im-

agery [Soille 2006] to medical imaging [Duncan & Ayache 2000], street view maps [Vincent 2007],

city 3D modeling [Micusik & Kosecka 2009], super-resolution [Ben-Ezra et al. 2005], texture syn-

thesis [Lempitsky & Ivanov 2007] or stereo reconstruction [Li et al. 2004], to name a few. In general,

whenever merging two or more images of the same scene is required for comparison or integration

purposes a mosaic is built. Two problems are involved in the computation of an image mosaic: the

geometric and the photometric correspondence [Levin et al. 2003]. The geometric correspondence is

usually referred to as image registration and is the process of overlaying two or more images of the
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same scene taken at different times, from different viewpoints and by different sensors. The procedure

geometrically aligns two images [Zitová & Flusser 2003]. This problem has been extensively studied

and is out of the scope of the this chapter. In this chapter it is assumed that the given images are ge-

ometrically registered. It should be noted, however, that in most cases the alignment that is produced

by a registration method is never accurate to the pixel level. Hence, a pixel to pixel direct mapping

of color is not a feasible solution. On the other hand, the photometric correspondence between ima-

ges deals with the photometric alignment of image capturing devices. The same object, under the

same lighting conditions, should be represented by the same color in two different images. However,

even in sets of images taken from the same camera, the colors representing an object may differ from

picture to picture. This poses a problem to the fusion of information from several images. Hence,

the problem of how to balance the color of one picture so that it matches the color of another must

be tackled. This process of photometric alignment or calibration is referred to as color correction or

between images.

6.2 Related Work

The general problem of compensating the photometric disparities between two coarsely geometrically

registered images is referred to as color correction. In other words, color correction is the problem

of adjusting the color palette of an image using information from the color palette of another image.

Let two images of the same scene be referred to as source (S, Fig. 6.1 (a)) and target (T, Fig. 6.1

(e)) images. Now let a geometric registration between these images be given, so that it is possible

to build a mosaic of the scene. Note that in the overlapping area of the mosaic in Fig. 6.1 (f ), the

color of a pixel is given by the average of the S and T image pixels. Nonetheless, a clear photometric

miss registration between the images in the overlapping area can be appreciated. Color correction

tackles the problem of how to adjust the colors of T, so that they resemble to the colors in S. The

color adjusted T image is called corrected image and is referred to as T̂. A mosaic built using S and

T̂ should present smooth color transitions, as in the example of Fig. 6.1 (g). Let two new images,

Sp and Tp, be the portions of S and T that overlap the area containing mutual information, shown

in Fig. 6.1 (b) and (c), respectively. From this overlapped area a color correction method computes

an estimation of one or more color palette mapping functions. By applying these functions to all the

pixels of T, the color corrected image T̂ is obtained. The objective of any color correction approach

is to provide an estimation for this mapping function, denoted as color palette mapping function, that

maximizes the similarity between the S and T̂ images.

In most of the proposed color correction algorithms, the color correction operation is performed

independently for each color channel. In this sense, color correction (correcting the three color chan-

nels) and brightness correction (correcting a single grayscale image) are similar. Throughout this pa-

per, the methodology for correcting a single channel is explained. All the examples shown in graphs
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and plots are given for the red channel of the images. The process should be applied similarly for the

green and blue channels. The term color or pixel color will be used throughout the remainder of the

paper referring to the intensity value of that pixel for a particular color channel. Since color correction

is done independently for each channel, some authors have proposed to use color spaces where cross

channel artifacts are less prone to occur. For example in [Reinhard et al. 2001] and [Tai et al. 2005],

the images are first transformed to the lαβ color space before performing independent channel

color correction. In [Zhang & Georganas 2004], the CIECAM97 color space is employed and in

[Fecker et al. 2008] the chosen color space was YCbCr. On the other hand, many other propos-

als use the standard RGB color space [Jia & Tang 2005] [Xiao & Ma 2006] [Kim & Pollefeys 2008]

[Pitie et al. 2005]. In the current paper, the RGB color space is used. Despite this, it should be noted

that the methodology here proposed works also on other color spaces. However, an analysis of the

effects of using different color spaces is out of the scope of the current paper.

The estimated color palette mapping function should be as similar as possible to an ideal mapping

function. However, since the ideal mapping function is unknown in most cases, it is not possible to

measure the quality of a color correction method by comparing the estimated and the ideal mapping

functions. The alternative is to analyze the output of the algorithms, i.e., to compare photometrically

the corrected image with the source image. This comparison is only possible in the overlapping

regions of the images.

In general, the color correction methods proposed in the literature can be divided into model-

based parametric approaches, i.e., where the color distribution of the images is assumed to have some

statistical distribution, and modeless, non-parametric approaches, i.e., where no assumptions about

(a) (b) (c) (d)

(e) (f) (g)

Figure 6.1: Images involved in a color correction procedure: (a) source image (S); (b) overlapping

area of the source (Sp); (c) overlapping area of the target (Tp); (d) overlapping area of the corrected

image (T̂p); (e) the target image (T); (f ) mosaic of source and target; (g) mosaic composed of the

source and corrected images.
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the nature of the color distribution are taken [Xu & Mulligan 2010].

In [Reinhard et al. 2001], a simple statistical distribution transfer methodology was proposed.

The color distribution of the S image is transferred to the T image by scaling and offsetting accord-

ing to the mean and standard deviations. It was also in [Reinhard et al. 2001] that an alternative

color model, namely the lαβ color-space, was proved to be more effective for calculating the color

transfer functions than the usual RGB color-space. It is successfully employed since it minimizes

the cross channel correlation, which is present on many color spaces. This work has been extended

in [Xiao & Ma 2006], where tools that permitted RGB color space to be used with similar effective-

ness were presented. These global methods use the entire image to collect statistical information i.e.,

they assume a single color palette mapping function. In complex scenes this assumption does not

hold due to differing optics, sensor characteristics, and hardware processing employed by video cam-

eras [Yin & Cooperstock 2004]. Because of this, the approach presented in [Reinhard et al. 2001]

was latter improved with the proposal of segmenting the images into several regions [Tai et al. 2005]

[Hsu et al. 2005] [Xiang et al. 2009] [Tai et al. 2007]. Each region provides the data to compute a

local color palette mapping function, which is then applied to the pixels of those regions. An Ex-

pectation Maximization color segmentation algorithm was proposed in [Tai et al. 2005] and latter

extended in [Xiang et al. 2009]. The local approaches improve the statistical parameters required

for the mapping proposed by [Reinhard et al. 2001]. In [Oliveira et al. 2011], an alternative Mean-

shift [Comaniciu & Meer 2002] based color segmentation method was proposed. Note however that

because the accuracy of the geometric registration between S and T does not allow a direct mapping of

color between pixels, there is a limit for the number of regions that may be segmented. Very small re-

gions or, by absurd, one pixel sized regions, will fail to properly color correct the image because they

will not be able to cope with the color mapping noise produced by a less than perfect registration.

Other model based approaches include Principal Component Analysis [Zhang & Georganas 2004]

[Abadpour & Kasaei 2007], and gain compensation methodologies [Brown & Lowe 2007].

Some authors suggested to solve the problem by using non parametric approaches. For

instance in [Jia & Tang 2005], color correction is done through the estimation of global

and local color transfer functions. The complex estimation problem is reduced to a ro-

bust 2D tensor voting in the corresponding voting spaces. In [Sajadi et al. 2010] higher-

dimensional Bezier patches were used to represent color transfer functions. Histogram based

approaches were presented in [Fecker et al. 2008] and [Tian et al. 2002]. In [Pitie et al. 2005]

and [Pitie et al. 2007] the entire probability density function is mapped without making assump-

tions on its nature. In [Qian et al. 2010] and [Abadpour & Kasaei 2004], fuzzy logic based

methodologies are proposed. In [Siddiqui & Bouman 2008] a multi-layer hierarchical stochas-

tic framework is presented. Other approaches make use of multi channel image blending

[Brown & Lowe 2007] [Li et al. 2008]. The modeling of the vignetting effects has also been the

concern of several authors [Kim & Pollefeys 2008] [Zheng et al. 2009] [Hasler & SÃijsstrunk 2004]
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[Litvinov & Schechner 2005b] and [Litvinov & Schechner 2005a]. Finally, some other authors pro-

posed to use learning approaches (e.g., neural networks) to find the appropriate color palette mapping

functions for performing color correction [Nayak & Chaudhuri 2006] [Yin & Cooperstock 2004].

However, learning approaches have the limitation of requiring a specific training for different setups.

The performance evaluation done in [Xu & Mulligan 2010] used more than 60 image pairs and

compared several methodologies. In that evaluation, the methods that presented the best color correc-

tion performances were [Kim & Pollefeys 2008] and [Jia & Tang 2005]. The proposed methodology

contains significant differences from both: [Kim & Pollefeys 2008] was devised to color correct mo-

saics of images taken from a single camera, while the proposed approach is designed to operate on

mosaics of images that can be taken from several cameras. Under the assumption that both the source

and target images are from the same camera it makes sense to attempt to model each camera’s full

radiometric behavior as done in [Kim & Pollefeys 2008]. In our case we do not assume images come

from a single camera and therefore cannot expect to model the camera. Instead we try to model the

observed color transformation and then apply this model of the transformation to color correct the

images. We do not know whether the images in the tested data-sets are from single or multi cameras,

but we believe that this extra flexibility from the proposed approach explains why it obtains better

results that [Kim & Pollefeys 2008]. The method presented in [Jia & Tang 2005] performs an anal-

ysis of the joint image histogram. The same is proposed in this paper. However, the reason why

our approach outperforms [Jia & Tang 2005] is that it employs a probabilistic approach to infer the

color mapping functions, instead of a voting scheme. In a voting scheme the importance is given to

the most common mapping, which may not always be the best solution. The following sections will

provide the details of the proposed approach.

The problem of color correction has been widely studied during the last decade. Some

authors suggested to solve this problem by using non parametric approaches, i.e., methods

that make no assumptions about the nature of the color distribution. While some authors

have attempted to model the radiometric response functions of the sensors and the exposures

[Tsin et al. 2001, Mitsunaga & Nayar 1999, Mann & Mann 2001], others inclusively model the vi-

gnetting phenomenon [Yu et al. 2004, Zheng et al. 2008] and there are some others that provide

techniques to model the combination of both [Kim & Pollefeys 2008, Litvinov & Schechner 2005b,

Litvinov & Schechner 2005a]. This trend is usually addressed just for intensity images and so is

not considered in color correction. In [Jia & Tang 2003, Jia & Tang 2005], color correction is done

through the estimation of global and local color transfer functions. The complex estimation problem

is reduced to a robust 2D tensor voting in the corresponding voting spaces. A cumulative histogram

matching technique was presented in [Fecker et al. 2008], while in [Pitie et al. 2005] the entire prob-

ability density function is mapped without making assumptions on its nature. On the other hand,

model based parametric approaches try to model the color distribution in the images and use tools

that transfer the color distribution characteristics from one image to the other. One of the most im-
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portant works in this scope is [Reinhard et al. 2001]. In that paper, a simple statistical distribution

transfer methodology was proposed. It was also in [Reinhard et al. 2001] that an alternative color

model, namely the lαβ color-space, was proved to be more effective for calculating the color trans-

fer functions than the usual RGB color-space. It is successfully employed since it minimizes the

cross channel correlation, which is present on many color spaces. This work has been extended in

[Xiao & Ma 2006], where tools that permitted RGB color space to be used with similar effectiveness

were presented. Principal component analysis where implemented by [Zhang & Georganas 2004];

while in [Brown & Lowe 2003, Brown & Lowe 2007] a gain compensation algorithm and a multi-

band blending post processing was proposed.

Although much work has been done in this topic, the fact is that there is still space for improve-

ment of color correction methodologies. In general, the size of the data sets used for evaluating the

performance of the proposed methods is relatively small. In fact, most proposed approaches show the

results of their algorithm just for the images depicted in the paper, which are never more than five or

six. As an exception, the performance evaluation done in [Xu & Mulligan 2010] used 40 synthetic

and 30 real image pairs. For performance evaluation, the image pairs (the target and source) must

be properly registered. For synthetic image pairs, the target image is clipped from the source image

and then its colors are altered. Using the information from the clipped region, the transformation

matrix from target to source image is accurate. In the case of real image pairs, manual or automatic

registering [Brown & Lowe 2007] is used, which of course will never be entirely accurate.

6.3 Mean Shift Based Local Color Correction

The first proposed algorithm can e classified as a parametric approach to color correction. The algo-

rithm is composed of four different stages, which are applied consecutively to the images. Initially,

the target image is segmented into a set of regions according to their color information. In the current

version the Mean shift algorithm [Comaniciu & Meer 2002] is used (section 6.3.1). Secondly, color

transfer functions are computed for every region (section 6.3.2). They are obtained using color infor-

mation from the given region and its corresponding pixels in the model image. The correspondence

between regions and model image pixels results from the coarse registration, considered known a

priori. Thirdly, a color influence map [Maslennikova & Vezhnevets 2007] is computed for every re-

gion, in order to mix the each of the computed local color transfer functions (6.3.3). Finally, the color

from the current image is corrected using the local transfer functions weighted by the color influence

maps (6.3.4). The next lines will describe in detail each one of these stages in detail. Results of this

particular technique are described in section 6.3.5.

The color correction algorithm presented in this section does not present a way of color correction

the non overlapping regions of the target image. Because of this, in all source target image pairs

presented in this section, the S image cover the entire range of the T image. In other words, the
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overlapping portion of the target image (Tp) is exactly the same as the target image, i.e., Tp = T. In

this particular section, no distinction is made between T and Tp

The proposed algorithm is a local approach to the global color correction algorithm proposed

by [Reinhard et al. 2001], where the new color c′(i, j) of each pixel in the corrected image is obtained

using:

c′(i, j) = μS +
σS

σT
× (c(i, j)− μT) (6.1)

where μT and μk
S are the means colors of the target and source image respectively, σT and σS are the

colors standard deviations of the target and source images, and c(i, j) is the color a pixel in the target

image’s ith line and jth column.

6.3.1 Image Segmentation

In order to segment the target image into a set of similar colored regions the Mean shift algorithm is

used [Comaniciu & Meer 2002]. The Mean shift algorithm automatically segments the target image

into a set of regions. Some care must be taken while tuning the Mean shift parameters: very large

regions may include a large set of different colors and could result in very similar results for local

color correction to its global counterpart. On the other hand, very small regions are sensitive to the

lack of accuracy in image registration. In standard images the output of the Mean shift algorithm

provides a good segmentation of the different colors present in the image. As will be shown, the color

correction results using this technique are quite good, which means that the Mean shift algorithm

does a good job at segmenting the several test images, in particular since that the same parameters are

used in all the test images. This shows the robustness to the color segmentation stage of the proposed

local color correction technique.

Figure 6.2 shows an example of a source and target image pairs. The result of the Mean shift

algorithm applied to the target image is presented in Fig. 6.2 (c).

The approach presented in [Tai et al. 2005] was evaluated against nine other color correction ap-

proaches. It outperformed all other parametric approaches and is recommended as the first option to

try for a general image and video stitching applications in practice [Xu & Mulligan 2010]. It consists

of segmenting both the target and model images into several regions using an expectation maximiza-

tion algorithm (local EM based color correction). Then, regions from the target image are matched to

the model image. This is done by projecting each target image region onto the model image in order

to assess the highest overlapping region in the model image. The match of regions from the target

and the model image provides the statistical parameters required in (1). In addition to the segmented

regions, the local EM based color correction algorithm also computes a weight mask for each region.

These weight values indicate the probability that a given pixel belongs to that region. The final pixel

color is obtained by adding up the contributions of each region’s color transfer function weighted
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(a) (b) (c)

Figure 6.2: An example of a source (S) and target (T) image pair: (a) source image; (b) target image;

(c) the Mean shift color segmentation of the T image.

by its corresponding weight. Although it was the best performing algorithm in the evaluation done

in [Xu & Mulligan 2010]. We believe the local EM based color correction algorithm can be improved

in two major aspects. First, the expectation maximization segmentation stage is computationally de-

manding: authors state that this step takes four minutes to converge while segmenting a 512x512

image. Since the local EM based color correction must segment both the target and model image, the

segmentation can take about 8 minutes. Second, the expectation maximization stage requires a para-

meter to define the desired number of regions: this is not interesting if unsupervised color correction is

required. Figure 2 (right) shows the color corrected target image using this local EM based approach.

Our proposed color correction approach addresses both aspects allowing unsupervised applications

and lower computation times. Up to our knowledge, [Tai et al. 2005] is best algorithm published in

the

One important difference from the Mean shift method to, for example the probabilistic segmenta-

tion proposed in [Tai et al. 2005], is that in the number of colors (or segmented regions) in the image

is an input parameter in [Tai et al. 2005], while the Mean shift algorithm automatically estimates this

value. Therefore, it seems feasible to assume that in Mean shift, changes in its input parameters do not

result in a dramatic change of the color correction output, as should be the case in [Tai et al. 2005].

6.3.2 Local Color Transfer Functions

The output of the Mean shift color segmentation stage is a set of regions, each representing an area

of the T image with similar colors. The objective now is to define a local color transfer function for

each one of these regions. For this, statistics from each region (from the T image) are compared to a

corresponding region in the S image. Let k be a given region from the target image. The coordinates

of a pixel that belongs to that region is denoted as xkT, and the corresponding pixel xkS in the S image

is obtained by:

xkS = f
(
xkT
)
, (6.2)
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where f is the that obtains the coordinates of a pixel in the source image, given the coordinates of that

pixel in the target image. It is obtained after the registration procedure. All the pixels inside region k

are used for collecting local statistics, that is, to compute mean and standard deviation measures. For

a given region k, let μk
T and σk

T be the mean and standard deviations of color in that region. Using

the transformation from target to source image, it is also possible to collect statistics over the source

image’s corresponding pixels for region k. These are referred to as μk
S and σk

S , respectively for the

mean and standard deviation of color in the source image’s corresponding region. From this statistics

a local color correction function can be easily formulated by adapting eq. (6.1) to the local case:

c′(i, j) = μk
S +

σk
S

σk
T
× (c(i, j)− μk

T). (6.3)

A color transfer function, either it is global or local, can be expressed generically as a function f

of several parameters:

c′(i, j) = f
(
μk

S, μ
k
T,

σk
S

σk
T
,c(i, j)

)
. (6.4)

A global color transfer function will have the first three parameters constant for the whole im-

age, while the local approach maintains those parameters constant merely for every color segmented

region. The initial hypothesis of this section was that due to different surface reflective properties

and non uniform illumination, the global image color statistics would generate only a rough approx-

imation of all the color transfer functions. Figure 6.3 plots the global and local function parameters

for three channels (lαβ color space) of the target and source images shown in Fig. 6.2 (a) and (b).

Dashed lines represent the global color transfer function parameters for each channel. Dots represent

the parameters of local color transfer functions computed from the regions depicted in Fig. 6.2 (c).

Ellipsoids represent the average and standard deviations of the collection of local parameters. As

expected, the parameters from the local color correction functions (represented by dots) are different

for every region. It is also possible to observe that local color transfer functions sometime have differ-

ences to the global parameters of over 0.2 (20%, since the offset values are normalized from 0 to 1 on

all image channels). Hence, it is possible to conclude that using a single global color transfer function

as done in [Reinhard et al. 2001] is merely a rough approximation of the real color transfer functions.

Another conclusion can be drawn by noting the larger size of the red ellipsoid when compared to

the other two: luminance (l channel) has higher standard deviations than the α or β channels. This

indicates that luminance is the channel with highest variability which reinforces the initial hypothesis

that assuming a constant illuminant is not feasible for complex environments.
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Figure 6.3: Distribution of the parameters of eq (6.3) for the regions segmented in the target source

image pair displayed in Fig. 6.2.

6.3.3 Color Influence Maps

Although the importance of using multiple local color transfer functions has been established, the

application of the color transfer functions to each pixel must be addressed in order to achieve natural

color transition across regions. Hence, in this section we propose a methodology for combining the

different local color transfer functions. It is based on the use of Color Influence Maps (CIM), which

are computed for every region. The CIM [Maslennikova & Vezhnevets 2007] is a weight mask that

measures the similarity between each color pixel and the mean color of that particular region. Since

in the lαβ color space the different channels are uncorrelated, the color similarity can be computed

as an Euclidean distance:

CIMk(i, j) = g
(
‖ c(i, j)− μk

T ‖
)
. (6.5)

where g is an arbitrary response function. In the current work the function proposed in

[Maslennikova & Vezhnevets 2007] has been used:

g
(
x
)
= e−3·x2

. (6.6)

Figure 5 shows the CIMs computed for the four regions highlighted in Fig. 6.2 (c). In these illus-
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Figure 6.4: Color Influence Maps for the four regions highlighted in Fig. 6.2 (c).

trations pixels with a color similar to the mean color value of the considered region are represented

with a high value (i.e., white), even though they may not belong to the same region.

6.3.4 Weighted Color Correction

Finally, in order to merge the different CIMs and get a single color correction value for every pixel we

propose a weighted color correction scheme. The final color for a given pixel is obtained by adding

the contributions of every color transfer function, weighted by the corresponding CIM:

c′(i, j) =

N∑
k=1

(((
μk

S +
σk

S
σk

T
× (c(i, j)− μk

T)
))
· CIMk(i, j)

)
N∑
k=1

CIMk(i, j)

(6.7)

where N is the total number of segmented regions of the target image.

6.3.5 Results

The proposed approach has been applied to a set of images and compared with approaches from

[Reinhard et al. 2001] and [Tai et al. 2005]. Figure 6.5 (a) shows the original target image and the

corrected images using: (b) the global approach from [Reinhard et al. 2001], (c) the local approach

from [Tai et al. 2005], and (d) the Mean shift based local approach. Figure 6.6 shows the mosaics

obtained using the several target images: (a) original target image (b) corrected using the global

approach from [Reinhard et al. 2001], (c) corrected using the local approach from [Tai et al. 2005],

and (d) corrected using the Mean shift based local approach.
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(a) (b)

(c) (d)

Figure 6.5: Color correction of the target image: (a) original image; (b) global approach from

[Reinhard et al. 2001]; (c) local approach from [Tai et al. 2005]; (d) Mean shift based approach.

Figures 6.7 and 6.8 show the several qualitative results. Mosaics are shown without color cor-

rection, with global color correction, with local based color correction and with the Mean shift

based approach proposed in the current section. It is visible that local approaches (the proposed

approach and [Tai et al. 2005]) obtain better results in comparisson with the global approach from

[Reinhard et al. 2001]. This is especially true in images where there is a great variety of colors. The

Astro Clock (Fig. 6.7, third column) is a special case because the clock is in a different position

in the source and target images. This example was included to try to assert how a small area that

has an evident miss registration (different colors) is handled by the algorithms. In [Tai et al. 2005]

approach, the blue region is not moved while in the proposed approach the blue is somewhat trans-

ferred to the left portion of the clock, where it should be. Regarding Ponte Vecchio (Fig. 6.8, second

column), the proposed approach was able to correct the yellow houses on both sides of the bridge.

In [Tai et al. 2005], both houses are painted white, which is a clear color correction failure. In Times

Square (Fig. 6.8, third column) although the sky seems better using [Tai et al. 2005], the reflection of

the yellow beer bottle on the left is supposed to disappear on the corrected image. In this detail, the

proposed approach clearly does a better job than [Tai et al. 2005]. In Sagrada Familia (Fig. 6.8, first

column), a single global color correction obtains the same results as both local techniques, because the

target image has a low variety of colors. Finally, we can mention that the proposed approach requires

on average about sixty seconds to compute the color correction, while [Tai et al. 2005]s approach

requires, on average, over 10 minutes.
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(a) (b)

(c) (d)

Figure 6.6: Mosaics obtained after color correction: (a) with original target image; (b) cor-

rected using global approach from [Reinhard et al. 2001]; (c) corrected using local approach from

[Tai et al. 2005]; (d) corrected using Mean shift based approach.

This section presents a new parametric method for local color correction of two coarsely regis-

tered images. The method uses the well known Mean shift algorithm and builds weight masks using

CIM. Qualitative results show that the proposed approach produces visualy appealing mosaics, in

most cases better that other approaches. Two reasons can be mentioned to explain this improvement.

First the Mean shift algorithm performs better at segmenting the regions. Second, the local based

method is more sensitive to registration inaccuracies, because it matches the blobs based on maxi-

mum region overlap, while in our approach we do not segment the model image but collect statistics

directly from the projection of every region in the target image to the model image. Furthermore,

the proposed approach is computed in about one tenth of the time when compared to that proposed

in [Tai et al. 2005]. This section does not propose a method for infering color transfer functions when

the target image is not entirely contained by the model image. In these cases, the overlapping region

must provide information that must be extrapolated to the rest of the image.
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Figure 6.7: Color correction examples of Westminster Abbey, London (first column), Golden Gate

bridge, San Francisco (second column), Astronomical clock, Prague (third column), and Big Ben,

London (fourth column). The mosaic with the original source image (the ground truth) (first row),

global color correction (second row), local approach (third row) and Mean shift based color correction

(fourth row).
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Figure 6.8: Color correction examples of Sagrada Familia, Barcelona (first column), Ponte Vechio,

Florence (second column), and Times Square, New York (third column). The mosaic with the original

source image (the ground truth) (first row), global color correction (second row), local approach (third
row) and Mean shift based color correction (fourth row).
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6.4 3D Gaussian Mixture Models

The section proposes an alternative color correction technique based on 3D Gaussian Mixture Models

(3DGMM). To assess the effectiveness of the proposed algorithm, a very large set of images is used,

and eight other state of the art algorithms for color correction are evaluated. The evaluation metric is

taken from a recent performance evaluation of color correction algorithms [Xu & Mulligan 2010].

As discussed previously, the approach presented in [Reinhard et al. 2001] assumes a Gaus-

sian distribution of color on both the source and target images. In other words, it uses a linear

color transfer function. The Gaussian distribution based color transfer scheme, initially proposed

in [Reinhard et al. 2001], has been defined in eq. (6.1). That equation can may be used to process

single channel images (gain compensation) or color images (color correction). For color images eq.

(6.1) is applied separately for the three color channels. However, in practical situations, the color

distribution of the whole image is seldom a normal distribution. Global modelling of the color dis-

tribution fails in practice because it provides only a rough approximation of the color distribution.

By computing, for several regions, a local color transfer function and assuming a separate Gaussian

distribution for each region, the set of color transfer functions will provide a more consistent color

correction output. This was proposed in [Tai et al. 2005], where the Reinhard’s methodology was

extended to the local scenario, namely through a color transfer scheme based on single channel prob-

abilistic segmentation and region mapping using the EM algorithm. It was also shown in the results

from the local Meanshift based approach presented in section 6.3.

With this algorithm, we propose to model the color distribution of the target and source images

using 3DGMM for joint probabilistic segmentation of the three color channels. Then, several color

transfer functions can be derived from the adaptation of equation (6.1), in a very similar way to

that proposed in section 6.3. The methodology consists of three stages: probabilistic segmentation,

computation of color transfer functions and finally, in the application of those color transfer functions

to the target image. The next sections present these stages.

Like in the previous section, this section does not propose a method for infering color transfer

functions when the target image is not entirely contained by the source image. Hence, also in this

case, it is assumed that Tp = T, or that only Tp should be corrected (see Fig. 6.1).

Figure 6.9 shows the example of source and target images pairs that is used to demonstrate the

algorithm.

6.4.1 Probabilistic Segmentation

The first stage consists of modelling the distribution of color in both images using 3DGMM. Gaussian

Mixture Models (GMM) are among the most statistically mature methods for clustering. In this case

they are used to model the color distribution of the pixels by segmenting the image. After segmenta-

tion, each cluster is a Gaussian component from the mixture model. The following details are given
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(a) (b) (c)

Figure 6.9: A mosaic of two images of a city landscape scene (c). The colors of the target image (a)
must be corrected using information from the source image (b) to avoid the artifacts present in the

mosaic.

assuming an RGB image. However, the presented method is not restricted to this color space. In fact,

alternative color spaces have been tested, although results have shown no particular advantages when

compared to the traditional RGB. This is because the joint color correction of the three color channels

avoids cross channel artifacts, as detailed below. The segmentation step is intended to cluster the im-

age pixels into a set of colors. The assumption is that it is more feasible to represent color distribution

as a Gaussian distribution in regions where only one color (or a more uniform set of colors) exist. The

segmentation is done by defining the same number of Gaussian clusters NG both for the target and

source images. This is done under the reasonable assumption that, since the images have the same

view of the scene, they both should have the same number of colors in the overlapping regions.

Let NG be the number of Gaussian components that model the color distribution of an im-

age. Let a given color be denoted as c = [r, g, b]. A Gaussian component ωk has mean μk =

[mean(r),mean(g),mean(b)] and standard deviation σk = [std(r), std(g), std(b)]. The color dis-

tribution is modelled by the mixture of Gaussian components, so that the total density of pixels for a

given color D(c) is given by the weighted sum of the Gaussians:

D(c) =
NG∑
k=1

mpk × P k(c), (6.8)

where mpk is the mixture proportion of Gaussian component ωk, and P k(c) is the probability of

Gaussian ωk for color c, which is given by the difference between two cumulative distribution func-

tions of neighboring colors. The cumulative distribution function of Gaussian ωk for a given color c,

denoted as cdf(ωk, (c)), is given by:

cdf(ωk, c) =

3∑
i=1

(1
2
(1 + erf

(
c(i)− μk(i)√
2× (σk(i))2

))
3

, (6.9)
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where (i) is the index of the color channel (i.e., i ∈ {r, g, b}), and erf is the error function, also

known as probability integral, given as:

erf(x) =
2√
π

∫ ∞

0
e−x2

dx. (6.10)

Hence, the probability of the Gaussian component k is computed as:

P k(c) = cdf(ωk, c + λ)− cdf(ωk, c− λ), (6.11)

where λ = [cr/2, cr/2, cr/2] is given by half the image’s color resolution (cr).

In [Tai et al. 2005], each channel of the image undergoes a segmentation procedure similar to this

one. However, in that approach, since the probabilistic segmentation is performed independently for

each channel, the probabilities of Gaussian components may be different from channel to channel,

i. e., P k(c(1)) �= (P k(c(2)) �= (P k(c(3)). The methodology proposed in the current chapter uses

a single probability function for all the three color channels, i.e., P k(c), as defined in eq. (6.11).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.10: Single channel color segmentation of the Source (a) and Target (e) images. Single

channel histograms, Gaussian components (dashed) and total Gaussian mass (solid black) of the

source (b) and target (f) images. 3D color segmentation of the source (c) and target (g) images. Color

distribution of all pixels (green dots) and 3D Gaussian components (red ellipsoids) of the source (d)
and target (h) images.
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This reduces the occurrence of cross channel artifacts that arise from color correction as is the case

in [Tai et al. 2005]. As will be shown in section 6.4.4, by performing a 3DGMM of all three image

channels in a joint segmentation step we are able to improve the color correction performance and

reduce processing time. Figure 6.10 shows the GMM color segmentation both for the 1D and the 3D

cases.

6.4.2 Color Transfer Functions

The current section proposes to perform a probabilistic segmentation of both the source and target

images using 3DGMM. The result of the segmentation step is that both the target and the source ima-

ges are segmented into NG clusters, each representing a Gaussian component for the inferred mixture

model. It is then necessary to associate each Gaussian component from the target image to another of

the source image. This association is referred to as matching of Gaussian components. When spatial

information exists, which is the case since images are registered, the matching is performed based on

the maximum spatial correlation of pixel probabilities. To compute the spatial correlation, let color

be the function that retrieves the color of a pixel. The probability P that each pixel x has of belonging

to Gaussian component ωk is calculated using the color retrieval function. For simplification pur-

poses, P k(color(x)) will be from now on denoted as P k(x). The matching of Gaussian components

is computed as follows: let m(k) be the matching function that outputs the index of the source image

Gaussian component for target image Gaussian component k:

m(k) = argmax(r(k, j)), ∀j ∈ {1, 2, 3, ..., NG}, (6.12)

Figure 6.11: The mapping of the red color channel for the target / source image pair of Fig. 6.9. The

global color transfer function is obtained using [Reinhard et al. 2001]. Several local color transfer

functions are obtained using [Tai et al. 2005], which combined result in a non linear weighted color

transfer function.
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where r represents the spatial correlation between the probabilities of target image Gaussians Pt with

source image Gaussians Ps, given by:

r(k, j) =

[W,H]∑
x=[1,1]

(P k
t (x)− P̄ k

t )× (P j
s (x)− P̄ j

s )

√√√√√ [W,H]∑
x=[1,1]

(
P k
t (x)− P̄ k

t

)2 [W,H]∑
x=[1,1]

(
P j
s (x)− P̄ j

s

)2

, (6.13)

where P̄ k represents the probability of the average color of Gaussian k, i.e., P̄ k = P (μk), and W , H

are the image’s width and height respectively.

The color correction procedure will make use of NG color transfer functions, each one corre-

sponding to a match between a region in the target with a region in the source image. The color

transfer functions (ctf ) are obtained by adapting (6.1) to the 3D case:

ctfk,m(k)(i) = μm(k)
s (i) +

σ
m(k)
s (i)

σk
t (i)

× (c(i)− μk
t (i)), (6.14)

Figure 6.11 shows a comparisson of several local color transfer functions, obtained for each

Gaussian component match, with a single global color transfer function computed using a global

approach like the one presented in [Reinhard et al. 2001]. A single global ctf (as proposed in

[Reinhard et al. 2001]) is a poor approximation for the real color transfer. The computation of

several local color transfer functions and the usage of a non-linear weighted ctf (as proposed in

[Tai et al. 2005]) increases the effectiveness of color correction. However, as can be observed in Fig.

6.11, pixels with color 0.4 in the target image are mapped to the source image to values that range

from 0.3 to 1. In other words, there is a high level of redundancy in the color pallet mapping. Inferring

a function that maps the color on the target to the source will always be insufficient due to its non

injective nature. By collectively using the three channels in a joint segmentation and color correction

step as proposed in the current chapter the redundancy present in single channel mapping is reduced,

which improves the color correction effectiveness.

6.4.3 Color Correction

Once the source and target images have been segmented into NG regions and the corresponding color

transfer functions for each match are computed, the objective at this last stage is to correct the color of

every single pixel. Because of the probabilistic nature of the proposed color segmentation, pixels may

have non zero probability of belonging to more than one region. Hence, the proposed color transfer

approach is defined as a weighted combination of all the computed color transfer functions:
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c′(i) =
NG∑
k=1

mpk · P k
t (c) · ctfk,m(k)(i), (6.15)

where the bold symbol c′ denotes the three channel color of the color corrected image and (i) is

the index of the color channel. The expression formulated in eq. (6.15) is in all similar to the one

proposed in section 6.3. Both are a weighted average of the locally computed color transfer functions.

The difference here is that while before the CIM was used to compute the weights, in this case it is

the mixture proportion of the Gaussian component that defines the weight.

6.4.4 Results

In order to validate the proposed technique, two very different data sets are used. The first is a standard

data set with over 70 images of several scenes and places. The second data set was taken from the

cameras onboard the AtlasCar. In the following lines, we will present results using both data sets.

Standard Data Set

In order to test the proposed algorithm, the two data sets of a recent performance evaluation

[Xu & Mulligan 2010] were used. They consist of a synthesized data set of 40 image pairs and a real

image data set of 30 image pairs. The registration of target / source was not provided by the authors

of [Xu & Mulligan 2010]. Because of this, a manual process of hand labelling pixels in both images

was done to obtain the registration. In order to compare the results of the proposed approach with the

state of the art, eight of the nine algorithms used in [Xu & Mulligan 2010] were applied to the same

data sets. Regarding the missing algorithm [Pitie et al. 2005], it was not possible to find a public im-

plementation to guarantee a fair comparison. However, the algorithm presented in [Pitie et al. 2005]

did not reach the best performance in none of the tests presented in [Xu & Mulligan 2010]. Table 6.1

lists all the algorithms tested in this comparison. Note that the cardinal references for each algorithm

as presented in Table 6.1 are only valid within this subsection. Different comparison are made in

sections 6.4.4 and 6.5, using an additional method. In that case, new cardinal references are attributed

to each algorithm.

The evaluation parameters, i.e., color similarity (CS) and structural similarity (SS) were taken

from [Xu & Mulligan 2010]. For a better comparison of the tested methodologies, the average pro-

cessing time taken to correct one image is also presented. Although results of both CS, SS and time

are presented, the CS score is the most important parameter, since it evaluates how well a color cor-

rection algorithm is able to balance the colors in the target image so that they match the ones in the

source image (see details in [Xu & Mulligan 2010]).

Table 6.2 shows the average CS and SS scores of the seven methods used for comparison, as

well as of the approach proposed in the current paper. Analyzing Table 6.2, two different classes
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of methods may be identified: fast algorithms #1, #2, #3, #4, #5 and #6, which have processing

times under one second but have limited CS scores; and highly effective algorithms #7 #8 #9 and

#10 (the proposed approach), which require more time to get the highest CS scores. Note that this

CS score corresponds to a logarithmic scale (see details in [Xu & Mulligan 2010]). Results show that

the proposed approach has the highest average CS scores for both the synthetic and real data sets.

Furthermore, the proposed approach presents some of the lowest values of standard deviation of CS,

which accounts for a smaller variation of CS scores throughout the images in the data sets. This is

also a very important remark since it accounts for the reliability and robustness of our algorithm. The

proposed approach is also much faster than two of the highest scoring methods (#7 and #8).

The results presented in Table 6.2 are different (in absolute values) from the ones presented in

[Xu & Mulligan 2010] because there is a different registration. Nonetheless, the results presented in

the current chapter are consistent with those in [Xu & Mulligan 2010], where the best average CS

scores were also from algorithms #7 #8 and #9.

Table 6.5 gives some qualitative results. Here it is also possible to verify that the proposed ap-

proach shows the greatest similarity with the reference source image when compared to the other

eight algorithms.

This chapter proposes to use a single step multi-dimensional probabilistic segmentation of the

three color channels of an image in order to perform color correction. The color distribution of the

images is modelled as a 3D mixture of Gaussian components. The proposed approach is compared

with several state of the art algorithms used from color correction. In addition, a large set of images,

previously used in [Xu & Mulligan 2010], are employed to assess the effectiveness of the color cor-

rection algorithms. Furthermore, the evaluation metric is taken from a recent performance evaluation

in color correction. The joint segmentation of the three channel color reduces processing time from

similar single channel methods and avoids cross channel artifacts that may appear due to an indepen-

dent color correction of each channel separately. The proposed approach obtained the highest average

CS scores and is amongst the lowest in CS standard deviation, which definitely makes it a technique

Table 6.1: A list of the algorithms used for comparing the proposed approach.

Name of the Approach Reference Alg.

Baseline (Target Image) — #1

Gain Compensation Brown 07 [Brown & Lowe 2007] #2

Global Color Transfer in RGB Xiao 06 [Xiao & Ma 2006] #3

Global Color Transfer Reinhard 01 [Reinhard et al. 2001] #4

Cumulative Histogram Mapping Fecker 08 [Fecker et al. 2008] #5

Principal Components Analysis Zhang 04 [Zhang & Georganas 2004] #6

Local Color Transfer Tai 05 [Tai et al. 2005] #7

Tensor Voting Jia 05 [Jia & Tang 2005] #8

Brightness Transfer Function Kim 08 [Kim & Pollefeys 2008] #9

3D Gaussian Mixture Models section 6.4 #10
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Table 6.2: Average and standard deviation of CS and SS scores for the two data sets. Average pro-

cessing time per image is also provided. The proposed approach (# 10) obtains the highest average

CS score.

Synthetic Real

Alg. CS SS Time CS SS Time

# μ σ μ σ (sec) μ σ μ σ (sec)

#1 18.66 3.92 1.00 0.00 — 16.44 3.40 1.00 0.00 —

#2 21.35 2.56 0.97 0.02 0.53 19.89 3.27 0.96 0.03 0.51

#3 19.03 5.97 0.71 0.27 0.72 19.43 5.80 0.65 0.17 1.35

#4 19.86 4.92 0.79 0.15 0.43 20.25 6.78 0.67 0.17 0.94

#5 26.79 6.04 0.90 0.06 0.93 21.93 4.07 0.89 0.10 1.64

#6 26.29 6.65 0.91 0.07 0.70 20.41 3.56 0.87 0.13 0.93

#7 27.45 7.77 0.90 0.08 54.47 21.23 4.24 0.85 0.13 148.00

#8 27.71 7.33 0.91 0.06 233.50 21.82 4.05 0.85 0.17 235.70

#9 27.82 7.58 0.90 0.06 5.93 21.85 4.03 0.88 0.10 6.92

#10 28.18 4.11 0.74 0.11 23.19 22.41 3.40 0.89 0.11 54.43

to take into account for devising color correction algorithms. Results show that 3DGMM may be

successfully applied to color correction with effectiveness that overcomes the current state of the art.

AtlasCar Data Set

In recent years, vision based sensors have been increasingly applied to autonomous vehicles and

advanced driver assistance systems. They have key advantages over some other sensors, such as:

being passive, obtaining vast amounts of information and being a low cost technology. Actually, the

low cost and the impossibility to get a good view of the entire road around the vehicle using a single

sensor, leads to the use of two or more of these devices. Many examples can be given, from the

DARPA Challenge competitors (www.darpa.mil/grandchallenge).

The usage of more than one camera onboard of a moving platform poses new problems, which

have not yet received enough attention from the research community. In fact, no assumptions can be

made on key parameters, for example, scene illumination and contrast, which are directly measured

by the vision sensor. If images from the cameras are to be merged into a mosaic or analyzed by some

feature extractor algorithm, colors in both images should appear similar. This problem, called the

photometric correspondence between images, has been addressed both by the computer graphics and

the computer vision research communities.

Although many different algorithms have been proposed to perform color correction, no study

has been published regarding the application of these algorithms to the vision sensors onboard au-

tonomous vehicles. There are some characteristics in this particular application that make a special-

ized study necessary: real time requirements, since the processing time is coupled with the maximum

vehicle speed; and the need to handle a great range of illumination conditions due to sun glare, tun-

nels, night or fog.
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Table 6.3: The output of the comparative methods and the proposed approach (alg. #10) for three

images in the data set. The image pairs are shown on the top of the table. Below each image the CS

and SS scores are displayed. For image Synthetic #34, algorithm #9 achieves the highest CS score. In

the case of Synthetic #23 and Real #6, the proposed approach outperforms all other methods.

Synthetic #34 Real #6

Source Target Source Target

Alg.; CS; SS Alg.; CS; SS Alg.; CS; SS Alg.; CS; SS

#1 ; 17.3 ; 1.00 #2 ; 19.8 ; .98 #1 ; 12.2 ; 1.0 #2 ; 18.3 ; .88

#3 ; 16.9 ; 0.93 #4 ; 16.2 ; 0.94 #3 ; 13.1 ; 0.40 #4 ; 12.9 ; .38

#5 ; 32.8 ; 0.84 #6 ; 33.0 ; 0.86 #5 ; 21.9 ; 0.58 #6 ; 21.9 ; .63

#7 ; 35.4 ; 0.83 #8 ; 35.2 ; 0.83 #7 ; 22.2 ; 0.65 #8 ; 22.2 ; 0.59

#9 ; 36.9 ; 0.83 #10 ; 36.1 ; 0.82 #9 ; 20.5 ; 0.57 #10 ; 22.7 ; 0.58
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Figure 6.12: The AtlasCar robotic platform with several onboard cameras (top). Onboard ima-

ges taken with two cameras from a typical road scene. Source image (bottom-left-top), Target

image(bottom-left-bottom); the mosaic of both which shows a clear difference in colors (bottom-
right); .

Table 6.4: Average and standard deviation of CS and SS scores for the set of selected images. It also

shows the average processing time per image. The methods are sorted by average CS score. Note that

the fastest algorithm [Brown & Lowe 2007] gets the worst CS score. The proposed algorithm obtains

the highest average CS score, the second best on average SS score and is the fastest processing of the

top three in CS scores.

CS SS Time

Name of the Approach Reference Alg. μ σ μ σ (sec)

Baseline (Non corrected Image) none #1 15.46 4.68 1.00 0.00 —

Gain Compensation [Brown & Lowe 2007] #2 15.51 2.47 0.98 0.02 0.21

Global Color Transfer in RGB [Xiao & Ma 2006] #3 17.42 5.72 0.68 0.13 0.34

Global Color Transfer [Reinhard et al. 2001] #4 17.56 6.23 0.70 0.13 0.22

Cumulative Histogram Mapping [Fecker et al. 2008] #5 20.98 5.14 0.73 0.23 0.53

Principal Components Analysis [Zhang & Georganas 2004] #6 22.53 4.71 0.77 0.23 0.40

Local Color Transfer [Tai et al. 2005] #7 23.28 3.92 0.75 0.20 4.48

Brightness Transfer Function [Kim & Pollefeys 2008] #8 24.15 4.94 0.75 0.20 5.09

3D Gaussian Mixture Models section 6.4 #9 24.30 4.06 0.77 0.21 4.10
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In order to test the proposed algorithm, the AtlasCar robotic platform [Santos et al. 2010] was

used to acquire several images of typical road scenarios. The vehicle is used for research on au-

tonomous driving and advanced driver assistance systems and it is equipped with several cameras

(Fig. 6.12(top)). Although many video streams from the AtlasCar were tested, the results here pre-

sented refer to a set of 30 image pairs from two onboard cameras. In the case of this data set, the

target images are entirely overlapped by the source images. Images from the stereo camera where

selected to be the source images, while images from a teleobjective camera where the target images.

All image pairs where hand registered using Matlab. Figure 6.12 shows one of the image pairs from

the data set (bottom-left) and a mosaic composed of the two images (bottom-right).

In order to compare the results of the proposed approach with the state of the art, seven of the

nine algorithms used in a recent performance evaluation on color correction for image stitching ap-

plications [Xu & Mulligan 2010] were used in the same data set. The other two algorithms were not

used since [Jia & Tang 2005] takes on average 140 seconds to correct a single pair of images and,

regarding [Pitie et al. 2005], it was not possible to find a public implementation to guarantee a fair

comparison.

The evaluation parameters, i.e., color similarity (CS) and structural similarity (SS) were taken

from [Xu & Mulligan 2010] (see reference for their meaning). For better comparison of the proposed

methodologies, the average processing time taken to correct one image is also presented.

Table 6.4 shows the average CS and SS scores of the seven methods used for comparison, as well

as of the approach proposed in the current paper. Analyzing Table 6.4, two different classes of meth-

ods may be identified: fast methods [Brown & Lowe 2007, Xiao & Ma 2006, Reinhard et al. 2001,

Fecker et al. 2008, Zhang & Georganas 2004], which have processing times under one second but

have limited CS scores; and highly effective methods [Tai et al. 2005, Kim & Pollefeys 2008] (and

the proposed approach), which require about 10 times more time to get the highest CS scores.

Note that this CS score corresponds to a logarithmic scale (see details in [Xu & Mulligan 2010]).

Results show that the proposed approach has the highest average CS scores and is the second

best in average SS score. Also, considering the second class of tested methods, the proposed

approach is the fastest one. The values presented in Table 6.4 are consistent with the eval-

uation performed by [Xu & Mulligan 2010], where the best average CS scores were also from

[Tai et al. 2005, Kim & Pollefeys 2008].

Table 6.5 gives some qualitative results. Here it is also possible to verify that the proposed ap-

proach shows the greatest similarity with the reference source image.
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Table 6.5: The output of the comparative methods and the proposed approach (GMM) for three of

the images in the data set. The image pairs are show on the top of the table. Bellow each image the

algorithm reference, CS and SS scores are displayed. In the first two images the proposed approach

obtains the best CS score, while in the third image it scores close to the best.

Image #1 Image #2 Image #3

Source Target CS=11.5 Source Target CS=13.6 Source Target CS=14.6

Alg.; CS; SS Alg.; CS; SS Alg.; CS; SS Alg.; CS; SS Alg.; CS; SS Alg.; CS; SS

#2 ; 14.0 ; 0.9 #3 ; 13.0 ; 0.9 #2 ; 15.5 ; 0.9 #3 ; 14.3 ; 0.7 #2 ; 15.8 ; 0.9 #3 ; 15.2 ; 0.8

#4 ; 13.1 ; 0.6 #5 ; 8.5 ; 0.4 #4 ; 14.3 ; 0.7 #5 ; 24.9 ; 0.8 #4 ; 15.1 ; 0.8 #5 ; 26.0 ; 0.8

#6 ; 16.5 ; 0.7 #7 ; 17.0 ; 0.5 #6 ; 21.3 ; 0.7 #7 ; 23.7 ; 0.7 #6 ; 25.4 ; 0.8 #7 ; 26.7 ; 0.7

#8 ; 16.2 ; 0.7 #9 ; 17.1 ; 0.7 #8 ; 25.4 ; 0.7 #9 ; 25.9 ; 0.7 #8 ; 27.6 ; 0.7 #9 ; 27.2 ; 0.7
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6.5 Probabilistic Color Correction using sets of Truncated Gaussians

This section proposes the third color correction approach. It is a probabilistic approach for modeling

local color palette mapping functions. First, the overlapping portion of the target image undergoes a

Mean shift based color segmentation process. Each of the color segmented regions is then mapped to a

local joint image histogram. Then, a set of Gaussian curves is fitted to the local joint image histogram

using a Maximum Likelihood Estimation process and truncated Gaussian curves as model. These

Gaussians are then used to compute local color palette mapping functions. The next step is to expand

the application of these functions from the overlapping area of target image to the entire target image.

Finally, the entire color corrected image is produced by applying the color palette mapping functions

to the target image. The following subsections will explain in detail the stages of the algorithm.

Although there are several methods proposed to deal with color correction, most involve strong

assumptions, which are in general, difficult to fulfill in complex environments. Because of this we

believe there is room for improving the effectiveness of color correction algorithms. Furthermore, the

size of the data sets used for evaluating their performance is relatively small. In fact, most proposed

approaches show results just for the few images depicted in the chapter and compare them to the

baseline approach from [Reinhard et al. 2001]. This section proposes a novel color correction algo-

rithm that presents several technical novelties when compared to the state of the art: (i) the usage of

truncated Gaussians to model more accurately the color distribution; (ii) the cross modeling of map-

ping probabilities followed by the fusion of the set of Gaussians, enabling a more consistent inference

of the color mapping functions inclusively for mappings of colors that are not observed; and (iii) a

methodology to perform the expansion of the color palette mapping functions to the non overlapping

regions of the images. To the best of our knowledge, this chapter also presents one of the most com-

plete evaluations of color correction algorithms for image mosaicking published in literature. A very

extensive comparison, that includes nine other color correction algorithms, two data-sets with over

sixty image pairs and two distinct evaluation metrics, is presented. As will be shown, the proposed

color correction algorithm achieves very good results when compared to state of the art algorithms.

6.5.1 Mean Shift Color Segmentation

The first step of the algorithm here presented is to perform a color segmentation of the overlapping

portion of the target image Tp into several regions. In this case, only the portion of the target image

that contains joint information with the source image is accounted for. Hence, image Tp is split into

several regions, which will be treated independently by the color correction algorithm. This method-

ology is usually referred to as local color correction. Several previous works on color correction

have shown the advantages of using a local approach when compared to a global one. Local meth-

ods presented in [Tai et al. 2005], [Xiang et al. 2009], [Oliveira et al. 2011] and in section 6.3, have

shown better performance compared with the global approach presented in [Reinhard et al. 2001].
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Also, section 6.3 has already shown several advantages of Mean shift with respect to other local color

correction approaches.

The relevance of Mean shift [Comaniciu & Meer 2002] to perform color segmentation as a pre-

processing step for color correction has been established [Oliveira et al. 2011]. Compared to other

algorithms such as [Tai et al. 2005], where an expectation maximization (EM) probabilistic based

color segmentation is proposed, Mean shift is better in two major aspects: first, the EM segmenta-

tion stage is computationally demanding: authors state that this step takes four minutes to converge

while segmenting a 512x512 image. Since the local EM based color correction must segment both the

source and the target image, the segmentation can take about eight minutes [Tai et al. 2005]; second,

the expectation maximization stage requires a parameter to define the desired number of regions: this

is not interesting if unsupervised color correction is required. Meanshift addresses both drawbacks

allowing unsupervised applications and lower computation times.

Note that although the algorithm surely benefits from the usage of Mean shift as a preprocessing

step, it may still run if no color segmentation is performed. In section 6.5.8 a study is presented that

shows how Mean shift influences the performance of the proposed color correction methodology.

The following portions of the algorithm are applied independently for each of the segmented

regions: region i in image Tp will be referred to as Ti
p, and the projection of this region to the source

image as Si
p.

6.5.2 Local Joint Image Histogram

The current chapter proposes to look into the problem of color correction as a mutual information

problem. In probability theory the mutual information of two random variables is a quantity that

measures the mutual dependence of the two variables. Other authors have used similar approaches by

analyzing the joint image histogram [Jia & Tang 2005, Kim & Pollefeys 2008]. Let X and Y be the

discrete random variables that correspond to the color values of the Ti
p and Si

p regions respectively.

The random variates of these random variable are denoted as x and y, respectively. Similarly to the

standard one dimensional histogram, the joint image histogram is a two dimensional histogram or

matrix, where each cell index (x, y) accounts for the number of times that the value x of color X in

the Ti
p region is mapped to the value y of color Y in the Si

p region. In this context, X and Y represent

all the possible values of color in the target and source images, respectively. Hence, they are both

defined in the discrete interval {0, 1, 2, ..., 2n−1}, with n being the bit depth of the images. The joint

image histogram is built using the following eq.:

Ii(x, y) =
W−1∑
u=0

H−1∑
v=0

q(Ti
p(u, v), x) · q(Si

p(u, v), y), (6.16)

where u, v are the pixel coordinates, W and H the width and height of the images (note that only

pixels belonging to region i are considered), q(a, b) is a function that returns 1 in case a = b and 0
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otherwise. In this paper, the normalized version of the joint image histogram is used.

The objective of any color correction algorithm is to propose one or several color palette mapping

functions, expressed as:

Ŷ = fi(X), (6.17)

where fi is the estimated color mapping function for region i, and Ŷ is the color of the color corrected

image T̂, for a given color X of the target image T. A color palette mapping function cannot map

one element of its domain to different elements of its codomain. However, from the observation of

a typical joint image histogram of region (see Fig. 6.14 (a)) or (d)), it is possible to realize that

there are several observations of Y for each of the values in X. Therefore, it must be assumed that

the joint image histogram represents a set of considerably noisy observations of the ideal mapping

function. The noise is mainly due to lack of accuracy in the registration of the images, but other

factors might be involved, such as: vignetting, changes in local illumination of the scene, or even

different characteristics of the image acquisition device.

6.5.3 Modeling the Mutual Information

For a given region i, the observed mutual information between color X and color Y is modelled with

a set of Gaussian curves. These curves will model the conditional probability that color X occurs,

given a specific value for variable Y (notated P (X | Y = y)). In other words, we propose to represent

the observed mutual information between variables (obtained by the normalized local joint image

histogram) by a set of conditional probabilities, modeled by a Normal distribution:

Ii(X,Y) ∼ P i(X | Y = y) ∼ N i
y(μ

i
y, σ

i
y), (6.18)

where μi
y and σi

y are the mean and standard deviation of the fitted Normal, for a particular region i and

value of Y = y. For each admissible value of y, a Gaussian curve is estimated. Since y is defined in

{0, ..., 2n−1}, a typical eight bit depth (n = 8) image will be modelled by 256 Gaussians. We refer to

this as modeling the horizontal slices of the normalized joint image histogram. Each horizontal slice

is modelled using the maximum likelihood method. Let Xi
y be the vector of observed color values of

X for a given value of Y = y, extracted directly from the local joint image histogram of the region:

Xi
y = Ii(X,Y), ∀X ∈ {0, 1, .., 2n − 1} and Y = y. (6.19)

The goal is to fit a Gaussian curve to the vector of observations Xy:

Xy ∼ Ny(μy, σy). (6.20)

We propose to model the vector of observations with a truncated normal distribution. In compar-

ison with a standard Gaussian distribution, the truncated Gaussian distribution presents some advan-
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tages namely because it can model better the image sensor saturation phenomenons. Cameras often

saturate the acquired image in the higher bounds, for example when facing direct sunlight or in the

lower bound, when viewing a dark scenario or when the exposure / brightness control is not well ad-

justed. In practice, it is difficult to achieve the dynamic range of the human eye in a given scene using

electronic equipment. This is why images captured by cameras are often over or under saturated. To

best cope with these phenomenons, a truncated Gaussian distribution is employed. It can accurately

model the saturation near to the sensor’s high and low dynamic limits. Within the interval [a, b], the

probability density function for a truncated normal is defined as:

pdf(z;μ, σ, a, b) =
φ(z)

Φ(b)− Φ(a)
, (6.21)

where z corresponds to the variable that we want to model (in this case, the color distribution of X),

a and b are the limits of the interval in which the Gaussian is defined, for images they correspond to

a = 0 and b = 2n − 1. Outside the interval [a, b], the probability density function is equal to zero.

The symbol φ represents the probability density function of a standard Gaussian distribution:

φ(z;μ, σ) =
e−

(z−μ)2

2σ2

√
2πσ2

, (6.22)

and Φ represents the cumulative distribution function of a standard normal distribution at point t:

Φ(t;μ, σ) =
1

2
+

1

2
erf
( t− μ√

2σ2

)
, (6.23)

where erf is the error function. Rearranging eqs. (6.21) (6.22) and (6.23), the probability density

function of a truncated Gaussian distribution is expressed as:

pdf(z;μ, σ, 0, 2n − 1) =
e−

(z−μ)2

2σ2

√
2πσ2

2

(
erf(2

n−1−μ√
2σ2

)− erf( −μ√
2σ2

)
) . (6.24)

Using the probability density function presented in (6.24), a maximum likelihood estimation (MLE)

procedure is used to fit the truncated Gaussian to the vector of observed values (Xy). The method

selects values of the model parameters that produce a distribution that gives the observed data the

greatest probability, i.e., that maximize the likelihood function. The fitting will return the model

parameters μi
y and σi

y. Figure. 6.13 compares the truncated Gaussian fitting (trunc. N MLE in Fig.

6.13) with standard Gaussian calculation (N calculation in Fig. 6.13), i.e., where μ and σ are directly

calculated from the vector of observed values. Four cases are presented. In each, a ground truth

Normal distribution (Ground Truth in Fig. 6.13) was used to sample the vector of observations (Signal

histogram, in Fig. 6.13). The sampling is obtained by adding 10% random noise and saturating the
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(a) (b)

(c) (d)

Figure 6.13: Comparison of standardN calculation (dashed blue) with truncatedN maximum likeli-

hood estimation (dashed red). A ground truth Gaussian model (solid green) was used to generate the

observed data sets for color values (signal histogram).

signals that lie beyond the truncation limits.

From observing Fig. 6.13, it is possible to realize that in the cases where large portions of the

area of the underlying Normal distribution disappear (due to the saturation discussed before), the

truncated Gaussian estimation models the Ground Truth distribution more precisely. On the other

hand, the standard N calculation fails to accurately model the signal. This is especially visible in

Fig. 6.13 (c) and (d). In the case of Fig. 6.13 (a) and (b), a very small portion of the signal was

saturated and because of this, both methods have a similar effectiveness. Nonetheless, since the goal

is to model color distribution in images, it is expected that the image sensor saturation phenomenons

occur often. Hence, the usage of a truncated Gaussian MLE estimation will increase the capability of

the algorithm to model the joint image histograms and, as a consequence, improve the performance

of the color correction.

Figure 6.14 shows examples of the modeling procedure for two images (top and bottom). Since

the example on the top has a more scattered joint image histogram (Fig. 6.14 (a)), the modelled

Gaussians have considerably larger standard deviations, i.e., they are wider (Fig. 6.14 (b)). On the
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(a) (b) (c)

(d) (e) (f )

Figure 6.14: Examples of the modeling procedure for two images: case 1, top and case 2, bottom.

The joint image histograms with the estimated color pallete mapping function in blue (a) and (d): the

modeled Gaussians (b) and (e); and a 3D view of the modeled Gaussians (c) and (f ).

other hand, the example on the bottom shows an image where the joint image histogram is more

compact (Fig. 6.14 (d)), which leads to peak-like Gaussians (Fig. 6.14 (e)). A 3D representation of

the joint image histogram as well as the fitted Gaussians is displayed in Fig. 6.14 (c) and (f ). It is also

possible to realize the difference in the modeled Gaussians in both cases, wide Gaussians on (c) and

peak like Gaussians on (f ).

The limitations of the truncated Gaussian fitting method are related to the number of observations

required for properly estimating a probabilistic distribution. However, this is a common restriction

to any fitting methodology. In order to infer a reliable statistical model, a reasonable number of

observations must be given. This is observable in Fig. 6.14 (a). The fitting fails (represented by

the red lines near to the lower values of Y) because the joint image histogram contains almost no

observations in the interval Y ∈ [0; 10]. An analysis of the scattering of mappings in Fig.6.14 (a)

shows that a voting scheme (as proposed in [Jia & Tang 2005]) will ignore a lot of information that

could be used for inferring a more accurate mapping function. By fitting a model to the observed data

it is expected that the color mappings are more acuratelly modeled.
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6.5.4 Color Palette Mapping Functions

The joint image histogram represents the observable mutual information between X and Y. The color

palette mapping function should somehow be inferred from the information present on the joint image

histogram. However, the observations present in the joint image histogram must be regarded as

considerably noisy. Because of this, the current chapter proposes to model these observations as a set

of horizontal Gaussians estimated in 1D space. In section 6.5.3, the s.pdf for probabilistic modeling

of the joint image histogram are presented. With this procedure, 256 Gaussian curves (one for each

value of Y) are fitted to describe the probability of X given Y = y. In this section, we will focus on

how to compute the color palette mapping function from those modeled Gaussians. Compared to the

modeling formulation in section 6.5.3, eq. (6.18), the problem is now reversed: the objective is to find

Y, given a value of X = x, which can be written in probabilistic formulation as P (Y | X=x). Since

each modeled Gaussian should proposes a probability that X = x is mapped to a given color Y, the

sum of the contributions of all these Gaussians is computed to obtain the final color palette mapping

function:

f i(X = x) ≡
2n−1∑
y=0

y · P i(Y = y | X = x), (6.25)

using Bayes rule, the conditional probability in eq. (6.25) is expanded:

P i(Y = y | X = x) =
P i(X = x | Y = y) · P i(Y = y)

P i(X = x)
, (6.26)

where P i(X = y) and P i(Y = y) are the prior probabilities estimated from the normalized joint

image histogram:

P i(X = x) =
2n−1∑
y=0

Ii(x, y), P i(Y = y) =
2n−1∑
x=0

Ii(x, y), (6.27)

and P i(X = x | Y = y) is given by the probability density function of Gaussian y and value z = x

(see eq. (6.21)):

P i(X = x | Y = y) =
e
− (x−μi

y)2

2σi
y
2

√
2πσi

y
2

2

(
erf(2

n−1−μi
y√

2σi
y
2
)− erf( −μi

y√
2σi

y
2
)
) . (6.28)

By applying eq. (6.28) to all values of X, a value of Ŷ is computed for each X = x and thus the color

palette mapping function is computed for the given region i. The usage of the P i(Y = y | X = x)

in eq. (6.25) instead of P i(X = x | Y = y) directly, is motivated by the reason that the marginal

probabilities that appear in the expansion using the Bayes rule (eq. (6.26)) will weight the importance

of each modeled Gaussian based by the ratio P i(Y = y) over P i(X = x), which will improve the
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quality of the estimation of the color palette mapping function.

As discussed in section 6.5.3, the fitting of some Gaussians may fail due to insufficient number of

observations. In this case, the Gaussian is not valid and for that Y = y, the value of P i(X = x | Y = y)

is set to zero. One of the advantages of this approach is that the modeled Gaussians are defined in the

whole range of admissible values of X. Therefore, eq. (6.28) is defined for the whole range of possible

values of X. Another advantage is that observed data is fitted to a statistical Normal distribution model.

Because of this, noise is considerably reduced. Noise in the observed data is mainly due to lack of

accuracy in the registration between the source and target images, but other factors such as local

changes in scene illumination may also be accounted. This is another advantage of the proposed

approach when compared to others: model fitting increases the ability to cope with noise in the joint

image histogram.

Figure 6.14 (a) and (d) show (in blue) the estimated color palette mapping function for the two

cases presented. Both functions properly fit the input data present in the respective joint image his-

tograms.

6.5.5 Expanding the Color Palette Mapping Functions

Once the color palette mapping functions are computed for all the regions in Tp, they must be applied.

If only the overlapping portion of the target image, Tp, is considered, the operation is straightforward.

However, to be complete, the process of color correction must correct the entire target image T (see

Fig. 6.1 (e)). In other words, for each of the pixels in T, even those which do not belong to Tp, one of

the computed color palette mapping functions must be selected. We propose to make use of the color

resemblances between T and Tp to perform this expansion. The process starts with a second color

segmentation, this time of image T. Let Tj be the jth region of image T. Each region has a mean

color associated to it, denoted as rgb
j

in the case of region Tj , and rgbp
i
, in the case of region Ti

p.

As discussed before, the proposed approach produces a color palette mapping function f i for every

region in Tp. The objective is to find, for a given region j of the entire target image, the index i of the

mapping function that should be applied to the pixels of that region. To do this, we propose to use the

ith region that is, on average, photometrically closer to the mean color of the jth region:

map(j) = argmini(‖ rgb
j − rgbp

i ‖). (6.29)

In the target image T space, the selected color palette mapping function is given by the mapping

presented in eq. (6.29). That is, for a given region Tj the selected color palette mapping function is

f map(j).

It should be noted that very few of the methods presented in the literature propose methodologies

for expanding the color palette mapping functions. Also, the result of the expansion, the image

mosaic, or the whole corrected image, can only be analyzed qualitatively because the non overlapping
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portions of the image cannot be compared to the source image.

In the next sections, results are given. They are divided into three parts. First, a case study

is presented to illustrate the details of the proposed algorithm. Second, qualitative and quantitative

results are presented by comparing the proposed approach with nine other state of the art algorithms.

Finally, an analysis on the effects of the Mean shift based color segmentation preprocessing step to

the overall color correction performance of the proposed approach is presented.

6.5.6 A Case Study

In this section the s.pdf of the proposed algorithm are shown in detail. To start, a pair of source and

target images of a bird are registered in order to obtain a mosaic (Fig. 6.15 (a), source image on the

left and target image on the right). As usual in pairs of images requiring color correction, the mosaic

shows artifacts due to photometric miss calibration between the images. The overlapping areas (Fig.

6.15 (b) from the source image, and Fig. 6.15 (c) from the target image) of both images show clear

differences in color. The three channels of the target image are processed separately. The following

procedures are performed for each of the color channels.

The first step of the proposed algorithm is to color segment the image (section 6.5.1). This is

done by applying Mean shift to the overlapping region of the target image (Tp), i.e, Fig. 6.15 (c).

In this case, the procedure segments nine regions from the image, as shown in Fig. 6.15 (d). The

segmentation step is crucial to the color correction process: since the image is split into several

regions, each is used to compute the respective local color palette mapping function. To do so, for

each region, the joint image histogram is computed. This is the second step of the algorithm, presented

in section 6.5.2. We focus our analysis on just three of the segmented regions: region 1, the blue sky

behind the bird (Fig. 6.16 (a)), region 5, the red beak of the bird (Fig. 6.16 (d)) and region 7, the

brown tree branch near the bottom of the image (Fig. 6.16 (g)).

(a) (b) (c) (d)

Figure 6.15: The images used in this case study: the mosaic of both source and target images is shown

without color correction (a), the source image is on the left and the target image is on the right of the

mosaic; the areas of the source and target images that overlap, respectively Sp (b) and Tp (c); and the

result of color segmentation of Tp using Mean shift (d).
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The normalized joint image histograms of regions 1, 5 and 7 are displayed in Fig. 6.16 (b), (e)

and (h), respectively. Region 1 shows observations in the interval 0 < X < 75. Region 5, the red

beak of the bird, has observations with higher values (40 < X < 180), since we are looking at the red

channel of the image. Region 7, the tree branch, shows observations is the 40 < X < 110 interval.

The third step of the algorithm (section 6.5.3) is to model the information present in the joint

image histogram with a set of 256 Gaussian curves (one for each value of Y), that describe the condi-

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.16: Graphs from region 1 (first row), 5 (second row) and 7 (third row): the regions, (a), (d)
and (g); the joint image histograms with the computed local color palette mapping function in blue

(b), (e) and (h); and the fitted Gaussians (c), (f) and (i).
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tional probability P (X | Y = y). Each segmented region is modelled independently according to this

procedure. Figures 6.16 (c), (f) and (i) show the Gaussian curves that are estimated for regions 1, 5

and 7, respectively. When the observations provided by the joint image histogram are more coherent,

i.e, the values of Y are mapped to a short range of values in X, there is a high probability of mapping

X to a single Y. As a result, the probability density functions of the estimated Gaussians resemble a

peak (small value of σ and μ positioned where there is a large mapping probability). This is noted in

the cases of regions 1 and 5: the coherent data in the joint image histogram (Figures 6.16 (b) and (e)),

leads to the peak like Gaussians shown in Fig. 6.16 (c) and (f). On the contrary, when the joint image

histogram shows less coherent data, i.e, the values of Y are mapped to a large range of values in X, the

Gaussians tend to be wider (with a larger σ), since the probability of mapping is scattered through a

large range of possible values. This is noticeable in the case of region 7, where the incoherent data in

the joint image histogram (Fig. 6.16 (h)) results in the wider Gaussians present in Fig. 6.16 (i).

The fourth step of the algorithm, detailed in section 6.5.4, is to obtain the color palette mapping

function for each region. Figures 6.16 (b), (e) and (h) show, in blue, the computed color palette

mapping functions for regions 1, 5 and 7, respectively. It is possible to observe that these three

mapping functions are very different. For example, target color X = 50 is mapped to Y � 90 in

region 1, Y � 40 in region 5, and Y � 20 in region 7; target color X = 100 is mapped to Y � 170

in region 1, Y � 125 in region 5, and Y � 140 in region 7; finally, target color X = 150 is mapped

to Y � 170 in region 1, Y � 200 in region 5, and Y � 180 in region 7. These examples show that

the mapping of color varies significantly, from region to region. This observation endorses the use of

local approaches to color correction instead of global ones.

Figure 6.17 (a) shows a composite joint image histogram of all the regions. By observing the

graph it is possible to realize that it is very hard to fit a single color palette mapping function to

the global joint image histogram. For every value of Y, there are wide ranges of mappings of X.

Using region local joint image histograms facilitates the computation of local color palette mapping

functions. Figure 6.17 (b) shows the color palette mapping functions obtained in this case study.

Although these functions are defined in the X ∈ {0, ..., 255} interval (see the examples in 6.16 (b),

(e) and (h)), only portions of the functions are displayed for a better understanding of the graph. The

color palette mapping functions fit the local region data very well, which explains the efficiency of

the proposed color correction algorithm.

Finally, the fifth step of the algorithm is to apply the computed set of color palette mapping func-

tions to the target image (section 6.5.5). Note that, as explained, these functions are computed from

the region of the mosaic where mutual information between source and target color is observable.

In other words, although the color palette mapping functions are computed based on the overlapping

portion of the target image Tp (Fig. 6.15 (c)), they must be applied to the whole target image T (Fig.

6.18 (a)). To do so, a second Mean shift color segmentation is applied to T, as shown in Fig. 6.18

(b). Figure 6.18 (c) shows the corrected target image. Figure 6.18 (d) shows the mosaic obtained
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using the source and corrected image. Compared to the initial mosaic shown in Fig. 6.15 (a) it is

possible to observe a much better photometric resemblance between both images. In fact, no artifacts

are noticeable, which is a good indication of the color correction’s effectiveness.

6.5.7 Comparison with other Algorithms

In this section quantitative results will be presented that show that the proposed approach outperforms

nine other state of the art color correction methods. In section 6.5.1 the usage of Mean shift as a pre-

processing step was explained. The matlab implementation available at http://coewww.rutgers.edu/

riul/research/code.html was used for implementing color segmentation. As in most of the methods,

there are several parameters in this algorithm that may change the outcome of the segmentation: spa-

tial band width, range band width, gradient window radius, mixture parameter, edge strength thresh-

old and minimum region area (see the toolbox for more detailed information). The results displayed

in this section were obtained by using the toolbox’s default values for all parameters. In this way,

a more careful selection of those parameters could, to some extent, improve the results of the color

correction algorithm here presented.

In order to test the performance of the proposed approach against other algorithms, two data sets

of a recent performance evaluation [Xu & Mulligan 2010] were used. They consist of a synthesized

data set of 40 image pairs and a real image data set of 23 image pairs. The synthesized image pairs

were obtained by clipping the source and target images from a larger original image. Then, the color

in the target image is altered using an image editing software. In the case of the real image data

set, the target and source images are different shots of the same scene. They might or might not be

(a) (b)

Figure 6.17: emph(a) Joint image histograms of the color segmented regions (shown in Fig. 6.15 (d)).

(b) Color palette mapping functions (CPMF). Data is assigned to the corresponding region color (see

Fig. 6.15 (d)).
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(a) (b)

(c) (d)

Figure 6.18: Results of this case study: the target image (a); the Mean shift color segmentation of the

target image (b); the corrected image (c); the mosaic obtained after performing color correction with

the proposed approach (d).

taken using the same camera and/or at exactly the same time. While the real image pair emulates the

conditions normally found by a color correction algorithm, the synthesized data-set is much easier to

register and so, conclusions can be made whether an algorithm is more or less sensitive to registration

accuracy.

Figure 6.19 shows the mosaics of some of the image pairs present on both data sets. The registra-

Table 6.6: Algorithms tested in this evaluation. The algorightm presented in this paper, will be

referred to as #11.

Name of the Approach Reference Alg. #

Baseline (Target Image) — #1

Global Color Transfer in RGB Xiao 06 [Xiao & Ma 2006] #2

Global Color Transfer Reinhard 01 [Reinhard et al. 2001] #3

Cumulative Histogram Mapping Fecker 08 [Fecker et al. 2008] #4

Gain Compensation Brown 07 [Brown & Lowe 2007] #5

Principal Components Analysis Zhang 04 [Zhang & Georganas 2004] #6

Brightness Transfer Function Kim 08 [Kim & Pollefeys 2008] #7

Local Color Transfer Tai 05 [Tai et al. 2005] #8

Tensor Voting in Joint Image Space Jia 05 [Jia & Tang 2005] #9

Mean shift based Local Color Transfer section 6.3 #10

Probabilistic modeling of LCPMF section 6.5 #11
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Table 6.7: Corrected overlapping areas of image pair numbers 6, 35 and 37 of the synthetic data-set.

The PSNR (metric 1, Mt 1) and S-CIELAB (metric 2, Mt 2) scores are displayed. Best scores are

highlighted in blue.

Synthetic image pair 6 Synthetic image pair 35 Synthetic image pair 37

Source (Sp) Target (Tp) or #1 Source (Sp) Target (Tp) or #1 Source (Sp) Target (Tp) or #1

#; Mt 1; Mt 2 #; Mt 1; Mt 2 #; Mt 1; Mt 2 #; Mt 1; Mt 2 #; Mt 1; Mt 2 #;Mt 1; Mt 2

#2 ; 22.7 ; 16.1 #3 ; 20.7 ; 18.4 #2 ; 21.7 ; 16.4 #3 ; 21.0 ; 15.7 #2 ; 21.1 ;11.9 #3 ; 21.3 ; 11.8

#4 ; 32.8 ; 5.1 #5 ; 23.2 ; 13.0 #4 ; 25.9 ; 3.7 #5 ; 23.3 ; 8.0 #4 ; 35.8 ;1.8 #5 ; 24.4 ; 7.7

#6 ; 34.7 ; 4.0 #7 ; 43.3 ; 0.5 #6 ; 25.2 ; 5.1 #7 ; 26.1 ; 2.7 #6 ; 31.3 ;4.3 #7 ; 33.6 ; 2.4

#8 ; 21.4 ; 9.5 #9 ; 42.0 ; 0.7 #8 ; 21.1 ; 5.7 #9 ; 26.1 ; 2.5 #8 ; 23.8 ;10.7 #9 ; 34.0 ; 2.4

#10 ; 33.2 ; 4.4 #11 ; 42.5 ; 0.4 #10 ; 25.6 ; 3.3 #11 ; 26.4 ; 2.6 #10 ; 30.1 ;4.4 #11 ; 37.7 ; 1.0
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Table 6.8: Corrected overlapping areas of image pair numbers 1, 12 and 21 of the real data-set.

The PSNR (metric 1, Mt 1) and S-CIELAB (metric 2, Mt 2) scores are displayed. Best scores are

highlighted in blue.

Real image 1 Real image 12 Real image 21

Source (Sp) Target (Tp) or #1 Source (Sp) Target (Tp) or #1 Source (Sp) Target (Tp) or #1

#; Mt 1; Mt 2 #; Mt 1; Mt 2 #; Mt 1; Mt 2 #; Mt 1; Mt 2 #; Mt 1; Mt 2 #; Mt 1; Mt 2

#2 ; 22.7 ; 8.1 #3 ; 21.9 ; 8.6 #2 ; 15.3 ;20.5 #3 ; 15.4 ; 20.4 #2 ; 15.1 ; 19.3 #3 ; 14.9 ; 20.6

#4 ; 21.8 ; 5.4 #5 ; 21.8 ; 6.4 #4 ; 24.4 ;3.9 #5 ; 20.5 ;8.9 #4 ; 25.0 ; 3.8 #5 ; 20.3 ; 8.8

#6 ; 22.0 ; 5.5 #7 ; 22.5 ; 5.1 #6 ; 22.5 ;10.7 #7 ; 23.6 ;3.5 #6 ; 24.6 ; 3.6 #7 ; 24.9 ; 3.4

#8 ; 21.7 ; 6.5 #9 ; 21.0 ; 7.4 #8 ; 23.1 ;5.8 #9 ; 23.4 ;3.6 #8 ; 21.0 ;7.4 #9 ; 25.0 ; 3.5

#10 ; 21.3 ; 7.3 #11 ; 26.1 ; 3.5 #10 ; 21.6 ; 7.2 #11 ; 28.2 ;3.1 #10 ; 23.8 ; 5.4 #11 ; 26.2 ; 3.2
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tion for each pair of images was not provided by the authors of [Xu & Mulligan 2010], just the image

pairs. Because of this, a manual process of hand labeling pixels in both images was done to obtain a

new registration. Since registration has some impact on color correction, the results that are presented

are not exactly the same as those in [Xu & Mulligan 2010], although they are similar. Hence, the

registration is never pixel accurate in both data sets although, as mentioned above, it is significantly

more accurate in the synthetic data set. Note that most of the methods used in this evaluation propose

no way of expanding the color palette mapping functions to the whole target image. However, to

build a mosaic with the color corrected image, it is necessary to obtain a correction for the entire

(a) (b) (c)

(d) (e) (f)

Figure 6.19: Mosaics obtained using the image pairs from the data set of [Xu & Mulligan 2010].

Synthesized data set: (a) image 17; (b) image 32 ; and (c) image 40. Real data set: (d) image 8; (e)

image 21; and (f ) image 23. (top) Original mosaics; (bottom) Results from the proposed approach.
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target image. Because of this, in the qualitative evaluation of the mosaics, only the results from the

proposed approach are shown in Fig. 6.19. In all examples, the proposed approach removes most of

the artifacts originally present and produces mosaics with smooth color transitions.

In order to compare the results of the proposed approach with the state of the art, eight of the nine

algorithms used in [Xu & Mulligan 2010] were applied to the same data sets. The implementations

of algorithms #2 through #9 were provided by the authors of [Xu & Mulligan 2010]. Regarding the

missing algorithm [Pitie et al. 2005], it was not possible to find a public implementation to guarantee

a fair comparison. However, the algorithm presented in [Pitie et al. 2005] did not reach the best

performance in none of the tests presented in [Xu & Mulligan 2010]. Another recently published

algorithm [Oliveira et al. 2011] was also included in the evaluation. Table 6.6 lists all the algorithms

tested in the current paper. Each is attributed a number for easier reference in the discussion of results.

Algorithm #1 is the baseline for comparison. In this case, no correction is performed. The corrected

image is equal to the target image.

The performance of a color correction approach is quantitatively assessed by comparing the

overlapping portions of the color corrected image and the source image. To test the images and

evaluate the algorithms, two different image comparison metrics were used. The first, proposed

in [Xu & Mulligan 2010], is called peak signal-to-noise ratio (PSNR). It measures the color similar-

ity. The higher the value of this score, the more similar are the two images. The second evaluation

metric is the spatial cielab (S-CIELAB), initially proposed in [Zhang & Wandell 1997]. This metric

is well accepted as one of the standards for assessing the similarity between two images. Since it

measures image dissimilarity, the lowest scores are, in this case, associated with the best performing

color correction algorithms.

Table 6.7 shows four image pairs from the synthetic data-set. Pairs number 6, 11, 35 and 37 are

displayed. The color corrected overlapping portion of the target image (T̂p) is shown for all methods.

Below, the PSNR and S-CIELAB scores are presented. In the case of image 6, a visual analysis

concludes that methods #4, #6, #7, #9, #10 and #11 are able to produce a good color corrected image.

Numerically, algorithms #7 and #11 obtain the highest similarity scores. The same occurs for image

pair 11, where most methods effectivelly correct the image. However, the proposed approach (#11)

obtains the highest similarity scores in both metrics. Pairs 35 and 37, on the other hand, seem harder

to correct. In pair 35, several algorithms fail to properly correct the images, while in 37, algorithm

#11 does the best job at recovering the color of the blue sky and the red shirt. This is reflected on the

numerical scores as well.

Table 6.8 shows images 1, 4, 12 and 21 from the real data-set. In image 1, due to a poor registra-

tion, some of the algorithms fail. This is particularly observable at the top of the image. The colors of

the sky and hills are very hard to correct for most of the algorithms. Algorithm #9 shows inclusively a

catastrophic failure, painting the sky in magenta colors. The proposed approach is the algorithm that

better corrects the image, obtaining the best scores in both metrics. It also achieves the best scores in
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the cases of images 4, 12 and 21.

Tables 6.9 and 6.10 show the quantitative results obtained by all algorithms on both the synthetic

and real image data-sets. For the synthetic data-set, in the case of PSNR color similarity the proposed

approach (#11) achieves an average score of 29.9, outperforming all other algorithms. The second

best scoring algorithm is #7 (29.0 score), followed by #9 (28.8 score). Regarding the S-CIELAB
evaluation of the synthetic data-set, the proposed approach also achieves the best average result (2.6

score), followed by algorithms #7 (2.7) and #9 (2.8). Algorithm #1 corresponds to the baseline

approach, i.e, no color correction is performed in this case. Compared to the synthetic data-set,

we can notice that, for the real data-set, the mean score of algorithm #1 is lower for PSNR and

higher for S-CIELAB. This shows that in the real data-set, source and target images are, on average,

photometrically more distant. As a consequence, the real data-set should be harder to color correct

when compared to the synthetic data-set. In fact, this conclusion can be taken from the following

analysis: for the synthetic data-set, the average PSNR score of the best 3 methods is 29.2, which

accounts for a 10.4 improvement against the baseline 18.8 score. In the real data-set the improvement

is of 6.5; this shows that the real data-set is harder to color correct when compared to the synthetic

data-set. Analyzing the PSNR performance in the real data-set, the proposed approach (algorithm

#11) achieves an average score of 24.7, followed once again by algorithms #7 and #9 with 22.5

score. In terms of the S-CIELAB metric, the proposed approach has again outperformed all methods

Table 6.9: Mean and standard deviations of the PSNR scores for each algorithm in both data sets.

Best results are highlighted in blue.

PSNR color similarity

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11

Synthesized image data-set (40 images)

μ 18.8 19.3 19.8 27.7 21.3 27.3 29.0 21.7 28.8 26.2 29.9
σ 4.0 5.7 4.9 6.7 2.5 7.4 8.7 3.2 8.2 5.7 9.2

Real image data-set (23 images)

μ 16.7 19.4 20.2 22.3 20.4 20.9 22.5 21.2 22.5 22.0 24.7
σ 3.4 6.0 6.8 4.1 3.3 4.9 3.9 3.0 4.1 4.0 3.7

Table 6.10: Mean and standard deviations of the S-CIELAB scores for each algorithm in both data

sets. Best results are highlighted in blue.

S-CIELAB color dissimilarity

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11

Synthesized image data-set (40 images)

μ 15.5 17.8 16.2 3.1 8.6 4.2 2.7 8.6 2.8 4.2 2.6
σ 7.3 10.1 7.6 1.6 3.1 3.7 1.7 3.4 1.6 1.8 1.8

Real image data-set (23 images)

μ 18.5 17.5 17.1 6.0 9.4 9.5 5.7 8.2 6.0 7.1 4.8
σ 9.5 9.7 10.3 3.3 4.8 8.3 3.4 4.2 4.0 3.8 2.5
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with 4.8 score. Algorithm #7 is confirmed as the second best scoring method with 5.7, followed by

algorithm #9 score of 6.0. Another interesting observation to make is that the difference in average

score from the proposed approach to the other methods is larger for the real data-set. For example,

the comparison to the second best scoring algorithm in each data-sets in each metric, results in the

following: in the synthetic data-set the difference in scores is 29.9 − 29.0 = +0.9 for PSNR, and

2.6 − 2.7 = −0.1 for S-CIELAB. In the real data-set the differences are 24.7 − 22.5 = +2.2 for

PSNR and 4.8 − 5.7 = −0.9 for S-CIELAB. The proposed approach not only scores more that all

other methods, it outscores (on average) by a larger margin in harder data-sets. It seems that the

proposed approach is more robust to difficulties in data-sets, such as the lack of accurate registrations

between source and target images.

Table 6.11 compares the results obtained in this chapter with the evaluation from

[Xu & Mulligan 2010]. Methods are ranked according to the average score of the metric. The results

from this evaluation are consistent with those from [Xu & Mulligan 2010], since the sorting of the al-

gorithms remains similar. For example, algorithms #7 and #9 were the best in [Xu & Mulligan 2010]

and are still amongst the best. However, in the lower part of the ranking, the sorting is somewhat

different from the evaluation from [Xu & Mulligan 2010]. This could be explained by the difference

in registration between image pairs, i.e., algorithms may have different sensitivity to the source target

image registration accuracy.

Finally, in Tables 6.12 and 6.13, a summary of the evaluation performed in this chapter is pre-

sented. All four cases, i.e., two data-sets and two evaluation metrics, are presented. The first four rows

show the percentage of images (out of the total in that data-set) where the algorithm obtained the best

(1st), second best (2nd), third best (3rd), or worse (> 3rd) score. Regarding the synthetic data-set,

the proposed approach obtains the best PSNR score in 82.5% of the images, and the best S-CIELAB
score in 80% of the images. In the case of the real data-set, the proposed approach obtains the best

Table 6.11: Algorithms sorted by their average score. #10 and #11 were not evaluated (NE) in

[Xu & Mulligan 2010], since they are posterior.

From Xu2010 Evaluation from the current paper

PSNR rank PSNR rank S-CIELAB rank

Alg. # Syn. Real Syn. Real Syn. Real

#2 7th 7th 10th 10th 10th 10th

#3 8th 6th 9th 9th 9th 9th

#4 6th 8th 4th 4th 4th 3rd

#5 5th 4th 8th 8th 7th 7th

#6 3rd 5th 5th 7th 5th 8th

#7 1st 1st 2nd 2nd 2nd 2nd

#8 4th 3rd 7th 6th 7th 6th

#9 2nd 2nd 3rd 2nd 3rd 3rd

#10 NE NE 6th 5th 5th 5th

#11 NE NE 1st 1st 1st 1st
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PSNR score in 73.9% of the images and the best S-CIELAB score in 87% of the cases. In all four

cases, results show that the proposed approach obtains a better score (row 1st) when compared to all

other algorithms, at least in 73.9% of the images. Also, the second best average scoring algorithm,

reference #7 (see Table 6.11), does not show the same consistency in the first or second best scoring

position. Furthermore, the proposed approach is amongst one of the three best scoring algorithms

in 97.5%, 92.5%, 100.0% and 95.7% of the images, respectively for the synthetic PSNR, synthetic

Table 6.12: Evaluation of the performance of the Algorithms according to the PSNR score. Rows

represent: the % of images where the algorithm achieved the best (1st), second best (2nd), third best

(3rd), or worse (> 3rd) score. The last row shows the % of times an algorithm failed to color correct

the image. Best results are highlighted in blue.

PSNR color similarity

#2 #3 #4 #5 #6 #7 #8 #9 #10 #11

Synthetic image data-set (40 images)

1st 7.5 5.0 0.0 0.0 0.0 7.5 0.0 2.5 0.0 82.5
2nd 5.0 7.5 15.0 0.0 12.5 45.0 0.0 32.5 15.0 2.5

3rd 0.0 0.0 15.0 0.0 12.5 12.5 0.0 37.5 0.0 12.5

> 3rd 87.5 87.5 70.0 100 75.0 35.0 100 27.5 85.0 2.5

Failures 20.0 35.0 0.0 7.5 5.0 2.5 20.0 2.5 2.5 0.0
Real image data-set (23 images)

1st 13.0 13.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 73.9
2nd 8.7 13.0 26.1 4.3 13.0 17.4 0.0 26.1 13.0 4.3

3rd 0.0 0.0 21.7 0.0 21.7 17.4 4.3 17.4 13.0 21.7

> 3rd 78.3 73.9 52.2 95.7 65.2 65.2 95.7 56.5 73.9 0.0

Failures 4.3 0.0 4.3 8.7 13.0 4.3 13.0 8.7 13.0 0.0

Table 6.13: Evaluation of the performance of the Algorithms according to the S-CIELAB score.

Rows represent: the % of images where the algorithm achieved the best (1st), second best (2nd), third

best (3rd), or worse (> 3rd) score. The last row shows the % of times an algorithm failed to color

correct the image. Best results are highlighted in blue.

S-CIELAB color dissimilarity

#2 #3 #4 #5 #6 #7 #8 #9 #10 #11

Synthetic image data-set (40 images)

1st 0.0 2.5 5.0 0.0 15.0 30.0 0.0 17.5 0.0 80.0
2nd 0.0 0.0 20.0 0.0 0.0 45.0 0.0 27.5 2.5 5.0

3rd 0.0 0.0 7.5 0.0 5.0 17.5 0.0 35.0 2.5 7.5

> 3rd 100 97.5 67.5 100 80.0 7.5 100 20.0 95.0 7.5

Failures 27.5 55.0 0.0 2.5 2.5 0.0 15.0 0.0 0.0 0.0
Real image data-set (23 images)

1st 4.3 8.7 0.0 0.0 0.0 17.4 0.0 4.3 0.0 87.0
2nd 0.0 0.0 13.0 0.0 0.0 52.2 8.7 26.1 0.0 4.3

3rd 0.0 0.0 13.0 0.0 0.0 13.0 0.0 43.5 8.7 4.3

> 3rd 95.7 91.3 73.9 100 100 17.4 91.3 26.1 91.3 4.3

Failures 17.4 13.0 0.0 0.0 13.0 0.0 8.7 4.3 8.7 0.0
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S-CIELAB, real PSNR and real S-CIELAB cases. In sum, the proposed approach shows a very high

consistency in scoring amongst the top three color correction algorithms. Tables 6.12 and 6.13, also

show the percentage of failures for each algorithm. A failure occurs when an algorithm fails to color

correct the target image. This is ascertained when the score obtained by the algorithm is worse (lower

in PSNR or higher for S-CIELAB) than the score obtained by the baseline approach, algorithm #1.

In other words, a failure occurs if an algorithm outputs a corrected image that is photometrically more

distant to the source image than the original uncorrected target image. The proposed approach shows,

in all cases, zero failures, which is a unique performance compared to other algorithms. This shows

that the proposed approach is the most consistent and very robust.

6.5.8 Analysis of the effect of Mean shift to the overall Color Correction

As described in section 6.2, several color correction approaches make use of local color transfer

methodologies. It was shown that they are more effective that global approaches. The color correc-

tion algorithm proposed in this chapter can also be viewed as a local color correction methodology,

although it also works if no color segmentation preprocessing step is done. In this section an evalu-

ation of the effect of color segmentation to the effectiveness of the proposed approach is presented.

The parameters of the Mean shift were changed, so that, in different tests, the image is segmented

into a distinct number of regions. Figure 6.20 shows the PSNR and S-CIELAB scores of the pro-

posed approach in the different tests, i.e., with the Mean shift preprocessing step configured to have

different number of blobs. Results refer to the overlapping area of the image presented in the case

study, section 6.5.6. For comparison, the scores of the other algorithms used in this evaluation are

also displayed. They are independent of the number of regions provided by Mean shift, which is why

they show constant scores.

From the analysis of Fig. 6.20 it is possible to realize that the proposed approach achieves the

best score when five or more regions are segmented by Mean shift, in the case of the PSNR score

(Fig. 6.20 (a)), or when four or more regions are segmented in the case of the S-CIELAB score

(Fig. 6.20 (b)). The effectiveness of the proposed algorithm clearly benefits from using a prepro-

cessing color segmentation step. As expected, the effectiveness of color correction improves as the

segmentation shifts from coarse to fine. However, there seems to be a saturation point (six regions,

in the case of this image), where a larger number of regions produces only a very small improvement

on color correction effectiveness. This is an expected behavior: as the size of the regions decreases,

the color uniformity of the pixels in the region should contribute for a better estimation of the color

palette mapping function, but in the opposite direction, the smaller number of pixels in the region also

means that the statistical fitting of truncated Gaussians will be less effective and more prone to noise.

Another interesting conclusion is that the proposed approach yields reasonable scores even when no

preprocessing color segmentation is performed, i.e., when the number of regions in Fig. 6.20 is equal

to one.
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(a) (b)

Figure 6.20: Analysis of the effect of the color segmentation output to the effectiveness of the color

correction performed by the proposed approach. (a) PSNR scores; (a) S-CIELAB scores.

6.6 Conclusions

This chapter proposed three alternative approaches to tackle the problem of color correction between

images.

The first approach (section 6.3) uses a Mean shift color segmentation approach to perform local

color correction. It was shown that due to the robustness of the Mean shift color segmentation stage,

the proposed approach achieves better quality mosaics when compared to other local approaches.

The second approach (section 6.4) uses 3DGMM to model the color distribution in the images.

The algorithm consists of performing a single step multi dimensional probabilistic segmentation of

the three color channels of an image in order to perform color correction. A recent performance

evaluation on color correction was used to adequately select other color correction methods and an

evaluation metric. The joint segmentation of the three channel color was shown to reduce processing

time from similar single channel methods: 4.1 seconds average processing time of the proposed

approach versus 4.48 seconds from [Tai et al. 2005]. The proposed approach obtained very good

average CS scores, which makes it a technique to take into account for devising color correction

algorithms. In automotive applications, real time color correction would not be possible using this

methodology, but if it is important to obtain a high color similarity score (that is, a very accurate color

correction) , a strategy where a color palette mapping is built every four seconds could be devised.

Results show that 3DGMM may be successfully applied to color correction in the context of multi-

camera onboard systems, since it shows good results in the evaluation parameters and is faster to

process than similar methods.

The third approach (section 6.5) proposes a probabilistic modelling of the joint image histogram
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using truncated Gaussians. Images are color segmented using Mean shift. Each color segmented

region is then used to compute a local color palette mapping function, by fitting a set of truncated

Gaussians to the observable mutual information. Finally, using an extension of the color palette

mapping functions to the whole image, it is possible to produce mosaics where no color transitions

are noticeable. For the proper assessment of the performance of the proposed algorithm, nine other

color correction algorithms were evaluated. Each of the algorithms was applied to two data-sets of

source target image pairs, with a total of 63 image pairs. Two different evaluation metrics were tested.

Results show that the proposed approach outperforms all other algorithms, in most of the image pairs

in the data-sets, using both evaluation metrics. Not only it obtains the best average scores but also

shows to be more consistent and robust. Furthermore, the proposed algorithm works better in the

harder data-set, which seems to lead to the conclusion that it is less sensitive to miss registrations

between the source and target image pairs. Finally, although the usage of Mean shift improves the

performance of the proposed approach, results have shown that the proposed approach achieves very

good results even if no color segmentation preprocessing step is used.
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Chapter 7

Data Sets and Preprocessing

This chapter introduces some data sets collected by autonomous vehicle platforms. Special emphasis

is given to a detailed description of the nature and size of these data sets. Due to the large ammount of

sensors onboard autonomous vehicles, the size of the data that needs to be processed is very large. A

second part of this chapter presents 3D preprocessing algorithms, in particular those used for reducing

the size of those data sets. The chapter begins with a small introduction to the problem (section 7.1)

and a description of the related work (section 7.2). Then, in section 7.3, the Massachusetts Institute

of Technology (MIT) Defense Advanced Research Projects Agency (DARPA) Urban Challenge data

set is presented. Section 7.4, describes preprocessing algorithms suited for reducing the size of 3D

data. Finally, conclusions are drawn in section 7.5.

7.1 Introduction

Chapters 8, 9, 10 and 11 will present in detail the algorithms used for creating a scene representation

from 3D point cloud data. Before this, it is important to characterize the data produced by standard

autonomous vehicle platforms. This chapter provides a description of the nature and size of the data

produced both by the AtlasCar and the MIT Talos vehicles. Then, it introduces the data set which will

be used to validate the 3D processing algorithm that will be proposed. The data sets from MIT are

divided in two sequences. Each sequence is in turn marked by a number of locations. The second part

of this chapter introduces some basic, 3D processing algorithms. These are conceptually simple and

fast to process. Because of this they are referred to as preprocessing algorithms for 3D point clouds.

7.2 Related Work

Available 3D point clouds data sets collected from vehicles are scarce. The expensive price of acqui-

sition platforms, as well as the lack of a standard format for the data hampers the appearance of an

universal data set. However, recent years have witnessed the addition of several new data sets.
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Table 7.1: 3D point cloud data sets available. Use soft copy for access to the hyper links.

Name Institution Laser 3D Laser Video Egomotion Size

Victoria Park University of Sidney (1) yes no yes yes >100MB

Radish Several Institutions (2) yes no no no >1GB

Rawseeds Albert-Ludwigs University (3) yes no no yes >1GB

New College Oxford University (4) yes no yes yes >20GB

AtlasCar University of Aveiro (5) yes yes yes no >20GB

Enpeda University of Auckland (6) no no yes no >100MB

Malaga data set University of Malaga (7) yes no yes yes >20GB

Karlsruhe Karlsruhe Institute of Technology (8) no no yes yes >20BG

MIT Darpa Massachusetts Institute of Technology(9) yes yes yes yes >200GB

Cheddae George BAE Systems(10) yes yes yes yes >300GB

(1) Used by [Lina María Paz & Neira 2007].
(2) Described in [Howard & Roy 2003].
(3) Used in [Javier Civera & Montiel 2009], [Neira & Trinkle 2009], [Lina María Paz & Neira 2008] and

[Piniés & Tardós 2008].
(4) Described in [Smith et al. 2009].
(5) Described in [Santos et al. 2010].
(6) Described in [Hermann et al. 2011] and [Schauwecker et al. 2011].
(7) Described in [Blanco et al. 2009].
(8) Described in [Geiger et al. 2012].
(9) Described in [Huang et al. 2011].
(10) Described in [Simpson et al. 2011]. Not available for free.

Table 7.1 lists some of the 3D data sets available nowadays. The table also indicates if the data

sets have planar laser data, coming from a single or several LRF, 3D laser data, from rotating 3D

laser sensors, video data, which includes both mono and stereo cameras, and egomotion data. In

this case, egomotion data is of vital importance for the selection of a suited data set. The reason

is that the approaches that will be proposed require periodic information about the 6DOF position

of the vehicle with respect to a fixed world coordinate frame. Egomotion is typically computed at

very high frequencies (100Hz) in comparison to other sensor data. It is computed using GPS, inertial

measurement units, odometry or a combination of these. From the analysis of Table 7.1, the MIT data

set seems to e one of the best data sets available. In fact, the MIT data set will be used to validate the

algorithms that will be proposed to achieve scene reconstruction.

In this section, no review of point cloud preprocessing algorithms is made since these are generally

simple algorithms, which will be described in section 7.4.

7.3 Data Sets

In order to evaluate the proposed 3D processing techniques a complete dataset both with 3D laser

data, cameras and accurate egomotion is required. The MIT autonomous vehicle Talos competed

in the Darpa Urban Challenge and achieved fourth overall place. The data logged by the robot is
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Table 7.2: Several information on each of the logs.

Size

Description Primary log Camera log Duration (sec) Distance (km)

Sample log 83MB none 10 -

Darpa finals mission 1 74GB 18GB 10947 30.0

Darpa finals mission 2 38GB 9.5GB 5428 21.5

Darpa finals mission 3 72GB 18GB 10414 41.2

publicly available [Huang et al. 2011]. The logs contain three missions recorded during the Darpa

Urban Challenge competition plus a sample log. For each mission, the primary log contains data

from all sensors although the five camera images are recorded with a 376×240 resolution, while in

the camera logs the images are recorded with full resolution, that is 752×480. In the following tests,

only the primary logs are used. It is assumed that the image resolution contained in the primary logs

is sufficient. In total, the MIT logs sum up to 315GB of data. Table 7.2 displays information on each

of the logs. Primary MIT log files are stored in the Lightweight Communications and Marshalling

(LCM) log file format (see section 4.2.1 for further details). Camera log files are provided in two

formats. The first is the Camunits [Huang 2012] log file format, and can be viewed using Camview, a

visualisation software from Camunits. The second is a TAR archive of JPEG files. Conceptually, an

LCM Log file is an ordered list of events. Each event has four fields: event number, monotonically

increasing 64-bit integer that identifies each event. It should start at zero, and increase in increments of

one; time stamp, monotonically increasing 64-bit integer that identifies the number of microseconds

since the epoch (00:00:00 UTC on January 1, 1970) at which the event was received; channel, UTF-

8 string identifying the LCM channel on which the message was received; and data, binary blob

consisting of the exact message received. Each event is encoded as a binary structure consisting of a

header, followed by the channel and the data. A software that reads specified portions of the MIT log

files and writes a corresponding Robot Operating System (ROS) bag file was developed. In this way,

it is possible to use the MIT Darpa dataset in the ROS software infrastructure. At the moment, only

some of the sensor messages available in the MIT dataset, i.e., some event channels, are converted

to the bag file. Nonetheless, the infrastructure is developed so it will be simple to add the missing

channels, in the case they are necessary. For our tests in 3D processing and representation only some

of the channels were required.

Table 7.3 lists all the event channels contained by the MIT logs and indicates if they are included

in the conversion to bag tool. There are several event channels, including the five on-board cameras,

vehicle egomotion estimation using an Applanix POS-LV 220 system which includes a GPS, an iner-

tial measurement unit and a wheel encoder [Applanix 2012], 12 laser range finders and one Velodyne

HDL64 lidar [Velodyne 2012].

In the work presented in this chapter, related to 3D processing, the option was to use the MIT data

instead of the data provided by the AtlasCar. There are advantages and disadvantages on using either
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Table 7.3: Event channels on the MIT logs and whether they are converted to ROS bag files or not.

Event channel Description Frequency (Hz) Converted to ROS bag

POSE Vehicle pose (local frame) 100 yes

GPS TO LOCAL Vehicle pose (GPS) 100 no

CAM THUMB RFC Camera front wide6 , low-res 10 yes

CAM THUMB RFC6mm Camera front narrow 6mm low-res 10 yes

CAM THUMB RFR Camera left, low-res 10 yes

CAM THUMB RFL Camera right, low-res 10 yes

CAM THUMB RFR6 Camera rear, low-res 10 yes

BROOM L SICK pushbroom left 75 no

BROOM CL SICK pushbroom left-center 75 no

BROOM C SICK pushbroom center 75 no

BROOM CR SICK pushbroom right-center 75 no

BROOM R SICK pushbroom right 75 no

SKIRT FL SICK skirt front-left 75 no

SKIRT FC SICK skirt front-center 75 no

SKIRT FR SICK skirt front-right 75 no

SKIRT RC HI SICK skirt rear-high 75 no

SKIRT RC LO SICK skirt rear-low 75 no

VELODYNE Velodyne 15 yes

one or the other, but those suggesting the usage of the MIT dataset are more relevant, namely those

related to:

• number of sensors

• size of the 3D point clouds

• quality of the 3D point clouds

• vehicle egomotion

The MIT data set has an incomparably larger amount of sensors, when compared to those on-

board the AtlasCar: while the Talos vehicle has 12 laser range finders, the AtlasCar has only four; the

Talos has five cameras, the AtlasCar has only three; and above all the MIT has a Velodyne 3D laser.

Because of this, the Talos as a much better laser coverage all around the vehicle when compared to

the AtlasCar.

With respect to the size and quality of the 3D point clouds provided by the vehicles, the larger

number of sensors in the Talos will obviously produce a much larger number of range measurements.

However, some other factors also affect the size of the 3D point clouds, namely, the Velodyne sensor.

Table 7.4 provides an analysis of the size of the point clouds provided by both vehicles. It shows that

the Talos provides about 1.4 million points per second and that the AtlasCar provides approximately

half of this number, about 650 thousand points per second. However, the great part of the AtlasCar

3D points is provided by the stereo cameras, which are much less accurate than lasers. Also, the XB3

has a limited field of view, which means that the 3D range measurements are not evenly distributed
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Table 7.4: Comparison of the size of the 3D point clouds provided by the AtlasCar and the Talos
vehicles.

Talos AtlasCar
sensor num fov freq.(Hz) p/sec(×103) num fov freq. (Hz) p/sec (×103)

Sick LMS 291 12 180 75 162 0 - - -

Sick LMS 200 0 - - - 1 180 40 7.2

Hokuyo UTM30LX 0 - - - 1 270 40 10.8

Sick LMS 151 0 - - - 2 270 50 27

XB3 0 - - - 2(1) 30720(2) 10 601.4

Velodyne HDL64 1 1 1 1300 0 - - -

Total - - - 1462 - - - 646.4

(1) Since the Point Grey Research Bumblebee XB3 Stereo Camera (XB3) has three cameras, two different stereo

pairs are used.
(2) Although the images used for stereo are 320×240, which would give 76800 pixels and corresponding range

points, the fact is that stereo requires texture uniqueness to be able to correspond pixels from the two cameras. In

outdoor scenes of roads, typically only 40% of the total pixels are matched, which results in 76800× 0.4 = 30720
3D points per measurement.

all around the vehicle, as is the case of the Talos. In conclusion, the 3D point clouds provided by the

Talos do have a better quality, which is one of the core reasons we decided to use the MIT dataset for

assessing the proposed 3D reconstruction algorithms.

Finally, another key point that led us to use the MIT dataset was the vehicle egomotion. At the

time of this decision, the AtlasCar did not have an egomotion functionality. Without an egomotion es-

timation, when the vehicle is moving, it is much harder to fuse or transform 3D point clouds captured

Figure 7.1: A snapshot of the MIT viewer application showing data from a log.
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Figure 7.2: Path travelled by the robot during sequence 1. Key locations are annotated both in the

map and the zoomed in image.

at different times to a single coordinate frame. In other words, if no egomotion estimation is available,

it is not possible to perform analysis on 3D point clouds that were taken in different positions of the

vehicle, since no information exists that relates these different positions. On the other hand, the Talos

vehicle uses an Applanix system that estimates at a frequency of 100Hz the pose of the vehicle with

respect to the world. This equipment uses a wheel encoder, an inertial measurement unit and a GPS to

perform the estimation. The estimates are very accurate. The only downside is that these equipments

Table 7.5: Information on each of the locations in this sequence. Columns description: pt, number of

points; size, memory size in mega bytes; t, mission time in seconds; d, traveled distance in meters.

Location Location Snapshot Sequence accumulated

Name Fig. (pag#) pt (×106) size (MB) (1) pt (×106) size (MB) (1) t (s) d (m)

A A.1 (407) 1.3 15.6 1.3 15.6 1 0

B A.2 (408) 1.3 15.6 13.0 156.0 11 75

C A.3 (408) 1.3 15.6 26.0 312.0 21 125

D A.4 (409) 1.3 15.6 39.0 468.0 31 140

E A.5 (409) 1.3 15.6 52.0 624.0 41 190

(1) Computed from the number of points times the three xyz dimensions times the four bytes for

each dimension (type float32). It is an approximate value since there are other informations on the

message, such as the time stamp, the coordinate frame identification, etc.
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cost about 30K Euros. Figure 7.1 shows a snapshot of the log, using the viewer application provided

by MIT.

Using the MIT data sets and the bag conversion tool, several bag files where created. Each bag

file represents a multi sensor sequence that will be used to assess and demonstrate the proposed

algorithms. The two sequences will be described in detail in the following lines. In appendices A and

B, examples of several locations in those sequences are shown. It is important to have a feeling of

the environment the vehicle travels in these sequences, since it will be referred multiple times in the

following chapters.

The first sequence is a small, forty second long sequence. The robot travelled 190 meters in total.

It corresponds to the beginning of the first mission, and the robot is navigating through the paddock

of the competition. Only the Velodyne 3D data is stored, Laser Range Finders (LRFs) are discarded.

Five key locations are considered in this sequence: A, B, C, D and E. Figure 7.2 shows a map with

the travelled path annotated. Table 7.5 displays some information on each of the locations of the

sequence, including the number of points and memory size of each location, as well as accumulated

throughout the sequence. In total, the sequence is 624 MB, considering 3D data only. If images are

taken into account, the size sums up to tenths of gigabytes. Considering the relatively short forty

second duration, the amount of information that is generated is immense. This shows the importance

(a) (b)

(c) (d) (e)

(f ) (g) (h)

Figure 7.3: Location C of the sequence. Isometric (a) and bird’s eye (c) view of the 3D data; front

6mm (b), front (e), rear (h), left (f ) and right (g) camera images; (e) satellite view of the location.
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Figure 7.4: Path travelled by the robot during sequence 2. Key locations are annotated both in the

map and the zoomed in image.

of researching effective data compression algorithms. Figure 7.3 shows images from all cameras,

isometric and top views of the 3D data, and a satellite photograph of location C. In Appendix A, all

locations are shown in detail.

The second sequence is larger than the first. It is 80 seconds long, and the distance travelled was

340 meters. Instead of the paddock, in this case, the robot navigates through streets in the DARPA

scenario. As in sequence 1, only the Velodyne 3D data is stored. Nine key locations are considered

in this sequence: A, B, C, D, E, F, G, H and I. Figure 7.4 shows a map with each location annotated.

Table 7.6 displays some information on each of the locations. Figure 7.5 shows an example of a

location in this sequence. Appendix B provides detailed information on each of the locations.

Figure 7.6 (a) shows a photograph of the Talos. In Fig. 7.6 (b), a 3D model of the vehicle that

will be used to show several results is shown.
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(a) (b)

(c) (d) (e)

(f ) (g) (h)

Figure 7.5: Location E of the sequence. Isometric (a) and bird’s eye (c) view of the 3D data; front

6mm (b), front (e), rear (h), left (f ) and right (g) camera images; (e) satellite view of the location.

Table 7.6: Information on each of the locations in this sequence. Columns description: pt, number of

points after voxel grid filtering; size, memory size in mega bytes; ratio, compression ratio obtained

by the voxel grid filter; t, mission time in seconds; d, traveled distance in meters.

Location Location Snapshot Sequence Accumulated

Name Fig. (pag#) pt (×106) size (MB) pt (×106) size (MB) t (s) d (m)

A B.1 (411) 1.3 15.6 1.3 15.6 1 0

B B.2 (412) 1.3 15.6 13.0 156.0 11 75

C B.3 (412) 1.3 15.6 26.0 312.0 21 125

D B.4 (413) 1.3 15.6 39.0 468.0 31 140

E B.5 (413) 1.3 15.6 52.0 624.0 41 190

F B.6 (414) 1.3 15.6 65.0 780.0 51 210

G B.7 (414) 1.3 15.6 78.0 926.0 61 230

H B.8 (415) 1.3 15.6 91.0 1092.0 71 280

I B.9 (415) 1.3 15.6 104.0 1248.0 81 340
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(a) (b)

Figure 7.6: The Talos MIT autonomous vehicle. (a) a picture of the car; (b) the 3D model.

7.4 Preprocessing of 3D point clouds

From the amount of data generated every second by the Talos, presented in Table 7.4, it is possible

to ascertain that some kind of data reduction mechanism must exist in order to compress the size of

the point clouds. The large size of the MIT sequences also points to this conclusion. However, as

pointed out in section 7.3, the solution cannot be to use a smaller amount of data as in the case of

the AtlasCar, since the quality of the data is not adequate for 3D reconstruction. On the one hand

it is required that the amount of 3D data is large enough to ensure a 360 degrees field of view and

adequate spatial resolution, but, on the other hand, the large size of the data also makes it unsuitable

for processing in real time. Therefore, the conclusion is that the amount of raw 3D data generated by

a vehicle must be similar to Talos, since the data provided by the AtlasCar is not sufficient and does

not yet have enough quality, but also that there must be a very efficient way to compress and discard

some portion of the data. The choice of which data to discard and which to keep will of course depend

on the application, computational power and other factors. In this work, the focus was to design 3D

data processing algorithms as general and flexible as possible, not having any single application in

mind, but rather to try to compress the data in a lossless way or with an intelligent filter for most of

the typical subsequent applications, like, for example, obstacle detection, environment reconstruction,

motion planning.

The following sections present some algorithms used to preprocess the input 3D point clouds.

7.4.1 Local and Spatial point filters

This section presents a very simple and fast mechanism to filter 3D data and significantly compress

the data. It is composed by two filters: a local sensor filter and a spatial resolution filter. The filters

assert the point cloud against a given criteria and discard points that do not comply with that criteria.

These algorithms are meant to be used as a preprocessing stage.

A local sensor filter is proposed based on the maximum and minimum measured distance. Let P
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represent a point cloud. The point cloud is a list of n 3D points �j , where j is the index of the point:

P = [�0,�1...�n] =

⎡
⎢⎣ x0 x1 ... xn

y0 y1 ... yn

z0 z1 ... zn

⎤
⎥⎦ . (7.1)

The point clouds may also be represented in spherical coordinates, turning eq. 7.1 into:

P =

⎡
⎢⎣ ρ0 ρ1 ... ρn

θ0 θ1 ... θn

φ0 φ1 ... φn

⎤
⎥⎦ , (7.2)

where spherical coordinates variables ρ, θ and φ can be obtained with the typical transformation from

Cartesian to spherical coordinates. The local sensor filter simply imposes a range of admissible ρ

values (ρmin and ρmax) for a point to be kept. The remanding point cloud P∗ is obtained using the

following expression:

P∗ = {�j ∈ P | ρmin < ρj < ρmax, ∀j ∈ {0, 1, ..., n} }. (7.3)

The local nature of the filter implies that it must be computed in the 3D sensor local reference

system. Let v,tj�j represent the jth point given by a range measurement taken from sensor coordinate

frame v at time tj . Since the sensor coordinate frame moves along with the vehicle then v = f(tj).

This is why the filtering must be done immediately after collecting new 3D data to ensure that all

points have the same or very similar acquisition time t:

tj � tj+1, ∀j ∈ {0, 1, ..., n− 1}. (7.4)

If this is not the case, the information of where the sensor coordinate system was at for each

point in the corresponding time of acquisition must be kept, which is not feasible because of memory

restrictions. Empirical tests have shown that for normal vehicle speeds, the local sensor filter may

be applied to Velodyne data at a frequency of 1 Hz. Hence, in the presented results, the maximum

boundary can be formulated as:

max(|tj − tk|) < 1, ∀j, k ∈ {0, 1, ..., n}. (7.5)

Figure 7.7 shows an example of the local sensor filter: all acquired points at a given time are

plotted in blue. Points that are kept after applying the local filter are shown in green. It is possible

to see that points that are far away from the vehicle are discarded, as well as those that are very near

to the vehicle. Points very near to the vehicle are actually range measurements of the vehicle body.

Figure 7.7 (b) shows several measurements on top of the vehicle that correspond to this case.

The second step of the preprocessing algorithm is the spatial resolution filter. The filter consists of
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(a)

(b) (c)

Figure 7.7: The local sensor filter. Blue points are all the acquired points, green points are the points

kept by the filter. (a) a top view of the scene; (b) a detail of the points captured that belong to the

vehicle; (c) a detail of a wall close to the ρmax threshold.

dividing the 3D space into a grid, from which parallelepipeds are generated. Only a single 3D Point

is stored inside each parallelepiped. This operation is commonly referred to as voxel filter. Figure

7.8 shows an example of the 3D grid as well as results obtained using this filter. It is possible to see

that the kept points (in red) have a coarser spatial resolution (which was configured in the filter) when

compared to the input data (in green).

The filter enables the control of the spatial resolution of the point cloud. The height, width and

length of the parallelepipeds can be defined independently. Let f be a function that retrieves the index

of the cube where a given point lies in. The spatial resolution filter can be defined as:

P∗ =
{

�j ∈ P |
(
� k : k < j ∧ f(�j) = f(�k), ∀j ∈ {0, 1, ..., n}

)}
, (7.6)

whereP∗ is the remanding point cloud. Using eq. 7.6 it is possible to further reduce the size of the raw
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(a) (b)

Figure 7.8: The input point cloud (green points) is reduced using the from the spatial resolution filter.

The 3D grid is shows b grey lines, while the kept points are signaled in red. (a) top view; (b) isometric

view.

point clouds. The spatial resolution filter is applied only to the points that are kept by the local sensor

filter. Hence a cascade configuration is adopted to setup both filters: first the local sensor and after

the spatial resolution. This configuration speeds up processing time. We refer to the preprocessing

of point clouds as the application of these two filters in a cascade like configuration to the raw point

clouds. Figure 7.9 shows the results obtained after pre processing a Velodyne point cloud.

The presented preprocessing algorithm was applied to MIT sequences 1 and 2. Results are shown

in Tables 7.7 and 7.8, for sequences 1 and 2, respectively. The parameters that were used are ρmax =

50 and ρmin = 3 meters with respect to the local sensor filter, and to a 3D grid size for the spatial

resolution filter of 0.2, 0.2 and 0.01 meters. The values for these were obtained by empirical trial and

error methodology, balancing the quality of the filtered point cloud with the compression ratio.

Table 7.7 shows that the preprocessing of point clouds is able to discard a large number of points.

Typically, around 350K points are kept, which means that about 950K are discarded (see Table 7.5

for information on the raw point clouds). In terms of compression ratio, the typical value is around

0.25, both for the snapshot analysis of the locations and well as the accumulated sequence. The

total memory size required to store the full pre processed sequence is 169.7MB (14.1×106 points),

compared to the 624MB (52.0×106 points) for the raw data. The same conclusions can be taken

for sequence 2 by the observation of Table 7.8. The average compression ratio is around 0.27, and

the full sequence raw 104.0 ×106 points are compresses to total of 29.2 ×106 points. In total, the

preprocessed sequence 2 has a size of 350.9 MB. In conclusion, the amount of data reduction provided

by the filter is quite reasonable, especially taking into account the fact that there is no significant loss

in the quality of the point cloud. This conclusion is drawn based on the observation of the output point

clouds. As will be seen is subsequent sections, the preprocessed point cloud is enough for computing

an accurate environment reconstruction.
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(a)

(b) (c)

Figure 7.9: Results from 3D point cloud preprocessing algorithm. In blue the raw 3D data, in green

the point cloud after the local sensor filter, in red the point cloud after the spatial resolution filter.

Figure 7.10 compares, for both sequences, the raw and preprocessed sizes of the point clouds over

time. From its observation it is possible to see that the preprocessing step here proposed dramatically

decreases the size of the point clouds. Although from the observation of Fig. 7.10 the compression

ratio seems constant, it is in fact environment dependent. In other words, the amount of discarded

points is dynamically dependent on the environment. In the presented cases the compression ratio

seems to be constant because the environment is very similar.

7.4.2 Surface Normals Estimation

Surface normals are important properties of a geometric surface, and are heavily used in many areas

such as computer graphics applications, to apply the correct light sources that generate shadings

and other visual effects. The point clouds represent a discrete set of measurements taken from a
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Table 7.7: Size of the point clouds of sequence 1 after applying the preprocessing algorithm. For

comparison with raw values see Table 7.5.

Location Location Snapshot Sequence Accumulated

Name pt (×106) size (MB) ratio pt (×106) size (MB) ratio

A 0.156 1.8 0.12 0.156 1.8 0.12

B 0.372 4.4 0.28 3.4 40.9 0.23

C 0.348 4.1 0.26 6.9 83.5 0.25

D 0.342 4.1 0.26 10.5 126.7 0.26

E 0.344 4.1 0.26 14.1 169.7 0.26

Table 7.8: Size of the point clouds of sequence 2 after applying the preprocessing algorithm. For

comparison with raw values see Table 7.6.

Location Location Snapshot Sequence Accumulated

Name pt (×106) size (MB) ratio pt (×106) size (MB) ratio

A 0.402 4.8 0.30 0 0 -

B 0.404 4.8 0.31 3.9 47.0 0.30

C 0.166 1.9 0.12 7.6 91.4 0.29

D 0.375 4.5 0.28 10.5 126.6 0.27

E 0.388 4.6 0.29 14.3 172.0 0.27

F 0.353 4.2 0.27 17.6 211.7 0.27

G 0.323 3.8 0.24 21.0 252.7 0.27

H 0.418 5.0 0.32 24.8 298.3 0.27

I 0.490 5.1 0.33 29.2 350.9 0.28
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Figure 7.10: Size of the accumulated point clouds using raw (red) and preprocessed data (blue) as a

function of the mission time. (a) sequence 1; (a) sequence 2.

given surface. As will be shown in the next subsections, the knowledge of the normal vector to that

surface is very useful especially for detecting the surface plane. There are two possibilities when
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addressing the surface normal estimation problem. The first option is to reconstruct the surface from

the point cloud using surface meshing techniques, and then compute the normals of this surface. This

option is not very suitable for handling real time large point clouds processing since that surface

meshing techniques are computationally expensive. The second option is to use approximations to

infer the normals from the point cloud directly. These approximations are computed locally, i.e., on

the neighborhood of each point. Given the problem of real time reconstruction of road scenarios

from large point clouds, this second option is the most adequate since it is faster to compute than the

previous.

Since a local analysis for each point is used, the first concept that needs to be addressed is that of

neighbourhood. Given a query point �q it is possible to find its neighbor points using the expression:

‖�q − �k‖ < R ∀k ∈ {0, 1, ..., n}. (7.7)

where ‖ ‖ represents the Euclidean distance between the points, and R is a threshold parameter, i.e.,

the maximum allowed distance for a point �k to be considered a neighbor of �q. However, this

is a brute force process and could take long to go through a large size point cloud. Because of

this several authors have proposed approximate nearest neighbor solutions that can speed up com-

putation times. Orthogonal decomposition methods have been proposed in [Arya & Mount 1993]

[Arya et al. 1998] and [Muja & Lowe 2009], while in [Silpa-Anan & Hartley 2008] multiple random-

ized trees are created at once to help split the dimensions on which the data has the greatest variance.

In [Nuchter et al. 2007] a cached Kd tree is used to provide a significant speedup of over neighbor

point queries. Finally, in [Muja & Lowe 2009], the usage of the squared Euclidean distance is pro-

posed to avoid the slower computation of the square rooted distances. By using eq. (7.7) it is possible

to devise two different strategies to obtain the list of neighbor points:

• R radius search, where all points that lie inside a sphere of radius R centered on the query point

are regarded as neighbours;

• K nearest neighbors search, where points are sorted according to their distance to the query

point and then the K closest points are selected.

Both methods have advantages and disadvantages. While it might be interesting to use the radius

search to list all points that are closer than a specified radius, this approach may suffer from extreme

disparities in the number of selected neighbors of two different query points. This observation is

particularly imminent when analysing sparse point clouds, which is the case. For example, if some

statistical method is applied to the list of neighbor points, the method looses precision when there are

few points in the radius neighborhood of �q. It may also occur that there are no neighbors within the

specified radius. It is sometimes important for feature vector computation and comparison that the

number of neighbors is the same for all query points, so that the feature vectors have the same size.

In these occasions, the K search is better suited. Obviously, in both methods, the parameters R or K
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will significantly influence the estimation procedure. Although some works have been proposed to

automatically select suitable values for these parameter [Lalonde et al. 2005] [Mitra et al. 2004], the

fact is that these approaches rely on assumptions such as a constant density of the point cloud and

are slow and inadequate for real time processing. In the tested datasets it was possible to empirically

select acceptable parameter values after a few attempts.

There are several proposed methodologies to perform surface normal estimation. A Voronoi di-

agram based method is proposed in [Dey et al. 2005], while in [Kamberov & Kamberova 2007] a

general orientability constraint is shown to improve the estimation of the normals. A comparison

of existing methods for surface normal estimation with a special emphasis on the trade-off between

quality and speed is provided in [Klasing et al. 2009]. The simplest method proposed is based on the

first order 3D plane fitting [Berkmann & Caelli 1994]. In fact, the problem of estimating the normal

is the same as that of determining the plane where the neighboring points lie, which in turn is a least

square fitting problem. The implementation employed in this work is provided by the Point Cloud

Library (PCL) [Rusu & Cousins 2011]. Further details are given in [Rusu 2009].

Figure 7.11 shows the normals estimation output using K nearest neighbours on the top and radius

search on the bottom. Results are from location D of sequence 2 (see Fig. B.4). In Figure 7.11 (a),

there is a significant noise in the normal estimation. This is significantly reduced when a more suited

value of K is selected (Fig. 7.11 (b)). The same occurs for Fig. 7.11 (c), where the estimated normals

are noisy. In Fig. 7.11 (d) the noise is decreased when different values of R are used.

7.4.3 Statistical Outlier Removal

The statistical outlier removal filter is presented in detail in [Rusu 2009]. The motivation is that de-

pending on the acquisition sensor and even on the scenarios characteristics, some points may be the

result of erroneous measurements. The idea is to discard points whose position is significantly differ-

ent from that of its neighbors. To avoid situations where no neighbors are found, a K nearest neighbor

search is performed. The proposed solution is based on a statistical analysis of the neighborhood. Let

PN be the point cloud containing n neighbors of a given query point �q. The mean distance from the

query point to all neighbor points �̄q is computed as follows:

�̄q =

∑n−1
k=0 ‖�q − �k‖

n
, �k ∈ PN . (7.8)

The next step is to compute the average distance from each neighbor point to all other points, and

extract the mean μ and standard deviation σ of these values: The query point is considered an outlier

(and not copied to the output point cloud P∗) if it does not have an average distance to all neighbors

similar to the one observed on average:

P∗ =
{

�q ∈ P | μ− σ · α < �̄q < μ+ σ · α, ∀q ∈ {0, 1, ..., n}
}
, (7.9)
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where α is a sensitivity parameters that defines how similar the query point must be to the neighbor-

hood.

A second method to remove outliers is based on the consistency of the estimated normal vectors.

Unlike the previous method, this one requires information about the normal orientation for each

point. This is done using the method presented in section 7.4.2. It performs a statistical analysis of

the estimated normals and removes points whose estimated normal does not follow the average trend

of the neighborhood. Let �P denote a point cloud containing 3D points and the estimated normals ��,

defined as:

(a) (b)

(c) (d)

Figure 7.11: Normal estimation results using K nearest neighbours: (a) K = 10; (b) K = 30; results

using radius search: (c) R = 0.1; (d) R = 0.5 meters;
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(a) (b)

(c) (d)

(e)

Figure 7.12: Results from the estimated normals consistency filter. Neighbor points are shown in

blue, neighbor points orientations as green arrows and mean orientation vector in red. A query point

in a tree canopy (a) and (b); query point on the road (c) and (d); (e) points excluded by the filter

(shown in red).
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�P = [��0,��1...��n] =

⎡
⎢⎢⎢⎢⎣

x0 x1 ... xn

y0 y1 ... yn

z0 z1 ... zn

q0 q1 ... qn

⎤
⎥⎥⎥⎥⎦ , (7.10)

where q is a unit quaternion defining the orientation of the normal, qi =
[
qix qiy qiz wi

]′
.

Note that in this case since the normal only provides the orientation of a single axis and not of a full

coordinate frame, the w component of the quaternion is not used and is set to zero. Let q̄j be the

mean orientation vector of the points in the neighborhood of the query point. The standard deviation

σ of the angle between each neighbor vector and q̄j are computed. The filter will exclude points that

have neighborhoods where the orientation of the normals has a large standard deviation in the angle

to the mean orientation vector.

P∗ =
{

�q ∈ P | σ < ε, ∀q ∈ {0, 1, ..., n}
}
, (7.11)

where ε is a fixed threshold value. The motivation behind the filter is to try to exclude from a point

cloud the regions where the normals are erratic. This is because as will be shown in the next sections,

planar polygonal primitives are used to extract geometric knowledge about the environment. For

planes to be detected, some consensus in the normals orientation must exist. This filter immediately

eliminates regions that lack a planar geometry. It is the case of tree canopies, where the leafs and

branches generate a chaotic dispersion of the normals orientations. On the other hand, walls or roads

are expected to have high consensus in the orientation of the normals.

Figure 7.12 shows some details of the filter. Results refer to location D of sequence 2 (see Fig.

B.4). Two different query points are shown. The query point shown in Figs. 7.12 (a) and (b) is on

a tree canopy, while the one presented in Figs. 7.12 (c) and (d) lies on the road. As expected, the

first point shows a greater variation on the estimated normals (see Figs. 7.12 (b) and (d)). The filter

extracts points from the point cloud using a maximum bond over a measure of this variation. Figure

7.12 (e) shows the excluded points. It is possible to see that, although some points lying on the road

and walls are also excluded, the filter focuses more on discarding points on the tree canopies and

other regions where the estimated normals are not expected to be consistent.

7.5 Conclusions

This chapter discussed the 3D point cloud data sets produced by vehicles equipped with multiple

sensors. The MIT data set was described in detail, since it will be used to assess the performance of

the algorithms proposed in the following chapters. Besides a description of several available data sets

and, in particular, of the MIT data set, this chapter also presented several 3D point cloud preprocessing
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algorithms. These have the objective of reducing the original size of the raw point cloud, and it was

shown that they can cut the original point clouds to about 30% of their original size.
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Chapter 8

Geometric Scene Reconstruction

This chapter describes a new algorithm designed to perform geometric scene reconstruction. The

idea is to describe a scene using sets of geometric polygonal primitives. Results will show that

this approach can produce scene representations in considerably less time, compared to classical

triangulation approaches. The chapter starts with a brief introduction to the problem (section 8.1).

Section 8.2 provides a brief state of the art on scene reconstruction. Later, in section 8.3 the proposed

approach is described in detail. Results are presented in section 8.4 and conclusions in section 8.5.

8.1 Introduction

Recent years have witnessed the arrival in the market of 3D sensors with improved perfor-

mances. Some examples are the Velodyne Lidar [Velodyne 2012], the SR time of flight cameras

(http://www.mesa-imaging.ch/) or the Microsoft Kinect (http://en.wikipedia.org/wiki/Kinect). Al-

though these recent sensors provide highly accurate 3D data (see Figs, 1 and 2 in the application sup-

port document), they do pose new problems, mostly related to the amount of 3D data they generate,

which baffles the performance of traditional 3D triangulation or surface reconstruction algorithms.

Therefore, the scope of complex scene reconstruction is narrowed to off line applications, most of

them restricted to the visualization of the 3D models.

In the meantime, in the robotics community, one of the most demanding challenges nowadays is

the perception: how can robots cope with the environment and adequately interact with it? One of

the cornerstones to that answer is perception. Without an accurate perception of the scene and the

objects, a robot cannot be expected to properly execute complex tasks.

With the advent of new 3D sensing hardware, in particular those at very low cost, 3D perception

gains more and more importance in robotics, as well as in other research domains. As a result, it is

expected that, in the future, most robots will be able to see the world in 3D. However, there is still a

gap between the data provided by these new sensors and the existing 3D processing algorithms. In this

scope, one of the most important problems is 3D scene reconstruction, where traditional algorithms
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based on building triangular meshes are unable to operate in real time. The application domain

can be several robotic applications, where real time is an nonnegotiable requirement, although 3D

reconstruction in real time is a topic that falls into the scope of many other research fields. Some

examples are reverse engineering, dimensional analysis, architecture and cultural heritage, medical

robotics or 3D television.

This chapter proposes a novel scene reconstruction algorithm based on polygonal primitives. Un-

like traditional scene reconstruction approaches, polygonal primitives do have the potential to be

computed in real time. Furthermore, it is proposed that the reconstructed model is refined over time,

that is, that the scene representation is incrementally improved when new 3D data arrives. Hence,

the proposed representation will explore how a polygon based scene representation can be used to

improve the effectiveness of some of the most common tasks of a autonomous robot, for example,

trajectory planning, object detection or object recognition.

8.2 Related Work

Scene reconstruction is defined as the computation of a geometric 3D model from multiple measure-

ments. These measurements could be obtained from stereo systems, range sensors, etc. It could

also include the texture mapping of the generated model. Scene reconstruction methodologies are

grouped into two different approaches: surface based representations or volumetric occupancy repre-

sentations. In the first, the underlying surfaces of the scene that generated the range measurements

are estimated, while in the second, the range measurements are grouped into grid cells which are then

labeled vacant or occupied. Traditional surface based representations include several 3D triangula-

tions methodologies, such as 3D Delaunay triangulation [Jovanovic & Lorentz 2011], or Ball Pivot-

ing Algorithm (BPA) [Specht & Devy 2004]. There are also some alternative higher order surface

representation methods such as Poisson surface reconstruction [Yin et al. 2010], Orientation Infer-

ence Framework [Chen & Lai 2011] or learning approaches [de Medeiros Brito et al. 2008]. How-

ever, most of these methods do not tackle well noisy range measurements and, above all, since

these methods involve a large number of nearest neighbor queries, they are very slow to compute.

One attempt to fasten the triangulation of point clouds was done in [Marton et al. 2009], but au-

thors report they have only achieved near real time. Volumetric occupancy representations include

occupancy grids [Weiss et al. 2007], elevation maps [Oniga & Nedevschi 2010], multi-level surface

maps [Rivadeneyra et al. 2009] or octrees [Zhou et al. 2011]. While these representations are easier

to compute, they do not provide accurate information about the geometry of the scene.

Recent research in the fields of pattern recognition suggest that the usage of 3D sensors improves

the effectiveness of perception [Chen & Bhanu 2009] [Wang et al. 2007], "since it supports good sit-

uation awareness for motion level tele operation as well as higher level intelligent autonomous func-

tions" [Birk et al. 2009]. However, in order to generate information from the 3D data, the majority
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of the robotics research community continues to build simplified 2D or 2.5D scene descriptions such

as occupancy grids [Weiss et al. 2007], elevation maps [Oniga & Nedevschi 2010] or use discretized

grid like approaches as in octrees [Zhou et al. 2011].

In conclusion, on the one hand, the new generation of 3D sensors are valuable since they provide

more accurate data, but on the other hand traditional geometric reconstruction algorithms are not

well suited to tackle such large quantities of data. On the one hand, perception and action planing in

robots would surely benefit from a more detailed scene representation, while on the other the real time

requirements of robotic applications have led to more simplified descriptions of the environment. A

gap is evident.

8.3 Proposed Approach

It was shown in chapter 7 that the size of the point clouds acquired by autonomous vehicles is very

large. Preprocessing mechanisms were proposed to reduce the size of the point clouds. The pro-

posed mechanisms are fast to compute since they are based on simple condition tests which decide

whether to keep or discard points. As shown in Tables 7.7 and 7.8, these preprocessing filters are

able to reduce the point clouds to approximately 400K points per second. In Figure 7.10 it is shown

that, although the preprocessing filters significantly reduce the size of the point clouds, if points are

accumulated over time the size after only a few tenths of seconds becomes very large. In the exam-

ples shown, the accumulated points occupy about 10 MBs per second. If one considers for example

that the Massachusetts Institute of Technology (MIT) DARPA mission 1 contains over ten thousand

seconds (see Table 7.2), the resulting size would be of about 100 GBs, which is not a feasible size.

If the goal is to have a representation of the whole environment, one must balance both the quality

of the representation and the memory requirements. Furthermore, it does not seem a clever solution

just to accumulate points. For example if the vehicle is stopped, the accumulated points would refer

to the same scenario around the vehicle. In this case many of the stored information would be repli-

cated. Even considering that the vehicle is moving, there is significant overlap between consecutive

Velodyne scans. This insight provides a hint on how to compress the size of the point clouds. An

alternative representation must be devised that is able to include information gathered over multiple

scans, but that can also effectivelly discard range measurements of objects that are already included

in the representation.

8.3.1 Representation

The term geometric primitive is used in various senses both in computer graphics and CAD appli-

cations, but the common basic meaning refers to the simplest, i.e., atomic or irreducible, geometric

objects that the system can handle. Several geometric primitives are used in modern applications:

cubes, spheres, planes, torus, etc. In the current work, we propose to explore the usage of polygonal
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geometric primitives, that is polygons. Polygons require only two entities to be described: the sup-

port plane and a list of points, lying on that plane, that define a closed polygon. Polygons may yield

important advantages when compared to other classical approaches, namely: the fast detection of

polygonal geometric primitives is simple when compared to the detection of other more complex pri-

mitives; the applicability, given that most of the reconstructed environments are structured of at least

semi structured environments, it seems feasible to represent most of the 3D structure with polygons;

and data reduction, since the scene is reduced to a set of polygons each with a support plane, further

information on the polygons is represented in two dimensions, on a local reference system that lies on

that support plane. Furthermore, unlike triangulation methods, one polygon may describe thousands

of range measurements. These two considerations show how the novel scene representation will con-

siderably reduce the amount of information to store and thus, be able to effectivelly compress the 3D

data. This novel scene representation will be compared to other approaches. It is expected that this

representation can:

• Perform scene reconstruction in real time;

• Have similar accuracy when compared to other approaches;

• Refine the representation when new 3D data arrives, i.e. to be dynamic;

• Be easily applicable as an input to standard obstacle detection, trajectory planning or pattern

recognition algorithms;

This representation should be best suited to be used by most of the classical layers in a robots

computation cycle: perception, obstacle detection, planning, tracking. Furthermore, given the high

degree of detail in the representation and the fact that it is built after 3D data, it is expected that the

performance of those layers actually increases. It is a novel approach, because it balances both the

quality of the representation and the computational restrictions, having in mind the functional purpose

of the representation. Here, the term functional accredits two interpretations: real time demands, i.e.,

from a robot’s perspective, it is better to have a coarse representation of the environment in a few

seconds than a very detailed one only after a few minutes; usability, i.e., the representation is easily

binded to other algorithms like object detection and recognition or motion planning, in the sense that

these may be effortlessly adapted to use the representation as an input. The system can be described

as an intermediate layer between raw sensor data, given both by 3D range measurements as well

as optical or thermal images, and the perception and planning layers. It integrates the data from

all provided sensors and produces the best available representation within a task related reasonable

amount of time.

The problem is how to compute such a complex scene representation within restricted time bound-

aries. We argue that although it is not possible to obtain a complex representation within seconds,

it is possible to start from a coarse model of the scene and then update over time. We assume that
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the coarse model should have some practical usability, even if limited, and therefore should be made

available to the subsequent robot classical functionality layers. The representation would then be re-

fined as additional sensor information arrives. Hence, there is always a periodical availability of the

best possible scene representation. Furthermore, the new raw 3D data is compared to the scene rep-

resentation before being queued for refining the model. Portions of this data that are measurements

of existing entities in the scene model are promptly discarded, saving computation time. Suppose a

robot that is stopped or traveling very slowly trough a given scene with a wall on the right. At iteration

zero, 3D range measurements indicate that a polygon can be used to describe the walls surface. In

the next iteration, since the robot is moving slowly, a portion of the 3D data still refers to the wall. If

this data is discarded with minimal computational requirements, then only the "unexplained" portions

of the data would have to be scanned. This cascade like architecture is the key to achieve real time

performance of the system.

Taking all previous considerations into account we propose to represent the environment using

a set of polygonal geometric primitives, that is, polygons. Polygons require only two entities to be

described: the support plane and a list of points, lying on that plane, that define a closed polygon.

Each pair of consecutive points define a line segment and these, grouped together, bound the interior

of the polygon. The choice of polygons instead of any other geometric primitives is explained for

various reasons:

• Fast detection: the detection of polygonal geometric primitives is simple when compared to the

detection of other more complex primitives;

• Applicability: given that road environments are structured, or at least semi structured, environ-

ments it seems feasible to represent the 3D structure with planes;

• Data reduction: since the scene is reduced to a set of polygons each with a support plane, further

information on the polygons is represented in two dimensions, on a local reference system that

lies on that support plane.

Figure 8.1 shows an example of a polygonal primitive. This example is located in sequence 1,

location C (see Fig. A.3). In this case, there are 3920 range measurements from the wall panel. The

polygonal geometric primitive is represented by a support plane and 22 polygon points. This simple

example already shows the data reduction potential of the polygonal primitives.

The next sections will detail the algorithms employed in the detection and expansion of the poly-

gonal primitives.

8.3.2 Support Plane

The previous section has described the representation primitives that are proposed. Geometric polygo-

nal primitives are described by a support plane and a bounding polygon. This section will address the
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(a) (b)

(c)

Figure 8.1: An example of a geometric polygonal primitive used to describe a wall panel, in sequence

1, location C (see Fig. A.3). (a) image from the front camera; (b) image from the front 6mm camera;

(c) 3D view of the wall panel range points (in gray), the detected polygonal geometric primitive (in

blue) and local primitive coordinate system.

detection of the support plane. Let Gi represent the ith polygonal geometric primitive of a given scene,

with the support plane Hessian form coefficients is represented by Gi
p =

[
ai bi ci di

]
. The

search for the support plane is done on a given input point cloudP using a Random Sample Consensus

(RANSAC) procedure. RANSAC is an iterative method to estimate parameters of a mathematical

model from a set of observed data which contains outliers. It is a non-deterministic algorithm in the

sense that it produces a reasonable result only with a certain probability, with this probability increas-

ing as more iterations are allowed. The algorithm was first published in [Fischler & Bolles 1981].

The assumption is that data consists of inliers, i.e., data whose distribution can be explained by some

set of model parameters, and outliers, data that does not fit the model. The input to the RANSAC

algorithm is a set of observed data values, a parameterized model which can explain or be fitted to the

observations, and some confidence parameters. RANSAC achieves its goal by iteratively executing

the following procedure:

• Select a random subset of the original data, i.e., the hypothetical inliers;
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• Fit a model to the hypothetical inliers;

• Test the whole data against the fitted model, adding all data that fits well to the set of hypothet-

ical inliers;

• Assess the quality of the estimated model by the amount of data that fitted well;

• Reestimate the model with the new set of hypothetical inliers;

This procedure is repeated a fixed number of times, each time producing either a model which

is rejected because too few points are classified as inliers or a refined model together with a corre-

sponding error measure. The model with the smaller error measure is selected as the output to the

RANSAC.

In the specific case of detecting the polygonal geometric primitives support planes, there are two

alternative methods. The first is the detection of a freely oriented plane, and the second of an oriented

plane. These two alternative methods are better suited to detect different planes, as will be discussed.

Both are explained in detail.

Let the point cloud P be the input data used for estimating the support plane of the ith primitive.

The procedure for the freely oriented plane detection is the following shown in Algorithm 8.1.

This procedure is performed a number of times, and the support plane that had the higher number

of points considered inliers is selected. This approach has good results when the ratio between the

number of points that lie on the plane and the total number of points is high. This is usually true

for the road plane, which is the first detected plane almost every time. Other smaller structures like

Algorithm 8.1 Detection of a support plane using RANSAC

Input: P , the input point cloud, number of points > 3
Output: Plane parameters, ai, bi, ci, di; list of inliers I

for i = 0→ maxiter do
Randomly select three unique non collinear points �l, �m and �n ∈ P
Compute the plane model parameters ai, bi, ci, di from �l, �m and �n

a

Add �l, �m and �n to the list of inliers, Ii ← {�l, �m, �n}

for all �j ∈ P do
Compute the distance dj between the estimated plane and �j

b

if dj < dthreshold then
Add �j to the list of inliers, Ii ← {Ii, �j}

end if
end for
ni ← number of elements in Ii

end for
return ak, bk, ck, dk; Ik, where k = argmaxi(n)
aThe general problem of determining the plane coefficients given three non collinear unique points [Weisstein 2012a]
bThe general problem of determining the distance between a point and a plane [Weisstein 2012b]
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(a) (b)

(b) (d)

Figure 8.2: Plane detection examples using the freely oriented plane approach in sequence 1, location

C. Five best RANSAC candidates are shown. (a) inliers of each plane candidate with different colors;

(b) a detail of (a); (c) the bounding polygon of each of the five plane candidates; (d) the plane

candidates with filled colors.

walls or panels do not have a large number of points and are therefore not well detected using this

approach. If one plans to execute several RANSAC procedures in order to extract several planes as is

the case, the walls should be well picked up by the method. Figure 8.2 shows some plane detection

examples using the freely oriented plane approach. The first five candidates of a RANSAC procedure

are shown. As discussed the road plane is well detected. However, the other best scoring hypothesis

are not adequate: they consist of horizontal slices of the whole environment above the road plane

(see Fig. 8.2). The reason is that RANSAC searches for the higher consensus, i.e., for planes with

the highest number of inliers, and the 3D data is distributed across the horizontal dimension much

more than the vertical dimension. Because of this, these horizontal planes will have higher probability

(higher consensus most of the times) of being detected since they will always cross portions of several

vertical structures in the 3D data. In conclusion, it seems that the freely oriented plane approach is

well suited to detect the road plane but not adequate to find vertical oriented structures. The second

method, the oriented plane RANSAC approach, offers a solution to this problem.

The oriented plane detection uses a very similar procedure to the freely oriented plane approach.

However, the estimated orientation of 3D points is taken into account when detecting a plane. Section

7.4.2 described in detail the methodologies used to estimate a direction normal to the surface where

each 3D point presumably lies on. Normal estimation receives the input point cloudP and generates a

new point cloud �P with normal vectors associated to each 3D point. This method lets the user specify

the orientation of the planes that are going to be searched. Let qu be an user defined orientation and

Miguel Armando Riem de Oliveira Ph.D. Thesis



8.Geometric Scene Reconstruction 221

(a) (b)

(b) (d)

Figure 8.3: Plane detection examples using the oriented plane approach in sequence 1, location C. The

user defined direction was qu was defined as the vertical direction. The five best RANSAC candidates

are shown. (a) inliers of each plane candidate with different colors; (b) a detail of (a) (the same as in

Fig 8.3 (b)); (c) the bounding polygon of each of the five plane candidates; (d) the plane candidates

with filled colors.

f(q1, q2) a function that retrieves the smallest angle between two vectors q1 and q2. The point cloud

�P∗ used as input for RANSAC is obtained from the subset of points whose normals have similar

orientation to qu:

�P∗ = {�j ∈ �P | f(qu, qj) < αt, ∀j ∈ [0, n[ }. (8.1)

where αt is a threshold parameter for the maximum angular distance between the user specified

preferable direction and the estimated direction. The next steps of this method are in all similar to the

freely oriented plane. However, because only 3D points with similar orientation to the user specified

one are used for RANSAC, planes that where not easily detected using the previous method are well

identified. Figure 8.3 shows an example of detection of oriented planes. It shows that the oriented

plane RANSAC based detection is well suited to detect vertical structures.

8.3.3 From RANSAC Inliers to Primitive Support Points

As described in section 8.3.2 a RANSAC procedure is used to extract a set of points that belong to

a plane. These points are called inliers. When a plane is detected by RANSAC, the inliers are used

as input to the clustering algorithm which is presented in this section. Clustering is required because
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Algorithm 8.2 Clustering of point clouds

Input: P , the input point cloud

Output: A list C={C0, C1, ..., Cn} of clusters, where Ck ={�0, �1, ..., �mk}

Initialize number of clusters, n← −1
Initialize cluster list, C ← {}
while P¬ empty do

n← n+ 1
C = {C, Cn} � starting a new cluster

Initialize queue list Q with a random point � ∈ P , Q ← {�}
Remove � from P
while Q¬ empty do

Set seed point �s as the first element in Q, �s ← Q(0)
for all �j ∈ P do

Compute the distance dj between �s and �j
if dj < dthreshold then

Add �j to the queue list, Q ← {Q, �j}
Remove �j from the point cloud P

end if
end for
Add seed point to current cluster, Cn ← {Cn, �s}
Remove seed point �s from queue list Q

end while
end while

RANSAC finds a set of inliers that have similar orientations in the estimated normals and that are

close to the hypothesized plane. In this case, an algorithm similar to the flood fill algorithm used in

image processing [Samet & Tamminen 1988] [He et al. 2008] is applied. It is detailed in Alg. 8.2.

The clustering algorithm performs the separation of a point cloud of inliers provided by RANSAC

into several clusters. The code implementation that was used resorts to a Kd tree based search for

distances between points [Rusu & Cousins 2011], which significantly improves the performance of

the algorithm. Since several clusters may be segmented and only one must be chosen, we use a simple

criteria that selects the cluster with the largest number of points. Points that belong to other clusters

are reinserted into the raw data point cloud and are used in future support plane detections.

In Fig. 8.4 (a) it is possible to see the inliers (signaled in green) of a RANSAC plane detection. In

this case, range measurements from two separate walls have been signaled as inliers to the detected

plane since that the support planes of each wall are coplanar. Using the proposed clustering algorithm

it is possible to separate the two walls into clusters and, in a first iteration, select the wall (cluster) with

the largest number of measurements, i.e., the green wall on the left In Fig. 8.4 (b). The yellow wall on

the right was detected in a second RANSAC iteration. In conclusion, clustering is a relatively simple

mechanism. When combined with RANSAC, it is able to detect geometric polygonal primitives

effectivelly.
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(a)

(b)

Figure 8.4: Using clustering of point clouds in order to separate inliers RANSAC. (a) detection

without clustering; (b) detection with clustering.

8.3.4 Plane Model Estimation

The last step described in the general RANSAC procedure list (see section 8.3.2) is the model re-

estimation. It is performed only for the selected hypothesis and consists on a refinement of the model

parameters. In fact, the RANSAC is used only to find a set of inliers on the input point cloud. Then,

a clustering mechanism will extract a set of connected points. RANSAC does provide an estimate of

the planes parameters but a very inaccurate one, since it was defined initially from the three randomly

selected points. Hence, after selecting a plane, computing the set of inliers, and extracting the largest

cluster, the next problem is how to accurately estimate the plane coefficients given a set with more

than three 3D points. Given a set of 3D points, linear least squares fitting is the process of finding

the linear sub-space which minimizes the sum of squared distances from all points that compose the

set, to their projection onto this linear sub-space, i.e., the plane. Such linear sub-space is obtained

using Principal Component Analysis (PCA). PCA is defined as a transformation that transforms the

points to a new coordinate system such that the greatest variance by orthogonal projection of the

objects comes to lie on the first coordinate, called the first principal component, the second greatest
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(a) (b)

(c) (d)

Figure 8.5: PCA for plane model coefficients refinement. (a) a set of 3D points; (b) the fitted plane

and the input points (red or green depending on whether they are above or below the plane); (c) and

(d) another example with the polygon shown in Fig. 8.3 (b).

variance on the second coordinate, and so on. The library referenced in [Alliez et al. 2012] was used

to implement this functionality although there are other possibilities [Mathworks 2012]. Figure 8.5

shows examples of plane fitting with PCA.

In conclusion, this section presented details on the detection planes given a point cloud. It was

shown that RANSAC is an appropriate method for extracting a set of inlier 3D points from the input

point cloud. A slight variation of this method resorts to a point cloud with estimated normals to

discover oriented planes.

8.3.5 Bounding Polygon

As stated in section 8.3.1 the proposed representation basis of the environment, the polygonal geo-

metric primitives, require two descriptors in order to be defined: the support plane and a bounding
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polygon. The first was addressed in detail in section 8.3.2. The computation of the latest will be

described in this section.

The computation of the bounding polygon is done after the detection of the support plane. In

other words, for a given ith primitive, its support plane coefficients Gi
p =

[
ai bi ci di

]
are

known. The bounding polygon Pi is defined by a list of 2D points p:

Pi = [p0,p1...pn] =

[
x0 x1 ... xn

y0 y1 ... yn

]
(8.2)

where n is the number of points in the polygon. Each pair of consecutive points define a line segment

and the group of line segments bounds the polygons interior. In this sense a polygon can also be

represented as a set of line segments Pi:

Pi = {p0p1, p1p2, ..., pn−2pn−1, pn−1p0}. (8.3)

In order to define the 2D points a special coordinate system must be computed. It is called the

primitive local coordinate system. The local reference system must have its Z axis parallel to the

normal of the support plane. The orientation of the remanding axes is arbitrary. We use the first two

3D points �0 and �1 in the inliers point cloud provided by the RANSAC search to define the X axis

and the Y axis results from:

�Y = �Z × �X (8.4)

where �X , �Y and �Z are the normalized vectors coincident with each of the primitives local coordinate

systems axes, and × is the cross product. The 2D bounding polygon points are converted to and from

3D coordinates in the world coordinate system as follows: let wPi be the list of 3D positions of the

ith primitives polygon points, defined in the world w coordinate system:

wPi = [wp0,
wp1,...

wpn,] =

⎡
⎢⎣

wx0
wx1 ... wxn

wy0
wy1 ... wyn

wz0
wz1 ... wzn

⎤
⎥⎦ , (8.5)

and wTli be a function that transforms point wp in the world coordinate system to point lip in the

local coordinate system:

liPi = wTli
(wPi

)
=
[
lip0,

lip1,...
lipn,

]
=

⎡
⎢⎣

lix0
lix1 ... lixn

liy0
liy1 ... liyn

liz0
liz1 ... lizn

⎤
⎥⎦ , (8.6)

Then, since the 2D polygon points must lie on the support plane, a projection of a 3D point lipj

is easily produced by discarding the z coordinate. Let fp : R3 → R2 be a function that projects a 3D
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point lipj in the local primitive coordinate system to a 2D point lipj defined in a two dimensional

coordinate system that is coincident to the X and Y axes of the local primitive coordinate system:

lipj = fp(lipj)

≡ Pi = [p0,p1...pn] =

[
x0 x1 ... xn

y0 y1 ... yn

]
=

[
lix0

lix1 ... lixn
liy0

liy1 ... liyn

]
, (8.7)

There are two ways to compute a bounding polygon from a set of 2D points: convex hull and

concave hull. Both are described in the following lines.

The first option is to compute the bounding polygon by performing a 2D convex hull operation on

the 2D projections of the inlier 3D points provided by RANSAC. There are a great number of options

to perform a convex hull operation: Gift wrapping [Jarvis 1973], Graham scan [Graham 1972], Divide

and conquer [Amato & Preparata 1993], Monotone chain [Andrew 1979] and Incremental convex

hull algorithm [Kallay 1984], Quick hull [Bykat 1978], among others. It is a well documented topic in

the area of computation geometry. In this work the implementation provided in [Hert & Schirra 2012]

is used to compute the 2D convex hull, based on a non recursive version of [Bykat 1978], presented

in [Barber et al. 1996].

The second option is to compute the bounding polygon using a concave hull. Concave hulls, also

known as alpha shapes, will provide a more accurate reconstruction of the boundaries of the poly-

gon. There are tools available to compute both 2D [Kai & Da 2012] as well as 3D [Kai et al. 2012]

alpha shapes. In the current work, an implementation provided by [Rusu & Cousins 2011] is used.

Although the concave hull seems more interesting to use since it does a better job of preserving the

contours of the data, the fact is that the convex hull does present several advantages when compared

to the alpha shapes. First, convex hulls are considerably faster to compute and use in subsequent

operations, and second, the computation of the alpha shapes does require an user selection of the α

parameter. Because of these reasons, the remanding explanations and results will be shown only with

the convex hull polygon. However, it should be noted that all the algorithms described in the next

sections are also fitted to work with concave polygons.

Figure 8.6 shows a scene where a polygon is reconstructed using both the convex and concave

hull. In Figs 8.6 (a) and (b) the inliers of the RANSAC procedure are shown in blue. The projection

of these to the polygons support plane as described in eq. (8.7) results in the green points. In Figs 8.6

(c) and (d) the convex and concave hulls are shown in blue and red colors respectively.

8.3.6 Basic Geometric Properties

Although the algorithms proposed in the previous sections are very effective at extracting polygons

from 3D data, some additional constraints are helpful in order to maintain a reduced number of poly-

gons. These additional constraints are related to the size and the amount of 3D range measurements
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(a) (b)

(c) (d)

Figure 8.6: The computation of the bounding polygons: (a) and (b) the RANSAC inliers shown in

blue, the projection of these to the support plane shown in green; (c) and (d) the convex and concave

hull polygons in blue and red, respectively.

that support the plane. Both constraints are described below. The polygons computed using either the

convex or concave hulls are defined as simple polygons, i.e., polygons whose edges do not intersect.

The area of a simple polygon A(P) containing n vertices was proposed in [Branden 1986], and is

given by:

A(P) =
1

2

n−2∑
i=0

(
xi · yi+1 − xi+1 · yi

)
, (8.8)

which will return a positive value when the polygons vertices are set in counter clockwise order

[Giezeman & Wesselink 2012a]. The other criteria is solidity S(P), which is defined by the following

expression:

S(P) =
N

A(P)
, (8.9)
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where N is the number of points that are explained by the geometric polygonal primitive, i.e., the

number of inliers provided by RANSAC.

These two criteria are used to discard some very small polygons or polygons with large areas but

few support planes. Two minimum threshold values are set to decide whether a polygon is discarded

or not:

(a)

(b)

(c)

Figure 8.7: Location H, sequence 2 (see Fig. B.8, page 415). Examples of geometric polygonal

primitives detection using different values of area (At) and solidity (St) minimum thresholds: (a)

At = 0.5, St = 0.1; (b) At = 5, St = 0.1; (c) At = 10, St = 10.
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Figure 8.8: Location C, sequence 1, influence of the minimum area and solidity thresholds on: (a) the

number of polygons; (b) the number of explained points.

⎧⎨
⎩keep Pi, if A(Pi) ≥ At and S(Pi) ≥ St

discard, otherwise
, (8.10)

where At and St are the minimum area and solidity thresholds, respectively. Although very simple,

this test will enable the system to discard small polygons and therefore save memory space. It will

also not account for polygons which do not have few range measurements, and therefore a small value

of solidity. It is also simple to do a manual tunning of these two parameters, since they have close

relations to physical properties of the polygons, i.e., size and density.

Figure 8.7 shows the amount of geometric polygonal primitives detected for several values of At

and St. As expected, changes in the minimum area and solidity thresholds will affect the number of

detected polygons. Also, the number of 3D points explained by the polygons is dependent on these

parameters. We say that a 3D point is explained when there is a valid geometric polygonal primitive

that contains the point. Hence, if the number of polygons reduces, it is expected that the number

of explained points also decreases. The ratio between the number of explained points for all valid

polygons with the total number of input points provides an estimate of how much of the environment

is represented by the proposed model, or, in the other hand, how much of the scene remains to be

explained.

Figure 8.8 shows two graphs: in (a) the influence of At and St to the number of polygons is

shown; in (b) the influence of those two parameters on the number of explained points is displayed.
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8.3.7 A Cascade Processing Configuration

The previous sections described the algorithmic tools used to perform the detection of geometric

polygonal primitives from a given point cloud. This section intends to provide the global picture

of the detection process, explaining how several primitives are extracted from a single input point

cloud. The proposed processing architecture can be described as a cascade configuration. The cascade

configuration is inspired in the cascading of classifiers, a technique very common in the field of pattern

recognition. Cascades are based on the concatenation of several classifiers, using all information

collected from the output from a given classifier as additional information for the next classifier in

the cascade. Unlike voting or stacking ensembles, which are multi expert systems, cascading is a

multistage one. Cascade setups are also frequently related to human-like attention mechanisms. The

main advantages for cascade configurations are the processing speed as well as the admissible poor

false positive effectiveness of the classifiers, when considered individually. In the problem at hand,

a cascade configuration term refers to the processing of the input point cloud. The input point cloud

contains several range measurements, i.e., 3D points. It is assumed that each point can only be used

to represent a single geometric polygonal primitive. In other words, primitives may have many 3D

Algorithm 8.3 Cascade configuration for the detection of geometric polygonal primitives

Input: P it=0, the input point cloud at iteration 0

Output: A list of geometric polygonal primitives G = {G0,G1, ...,Gn}
Initialize number of primitives, k ← 0
Initialize number of iterations, it← 0
Initialize primitives list, G ← {}
Initialize cycle break flag, cycle_break ← false
while cycle_break = false do

RANSAC search over Pk, returns estimated plane Ĝk
p (first guess) and inliers Ik

if RANSAC found a candidate then
Cluster inliers point cloud Ik to cluster list C={C0, C1, ..., Cn}

Find largest cluster, max_cluster = argmaxi(size(Ci))
Set the primitive support points Sk to the largest cluster, Sk = Cmax_cluster

Compute accurate plane coefficients from support points, Gk
p ← PCA over Sk

Compute bounding polygon Pk, its area A(Pk) and solidity S(Pk)
if A(Pk)>At and S(Pk)>St then

Add to primitive list, G ← {G,Gk}
increment number of primitives, k ← k + 1

end if
Remove support points Sk from P it, compute P it+1

else
Finish search for primitives, cycle_break = true

end if
increment number of iterations, it← it+ 1

end while
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points associated to them, but each of those points can only be associated to one of the primitives.

This assumption is a core component of the cascade processing because it simplifies and fastens the

detection of the primitives. Let Sk be the point cloud containing the support points of primitive k,

and Pk be the input point cloud in which the primitive was searched. The input point cloud for the

search of the next primitive, Pk+1 is obtained by removing the support points of primitive k:

Pk+1 =
{

� ∈ Pk | � /∈ Ik
}
. (8.11)

Since every iteration of primitive detection will perform a search on a smaller point cloud and

that the smaller the point cloud is, the fastest the search, it is expected that the cascade configuration

is capable of significantly reducing the processing time. Section 8.4 will show results concerning

processing time. Let a geometric polygonal primitive Gk have support points Sk, support plane

Gk
p =

[
ak bk ck dk

]
and bounding polygon Pk. Algorithm 8.3 describes in detail the overall

process of detecting several primitives from an input point cloud.

8.4 Results

In the previous sections the details of the extraction of geometric polygonal primitives were described.

In section 8.3.1 the representation of the scene and the data compression potential is discussed. Then,

section 8.3.2 shows how the support planes are detected using RANSAC and section 8.3.3 shows how

inliers are clustered and the largest cluster is extracted. In section 8.3.6 the computation of geometric

properties of the polygons is described. The computation of the bounding polygons is illustrated in

section 8.3.5. Finally, section 8.3.7 describes the overall configuration of the detection algorithm into

a cascade-like processing. This section will present some results concerning the detection of geome-

tric polygonal primitives using the proposed methodology. Since in this section only the detection

of geometric primitives is addressed, the presented results are given for the locations of both MIT

sequences, instead of for the entire sequences. The detection of geometric properties is provided as

a snapshot analysis of a given location. For the moment, no considerations are formed on how a

representation should evolve over time. This is the reason why only the snapshot locations are anal-

ysed in this results section. The input data for all the algorithms whose performance is evaluated are

the preprocessed point clouds described in tables 7.7 and 7.8. The following subsections will show

several results.

8.4.1 Qualitative Analysis

A qualitative analysis is shown in Figs. 8.9 and 8.10, where the detected geometric polygonal pri-

mitives are shown for some locations of sequences 1 and 2, respectively. As it is possible to observe

in both figures, the majority of the relevant planes are picked up by the algorithm. Note that in Figs.
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(a) (b)

Figure 8.9: Detection of geometric polygonal primitives in the data sets of sequence 1: (a) location

C; (b) location D.

(a) (b)

(c) (d)

Figure 8.10: Detection of geometric polygonal primitives in the data sets of sequence 2: (a) location

F; (b) location G;(c) location H;(d) location I.

8.9 and 8.10, the color of each primitive denotes the index of the primitive. From observing Fig. 8.9

(a) it is possible to see that the wall panel in front of the vehicle is marked in blue, while in Fig.

8.9 (b) the same panel is marked in yellow. This means that although the same planes are detected

over consecutive locations, there is no guarantee that they are given the same label. In chapter 9 this

problem will be addressed in depth. For now, what is relevant is that the proposed approach seems to

be able to pick up a reasonable amount of planes in a great variety of situations.

8.4.2 Data Compression

If one agrees that the geometric polygonal primitives do show a good discriminative power for de-

tecting the most relevant polygonal regions in a given point cloud, the next step would be to study

the computational cost and accuracy of this representation. Regarding the computational cost, two
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metrics are important: memory size of the representation, which should be as small as possible; and

processing time, which should also be reduced. One of the reasons for the choice of polygonal primi-

tives was due to its data compression potential. A single polygonal primitive can represent thousands

of range measurements, if all of them correspond to a wall for example. The memory size required

by a geometric polygonal primitive is directly related to the number of vertices in the polygon (see

eq. (8.2)). Figure 8.11 (a) shows a graph with the number of range measurements supported by each

primitives versus the number of vertices of the bounding polygon. All of the computed polygonal

primitives for sequence 1 are represented in the graph.

The first observation is that the typical compression ratio seems to be considerable. Let us assume,

from Fig. 8.11 (a), that as a worst case scenario, on average, polygons have around 1000 support

points for an average of about 30 vertices, Each support point is defined in the 3D space. Hence, the

memory requirements for the support points (Ms) would be:

Ms =
1000︸︷︷︸

support points

× 3︸︷︷︸
3D

× 4︸︷︷︸
typefloat

= 12Kb. (8.12)

On the other hand, the memory requirements for a geometric polygonal primitive (Mp) are given

by the support plane and the number of vertices represented in 2D space:

Mp =
4︸︷︷︸

Hessian coef.

× 4︸︷︷︸
typefloat

+ 30︸︷︷︸
vertices

× 2︸︷︷︸
2D

× 4︸︷︷︸
typefloat

= 0.176Kb. (8.13)

From this analysis it is possible to compute a worst case scenario compression ratio of 0.176/12 =
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Figure 8.11: Analysis of the geometric polygonal primitives data compression potential for all the

detected primitives in sequence 1: (a) the number of vertices versus the number of support points; (b)

the number of vertices versus the area represented by the polygon.
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1.4%. In other words, in terms of memory size, geometric polygonal primitives take only about 1%

of the size required by the raw range measurements. This is a very efficient compression ratio.

Another very interesting observation is that there seems to be an upper boundary to the number

of vertices required to define the bounding polygon, and thus, to the memory size required by the

representation. For example, there are primitives with 18 vertices that have from 500 to almost 12000

support points. Unlike in other approaches, for example triangulations, where the number of range

measurements are directly related to the number of triangles and consequently to the memory size,

in the case of the geometric polygonal primitives, since the contour of the polygon is the only infor-

mation kept, the increase in the number of range measurements does not seem to directly affect the

required memory size to store this representation. Figure 8.11 (b) shows a similar analysis where it

is shown that the area of the bounding polygon also does not have a direct relation to the number of

vertices in the polygon. In conclusion, geometric polygonal primitives show a very good compres-

sion ratio but also and perhaps more importantly, the memory size required by this representation is

not directly related to the number of points that a given primitive represents. Furthermore, using this

representation, it is possible to represent large areas of the scene with a very little amount of memory

space.

8.4.3 Computation Time

Having established the effectiveness of the polygonal primitives representation as far as data com-

pression concerns, a second item is now analysed: the computation time. Computation time is very

important since one of the expected applications is autonomous robot navigation. It is required that a

representation is computed within a minimal amount of time, so that there is time for other algorithms

to analyse the representation and act accordingly. In this scope, the expression to act accordingly

means not only to perform a correct action but also to execute it in due time. As described in section

8.3.7 the setup for detecting several polygonal primitives is a cascade-like configuration. In other

words, the algorithm will search for polygonal primitives on a given input point cloud. After the first

primitive is found, all the range measurements that are explained by that primitive are removed from

the input point cloud. The second primitive is then searched in a smaller point cloud and so on. Since

the search for a primitive is done over a decreasing size point cloud, it is expected that the search

becomes faster with the number of detected primitives. In Fig. 8.12 an analysis of the computation

time of each primitive is displayed. Primitives with higher numbers are detected in posterior phases.

Figure 8.12 (a) shows the number of points remaining in the input point cloud as a function of

the primitive number. Results are shown for all locations in sequence 1. The number of detected

primitives varies from location to location. It is also possible to observe that, as expected, the number

of remaining points decreases with the increase in the number of detected primitives. In all locations,

the number of remaining points is monotonically decreasing. There is another very interesting obser-

vation to make with respect to Fig. 8.12 (a): the amount of reduction in the number of points is higher
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Figure 8.12: An analysis of the cascade processing: (a) a graph showing the number of points left to

process for a given input point cloud, as a function of the index of the detected primitive; (b) the ratio

of decrease of the remaining points from the input point cloud; (c) the number of primitive support

points; (d) the time it takes to perform the detection of each of the geometric polygonal primitives as

a function of the primitives index.

when there are few primitives. In other words, the rate of descent of the curve is higher for the first

detected polygonal primitives. Figure 8.12 (b) shows the ratio of decrease in number of remaining

points as a function of the polygon number. The decrease in number of remaining points for polygon

number 1 corresponds to about 50% reduction. This value tends to increase (smaller reduction) as the

number of primitives increases. Since early detections correspond to primitives with a low number, it

is possible to state that the algorithm first finds primitives that account for a larger drop in remaining

points. This is a very interesting conclusion because it is also expected that the detection time de-

creases with the decrease in number of points. Hence, since the algorithm tends to remove the largest
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portion of points at the early stages of the cascade processing, this means that the latter stages will

also be more efficient to compute. The reason for this behaviour is the RANSAC algorithm. Because

RANSAC will search for the larger consensus, it will most likely select planes that are supported by

a greater number of points. This is shown in Fig. 8.12 (c). In this way, RANSAC tends to select first

polygons with the largest amount of primitive support points. As a consequence, the largest decreases

in the input point cloud occur early in the cascade, which in turn fastens subsequent detection stages

of the cascade. The RANSAC suits the cascade processing perfectly, since it statistically tends to

select the fastest strategy to decompose the input point cloud into geometric polygonal primitives.

The detection time per primitive is shown in Fig. 8.12 (d). The detection time tends to decrease with

the increase in polygon number, for the reasons that where previously reported. The optimization of

the cascade is of course a statistical process, which derives from the random behaviour of RANSAC.

Hence, it is not expected that the processing time decreases in all occasions, but only in the majority

of them. In Fig. 8.12 (d) all locations except location D show a decreasing processing time. The max-

imum observed time to detect a primitive was about 3 seconds. This value seems not to be sufficient

for real time processing but, as will be shown, they are quite good when compared to other surface

reconstruction approaches.

8.4.4 Comparison to Other Approaches

As discussed in section 8.2, there can be several alternative representations to a given set of range

measurements. In this section we will compare the proposed approach with three surface reconstruc-

tion methodologies.

The first is called ball pivoting algorithm triangulation. It was proposed in

[Bernardini et al. 1999]. The BPA computes a triangle mesh interpolating a given point cloud.

The principle of the BPA is very simple: Three points form a triangle if a ball of a user-specified

radius touches them without containing any other point. Starting with a seed triangle, the ball

pivots around an edge (i.e. it revolves around the edge while keeping in contact with the edge’s

endpoints) until it touches another point, forming another triangle. The process continues until all

reachable edges have been tried, and then starts from another seed triangle, until all points have been

considered. Although all range points are considered in the computation of the mesh, which accounts

for the accuracy of the methodology, this fact also hampers the computational performance of the

algorithm.

The second method used for comparison is an optimized version of a 3D triangulation, referred

to as Greedy triangulation (GT). In this approach a method for fast surface reconstruction from

large noisy data sets is proposed [Marton et al. 2009]. Given an unorganized 3D point cloud, the

algorithm recreates the underlying surface’s geometrical properties using data resampling and a robust

triangulation algorithm, the authors claim to achieve near real time. For resulting smooth surfaces,

the data is resampled with variable densities according to previously estimated surface curvatures.
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One of the advantages of this method is that, since a greedy search is executed, it is expected to be

faster than other standard triangulation approaches.

Finally, the third method is Poisson surface reconstruction. It was initially proposed in

[Kazhdan et al. 2006]. In this approach, surface reconstruction of a point cloud with estimated nor-

mals is viewed as a spatial Poisson problem. The Poisson formulation considers all the points at

once, without resorting to heuristic spatial partitioning or blending, and is therefore highly resilient

to data noise. Unlike radial basis function schemes, a Poisson approach allows a hierarchy of lo-

cally supported basis functions, and therefore the solution reduces to a well conditioned sparse linear

system.

The three methods presented above will be compared with the proposed approach. Two different

alternatives for the proposed approach are used: parameters set 1 and parameters set 2, Geometric

Polygonal Primitives (GPP)1 and GPP2, respectively. In GPP1 the area and solidity thresholds (see

section 8.3.6) are set so that only very large polygons are detected. Processing time is faster, since a lot

of polygons are discarded but, on the other hand, accuracy or completeness of the scene representation

is lost. GPP2 is a parameter set with a less strict threshold parameters and, as a consequence, provides

a more accurate scene description at the cost of a higher computation time.

Figure 8.13 and shows qualitative results for all the described approaches. Location E of sequence

1 is used for all the images. In order to ensure a fair comparison, all approaches start from the

preprocessed point clouds described in Tables 7.7 and 7.8.

Figure 8.13 (a) and (b) shows results obtained using the BPA method. It is possible to see that

a very accurate reconstruction of the scene is made. Since the radius of the sphere was set to a

high value (the default value) the ground surface is almost entirely connected by triangles. Since the

method is not designed to cope with noisy range measurements, the surfaces are not smooth. This is

an exhaustive method that performs searches on all data points. All input points are used and assumed

to be precise, the algorithm just triangulates over them.

Figure 8.13 (c) and (d) shows results from the GT algorithm. Qualitatively, the algorithm seems

to be less efficient than BPA in reconstructing the scene. Most of the ground is unconnected. This is

also related to the parameters of the algorithm. However, several trials were made to try to improve

by manually tuning the parameters. Results did not improve. It seems that the algorithm is more

sensitive to holes in the data than BPA. As with the BPA, this approach is also very sensitive to noise

since it does not consider that the input data points could have some noise. As a consequence, most of

the surfaces that seem to be planar are represented by many triangles which are not coplanar, meaning

the noise from the range measurements disturbs the effectiveness of the reconstructed triangles.

Figure 8.13 (e) and (f ) shows results from the POIS algorithm. Results from this algorithm are

the worst in terms of a visual analysis. The reason might be that POIS is not prepared to handle large

holes in the data, since the algorithm assumes that the implicit surface belongs to a single object. In

the current data set, this is not true. Results do not appear to be good because POIS tries to fit a single

Miguel Armando Riem de Oliveira Ph.D. Thesis



238 8.Geometric Scene Reconstruction

(a) (b)

(c) (d)

(e) (f )

(g) (h)

Figure 8.13: Qualitative comparison of several surface reconstruction methodologies in location E of

MIT sequence 1: (a) and (b) BPA; (c) and (d) GT; (e) and (f ) POIS; (g) GPP parameters set 1; (h)

GPP parameters set 2;
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implicit surface to the whole data set. Further tunning of the algorithm’s parameters did not lead to

better results in this data set. It is possible to observe that where the original data was dense, that

is near regions of the ground plane that had no occlusions, the algorithm was able to model the data

points properly. This algorithm however also has the advantage of fitting a surface to the data, process

that accounts for noisy measurements. It also does not perform exhausting nearest neighbor searches

as the other two triangulation methods do, which should make it faster that the previous two.

Finally, Figure 8.13 (g) and (h) shows results from the GPP. Parameters sets 1 and 2 are shown

in (g) and (h), respectively. As expected, in Fig. 8.13 (g) the number of polygons used to repre-

sent the scene is small. Even though, it can be said that the most relevant polygons are part of the

representation (see Fig. A.5 in appendix A, for the raw measurements of location E). In Fig. 8.13

(h), because the second parameters set is less strict in accepting polygon candidates, a lot more poly-

gons are detected. At first sight, the representations obtained both by GPP 1 and GPP 2 seem to be

very simplistic when compared to approaches BPA, GT and POIS. However, if one retains the core

objective of the proposed reconstruction which is to be used by classical algorithms in autonomous

robots, there are some interesting aspects. Planes in the scene, such as for example the ground plane,

are automatically extracted as a single surface (one polygon supported by a single plane), instead of

thousands of triangles with very different support planes. An autonomous robot that navigates based

on a simple collision check between its body bounding box and all the primitives (polygons or trian-

gles) in the reconstructed scene is a common approach to navigation. In this case for example, the

very short number of polygons in the scene would be advantageous since it would enable a much fast

collision check processing.

One very important component of the analysis of an algorithm is the computational performance

of the algorithm, In other words, how long do the algorithms take to reconstruct the scene. Since

robotic applications and driving assistance systems are the focus of this research, real time demands

are an nonnegotiable requirement. Table 8.1 shows the computation times each algorithm took to

reconstruct a scene. All locations from sequences 1 and 2 are presented.

The slowest algorithm is BPA. It takes on average about 600 seconds, i.e., 10 minutes to recon-

struct the scenes. This is a very large amount of time, which definitely sets aside any possibility of

real time reconstruction. On the other hand, the algorithm does seem to be the one that more accu-

rately represents the scene. The amount of time taken by BPA should be related to the fact that nearest

neighbor queries are computed for each of the input points. Nearest neighbor queries are very slow

to process and the time they cost increases exponentially with the number of points to be tested, since

all points are visited for each point in the point cloud.

In the case of the GT algorithm, although it uses a greedy search in order to optimize the nearest

neighbor queries, it still takes a long time to reconstruct the scene. On average, the algorithm takes

about 150 seconds (two and a half minutes). When compared with BPA, GT is in fact much faster.

It is capable of reducing the processing time to a quarter. However, two and a half minutes are
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still not adequate for real time processing. Although the authors of [Marton et al. 2009] claim that

the algorithm is capable of running in near real time, in this particular case of processing Velodyne

point clouds this is not true. In fact, the algorithm is very distant from real time performance. The

explanation for the high computational demand of both triangulation methodologies is related to the

fact that all points are accounted for, i.e., no noise is considered, and especially because of nearest

neighbor searches.

The POIS algorithm is faster than both triangulation methods. On average it takes around 60

seconds to reconstruct the scene. The algorithm relies on an octree for building the mesh. If the

octree is set to have a smaller maximum depth, the computation time should decrease. However, as

observed before, the reconstructed surface is not very accurate since the algorithm is sensitive to gaps

in the 3D data. Hence, reducing the level in the octree would lead to a less accurate reconstruction.

From the analysis of Fig. 8.13, it can be seen that POIS is the less accurate methodology.

The GPP algorithms are definitely the fastest ones. GPP 1 takes about 20 seconds to reconstruct

Table 8.1: Comparison of the computation time of several approaches for surface reconstruction on

the MIT data sets.

Sequence/ Processing time (secs)

Location BPA (1) GT (2) POIS (3) GPP 1 (4) GPP 2 (5)

S1 A 659.0 154.0 63.2 16.3 27.3

S1 B 752.9 157.5 61.6 25.3 17.4

S1 C 488.2 156.3 56.3 13.5 49.4

S1 D 480.4 142.4 52.6 25.2 25.2

S1 E 558.8 149.0 57.9 47.4 58.1

S1 μ 585.9 151.8 58.3 25.5 35.5

S2 A 953.7 161.9 78.6 17.7 23.3

S2 B 1057.0 176.2 79.2 6.8 43.3

S2 C 63.8 71.7 35.7 7.3 18.9

S2 D 685.4 156.9 75.0 6.2 20.3

S2 E 614.2 165.5 77.8 18.2 10.2

S2 F 624.6 154.7 64.5 26.1 21.8

S2 G 456.3 135.5 64.2 9.2 29.9

S2 H 1107.7 171.3 81.1 42.8 28.5

S2 I 1315.5 204.3 79.3 14.8 88.8

S2 μ 764.2 155.3 70.6 16.6 31.7

(1) BPA, proposed in [Bernardini et al. 1999], using the implementation from

[CNR 2005].
(2) GT, proposed in [Marton et al. 2009], using the implementation from

[Rusu & Cousins 2011].
(3) POIS proposed in [Kazhdan et al. 2006], using the implementation from [CNR 2005].
(4) Geometric polygonal primitives as proposed in this chapter, parameters set 1 (GPP

1). In parameters set 1, the area and solidity thresholds are set so that only very large

polygons are detected.
(5) Geometric polygonal primitives set 2 (GPP 2), where the area and solidity thresholds

are set so that even small polygons are detected.
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the scene. As expected, in the case of GPP 2, since more polygons are detected, the average time

is around thirty seconds. While it yields computation times that are not real time compliant, the

GPP approach is the fastest of all tested algorithms. It takes only about a four percent (thirty to

seven hundred seconds) of the time needed by BPA. Even considering the faster POIS algorithm, the

proposed approach is capable of reconstructing the scene on average in half the time. Obviously, the

processing of speed is directly related to the simplicity of the computed representation. Furthermore,

the fact that RANSAC analyses only a small sample of points in the input point cloud means that

not all input points are visited in order to reconstruct the scene, which is the case with the slower

triangulation approaches. Also, the cascade configuration discussed in section 8.3.7 does help to

speed up processing time. Regarding the real time demands, this matter will be further discussed in

chater 9, where the updating of polygons is discussed. For now it is obvious that the initial detection

of polygons in a scene is not possible in real time.

In Table. 8.1, it is possible to see that, for all approaches, the time taken to reconstruct location C

of sequence 2 is much lower than in other locations. This is explained by the fact that this location has

much less input data points, due to a large compression done by the preprocessing algorithms. Table

7.8 shows that unlike the usual 400K points, location C has only 166K points. Hence we conclude

that the computation time of all algorithms is dependent on the number of input point, which was

already an expected behaviour.

In Table 8.1 it is established that the proposed approach is much faster than other algorithms.

However, when looking at Fig. 8.13 where qualitative results obtained by all approaches are com-

pared, one may argue that the meshes generated by the GPP approaches are much more simpler than

the other meshes, and that this is the reason why the GPP approaches are much faster, because they do

not represent all the geometry that is underlying to the input point cloud. It is not possible to ascertain

whether or not the meshes generated by GPP represent all the underlying geometry.

Fig. 8.14 (a) shows the amount of primitives each approach generates, i.e., triangles for BPA, GT

and POIS, and polygons for GPP 1 and GPP 2. It shows that the number of polygons generated by

GPP approaches is much smaller than the number of triangles generated by other approaches. This

was expected. The idead behind the GPP approach is to represent the scene using only a few tenths

or hundreds of polygons, instead of the hundreds of thousand triangle generated by other approaches.

However, the number of primitives is not a good metric to describe the amount of scene represented

by the algorithm. One triangle, if large enough, can represent the same surface described by many

triangles. Since the objective is surface reconstruction, the area of the surface seems to be the best

metric for assesing how much the amount of surface is covered by the algorithms. Hence, the total

area of the mesh is used as the metric. It is computed as the sum of the areas of all primitives that

belong to that mesh. Figure 8.14 (b) shows the total area of the meshes generated by the algorithms on

each of the locations in scene 1. The POIS algorithm generates polygons with very large area, but this

is because this approach fails to accuratly fit the surface in places where data is missing. When this
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Figure 8.14: Comparison between the number of primitives (a) and total area (b) of the meshes

generated by all surface reconstruction approaches. All locations of sequence 1.

occurs, the surface is extended with large blobs that are surely not coherent with the scenes structure

but contrive to increase the total area of the mesh. However, the most important observation is that

the GPP approaches generate polygons with roughly the same area as the triangulation approaches.

Given this, it is possible to claim that the surface representations generated by GPP represent the

same about of geometric information as do the triangulation approaches. In other words, GPP is

much faster and it is not so at the cost of discarding or not detecting a large quantity of the scenes

underlying geometric structure.

Since it is shown in the previous comparison that GPP approaches do not faulter in terms of

amount of information generated, now a question may be posed in terms of accuracy. In other words,

GPP approaches produce polygons with the same area as other approaches, and do it much faster.

But is it at the cost of not detecting the scene with propper precision. This is a difficult question to

answer. The main reason is that there is no ground truth for the MIT data sets. Actually, to the best of

our knowledge, there are no 3D mesh data sets of road or city scenes with ground truth. In order to

have quantitative results with respect to the accuracy of each algorithm the BPA algorithm is used. It

is the longest taking algorithm, but at the same time it is the one that provides the more detailed mesh.

Hence, the choice of using BPA as ground truth seems to be the most feasible one. The accuracy of

the meshes generated by each algorithm are evaluated using a measure of distance (between meshes)

from each of the approaches and the results from BPA.

There is a vast field of research in what regards establishing metrics to compute a similarity score

between two meshes. In fact, the problem is not simple. For example, one can use the distance

between the faces of the mesh, the vertexes of the mesh, the number of faces or points, the area or

volume of the mesh, the difference between the orientation of the normals to the surfaces, and many
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other metrics. In the present case a variation of the Hausdorff distance is used. The Hausdorff distance

was proposed by [Cignoni et al. 1998]. Let X and Y be two meshes. The Hausdorf distance between

those meshes dH(X,Y ) is computed as:

dH(X,Y ) = max{ sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y) }, (8.14)

where sup and inf are the supremum and infinus, respectivelly. Since the Hausdorff distance is com-

puted over a discrete set of points a Montecarlo sampling is used to select a statistically representative

set of points for each mesh. These points are randomly selected from the entire mesh’s surface, e.g.,

they can be vertexes, points liying on edges or on faces of the meshes. In this particular case a varia-

tion of the Hausdorff distance, called the one sided Hausdorff distance is used where only the only the

supx∈X infy∈Y d(x, y) part is computed, because we only wish to affer how distant is each approach

to the ground truth and not the other way around. In this case, the X meshes are given by each of the

algorithms and the Y mesh is supplied by the ground truth mesh BPA.

Table 8.2 shows the Hasudorff distance values obtained by GT, POIS, GPP 1 and GPP 2 using

BPA meshes as ground truth. In fact, for every sampled point in the X mesh, the closest sampled

point in the Y mesh is computed. By definition, the Hausdorff distance (max in Table 8.2) is the one

sided supremum of that infinus distance. However in practice the mean or RMS measures are quite

useful since they are much less sensible to outliers. These measures are also presented in Table 8.2.

The algorithm that obtains the best results is GT. The reason for this may be because of the

Table 8.2: Comparison of the accuracy of the several approaches using BPA results as ground truth

and Hausdorff distance as metric.

Sequence/ Hausdorff distance (meters)

Location GT POIS GPP 1 GPP 2

max mean RMS max mean RMS max mean RMS max mean RMS

S1 A 11.7 0.15 0.41 14.0 1.39 2.98 7.6 1.02 1.71 7.6 0.87 1.55

S1 B 11.8 0.12 0.37 14.1 1.39 2.99 12.7 0.94 1.77 12.6 0.81 1.62

S1 C 12.7 0.18 0.44 13.9 1.06 2.59 8.9 0.87 1.54 8.9 0.69 1.32

S1 D 13.8 0.10 0.40 13.9 1.90 4.00 7.6 0.86 1.47 7.6 0.69 1.28

S1 E 12.5 0.14 0.49 14.0 1.42 3.03 14.0 1.25 2.56 14.0 1.11 2.39

S1 μ 12.5 0.14 0.42 13.9 1.43 3.12 10.2 0.99 1.81 10.1 0.83 1.63

S2 A 7.4 0.15 0.41 14.9 1.18 2.82 7.3 0.55 1.01 7.34 0.49 0.94

S2 B 6.7 0.07 0.27 14.5 1.09 2.73 10.9 0.59 1.18 10.9 0.48 1.04

S2 C 13.2 0.06 0.20 14.2 1.45 3.07 6.6 0.68 1.06 6.6 0.61 0.99

S2 D 14.1 0.11 0.33 14.6 1.19 2.88 6.6 0.52 0.86 6.6 0.42 0.75

S2 E 5.6 0.08 0.28 14.6 1.56 3.11 7.9 0.64 1.15 7.9 0.64 1.14

S2 F 12.4 0.05 0.21 13.9 1.66 3.66 5.6 0.57 1.03 5.7 0.53 0.99

S2 G 14.3 1.38 3.16 14.3 1.01 2.50 8.8 0.65 1.25 8.8 0.53 1.09

S2 H 9.5 0.09 0.41 14.7 0.97 2.62 11.3 0.57 1.22 11.3 0.54 1.15

S2 I 7.1 0.07 0.25 14.9 2.87 5.07 7.4 0.69 1.28 7.5 0.50 1.05

S2 μ 10.0 0.23 0.61 14.5 1.44 3.16 8.0 0.60 1.12 8.1 0.53 1.01
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selection of the ground truth BPA. Both algorithms have a similar philosophy of analysing all points

and triangulating using nearest neighbor queries. Hence, it is expected that results from these two

approaches are very similar which is in fact the case, with an average error of 0.14 meters in sequence

1 and 0.23 meters in sequence 2. In the case of POIS the conclusions of the visual analysis are

confirmed in this quantitative evaluation. POIS is the algorithm that less accuracy presents, as reported

by the 1.43 meters mean distance in both sequences. The accuracy presented by the GPP 1 and GPP 2

approaches are about 0.8 and 0.65 meters, respectivelly. Altough these values are better than the POIS

approach, they are still quite large. To have, on average, an error of over half a meter with respect to

the ground truth in fact not very good. But it is interesting to further analyse where this error comes

from. Figure 8.15 shows a graphical representation of the error for all of the approaches. For each

approach, the points sampled of the output mesh are shown with color associated to the computed

one sided Hausdorff distance of each point. A Red-Green-Blue colormap is used to code the distance.

Red represents zero distance and blue maximum distance. In Fig. 8.15 (a), corresponding to the

GT approach, almost all points have red color, resulting in low mean error. The POIS approach,

represented in Fig. 8.15 (b), shows a lot of points in blue and green color, e.g., points whose minimum

(a) (b)

(c) (d)

Figure 8.15: Qualitative analysis of the one sided Hausdorff distance for the tested algorithms in

location C sequence 1: (a) GT; (b) POIS; (c) GPP parameters set 1; (d) GPP parameters set 2; A Red-

Green-Blue color map is used to code the distance. Red represents zero distance and blue maximum

distance.
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distance to the ground truth sampled points was very large. This is why POIS shows low accuracy

values. In the case of the GPP approaches, 8.15 (c) and (d), some regions of the sampled points are

more prone to have large error distances, while those in red seem to perfectly fit the ground truth

mesh.

If a carefull observation is made on the regions where the GPP aproaches fail, the conclusion is

that the regions that have large errors are those where range measurements do not exist because of

obstacle occlusion. See Fig. A.3 in Appendix A to check where the vehicle was when this scene was

captured and where are the occluded regions. Another interesting observation is that it is the polygon

that represents the ground plane the one that shows a greater amount of error. Vertical polygons are

not so much affected by large errors. The reason is that the ground plane is the one that suffers more

from occlusion from other planes. It is because of this that GPP 2 shows greater accuracy when

compared to GPP 1 as shown in Table 8.2: since GPP 2 detects more polygons, the overall weight of

the polygon that represents the ground plane for the sampling of points and to the computation of the

mean Hausdorff distance is smaller in GPP 2.

Figure 8.16 shows another example of what causes a low accuracy performance in the GPP ap-

proaches. In Fig. 8.16 (a), the ground truth for location E is shown. When these range measurements

where taken, the vehicle was aproximatelly in the middle of the scene (see Fig. A.4, page 407), to the

right of the scene, a road lies in between two walls. However, because of the height of the wall closest

to the vehicle, the road surface is occluded and no range measurements of this region are collected.

In the BPA approach (i.e., the ground truth), this region is left without information.

In the GPP approaches, Fig. 8.16 (b), the polygon that represents the road enconpasses this

occluded region. The reason for this is that the convex hull was used to compute the bounding polygon

(see section 8.3.5). When points from this occluded region are looked up in the sampled points from

the ground truth mesh, there are no points near them, and the computed distances are large. Figure

8.16 (d) shows the sampled points in the GPP 2 and Fig. 8.16 (c) shows the corresponding closest

points found in the ground truth sampled mesh. It is possible to see that points from the occluded

road find correspondence only in the limits of that road, where ground truth data exists.

In conclusion, although GPP approaches do outperform the POIS algorithm, they show large

accuracy errors with respect to the ground truth. The reason for this is that the BPA methodology,

that was selected to serve as ground truth, does not perform interpolation over occluded areas, as the

GPP approaches do. One may quibble about how exact is the ground truth given by BPA. In the

example presented in Fig. 8.16 the occluded zone that was mentioned was indeed a road and the

representation produced by the GPP approaches is correct. The choice of BPA could be discussed,

but with the current data sets there was no alternative, since there is no real ground truth. So the first

conclusion is that although the error shown by GPP approaches seems high, in reality it may be much

smaller, it is caused because the ground truth is insufucient.

Second, the ground truth algorithm may also have problems in tackling phenomena like the laser
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(a) (b)

(c) (d)

Figure 8.16: An example of the Hausdorff distance calculation for location E, sequence 1: (a) the

ground truth, i.e., results from BPA; (b) the representation generated by GPP 2; (c) The points that

were sampled in the ground truth mesh; (d) The points that were sampled in the GPP 2 mesh; A Red-

Green-Blue colormap is used to code the distance. Red represents zero distance and blue maximum

distance.

sensor accuracy. In Fig. 8.17 two examples are shown where a wall is reconstructed from 3D range

measurements. Both the BPA and GPP representations are overlayed. It is possible to see that in the

BPA representation, in grey, the surfaces of the walls are rugged. From the images taken from the

cameras it can be seen that those surfaces are flat. Because laser range measurements have a limited

accuracy, the input 3D points do not lie perfectly on the surface plane. In BPA, the masurements are

considered to have no error, which cause the reconstruction to be rugged. The GPP approaches on

the other hand, uses a PCA approach to fit a plane to the range measurements (see section 8.3.4), and

represent the wall as a single surface, as it is in reality. Hence, the second conclusion is that GPP may

show slight errors with respect to the ground truth that should not be accounted for, since the GPP is

in fact more accurate that BPA.

It was shown that the results obtained by GPP in the Hausdorff distance comparison might not

only have to do with problem in the approach, but also with limitations with the algorithm that pro-
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(a) (b)

(c) (d)

Figure 8.17: Comparison between the ground truth mesh (in grey) and the polygons generated by GPP

(in yellow): (a) and (b) two different examples of wall surfaces; (c) and (d) images of the surfaces

corresponding to (a) and (b), respectively.

vided the ground truth. When the reasons for having low accuracy results were analysed, it was found

that they have mostly to do with the usage of the convex hull and are located especially in the polygon

that represents the ground plane. Since the GPP methodology is somewhat flexible, it is possible to

use three slight variantions of the GPP 2 algorithm whose results are shown in Table 8.2. These vari-

antions are shown in Fig. 8.18. In Fig. 8.18 (a) results from the standard GPP 2 approach are shown.

The first variation is to use the results discarding the polygon that represents the ground truth, since it

is the one that shows the largest amount of errors (Fig. 8.18 (b)). In Fig. 8.18 (c) a second alternative

is shown where the concave hull is used as a bounding polygon, instead of the convex hull. Finally,

in Fig. 8.18 (d) the concave hull is used and the ground plane polygon is discarded. The motivation

is to assess how much these two factors influence the lack of accuracy shown in Table 8.2. Table 8.3

shows the one sided Hausdorff distance results for these alternatives, with respect to sequence 1. The

first alternative, discarded ground plane and convex hull (second column) shows a very high increase

in the accuracy, from 0.83 meters to 0.13 meters of mean distance. In the second alternative, with

ground plane and concave hull (third column), the mean distance is 0.53 meters. This explains that
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(a) (b)

(c) (d)

Figure 8.18: Representations obtained when using alternatives for the GPP 2 method for location E,

sequence 1: (a) the standard GPP 2, with ground plane and convex hull; (b) discarded ground plane,

convex hull; (c) with ground plane, concave hull; (d) discarded ground plane, concave hull.

it is the inclusion of the ground plane polygon that most influences the lack of accuracy, but that the

convex hull is also responsible for some of the errors. In the third alternative both are combined: a

concave hull is used and the ground plane is also discarded. Note that the concave hull methodology

is used for computing the bounding polygon of all polygons, not just of the ground plane polygon.

The results shown by this third alternative are very good, with 0.1 meters of average error. In con-

clusion, if the representation accuracy is an inportant factor, concave hulls should be used, instead

of convex. Also, if the ground plane is not required, its removal benefits the overall accuracy of the

representation.

Figure 8.19 shows a visual analysis of the Hausdorff distance errors for these variations of GPP

2. It is possible to observe that regions with error, e.g., in blue and green, decrease considerably when

the concave hull is used, but in particular when the ground plane polygon is discarded.
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Table 8.3: Comparison of the Hausdorff distance accuracy of the GPP 2 approach using: the standard

approach, convex hull and ground plane included (also in Table 8.2); the convex hull with no ground

plane included; the concave hull with ground plane; and the concave hull without ground plane.

GPP 2 Hausdorff distance (meters)

B. Polygon Convex Convex Concave Concave

Ground plane Included Not included Included Not included

max mean RMS max mean RMS max mean RMS max mean RMS

S1 A 7.6 0.87 1.55 1.8 0.15 0.26 6.8 0.71 1.25 1.2 0.13 0.19

S1 B 12.6 0.81 1.62 1.5 0.11 0.19 12.6 0.53 1.09 1.1 0.08 0.14

S1 C 8.9 0.69 1.32 1.9 0.16 0.29 6.6 0.52 0.99 1.9 0.12 0.22

S1 D 7.6 0.69 1.28 2.2 0.14 0.26 7.3 0.59 1.13 2.1 0.11 0.21

S1 E 14.0 1.11 2.39 1.7 0.10 0.19 8.8 0.32 0.81 1.4 0.08 0.14

S1 μ 10.1 0.83 1.63 1.8 0.13 0.24 8.4 0.53 1.05 1.5 0.10 0.18

(a) (b)

(c) (d)

Figure 8.19: Results from the Hausdorff distance obtained when using alternatives for the GPP 2

method for location E, sequence 1: (a) the standard GPP 2, with ground plane and convex hull; (b)

discarded ground plane, convex hull; (c) with ground plane, concave hull; (d) discarded ground plane,

concave hull. A Red-Green-Blue color map is used to code the distance. Red represents zero distance

and blue maximum distance.
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8.5 Conclusions

This chapter has described in detail a new algorithm that performs surface reconstruction from point

clouds. The representation is based on geometric polygonal primitives. Polygon support planes are

detected using RANSAC and fitted using PCA. Then, a bounding polygon is computed using convex

or concave hull algorithms. Finally, points that belong to a polygon are discarded from the subsequent

searches, in a cascade like configuration.

The proposed representation based on sets of polygons is shown to have very good compression

capabilities. The cascade configuration speeds up the detection of polygons in a scene.

The performance of the presented method is compared with three well known surface reconstruc-

tion methods. Results have shown that the proposed approach is much faster to reconstruct the scene,

which makes it the best candidate for real time scene reconstruction applications. It was also shown

that the better performance is not granted at the cost of a less representative scene representations.

In terms of accuracy, at first sight the proposed approach seems to yield low accuracy. However, in

a more detailed analysis, it was shown that the proposed approach can be easily configured, if so

desired, to show very good accuracy. If a very accurate scene representation is required, concave hull

polygons should be used. If, on the other hand, accuracy is not so important (in fact it was shown

that sometimes the GPP is actually better than the ground truth), convex hull should be the choice to

compute the bounding polygon. If the application does not require the detection of the ground plane,

its removal may also increase the overall accuracy.

Miguel Armando Riem de Oliveira Ph.D. Thesis



Chapter 9

Geometric Scene Refinement

This chapter proposes a new algorithm for performing the refinement of the polygonal primitive

based geometric scene representation. As will be shown, this mechanims is very effective, which

enables a scene representation to be computed in even less time. The chapter describes how the scene

representation evolves dynamically, changing the description of the scene as new 3D data is received.

Section 9.1 introduces the problem. In section 9.2, the alternative methods for surface reconstruction

are analysed. Then, section 9.3 presents the proposed approach. Finally, results are presented in

section 9.4, and conclusions in section 9.5.

9.1 Introduction

Chapter 8 has described in detail the algorithm that is proposed to perform geometric scene recon-

struction. The algorithm was compared to other surface reconstruction methods and it is shown that

the geometric polygonal primitives are much faster than all other methods. However, despite being

the fastest amongst all tested algorithms, the time they take to compute a scene representation is still

far behind real time performance. In this chapter, a methodology for refining the scene representation

over time is proposed.

We will use the distinction between the terms scene and scenario. Let scenario refer to a particular

location that should be reconstructed. It can be a city, a road or anything else. By scene, we refer to

the portion of the scenario that is viewed by the vehicle at a particular time. Hence, a scenario is the

whole place to be reconstructed, and while the vehicle is travelling through the scenario it views many

scenes. Of course that different objectives or necessities may require different sizes of scenarios. For

example if a vehicle does not plan its movement more than twenty meters in front of it and it views a

scene of over fifty meters around it, in this case then the instantaneous scenario would be composed

of a single scene. Although one could argue that there is no need for large scenarios, since long

term plans are prone to change often, the ability to store in memory (whatever the representation

may be) a large portion of the environment should be helpful. The size of the scenario should be
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defined according to the requirements of the vehicle and, therefore, of the application at hand, but

the focus here is to develop a scene representation mechanism that can accommodate a large scope

of applications, those that require small sized scenarios but also those that necessitate large size ones.

Since the difficulty here lies in the computation of large sized scenarios, we will focus on this aspect.

If, for a given application, small size scenarios are recommended, it is straight forward to obtain a

small size scenario from a large size one. In other words, the objective of this section is not to address

the question of which should be the size of a scenario but instead to focus on the possibilities that

emerge from fast computing and low memory representations of a given scenario provided by the

geometric polygonal primitives, and whether they can contribute for easing the process of generating

(a)

(b)

Figure 9.1: Raw 3D points for all locations of scenario 1: (a) accumulated point cloud; (b) same as

in (a) but data points from locations are color coded: location A (yellow), B (red), C (green), D (blue)

and E (cyan).
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large scale scenarios.

For testing and performance evaluation purposes, we consider to be scenarios each of the se-

quences presented before in chapter 7.3. In the previous section, only particular locations of each

of the scenario/sequences where used to evaluate the performance of the scene reconstruction algo-

rithms. In this section, remind that scenario 1 does not only have five input point clouds in locations

A through E. In fact each pair of consecutive locations has ten seconds in between them, and there

is a 400K points input point cloud every second (see sequence accumulated columns in Tables 7.5

and 7.6). For comparison, evaluation and visualization purposes, however, only the point clouds that

result from the accumulation of the annotated locations are displayed. It is quite slow to use all the

input point clouds in sequence 1, this is why only the locations are considered for computing results.

Figure 9.1 (a) shows an accumulated point cloud obtained by merging all point clouds from locations

A through E, of sequence 1. In Fig. 9.1 (b), the 3D points are color coded according to the location

from where they where taken. As can be seen, there is a very significant degree of overlap between

consecutive locations. Of course the degree of overlap depends of the vehicle’s speed, but if one

considers that in between each two locations there is a gap of one second, it may be assumed that for

standard vehicle speed there is always a considerable amount of overlap between consecutive input

point clouds. In this sense, consecutive point clouds represent, to the extent of their overlap, which

is large, exactly the same objects in the scene. Note also that it is considered that vehicle egomotion

is being provided, that is, it is always straight forward to transform each input point cloud or recon-

structed scene to a global reference system which is why it is possible to show images like those in

Fig. 9.1.

9.2 Related Work

This section cannot be addressed as a typical state of the art. The reason is that, to the best of our

knowledge, there are no alternative methods proposed in the literature to refine scene reconstructions.

As an alternative, in this section we analyse the theoretical approaches that could be used in the

refinement of a scene representation.

At first sight, there are three alternatives for performing scenario reconstruction:

• Store raw measurements and reconstruct in the end; store all input point clouds and accumulate

into a super point cloud. Then, use surface reconstruction methods on the super point cloud,

i.e., over the range measurements of the whole scenario;

• Reconstruct incoming point clouds and fuse all partial reconstructions; perform scene recon-

struction for each input point cloud, create the reconstructed scenario from the accumulation or

fusion of the several scene representations produced for each input point cloud;

• Reconstruct with the first point cloud and then make the representation evolve as new point
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clouds arrive; use the first input point cloud to produce a partial scenario representation and

then use subsequent input point clouds to refine or update the scenario representation.

The first possibility is the most immediate approach. Since there are well known surface recon-

struction algorithms and that these make use of a single point cloud to reconstruct the surface, this

approach merely merges all input point clouds into a single one, the accumulated point cloud. Then,

standard surface reconstruction algorithms may be used using the accumulated point cloud as input.

This method has several problems: first, it only computes the surface reconstruction after all points

are accumulated. In the example of sequence 1, the scenario reconstruction could only begin after the

input point cloud of location E is received and accumulated. This would be a problem since one of the

objectives, as stated in the beginning of this chapter, is that some kind of representation of the scene is

made available to the vehicle in a short period of time. Only in this way it is possible to expect that the

trajectory planning, obstacle detection, or pattern recognition algorithms may use the representation

as input. If only at the end of the scenario it is possible to start computing its reconstruction, then

this is typically what is called post processing and is not suited for usage in real time applications.

Furthermore, the surface reconstruction methods are slow to process just a single input point cloud,

as was proved in section 8.4, and the time taken grows exponentially with the number of points in

the input point cloud. Therefore, using standard surface reconstruction techniques in the accumulated

point cloud would take a very long time. Figure 9.2 shows an example of scenario reconstruction

(with Ball Pivoting Algorithm (BPA)) using as input a point cloud that accumulates locations C D

and E of sequence 1. Just to have an idea, the reconstruction of the accumulation of just these three

point clouds took 7776 seconds.

The second alternative is to compute a scene reconstruction for each of the locations, and af-

terwards to merge all the reconstructed scenes into the scenario representation. Taking the example

of Fig. 9.2, if location C, D and E are computed independently, the overall process would take

488.2 + 480.4 + 558.8 = 1487.4 seconds, based on the data collected from Table 8.1. Although it

is surely faster to reconstruct each location independently when compared to accumulating all point

and reconstructing from the accumulated point cloud, there should be some computational overheads

with the merging process. However, for now, let us assume that the merging process has zero compu-

tational cost. In this case, the time required to reconstruct the sequence 1 scenario would be equal to

sum the time taken to reconstruct each of the scenes.

Figure 9.3 shows the reconstructed scenarios obtained using this alternative, for all tested algo-

rithms. The geometric structure of the scenario is captured by most of the algorithms. The only

problem is that algorithms take too much time to do so.

Using Table 8.1 as a reference it is possible to estimate the following computation times for each

of the algorithms, if this scenario reconstruction alternative is used. These estimates are presented

in Table 9.1. Two alternatives are shown: using only locations, i.e., the values are the sum of those

presented in Table 8.1; or using all input point clouds, an estimate is made from the average processing
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Figure 9.2: BPA surface reconstruction over the accumulated point cloud of all the locations in se-

quence 1.

Table 9.1: Comparison of the computation time of several approaches for the reconstruction of the

whole scenarios of the MIT data sets, when an approach of reconstructing each point cloud and then

merging reconstructed meshes is used.

Processing time (secs)

Sequence BPA GT POIS GPP 1 GPP 2

S1 (A + B + C +D +E) 2941 759 291 127 177

S1 (all point clouds) 23426 6072 2332 1020 1420

S2 (A + B + C +D +E) 6878 1398 635 149 285

S2 (all point clouds) 61136 12424 5648 1328 2536

time per point cloud and the number of point clouds in the sequence. From Table 9.1 it is possible to

see that it is not feasible to use none of these approaches to reconstruct the scenario. Even with the

GPP 1 approach, which is the fastest, to reconstruct all locations takes 127 seconds or 1020 seconds

if all input point clouds are used. Considering that the whole sequence 1 is only twenty seconds long,

it seems impossible to achieve real time performance with this alternative.

Another disadvantage of this method is that, given that there is a significant overlap between

neighboring input point clouds, each scene reconstruction is most of the times reconstructing portions

of the scene that have already been reconstructed in previous locations. This occurs in all algorithms,

since that each scene is reconstructed independently without knowledge about the other reconstruc-

tions. Some examples can be seen in Figure 9.4 where it is shown that using the partial reconstruction

of each scene alternative leads to having primitives (triangles or polygons) representing the same
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(a)

(b)

(c)

(d)

Figure 9.3: Accumulation of scene reconstructions of the location A (yellow), B (red), C (green), D
(blue) and E (cyan), for the generation of the reconstructed scenario. Reconstructed scenario (left)
and scenario with color coded scene primitives origin (right); (a) BPA;(b) GT;(c) POIS;(d) GPP 2,

shown without the ground plane for an easier visualization.
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(a) (b)

(c) (d)

Figure 9.4: Details of images shown in Fig. 9.3: (a) and (c) BPA and GPP 2 reconstruction of an

object, respectively; (b) and (d) the same for another object. Color code: location A (yellow), B (red),

C (green), D (blue) and E (cyan).

objects. Hence, this alternative of reconstructing each scene, although faster than the previous, has

the problem of waisting computational resources by executing multiple reconstructions of the same

objects in the scene. The second major problem is the merging of the scene representations into a

global scenario representation.

Even if it is considered that this process does not take a lot of time, conceptually it is not straight

forward how several meshes are merged into a single one. The results presented in Figs. 9.3 and

9.4 use only the most basic alternative, which is to add all primitives in several meshes into a single

mesh. However, problems like intersecting faces or duplicated vertexes could occur and should be

dealt with. Figure 9.5 shows the problem of intersecting faces. In Fig. 9.5 (a) a detail of the BPA re-

construction obtained after accumulating the point clouds of locations C, D and E is shown. In 9.5 (b),

the same detail is shown when using the alternative method where same locations are reconstructed

independently and then local meshes are merged.

Finally, the third alternative is to perform some kind of update to the current scenario repre-
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(a) (b)

Figure 9.5: Comparison of alternatives to scenario reconstruction: (a) reconstruction after accumu-

lating all the point clouds; (b) reconstructing each point cloud and then merging local meshes. Color

code: location C (green), D (blue) and E (cyan).

sentation as new input point clouds arrive. When the first input point cloud is received, a rough

representation of the scenario is built using the available information. This representation is then re-

fined and updated as new data arrives. Conceptually, this is the most interesting approach to scenario

reconstruction. Since a representation of the scenario is built from the first point cloud, this repre-

sentation, even if not very complete at this moment, can be of use for a vehicle to navigate. With

this approach it is possible to always have the best available scenario representation and to make it

available to other software layers. Another advantage is that, since the first created representation

is refined, there is knowledge about what objects have been previously reconstructed and so it can

avoid reconstructing them again, waisting computational resources. To the best of our knowledge, no

algorithms have been proposed that perform scenario reconstruction under this paradigm. The next

sections will discuss the methodology that is proposed to execute the update of the scenario using the

geometric polygonal primitives.

9.3 Proposed Approach

It was shown in section 9.2 that there are several methodologies possible to perform scenario recon-

struction. From all the methods, the one that certainly seems more interesting is the third, where an

initial scenario representation is updated or refined when new sensor data arrives. To the best of our

knowledge, there are no approaches that can handle the refinement of a given scenario representation

in real time. This section will describe how the proposed representation, based on a set of geometric

polygonal primitives, is updated. To update the representation an operation called expansion is per-

formed. Note that there is no way to shrink a primitive, because the environment to be represented

is considered static. If it is static that means that the geometry of the objects in the scene does not
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change, e.g., they can only enlarge due to information that appears in new data and that was not

present in previous acquisitions. In a static environment this occurs because the vehicle is moving

through the scenario, and extra portions of objects are seen because they are closer or stop being

occluded by other objects. An illustrative example is when a vehicle is moving on a road and there is

a long wall on the side of the road. At the beginning of the road, sensors see only a portion of the wall

and the primitive assumes the respective shape. As the vehicle travels through the road, new parts of

the wall are visible to the sensors. These additional range measurements of the wall should be used to

update the already existing primitive that represented the wall, which means that the primitives shape

should be update to encompass the new data.

The expansion operation implements this mechanism. Figure 9.6 shows a example: Let P repre-

sent an input point cloud that is received at a given time and that contains several points (triangles and

diamonds in Fig. 9.6 (a)), and the scenario representation that was previously computed be composed

of a single primitive G (black solid line polygon in Fig. 9.6 (a)). The primitive has a support plane,

defined by the local coordinate system X and Y axes. The local coordinate system represented by

red-green-blue lines, e.g., the XYZ axes. The first step is to compute a new point cloud Port that

is given by the points of P whose distance to the plane is smaller than the perpendicular expansion

threshold Tort:

Port = {�j ∈ P | dj < Tort}, (9.1)

where dj is the distance of point �j to the support plane of G. Only points that lie close to the

primitives support plane are stored in Port and used in the next steps. In Fig. 9.6 (a), some points are

included in Port (triangles) and others discarded (diamonds). Then, the points in Port are projected

to the primitives support plane and their coordinates transformed to the primitives local coordinate

frame. In this local reference frame, the projected points always have z value equal to zero, which

is why only the x and y coordinates are stored, i.e., points are defined in R2. Let J be the point

cloud that contains the x and y coordinates of the projected points viewed from the primitive local

coordinate system. Figure 9.6 (b) shows the projections of the triangles of Fig. 9.6 (a) to the support

plane (circles). This process is called the orthogonal part of the expansion. From here onward, all

computations are performed in R2, which significantly speeds up the computation.

The second part of the expansion is referred to as longitudinal expansion. Figure 9.7 shows an

example point cloud J that contains several points. Let us consider that some of these points actually

belong to the same object that the primitive represents (circles in Fig. 9.7), and others do not (squares

in Fig. 9.7). Since these points are obtained from new data, not all of them are contained inside

the bounding polygon of the corresponding primitives. Therefore, the primitive should expand to

accommodate these new points. To do this, an iterative process is proposed. The first step is to

offset the existing bounding polygon of the primitive. The algorithm that was used was introduced

in [Aichholzer et al. 1995]. The implementation is from [Cacciola 2012]. The offsetting operation
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Figure 9.6: Orthogonal part of the geometric polygonal primitives expansion operation: (a) points

are tested for their orthogonal distance to the support plane; (b) included points are projected to the

support plane.

generates a new polygon from a given one. This new polygon is a grown or shrinked version of the

input polygon, depending if the value of the offsetting is positive or negative, respectively. In this

case only positive values of offsetting are used, i.e., the polygon can only grow. In every iteration, the

polygon is grown as detailed next. The bounding polygon of the primitive is referred to as P, and the

grown or extended polygon is referred to P̂. Then, all points in J are tested to see if they are inside P̂

(implementation from [Giezeman & Wesselink 2012b]). The final stage is to compute a new convex

hull. This new convex hull is computed from the point set that contains both the points of the previous

convex hull and the points to which the polygon expanded to. The process repeats using the newly

computed convex hull as starting hull. The iterative expansion stops when the extended polygon does

not contain points inside it.

Figure 9.8 shows an example of an iterative longitudinal expansion. The initial situation for this

expansion is depicted in Fig. 9.7. Remember that the circles represent points that are part of the

object represented by the primitive, while squares are range measurements of other objects. Figure

9.8 (a) shows the start of the iterative process. The expanded polygon, (dashed line) is offset from

the initial bounding polygon (solid blue line). Note that this offsetting has the same value under all

dimensions, i.e., both vertical and horizontal. Since this is a search process and it is unknown where

are the points that belong to the object, the best option is to expand likewise in all directions. All

points belonging to J are tested to see whether they are inside the polygon. In the case of Fig. 9.8

(a), points that were inside are annotated with a blue cross. The second iteration is shown in Fig.

9.8 (b). The new convex hull is shown as a green solid line. It is computed as the convex hull of

the previous iteration bounding polygon (solid blue line in Fig. 9.8 (a)) and the points found to be

inside the previous iteration extended polygon (blue crosses in Fig. 9.8 (a)). The extended polygon is
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Figure 9.7: Expansion of geometric polygonal primitives. The polygonal primitive (polygon in black)

that is to be expanded. In the next received range measurements, a point cloud containing candidates

for expansion is defined. These have inliers (points that belong to the same object of the polygon,

circles in Figure) and outliers (points that do not belong to the same object of the polygon, squares in

Figure).

shown as the green dashed line. In this case, four additional points are found to be inside the polygon.

The process repeats through the next two iterations, e.g., Figs. 9.8 (c) and 9.8 (d), until, in the fifth

iteration (Fig. 9.8 (e)), no new points are found inside the extended polygon. This causes the iterative

search to finish. The expansion operation changes the polygon from its initial state (blue solid line in

9.8 (a)) to a new shape, shown in the solid magenta line in Fig. 9.8 (e).

One of the advantages is that the convex hull grows only in the directions where new points

are found inside the extended polygons, and remains unaltered in the directions where no new data

is found. This is why, in the example shown in Fig. 9.8, the bounding polygon grew only in the

horizontal (from left to right) direction. If the polygon grew in the vertical direction, from bottom

to top, the outliers represented by the squares would eventually turn out to be inside an extended

polygon and be included as belonging to the primitive.

Figure 9.9 (a) shows a diagram of the entire iterative expansion sequence, where it is easy to

observe the horizontal expansion of the primitives bounding polygon.

This property displayed by the algorithm of being able to selectively expand the bounding polygon

in the right directions is very important because it allows the setting of small offset values. If these

would be large, the consequence would be that outliers could also be included. Figure 9.9 (b) shows

an iterative process where the offset value is set too high and the polygon expands to the outliers. Note

also that if there was no iterative search, a value that would be sure not to find any outliers (squares)

would also miss some inliers (circles). This is shown if Fig. 9.9 (c). If, on the other hand, the offset
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Figure 9.8: Expansion of geometric polygonal primitives. Solid lines in color represent the convex

hull at the start of a given iteration, dashed lines the expanded polygon. Crosses over points mean

they where added to the polygon in a given expansion: (a) iteration 0 (blue); (b) iteration 1 (green);

(c) iteration 2 (red); (d) iteration 3 (cyan); (e) iteration 4 (magenta);
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value is large enough to accommodate all inliers, it also includes some outliers, as shown in Fig. 9.9

(d). In sum, there is no value of offset that can grow the polygon enough to encompass all the circles

and, at the same time, not encompass any of the squares. This is the reason why the iterative search

is so important: it enables setting a very small offset value, to be sure that outliers are not found. The

iterative propagation ensures that all points belonging to the same surface are found, even if the offset

value is small.

Since that the detection of polygons is quite slow, the expansion operation should be fast in

order to compensate for it. One of the advantages of the proposed expansion mechanism is that

most of the operations are executed in 2D space. Also, no nearest neighbor searches are executed
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Figure 9.9: The effect of the longitudinal offset value, four examples: (a) the case shown in Fig.

9.8; (b) the offset value is too large and the expansion propagates to the outliers; (c) a non iterative

example where the offset value is tunned not to include any outliers; (d) a non iterative example where

the offset value is tunned to include all inliers.
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when performing the expansion. As discussed in chapter 8, nearest neighbor searches are slow to

process and tend to increase exponentially with the increase in the number of points. To avoid such

searches is sure to speed up the algorithm. Obviously, the iterative process is slower than a single

step process. However, in whole, the expansion algorithm is quite fast, considerably faster than the

detection operations, which was one of the main objectives of the expansion operation. Section 9.4

will present results with the performance of the expansion algorithm.

9.3.1 Incremental Bounding Polygon Computation

Section 9.3 described the entire algorithm for the expansion of the geometric polygonal primitives.

One of the key components of the algorithm is the iterative processing, and one of the steps that are

performed in every iteration is the computation of a new convex hull. As discussed, at the end of

every iteration, the objective is to compute a new convex hull that envolves both the convex hull of

the previous iteration and the newly added points that were found to be inside the extended polygon.

This section describes in detail how this process is performed. This section will only address the

incremental computation of the bounding polygon when a convex hull is used. If a concave hull is

employed the following deduction is not valid and a different solution must be found.

We will use the following notation for points or lists of points: when we refer to the 3D point, a

handwritten character is used ,when we refer to the projection of those points to the primitives support

plane, that is, to the 2D points defined on the primitives local coordinate system, then a typewritten

character is used. For example, S refers to the 3D coordinates (defined in the global reference system)

of the primitives support points, while S is the projection of those support points to the support plane

(defined in the local coordinate system).

At expansion iteration j, let a given primitive have an initial bounding polygon Pj−1 and support

points Sj−1. , which, if projected to the support plane become Sj−1. Let the expansion process find

the list of points Ej , as points inside the extended polygon (Ej in the case of their projection). The

objective is to update the bounding polygon at the end of iteration j, e.g., to obtain Pj . At first sight,

the solution is obvious: to compute the convex hull of a point cloud that contains all the support

points of a primitive, plus the expanded points. Since the convex hull operation is performed on the

primitives local coordinate system (this is done inside the longitudinal part of the expansion), only

the 2D representations are used:

Pj = conv({Sj−1,Ej}), (9.2)

where conv is the function that returns the convex hull for a set of points and {A,B} represents the

union of groups A and B. The problem with the solution of eq. (9.2) is that, at iteration j, support

points Sj−1 should not be stored in memory. In section 8.4, results are shown that prove that polygonal

primitives are a very memory effective representation. The representation is capable of compressing
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the raw data to 1% of its original size. In fact as shown in eqs. (8.12) and (8.13) and in Fig. 8.11,

if all the data is stored, a few seconds are enough to have several gigabytes of data, which is not a

feasible solution. In other words, before new data arrives, that is, before primitives are expanded,

the memory containing the primitives support points must be freed. Hence eq. 9.2 cannot be used.

However, convex hulls have some interesting properties which can be used to devise a solution. It is

shown in [Krein & Smulian 1940] and [Schneider & Rolf 1993] that, for any given set of points S1

and S2, the convex hull of their Minkowski sum is the Minkowski sum of their convex hulls, that is:

conv({S1, S2}) = conv(S1 + S2) = conv(S1) + conv(S2). (9.3)

Then, eq. 9.2 can be changed to:

Pj = conv(Sj−1) + conv(Ej). (9.4)

Pj−1 was obtained as the convex hull of the primitives support points at iteration j − 1, which

results in:

Pj−1 = conv(Sj−1), (9.5)

and eq. 9.4 becomes:

Pj = Pj−1 + conv(Ej). (9.6)

Another important property of the convex hulls is the idempotence. Idempotence is the property

of certain operations in mathematics and computer science, that they can be applied multiple times

without changing the result beyond the initial application. That is, for a given set S1:

conv(conv(S1)) = conv(S1), (9.7)

which transforms eq. 9.6 to:

Pj = conv(Pj−1) + conv(Ej), (9.8)

and finally, using eq. (9.3), results in:

Pj = conv({Pj−1,Ej}). (9.9)

This deduction proves that it is possible to use just the bounding polygon of the previous iteration

and the extended points in order to compute the new convex hull. It is very important since it makes

possible to update the convex hull in an expansion operation without need to store all of the primitives

support points, which would not be possible due to the very large memory size required.
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If the concave hull is used instead of the convex hull this deduction does not hold. Some alterna-

tive method using for example point sampling over the previous iteration polygon would have to be

implemented. However, such work was not endeavored, which is why the following sections only use

convex hulls as bounding polygons.

9.3.2 Incremental Support Plane Computation

In order to properly update a primitive, not only its bounding polygon but also its support plane must

be updated. The same problem is posed when, after a primitive expands to a set of points Ej , a new

support plane must be computed. In theory, to compute the new support plane that satisfies also the

expanded points would be just a matter of running a Principal Component Analysis (PCA) operation

over the set of support points plus the extended points. At expansion iteration j, the objective is to

find the primitives new plane coefficients Gp
j :

Gp
j = pca({Sj−1, Ej}), (9.10)

where pca is a function that retrieves the plane coefficients using PCA, Sj−1 are the primitives support

points at the previous iteration and Ej are the expanded points. Both are defined in R3, e.g., they are

not the projections of the 3D points to the plane but the 3D points themselves. Like in section 9.3.3,

the same problem is posed. For data compression purposes, the support points Sj−1 should not be

stored in memory. The idea is to replace these points by the representations of polygonal primitives.

Even if it was feasible to store all support points in memory, the amount of support points (remind that

a polygon can have hundreds of thousands of support points in just one iteration) after some iterations

would make it impossible to execute a PCA in real time. To solve this issue, we propose to perform

a PCA over a sampled set of points. The idea is to find a smaller set of points that are representative

of the set {Sj−1, Ej}. The ratio between these should be maintained. Let Ŝj−1 and Êj be the sampled

sub sets of Sj−1 and Ej , respectively. Let NSj−1 be the number of support points at iteration j − 1,

and NEj the number of points in the extended set Ej . Similarly, NŜj−1
and NÊj refer to the number of

points in the sampled subsets. If the sampled sets are representative and the ratio between the support

points and extended points is maintained over the real set of points and the sub sampled set of points,

that is:

NSj−1

NEj
�

NŜj−1

NÊj
, (9.11)

then, the result of PCA is approximately the same if we use either the complete set of points

{Sj−1, Ej} or the sampled set of points {Ŝj−1, Êj}:

Gp
j = pca({Sj−1, Ej}) � pca({Ŝj−1, Êj}). (9.12)
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There are many ways to sample representative subsets from real sets. In our case, we found

that very simple sampling mechanisms suffice to provide accurate estimations of the new support

planes coefficients. In practice the procedure is the following: a number NÊj of sampled extended

points Êj are randomly extracted from the total extended points list Ej . Then, using eq. (9.11), the

number of points NŜj−1
that should be sampled from the primitive is computed. The sampled points

Ŝj−1 are computed by randomly selecting points along the edges or inside the bounding polygon of

the primitive. Using these two sampled sets, it is possible to compute the new plane coefficients.

From test and trial it was found that if a total number of sampled points is around 1000 points, e.g.,

NÊj + NŜj−1
= 1000, the sampled sets are representative enough to get accurate values of plane

coefficients.

9.3.3 A Cascade Processing Configuration for the Expansion

The previous sections have described what is the proposed algorithm to expand geometric polygonal

primitives. This section describes how the expansion mechanism is integrated into the entire scenario

representation methodology. As in the case of the detection of geometric polygonal primitives (see

section 8.3.7), a cascade processing configuration is used. The cascade configuration fastens the pro-

cessing considerably. The underlying core assumption is that each range measurement can only be

contained by a single primitive. In other words, the representation assumes that each range measure-

ment is a measurement of a single object on the scene and therefore can be explained by a single

primitive in the representation. Under this assumption, the points that have been attached to a given

primitive by an expansion operation, can only belong to that primitive and not any other. Because

of this, expanded points are removed from the input point cloud and are not a part of subsequent

expansions (of other primitives) nor part of detections of new primitives. Since all the points that

are taken by the expansion of a primitive are removed from the input point cloud, the subsequent

expansions or searches are fastened since that less points will have to be analysed. In terms of confi-

guration, a cascade processing recommends that the faster stages are computed first. The expansion

of primitives is faster than the detection. Because of this, when a new input point cloud is received,

all existing primitives are first expanded and only then the remainder non expanded points are used

for searching new primitives. Algorithm 9.1 describes the architecture of the complete algorithm

for the geometric polygonal primitives representation computation, including both the detection and

expansion operations.
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Algorithm 9.1 Cascade configuration for the expansion of existing geometric polygonal primitives

and detection of new ones.

Input: The current list of geometric polygonal primitives G = {G0,G1, ...,Gn}
Input: P , the input point cloud, containing new range measurements

Output: The updated list of geometric polygonal primitives G = {G0,G1, ...,Gn,Gn+1...,Gn+m},
where n is the number of primitives contained in the current representation and m is the number of

additional primitives that are found in this iteration

for i = 0→ n do � Expansion of primitive Gi

Find the orthogonal distances d from all points in P to the support plane of primitive Gi

Compute a new point cloud Port containing all points of P whose distance is smaller than the

perpendicular expansion threshold (Tort), Port = {�j ∈ P | dj < Tort}
Project all points in Port to support plane of primitive Gi, obtain projected point cloud J

defined in R2

Initialize cycle break flag, cycle_break ← false
Initialize number of expansion iterations, it← 0
while cycle_break = false do � Iterative longitudinal expansion

Expand bounding polygon, Piit, and obtain expanded polygon P̂
i
it

Compute J in
it , the points from J that are inside P̂

i
it

if J in
it = {} then � no expansion occurred, break cycle

break_cycle← true
Update primitive Gi, by defining the updated bounding polygon given by Piit, and

recomputing the support plane using PCA over the old and the new inliers, e.g, the

points whose projections are points contained in the list {J in
0 , ...,J in

it , }
else

Remove all points in J in
it from J

Remove all points from P whose projections are points in Jin

Compute the bounding polygon of the next iteration, Piit+1, from the convex hull

of {Piit,Jin}
end if
increment number of iterations, it← it+ 1

end while
end for
From the input point cloud P from which expanded points were removed, continue to perform

detection of new polygonal primitives Gn+1...,Gn+m, and add them to the list of primitives G,

Algorithm 8.3

9.4 Results

This section presents several results and analysis of the expansion mechanism of the geometric poly-

gonal primitives. The polygonal primitives algorithm without the expansion mechanism is compared

against the same algorithm using the expansion mechanism. To guarantee a fair comparison, in both

approaches, all the detection parameters are the same. These two algorithms will be refered to as with

expansion and without expansion. Using this evaluation it is possible to assess what are the benefits
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or disadvantages of the expansion mechanism. All five locations of sequence 1 are used to obtain

results. Parameters used in the detection are similar to the GPP 1 set.

9.4.1 Qualitative Analysis

Figure 9.10 shows a reconstruction of the scene using the expansion mechanism. The state of the

reconstructed scenario at each location is shown. One clear advantage of this representation is that

there are no overlapping primitives. This was discussed in section 9.2 and was expected to be one

of the benefits of using a mechanism that was capable of updating the scenario reconstruction. A

qualitative analysis of the results present in Fig. 9.10 also shows that the most important features of

the scenario are contained in the representation, especially if the task in mind is navigation.

9.4.2 Computation Time

Of the important aspects, one that should be analysed is the effect of the expansion mechanism to

the overall processing time of the scenario representation computation. As seen with the GPP 1

and GPP 2 parameters set, the values of the parameters drastically influence the computation time.

This is because one can obtain a simplified representation in a small amount of time or, instead, a

more complete representation taking longer to process. Hence, the time taken to compute a given

representation is not, in itself, a measure of the computational requirements or of the quality of the

algorithm. It depends on the completeness and / or quality of the produced representation. Given this,

it is not adequate to compare directly the time taken to produce a representation with and without

the expansion mechanism, if the quality of the representations produced by both does not play a

role in the evaluation. Time to compute and quality of the representation, both of these variables

should influence the evaluation and are dependent. To solve this issue, an alternative comparison is

performed. The computation time is fixed to a given value for both algorithms, and the quality of

the produced representation in that limited amount of time is measured. This method is in fact very

similar to the one used for real time reconstruction. Let us consider sequence 1. For each of the

five locations, there are 400 thousand input points. The algorithm can spend a great deal of time

reconstructing a scene viewed at a particular location, but after some time new data from the next

location is made available. In these circumstances, it does not make sense that the algorithm is still

processing data from the first location. Instead it should drop the older data and start searching for

primitives in the new data. In the results that follow, only the input points at each of the locations are

used. Each location is separated by ten seconds.

Although the polygonal primitives method was proved to be the faster amongst all evaluated, it is

still not fast enough for real time. Hence, we consider that the algorithm should spend twenty seconds

processing time at each location, which is twice the amount of time available. A real time application

would require faster computers and or that the vehicle would travel at half the speed. Although the

geometric polygonal primitives are not able, in their current state, to run in real time, it should be
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(a) (b)

(c) (d)

(e)

Figure 9.10: GPP 1 reconstruction for sequence 1: (a) The reconstructed scenario after the input point

cloud of location A is received; (b) after location B; (c) after location C; (d) after location D; (e) after

location E.

noted that from the analysis conducted in section 8.4 this methodology is much faster than all other

evaluated alternatives and so, it should be signaled as the best candidate for real time applications

running in better hardware. In sum, the algorithm is set to stop processing an input point cloud when

twenty seconds pass from its arrival. Then it waits for the next input point cloud or starts processing

it if it is already present in the message buffer.

Figure 9.11 shows the number of polygons created in both algorithms. Although at the begin-

ning of the sequence both algorithms generate a similar number of primitives, after some locations
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Figure 9.11: Comparison between the number of polygons generated by the algorithm using expan-

sion and not using expansion through sequence 1.

Location

T
im

e 
(s

ec
s)

 

 

A B C D E
0

5

10

15

20

25

30

Expansion
Detection
Other

Location

T
im

e 
(s

ec
s)

 

 

A B C D E
0

5

10

15

20

25

30

Expansion
Detection
Other

(a) (b)

Figure 9.12: Comparison of the processing time used in the expansion, detection and other parts of

the algorithm during a pass through sequence 1: (a) algorithm with the expansion mechanism; (b)

algorithm without the expansion.

the algorithm without expansion shows a greater number of primitives. The explanation is that since

the algorithm without expansion does not compare the stored primitives with the new data, it ends

up duplicating primitives. On the contrary, when using the expansion mechanism, the duplication of

primitives is avoided which leads to a smaller number of primitives. Note that just because a repre-

sentation has more primitives it is not necessarily better. In fact, if there are duplicated primitives, the

representation may be worse than another with a smaller number of non duplicated primitives.

Figure 9.12 shows graphs that display the usage of time by each of the mechanisms: detection,
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expansion, and other processing. Both with and without expansion algorithms are shown. Figure

9.12 (a) shows that, in the case of the algorithm with expansion, the largest portion of the time is

spent detecting new primitives. In location A, the start of the processing, there are no primitives

stored. Because of this no time is spent performing the expansion. As the vehicle moves and more

primitives are stored, a higher number of primitives must be expanded (or tested for expansion). This

leads to an increase in the time spent in the expansion part. Even though, the time spent processing

the expansion mechanism is very small when compared to the detection time. This means that the

algorithm with expansion does not spend a lot of time executing the expansion, having almost as much

time available as the algorithm without expansion to search for and detect new primitives. Figure

9.12 (b) shows the same analysis for the case of the algorithm without expansion. Obviously, in this

case, no time is spent in the expansion mechanism since there is none. An interesting observation

is related to the other processes. Other processes consist in the pre-processing of the input point

clouds, namely the estimation of normals (see section 7.4.2). It is observable that when the expansion

mechanism is used the time consumed by other processes is reduced to about half. The explanation

for this resides in the cascade processing described in section 9.3.3. When an input point cloud is

received, the first mechanism that is called to process the point cloud is the expansion mechanism.

Then, only the points that are not explained by the expansion are used in the following processes:

preprocessing, computation of normals and finally detection. That is to say that it is left for the

expansion mechanism the burden of processing the complete input point cloud (containing around

400K points). Pre-processing consisting of normal estimation is executed only in the remainding

fewer points. This is why, in Fig. 9.12, the other part of the processing takes considerably less time

when the expansion is used: because there are less points to process. The same phenomena should be

observable with the detection mechanism, since it is also posterior to the expansion. However, since

that a fixed amount of time is set for executing the whole reconstruction process, what happens is that

the polygons are searched for the time that remains, until the twenty second limit is reached.

9.4.3 Comparison of Approaches With and Without Expansion

Since it was shown that the expansion mechanism does take some time, a question could be posed

whereas it would not be better to use that time searching for polygons, i.e., performing detection. In

fact, the objective is to use as much time as possible for the detection of new primitives. However,

expansion is executed prior to detection and removes many points from the point cloud by assigning

them to already existing primitives. As a result, the smaller amount of time available to detect poly-

gons in the algorithm with expansion is compensated by the fact that a smaller point cloud is used for

searching, which makes the process more effective.

Figure 9.13 (a) shows the number of points that are given as input for the detection mechanism.

In the case of the algorithm without expansion, all of the input points are passed on to the detection,

i.e., approximately 400K points. However, when the expansion is active, a large number of points are
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Figure 9.13: Analysis of the expansion mechanism: (a) number of points to use as input to the

detection; (b) number of detection searches.

explained by the expansion and are not feed into the detection. Figure 9.13 (a) shows that the number

of points is reduced to approximately half the input points. In conclusion, the expansion mechanism

takes a small amount of time when compared to the detection and other processes, and is able to

quickly explain a large portion of the input points. This fact counterweights the fact that less time is

made available to the detection, since that although detection searches must run in less time, they also

run in point clouds with half the size. Note that expansion takes in the worst case scenario 25% of the

time (under five seconds out of the twenty second window, see Fig. 9.12 (a)), and in return it explains

50% of the input points (200K points out of 400K points, see Fig. 9.13 (a)).

Figure 9.13 (b) shows the number of detection searches, e.g., the number of times the Random

Sample Consensus (RANSAC) algorithm was executed. Since RANSAC is based on random sam-

pling, a better scene representation should occur when there are more searches. Although the expan-

sion mechanism leaves less time for detection, it reduces the size of the point cloud where primitives

are searched for. Fig. 9.13 (b) shows that roughly the same number of searches are made. Hence, as

a conclusion, it is possible to state that the expansion mechanism as a beneficial effect on the overall

scene representation algorithm.

Previous results have shown that the expansion mechanism does not reduce the number of pri-

mitive searches. But a more detailed description of the scenario representations produces by both

algorithms is in order. An analysis of the scenario representation produced with and without the ex-

pansion mechanism active. For this purpose, there a distinction between ground and vertical polygons

that should be made. Ground primitives are primitives that are horizontal. They are typically collinear

with the ground plane and are obtained using a freely oriented plane RANSAC search, as described in

section 8.3.2. On the other hand, vertical entities are obtained from oriented plane RANSAC searches.
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They describe vertical objects in the scenario such walls, trees, etc. Similarly, points and bounding

polygons may also be designated as of ground or vertical nature. The reason for this distinction has

already been advanced in section 8.3.2: typically, the number ground points exceeds by far those

of vertical entities. Because of this, results from the ground primitive could mask all other vertical

primitives. Results are presented separately for the ground and vertical entities.

Figure 9.14 shows, for sequence 1, the accumulated number of points assigned to ground primi-

tives, vertical primitives, and not explained. Many points are left unexplained because these results

refer to that twenty second time window for processing. Also, the area and solidity thresholds have

discarded some polygons and, furthermore, there are always some points that cannot be fitted to

planes in every scene. Naturally, at the beginning of the sequence, both the algorithm with expansion

(Figure 9.14 (a)) and the algorithm without expansion (Figure 9.14 (b)) are almost identical. The

reason is that at the beginning of the sequence there are no primitives stored in memory to expand,

and the expansion has no effect. As the sequence moves forward, the number of unexplained points is

approximately the same. It is the same to say that both algorithms explain the same amount of points

in the environment. When we analyse the number of ground points, the algorithm with expansion

obtains less points, since some portions of the road are seen behind walls. Because of this they are

not connected to the existing ground polygon and, therefore, it does not expand towards them. It

should be said that these portions of the road are somewhat unimportant for navigation purposes, and

that the expansion methodology captures a great deal of the road’s surface, as is shown in Fig. 9.10.

In terms of vertical points, we can see that the algorithm with expansion is able to obtain more of

these points. Since it picked up the ground primitive (as well as other primitives) at location A, in the

following locations the twenty seconds where used to detect other polygons, which explains why it

shows a greater number of points assigned to the vertical primitives. On the contrary, the algorithm

without expansion searches (and detects) the ground polygon at every location. It does it marginally

better, which is why there are more assigned ground points, but then lacks the time to detect many

vertical polygons.

An analysis of the number of points assigned to ground primitives is shown in Fig. 9.15 (a).

As discussed, the detection of the ground plane is more complete in the algorithm without expansion,

which is why there are more points assigned to these primitives. In Fig. 9.15 (b), the total accumulated

area of the ground nature primitives is depicted. Here, the difference between both algorithms is much

larger than in Fig. 9.15 (a). This is because there is a duplication of area in the case of the polygon

without expansion. This issue was addressed in section 9.2. The algorithm without expansion is

in fact the second approach referred in that section, where scenario representation is performed by

reconstructing each scene individually and then merging all scene representations. In this case the

merging algorithm simply joins all detected polygons. Hence, when the same surface is detected in

two separate locations, it is attributed to two different primitives. When the area of both is summed

up there is an area duplication effect. In fact, in locations where the vehicle travels slowly, there will
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Figure 9.14: Number of accumulated points during sequence 1 according to their ground, vertical

or non explained attributes: (a) algorithm with the expansion mechanism; (b) algorithm without the

expansion.
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Figure 9.15: Analysis of the ground polygons data. Comparison between the algorithm using expan-

sion and not using expansion through sequence 1. (a) number of ground points explained; (b) area of

the ground polygons.

be a great overlap between the input point clouds of the locations and, to some extent, it can occur

that the areas are even triplicated. This is what happens in Fig. 9.15 (b).

Having said this, it seems that the area is not a good metric to perform the comparison between

with and without expansion algorithms. The answer is shown in Fig. 9.16. Figure 9.16 (a) shows

that the algorithm with expansion obtains more points assigned as vertical. This had already been
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concluded from the analysis of Fig. 9.13. The most interesting conclusion comes from Fig. 9.16

(b). Although the algorithm without expansion has the advantage of duplicating the areas as men-

tioned above, the fact is that it that the algorithm equipped with the expansion mechanism is able to

compensate for this advantage and achieve a larger total area contained in vertical polygons. As a

conclusion, the algorithm with expansion is capable of detecting a larger amount of vertical primiti-

ves. Furthermore, in the algorithm without expansion, the same surfaces are detected multiple times,

that is, computational resources are spent re detecting the same obstacles. This phenomena does not

occur when the expansion is active and is one of the greatest advantages of this mechanism.

9.4.4 Evolution of Primitives

Next we focus our attention on how the primitives evolve. Only the with expansion algorithm is por-

trayed since in the other algorithm, primitives are static. Figure 9.17 (a) shows the number of support

points assigned to each primitive. Only pair index primitives are shown to simplify the graph. Data

from each primitives may start at different locations and signals where the primitive was detected.

From observing Fig. 9.17 (a) we can see that at location A only primitive 0 was created, in location

B primitives 2,4 and 6 are generated, in location C only primitive 8 is created. This is to say that

since RANSAC is a random process there is no guarantee on the number of detected primitives at

each location. In fact, this number may also depend on the underlying geometry of the location. The

best that can be done is to execute as much searches as possible, to increase the chances of detecting

all relevant polygons. Primitives 12 a 14 are created at location E, which is the last location of the

sequence, and therefore do not evolve. Primitive 0 is the one that contains the greatest amount of
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Figure 9.16: Analysis of the vertical polygons data. Comparison between the algorithm using expan-

sion and not using expansion through sequence 1. (a) number of vertical points explained; (b) area of

the vertical polygons;
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support points (note that the number of support points is divided by 50 for this primitive, in Fig 9.17

(a)). It is of course the primitive that represents the ground plane. Another interesting observation is

that most primitives significantly increase their number of support points throughout their evolution.

Primitive 0 was detected at location A with 0.4 × 50 × 104 = 200 × 103 points, and at location E it

already supported 1.4× 50× 104 = 700K points. In other words, it increased the number of support

points by 350%. Another example, primitive 10, detected at location D with 3K points, has at location

E around 7K points. A 230% increase between consecutive locations.

Figure 9.17 (b) shows the area of the bounding polygon for the same primitives of Fig. 9.17 (a).

Very significant increases in the area of the primitives bounding polygons is also present: primitive 0

(note that the area is divided by 200 for this primitive, in Fig 9.16 (b)), location A, 32×200 = 6400m2,

by the end of location E has 65×200 = 13000m2, an area increase of 203%. Primitive 10, location D,

area 11m2, location E area 29m2, a 260% increase in a single expansion. All these observations, both

in number of support points as well as in terms of area, show that polygons grow considerably after

being detected. If these primitives where not expanded, the additional support points and area would

have to be handled by a detection mechanism. The expansion mechanism in one that can compute

this growing of primitive in a simple and efficient manner, taking a lot of the burden of processing

many points away from time consuming detection mechanisms.

It is also possible to see that some polygons stabilize their number of support points and area after

some iterations. It is the case of polygons 2, 4, and 6. None of this had an increase in points or area,

from locations D to E. It means either that the object surface represented by the primitive is completely

contained inside the bounding polygon, or that the vehicle is far away from the polygon and does
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Figure 9.17: Analysis of the evolution of each of the polygons through sequence 1. Only pair index

polygons are shown to simplify the graphs: (a) number of support points per polygon; (b) number of

vertices in the convex hull; (c) area of the polygons.
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not capture range measurements anywhere near that primitive. Whatever the reason, these values

are good indicators to assess whether a polygon has become stable in the representation. A simple

solution could be to label a polygon as stable after a few number of iterations where no evolution is

noticeable. This could be important because stable primitives do not have to be tested for expansion.

Going back to Fig. 9.12 (a), where the time spent performing expansion is shown, one can see that

the expansion time is increasing as the sequence moves forward. If the tendency continues, it would

come to a point where all of the twenty seconds are spent expanding already detected primitives. This

occurs because at each new location there are more primitives listed to test for expansion. The time

spent is increasing because the number of primitives is also increasing. If primitives can be signaled

as stable, only the unstable primitives would be tested for expansion, and since the number of unstable

primitives does not increase continuously, the time spent with expansion would just remain at a low

value.

Finally, note that both the support points and the area never decrease. It is so because no col-

lapsing or shrinking mechanism is used, the only possibility for a primitive is to enlarge. No such

mechanisms where considered given the problem setup and the philosophy behind the proposed so-

lution. Real time processing of such large point clouds is a demanding task. To create and evolve a

representation is already computationally very expensive. The solution here proposed tries to make

use of simple yet efficient mechanisms in order to create a representation. Given the amount of input

data bandwidth, the option is to try to spend the time trying to explain new data other than revising

previously explained data. Polygon shrinking would enter the category of representation revising,

fine tunning, or post processing, which is why a solution was not developed.

Figure 9.18 shows the number of vertices of the bounding polygons of each primitive. The overall

number is very low, e.g., under 30 vertices in all cases. Also, there is no direct connection between the
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Figure 9.18: Analysis of the evolution of each of the polygons through sequence 1, in particular the

number of vertices in the convex hull. Only pair index polygons are shown to simplify the graphs.
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number of vertices and the number of support points or area, since some primitives actually decrease

the number of bounding polygon vertices.

Figure 9.19 shows the evolution of the support planes throughout the sequence. Two examples

are shown: polygon 2, Fig. 9.19 (a), and polygon 6, Fig. 9.19 (b). Both images show that the support

planes can change their orientation as new data is received.

Figure 9.20 shows how primitive 0, i.e., the ground plane primitive, evolves over sequence 1. The

primitive expands at every iteration to accommodate newly observed data points that belong to the

ground plane.

Figure 9.21 shows two separate cases. In Fig. 9.21 (a) and (b) to consecutive locations in sequence

1 produce no noticeable changes in the primitives (marker in blue), since that the entire surface of

the walls had already been completely covered by the primitive at the initial iteration. This shows

that the expansion mechanism only grows the bounding polygon when it is actually necessary to

accommodate new data. Figures 9.21 (c) and (d) show another example of two consecutive locations

in sequence 2. Unlike in the previous case, this is an example of a noticeable growth of the primitives

bounding polygon due to active primitive expansion. The primitives representing both walls alongside

the road where the vehicle is travelling are expanded. The growth of these is clearly visible: from

their initial state (Fig. 9.21 (c)) to the expanded state (Fig. 9.21 (d)).

(a) (b)

Figure 9.19: Analysis of the updating of the support planes of primitives after an expansion. Sequence

1: (a) polygonal primitive 2; (b) polygonal primitive 6;
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(a) (b)

(c) (d)

(e)

Figure 9.20: Evolution of polygonal primitive 0 (the ground plane) through sequence 1: (a) location

A; (b) location B; (c) location C; (d) location D; (e) location E;

(a) (b)

(c) (d)

Figure 9.21: Evolution of polygonal primitives through sequence 1 (top) and sequence 2 (bottom):

(a) location C, sequence 1; (b) location D, sequence 1; (c) location G, sequence 2; (d) location H,

sequence 2.
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9.5 Conclusions

This chapter presented a new approach to perform the refinement of geometric scene representations.

A mechanism to expand the existing primitives according to new data was presented. The expansion

mechanism is able to relieve processing load from the detection algorithms and efficiently grows ex-

isting primitives to accommodate new data. In conclusion, the proposed approach presents some very

interesting characteristics when compared to standard reconstruction algorithms and is an interesting

alternative to account for if real time applications are an objective.
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Chapter 10

Photometric Scene Reconstruction

This chapter presents a methodology based on Data Dependent Triangulation (DDT) for the map-

ping of color from images onto the geometric polygonal primitive’s based representation proposed in

chapters 8 and 9. Several issues are addressed. An introduction to the problem is given in section

10.1. Section 10.2 describes traditional texture mapping techniques. In section 10.3, data dependent

triangulations are proposed to solve the lack of accuracy of standard texture mapping techniques.

Problems associated with computing the regions in the image that contain visual information about a

given primitive are addressed. Finally, results are presented in section 10.4 and conclusions given in

section 10.5.

10.1 Introduction

Chapter 8 presented a new approach that is capable of producing a geometric scene representation

based on a set of geometric polygonal primitives. Furthermore, the proposed algorithms are also

capable of updating the representation as new data arrives. The objective now is to increase the

amount of information available to the scene representation. The reason for this is that 3D information

is not the only information produced by sensors onboard a vehicle. While lasers, radars of sonars

generate range (or 3D) information, there are other sensors that are capable of generating data of

a different nature other than 3D. In general, there are many sensors that provide a measurement

of some radiated energy along a given direction, and some of them provide useful information for

navigation purposes. Some examples include RGB cameras (photometric data), thermal cameras

(thermal data), infrared cameras (infrared spectrum data), ultraviolet cameras (ultraviolet spectrum

data) amongst others. Typically, these sensors are passive sensors, meaning they measure energy

emitted or reflected by objects or materials, but there are also examples of active sensors. It is the

case of laser range finders that measure reflectance. It is also a measure of a material property along

a defined direction. These sensors, or rather, the data they generate, have in common the fact that

they capture some property of an object other than its 3D structure. In other words, they only provide
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directional information about the measured data.

In this chapter an algorithm for mapping photometric data to the geometric polygonal primitives

is proposed. Photometric data is captured by RGB (or gray scale) cameras. The algorithm uses

directional information along with the 3D representation of the scene in order to map color into the

polygonal primitives. The algorithm employs the pinhole camera model (described in chapter 5) to

compute the 3D direction from where each pixel has detected a given color. It then solves the so called

inverse projection equation by resorting the support plane defined for each primitive. With this, it is

possible to map color measured in the image to the geometric polygonal primitive in 3D.

The algorithm will be described in detail in the following sections. For now, we would like to

stress that, as will be shown, the algorithm only requires a model of projection, and a geometric des-

cription of the scene, provided by the geometric polygonal primitives. Taking this into account, note

that sensors that capture data of different nature may also be used to map other properties (other than

the photometric) to the 3D representation. It is important to emphasize that, in theory, the algorithms

that will be proposed in this chapter should also work with other cameras (thermal, infrared, ultra-

violet, etc.), provided a model of projection is supplied for those cameras. In fact, in some cases,

there is no need to provide a different projection model for the sensor. For example, it is shown

in [Barrera et al. 2012b] and [Barrera et al. 2012a] that pinhole camera models may also be applied

to thermal cameras with satisfactory results.

The perspective brings to mind a multi modal scene representation, where several different pro-

perties (geometry, photometry, thermal, etc.) are mapped into a single scene representation. For

example, the algorithm would be not only able to perform typical texture mapping onto the geometry

of the scene but also, for example, to map to the geometry of a given scene also the temperature at

each point of the geometric surfaces. This broadens the potential of the proposed scene representation

algorithm as well as the range of applications.

In conclusion, although images from RGB cameras will be used throughout the explanations in

this chapter, with the proposed algorithm, it would be possible to map data of different nature to the

geometry of the scene. In our opinion, this could be done with just minor little adaptations to the

algorithm proposed here.

The Massachusetts Institute of Technology (MIT) data sets will be used to demonstrate the al-

gorithm. The MIT Talos vehicle has five onboard cameras. For a detailed description, see Chapter

7.3.

10.2 Related Work

The first step involved in the extraction of the photometric properties is how to map images to the

geometric primitives of a model. Images are obtained directly from the photometric sensors mounted

onboard the vehicle, while the geometry description is provided by the algorithms described in chap-
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ters 8 and 9. Hence, given two inputs, an image and a geometry description, the objective is to obtain

a new representation that not only has the geometry description but also the photometric description

of the object it represents. All the geometric primitives described in chapter 8 are planar. In other

words, both polygons (produced by the proposed approach) as well as triangles (produced by all other

evaluated approaches) have each a corresponding support plane. This support plane of each primitive

is used by the image projection algorithm, and is referred to as projection plane. Let a, b, c and d

represent the coefficients of the Hessian form of the projection plane, and I be an image that is going

to be projected. Image pixel coordinates are referred to as u = {u, v}, respectively, columns and

rows. The mapping of pixels to real world coordinates is called inverse projection, while the opposite

operation is named direct projection. These topics were already addressed in chapter 5, so a detailed

description will not be made. The important aspect is that, with a support plane and a description

of the camera’s position and intrinsic parameters, it is possible to map pixels to 3D points and vice

versa. The mapping of 3D points (X = {X,Y, Z}) into image pixels is called direct projection

(projection):

u = projection(X), (10.1)

while the mapping of pixels to 3D points is called inverse projection (projection−1):

X = projection−1(u). (10.2)

If it is possible to map pixels to the projection plane, at first sight it seems trivial to obtain a

representation with geometric plus photometric information: it should be a matter of applying eq.

(10.2) to all the pixels in an image, and obtain all the corresponding 3D coordinates. This is partially

true. There are two problems. The first is that the process is too slow, if all pixels are used. Images

have hundreds of thousands of pixels and to apply the inverse projection to all pixels is not possible in

real time. Second, the image represents a discrete set of measurements over the surface of the plane.

Let us focus on the second problem for now, since the its solution also shreds some light into the

unraveling of the first issue. Since image pixels are only discrete measurements of the photometry of

the world, some interpolation must be made after they are projected to the projection plane. There are

several interpolation techniques listed in the literature, such as nearest neighbor, bilinear or bicubic

interpolations. We will not focus in detail on these techniques since they are considered standards

in texture mapping applications. The key point here is that, no matter how high is the resolution of

the camera, if the objective is to go from a discrete set of photometric measurements given by an

image to a continuous representation of the photometry of the surface, then it is imperative that some

interpolation takes place. Coming back to the first issue, we can say that even if all image pixels are

projected, an interpolation would still have to be executed. This is an important observation because

it leads to the following conclusion: if even when all image pixels are projected an interpolation must
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be conducted, then why not project less pixels as long as the interpolation can still obtain a good

mapping of the color in the image.

The standard technique to perform mapping of color from an image is called texture mapping.

Texture mapping is a technique for mapping a 2D image onto a 3D surface by transforming color

data so that it conforms to the surface plot. It allows the application of texture such as tiles or wood

grain, to a surface without performing the geometric modeling necessary to create a surface with these

features, or, in other words, without computing the projection of every pixel in the image onto the

surface. The color data can also be any image, such as a picture taken by a camera. Texture mapping

is performed over convex polygons, most commonly on triangles. Let X1, X2 be the coordinates of

the vertices 1 and 2 in 3D space. The coordinates u1, u2 of the pixels that correspond to those vertices

in the image plane can be obtained using direct projection:

ui = projection(Xi), ∀i ∈ {1, 2}. (10.3)

Let α be a parameter 0 < α < 1, that indicates how a given vertex is positioned along the X1X2

line segment. Texture mapping interpolates the color value for any vertices along the line segment as

follows:

uα = (1− α) · u0 + α · u1, (10.4)

which is of course a linear interpolation. When this kind of linear interpolation is used the texture
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Figure 10.1: Projecting a chessboard image onto several projection planes: (a) the image to be pro-

jected; (b) the projection planes and a representation of the camera’s position as the red-green-blue

reference system.
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(a) (b)

(c) (d)

(e) (f )

Figure 10.2: Projection using complete mapping versus texture mapping for the three projection

planes displayed in Fig. 10.1 (b): (a) complete mapping, plane 1; (b) texture mapping, plane 1;

(c) complete mapping, plane 2; (d) texture mapping, plane 2; (e) complete mapping, plane 3; (f )

complete mapping, plane 3.

mapping is referred to as affine texture mapping. A linear interpolation works fine when the image
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plane and the projection plane are parallel. However when this does not occur, the projection shows

some artifacts that derive from the assumption that a linear interpolation can be used. This is a well

documented problem, and is discussed in several works [Segal et al. 1992] [Debevec et al. 1998].

Figure 10.1 (a) shows a chessboard image, which will be used in the forthcoming examples. The

image is a square chessboard of 8 by 8, with a resolution of 800×800 pixels. Figure 10.1 (a) also

shows how the image is divided into two triangles, e.g., triangle 1,2,3 and triangle 2,3,4. Both triangles

are independently projected using affine texture mapping, to each of the three planes represented in

Fig. 10.1 (b). The position of the camera is also shown by the red-green-blue lines, corresponding to

the XYZ axes. We will label each of the planes as 1, 2 and 3, presented in Fig. 10.1 (b) in colors red,

green and blue, respectively. Hence, plane 1 (in red) is parallel to the image plane, while plane 2 (in

green) is slightly more oblique and plane 3 (in blue) is an even more oblique plane with respect to the

image plane.

Figure 10.2 shows the projected images for each of the three planes. On the left column, the

projection is obtained by computing the projections of all the pixels in the image. This will be referred

to as complete mapping, which, as said before, is not adequate for real time processing. It is, however,

important to be used as ground truth. On the right column of Fig. 10.2 the projections obtained using

affine texture mapping are displayed. From the analysis of 10.2 it is possible to observe that when

the projection plane is parallel to the image plane, both the complete mapping (Fig. 10.2 (a)) and the

texture mapping (Fig. 10.2 (b)) present similar results. In the other two planes noticeable artifacts

in the texture mapping appear. This is due to the linear interpolation discussed before. One good

way to visualize the effect of linear interpolation is by the size of the squares in the case of plane

3. Since the plane is oblique with respect to the image plane pixels on the top of the image should

represent a wider viewed area, which is why they are stretched in the complete mapping (Fig. 10.2

(e)), in compliance with projective laws. In the case of affine texture mapping (Fig. 10.2 (f )), this is

not taken into account which makes the squares appear with a similar size, as in the original image.

10.3 Proposed Approach

This section presents the algorithms used to map texture onto the geometric polygonal primitive’s

representation.

10.3.1 Data Dependent Triangulation

It was shown if Fig. 10.2 that affine texture mapping is not capable of accurately mapping the texture

of an image when the projection plane is not parallel to the image plane. However, there is a standard

way to solve this problem. The solution is called view dependent texture mapping, and it consists

of making texture mapping account for the position of the vertices in 3D space, rather than simply

interpolating a 2D triangle. This achieves the correct visual effect, but it is slower to calculate. Instead

Miguel Armando Riem de Oliveira Ph.D. Thesis



10.Photometric Scene Reconstruction 289

of interpolating the texture coordinates directly, the coordinates are divided by their depth (relative

to the viewer), and the reciprocal of the depth value is also interpolated and used to recover the

perspective corrected coordinate. This correction operates so that parts of the polygon that are closer

to the viewer, the difference from pixel to pixel between texture coordinates is smaller (stretching the

texture wider), and in parts that are farther away this difference is larger (compressing the texture).

View dependent texture mapping can be formulated as:

uα =
(1− α) · u0

w0
+ α · u1

w1

(1− α) · 1
w0

+ α · 1
w1

. (10.5)

The solution proposed in eq. (10.5) is capable of producing accurate mapping for texture. View

dependent texture mapping is about 16 times the computational power of affine texture mapping.

However, it is a standard solution implemented on current of the shelve graphics cards.

Even though there seems to be an established methodology, we propose an alternative solution.

Some of the reasons for this will be detailed in the following lines, and some others will only be

completely developed in chapter 11, when the mechanism for the expansion of photometric proper-

ties is introduced. In chapter 8, a new geometric scene representation was proposed. One of the

major differences from the proposed method with respect to other well known methods (which were

also evaluated in that chapter) is that the geometric primitives consist of polygons, instead of the

traditional triangles. As explained before, the mapping of photometric properties is performed by

mapping triangles in image space to 3D space. These procedures are executed in the graphics cards,

and programmed using OpenGL [Opengl et al. 2005], Direct3D [Blythe 2006] or other graphics li-

braries. These libraries also have the functionalities of mapping convex polygons, but in fact these

are mere high level functions that decompose the polygons into sets of triangles and then map the

triangles. If we plan to use the geometry description from the polygonal primitives, the question is

if it is preferable to have the graphics card/library decompose the polygons as it sees fit or if there

is any advantage in performing triangulation of those polygons that describe the geometric polygo-

nal primitives. We believe there is a clear advantage in performing the triangulation in a specially

devised routine, since in this way it is possible to apply the most interesting triangulation criteria

or methodology, given the objective. The objective, let us remind, is to compute a scene represen-

tation as efficiently as possible, so that real time is achievable. It is also very important that the

memory required by such primitives is as small as possible. In other approaches, such as Ball Piv-

oting Algorithm (BPA), Greedy triangulation (GT) or Poisson Surface Reconstruction (POIS), the

primitives that are used are triangles and hence it does not make sense to discuss how to triangulate

again. So the mapping of texture onto geometry provided by other scene reconstruction approaches is

straightforward: for each triangle in 3D space, compute the corresponding vertices in the image plane

and execute texture mapping from this. We propose to execute the reverse procedure: to triangulate

over the image space and then to map these triangles computed in image space to the 3D space. This
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is interesting because triangulation which serves only texture mapping purposes can be computed in

the data space where texture is collected, the image. If triangulation is performed over the image it is

possible to select the triangles that should be better suited for texture mapping purposes. In the next

few lines, the algorithm will be described in detail, but for now some other questions may arise. One

of them is why to spend computational resources in creating geometric polygonal primitives only to

require in the end, as all other approaches do, a triangulated mesh. The answer is that, unlike in all

other approaches, where a 3D mesh is defined, the triangulation over the image space is done in two

dimensions. This factor considerably speeds up the computation. Also, because only a few pixels are

defined to become vertices of the mesh, the number of points is considerably smaller than the amount

of 3D data points that would be used for executing a 3D triangulation. Note that only geometric po-

lygonal primitives provide the flexibility of leaving triangulation for later, which in turn can be used

in the advantage of overall computational performance. It was established that it is required, in the

case of geometric polygonal primitives, to execute a 2D triangulation step prior to texture mapping.

The question now is how to choose these triangles. If the triangles are especially defined so that their

faces represent smooth regions with constant color (as shown in Fig. 10.3 (a)), then, an affine texture

mapping over these could in fact provide accurate projections. This procedure is referred to in the lit-

erature as DDT [Lehner et al. 2007], and the mapping of images using this technique will be referred

to as DDT mapping as opposed to texture mapping.

Figures 10.3 (b), (c) and (d) show, respectively for planes 1, 2 and 3 (represented in Fig. 10.1

(b)), the DDT mappings performed over the triangles shown in Fig. 10.3 (a). It is possible to see that

there are no artifacts as those shown for the affine texture mapping in Figs. 10.2 (b), (d) and (f ). Note

that the color inside the triangles is being obtained by linear interpolation, similarly to what occurs

in affine texture mapping. The difference is that, because we are aware of the limitations of linear

interpolation, triangles with smooth color transitions are chosen so that the linear interpolation does

not create any artifacts, since it is performed over vertices with very similar color.

Figures 10.4 shows a comparison of the projections obtained by texture mapping (red diamonds)

and DDT mapping (blue squares). Only the projections of the corners of the chessboard are shown.

The background texture is provided by the complete mapping of all the pixels, so it should be con-

sidered as the ground truth. Planes 1, 2 and 3 are shown in Figs. 10.4 (a), (b) and (c), respectively.

The DDT mapping is clearly more accurate than affine texture mapping. The lack of accuracy in

affine texture mapping is higher in plane 3 and almost very low in plane 1. This is because, as dis-

cussed before, plane 1 is parallel to the image plane and no perspective effects are associated with

this transformation.

In order to evaluate what is the influence of the orientation of the projection plane to the accuracy

of projection, a test was conducted. In this test a set of sixteen projection planes was defined. For

each, the texture and DDT mappings are compared to the complete mapping. Let the projection

error (ε) be the average distance between vertices in 3D space obtained using one mapping that is
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(a) (b)

(c) (d)

Figure 10.3: Projection of the chessboard image using DDT mapping: (a) DDT triangulation ; (b)

DDT mapping, plane 1; (c) DDT mapping, plane 2; (d) DDT mapping, plane 3.

considered ground truth mapGT and any other mapping (map):

ε =

∑{W,H}
u={1,1} dist

(
mapGT (u),map(u)

)
W ×H

, (10.6)

where W and H are the images width and height, respectively, and dist(a, b) is a function that re-

trieves the Euclidean distance between points a and b in 3D space. The projection of all pixels is

considered the ground truth mapping. Hence, the projection error of both texture mapping and DDT

mapping can be evaluated. Each tested plane is characterized by the angular difference its normal

has to the images optical axis. The angular difference is regarded as the minimum angle between

those vectors. Figure 10.4 (d) plots the projection error as a function of this angular difference. Both

texture mapping and DDT mapping results are displayed. As was expected by the observations of

the projections, DDT mapping shows a very low average projection error regardless of the plane’s
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Figure 10.4: Comparison of the texture mapping (red diamonds) and DDT mapping (blue squares).

Background projection is obtained by performing the complete mapping of pixels, so it may be re-

garded as ground truth. Only the chessboard corners are shown. The three projection planes displayed

in Fig. 10.1 (b): (a) plane 1; (b) plane 2; (c) plane 3; (d) the average projection error as a function of

the difference between the image optical axis vector and the plane’s normal vector.

orientation. The same is to say that DDT is accurate and robust to changes in the orientation of the

projection plane. In the case of texture mapping the angular difference highly affects the projection

error. Although a direct correlation cannot be established, the projection error seems to increase with

the increase in the angular difference.

An image can be viewed as a function (f ) over a two dimensional domain, i.e., f : R2 → R, where

the inputs are the image row and column coordinates and the output is the color of the image. A

triangulated mesh T over R2 has the objective of approximating the values of f by interpolating over
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the vertices of every triangle t of T. The quality of the approximation, that is, the distance between

the interpolation and of the triangle’s vertices and the actual value of f , is defined in particular by

three factors, that are:

• the number of vertices in T;

• the position of those vertices;

• the connectivity between those vertices, i.e., the shape of the triangles.

The goal of a data dependent triangulation is, on the one hand, to obtain the best approximation

possible, and on the other to reduce the number of triangles and in turn the memory load. Conse-

quently, the number of vertices should be kept as small as possible to speed up processing and reduce

memory load. The two variables that should be tunned to achieve a good approximation are then the

position of the vertices and the connections between them. Even if we decide to fix the number of

triangles and vertices, the possible combinations of the connections between vertices are usually very

large. Hence, an exhaustive search of all possible combinations is not possible. Also, no assumptions

should be made on the optimal shape or size of the triangles. One might tend to assume long, thin

triangles are not adequate but in fact that depends on the nature of the image [Rippa 1992]. If the

image contains high gradient long feature such as poles or trees, such triangles could be well suited

to represent these regions.

DDT algorithms can be divided into refinement, decimation, or modification approaches. In

refinement approaches, the starting point for the algorithm is a very coarse triangular mesh that is then

refined. The mesh is refined by inserting new vertexes. Since the number of possible positions where

vertices can be inserted is very high, authors make use of heuristics to limit the number of options.

The greedy refinement algorithm proposed in [Garland & Heckbert 1995] works by inserting vertices

into a triangulated mesh. In every step a new vertex is inserted at the position of the largest distance

between the approximation and the data provided in the image. In [Schätzl et al. 2001], the choice

of which triangles to decimate is based of the high curvature of the data, and the positions where

new vertexes are inserted are locations with high approximation distance to the data. These methods

have the drawback of tending to a local optima. Decimation approaches are the opposite of refinement

meshes. The algorithms start from a very fine mesh and try to remove vertices and collapse triangles as

they iterate. In [Hoppe 1996] the initial triangulation is a full triangulation where each pixel is a vertex

in the mesh. The algorithm then decimates the mesh by collapsing one of the edges of the mesh. The

edge to collapse is the one that implicates less increase in the approximation error. Similar approaches

were proposed in [Demaret et al. 2006] and [Sappa & García 2007]. Finally, modification strategies

start from a random arbitrary mesh and try to improve it by performing modification operations. These

modification operations usually are edge swaps and the number of vertices in the initial mesh remains

the same. It is the case of the algorithms proposed in [Dyn et al. 1992] and [Schumaker 1993]. Both

propose different criteria for the selection of which are the edges that should be swapped.
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Although there are many approaches in the literature to the data dependent triangulation problem,

most of them are focused on the fact that such a triangulated mesh is capable of producing very good

data compression ratios with respect to the real image, while still maintaining low approximation

errors. Real time performance of the algorithms has seldom been debated, with authors reporting

processing times of over three seconds for 512×512 images. The exception was the study conducted

in [Cervenansksy et al. 2010], where DDT was parallelized and executed on accelerated graphics

cards, resulting in a significant speed up. Nonetheless, the fact is that most DDT approaches are slow

to process, which is not adequate for the problem at hand, where DDT is just a small portion of the

entire scene reconstruction algorithm. In this work, DDT must be quite fast, even if it means finding a

less than optimum solution for the triangulation. Because of this we propose a very simple procedure

that is based on the philosophy of data dependent triangulations. The procedure is very similar to the

one presented in [García et al. 2000]. As discussed before, there are three alternatives for designing

a data dependent triangulated mesh. The first is the number of vertices, which we want to keep as

low as possible, the second is where those vertices are located, and the third concerns the connections

between those vertices, i.e., the edges of the triangles. The connectivity between edges is usually

obtained using iterative procedures and this is one of the factors responsible for the high processing

times. The procedure should run in a single step, so edge connectivity will not be optimized.

The question that remains is then, what are the pixels in the image that should be considered

vertices in the triangulation. Note that, in order to have a good texture mapping performance, faces

should cover, as much as possible, constant color areas in the image. Given this, the algorithm we

propose is quite simple: to attempt to place the edges of the triangulated mesh over regions in the

image where edges have been detected. Hough lines have long been used for detecting line features

in images [Svalbe 1989]. There have also been many proposals to extend the algorithm to obtain

a description of line segments instead of lines [Kamat & Ganesan 1998] [Guerreiro & Aguiar 2011].

Hence, it is straight forward to obtain a list of starting and ending points of line segments that describe

edges in an image.

A Delaunay triangulation for a set of points in a plane is a triangulation such that no point in the

set of points is inside the circumcircle of any triangle defined in the triangulation, which is called the

empty circle or Delaunay property. Delaunay triangulations maximize the minimum angle of all the

angles of the triangles in the triangulation; they tend to avoid skinny triangles. Delaunay triangulation

are widely used in computer graphics and other fields, and there are many available toolboxes that

implement the algorithm. In this particular case, the toolbox from [Yvinec 2012] is used to provide

the triangulation code. So it is possible, using a Delaunay triangulation, to compute a triangulated

mesh from a set of points. These points are used as input by the algorithm and become vertices of the

triangulated mesh.

Let a given image be described by M line segments with starting points sm and endpoints em,

where each detected line segment is defined as smem. Figure 10.5 (a) shows an image of a building,
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to be used as an example. The blue lines show the triangulated mesh defined for the purpose of a naive

affine triangulation (as shown in Fig. 10.1 (a)). Figure 10.5 (b) shows the line segments obtained

using Hough based algorithms: line segments are represented by the dashed red lines and starting

and endpoints by the green circles. One first option would be to use the list of starting and endpoints

to define the vertices of the triangulation. A function that would perform a Delaunay triangulation

(Delaunay) could be written as:

t = Delaunay
(
{s0,e0,s1,e1...,sM−1,eM−1}

)
, (10.7)

where t would be the resulting triangulated mesh. Figure 10.5 (c) shows the result of a Delaunay

triangulation (using the vertices represented in Fig. 10.5 (b)): the mesh is represented by the blue

lines, and the vertices are shown as green circles. The objective is to align the edges of the triangles

with high gradient regions of the image. Since only the information about the vertices position was

given to the Delaunay triangulation this does not occur. Note for example the region where the roof of

the house changes to the blue sky. Here, there are several triangles whose faces cross the frontier from

the roof to the sky. If a linear interpolation was to be made over these triangles, it would result in an

inaccurate mapping as shown in Fig. 10.4. To solve this problem we propose to employ a constrained

Delaunay triangulation mechanism. A constrained Delaunay triangulation is a generalization of the

Delaunay triangulation that forces certain required line segments into the triangulation. They were

proposed by [Chew 1987] for two dimensional spaces and later generalized to N dimensional spaces

by [Shewchuk 2008]. Because a Delaunay triangulation is almost always unique, often a constrained

Delaunay triangulation contains edges that do not satisfy the Delaunay condition. Thus a constrained

Delaunay triangulation often is not a Delaunay triangulation itself, meaning it does not fulfill the

empty circle property. This is not a problem for the application at hand since, as discussed before,

there is no a priori knowledge about the preferable shape the triangles should have. A constrained

Delaunay triangulation function (cDelaunay) requires two inputs, a list of vertices and a list of line

segments that should exist in the triangulation. These imposed line segments are called constraints.

We propose to build a constrained Delaunay triangulation using as input information given by the

Hough lines detection algorithm:

t = cDelaunay
(
{s0,e0,s1,e1...,sM−1,eM−1}, {s0e0,s1e1, ...,sM−1eM−1}

)
, (10.8)

where the first argument of the cDelaunay function is the list of vertices and the second argument

corresponds to the list of constraints. Figure 10.5 (d) shows the mesh obtained using a constrained

Delaunay triangulation: the mesh is shown in blue, vertices as green circles, and constrained edges in

the triangulation have a red line in the middle to signal their constrained status. If the same region of

the image (the roof and the sky) that was analysed before is now observed, the advantages are clear.
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In this case, there are no triangle faces crossing the frontier between the sky and the roof, triangle

edges are aligned with the edges in the image. This leads to a more accurate texture mapping of

the triangles: since triangles contain faces with very similar colors or patterns, a linear interpolation

inside these triangles will not produce artifacts.

Figure 10.6 compares the projections obtained using: complete mapping (left column); affine

texture mapping over a naive triangulation (middle column); and affine texture mapping over the

proposed DDT triangulation (right column). The projection planes are the same as those shown in

Fig.10.1 (b). It is possible to observe that affine texture mapping using naive triangulation (middle

column) presents many differences with respect to the ground truth (left column), the DDT texture

mapping (right column) obtained very similar projections to those given by the ground truth. Results

(a) (b)

(c) (d)

Figure 10.5: Data dependent triangulation: (a) naive triangulation; (b) line segments detected using

Hough transform; (c) Delaunay triangulation using line segments vertices as input; (d) constrained

Delaunay triangulation using vertices and line segments as input.
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from the affine texture mapping are, as discussed before, less accurate for more oblique planes (third

row).

One mention should also be made to the data compression effectiveness of DDT. In standard

image representation, all the pixels contain color information. Assuming an RGB image with 8 bit

depth information, the required memory for standard image representation is (Mstd):

Mstd =
H ×W︸ ︷︷ ︸

number of pixels

× 3︸︷︷︸
RGB

× 8︸︷︷︸
type char

, (10.9)

where H and W are the image’s height and width respectively. On the other hand, the required

memory for a DDT image representation (Mddt) is:

Figure 10.6: Projection using complete mapping (left column), texture mapping (middle column) and

data dependent triangulation mapping (right column). The three projection planes displayed in Fig.

10.1 (b) are shown: planes 1, first row, plane 2, second row, and plane 3, third row.
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Mstd =
V︸︷︷︸

number of vertices

× 3︸︷︷︸
RGB

× 8︸︷︷︸
type char

, (10.10)

where V is the number of vertices in the triangulation. Using eqs. (10.9) and (10.10), the compression

ratio of DDT (Rddt) is given by:

Rddt =
Mddt

Mstd
=

V

H ×W
, (10.11)

which means that the compression of a DDT, depends on the ratio between the number of vertices in

the triangulated mesh and the number of pixels. In the example shown in Fig. 10.5, the image has

H = 524, W = 611, and the DDT mesh contains 652 vertices. The compression ratio is then about

0.2%, which is a very good value. It is also possible to obtain a finner mesh if the detection of line

segments is tunned to be more sensitive.

As a conclusion, we can say that texture mapping is a standard technique for applying informa-

tion from images on 3D models. However, affine texture mapping does pose problems when the

projection plane is oblique with respect to the image plane. To solve this issue, we propose to use a

DDT technique that is capable of triangulating an image in such a way that the linear interpolation

performed by texture mapping in each of the triangles does not affect the accuracy of the projection.

10.3.2 Image Bounding Polygon

Section 10.2 discussed in detail the texture mapping technique. In particular, it showed how a triangle

defined in the image can be projected to the 3D world. Using, this tool, the next step is to be able

to split the image space into a set of triangles. To avoid problems with affine texture mapping onto

oblique planes, a special technique called DDT was presented in section 10.3.1. DDT is capable

of triangulating the image taking into account high gradient regions in the image and avoiding the

creation of artifacts in the textured 3D surface.

But the problem, as presented in sections 10.2 and 10.3.1, was in fact simplified. It was assumed

that the entire image viewed the surface to which the color had to be projected. In other words, it

was assumed that the image viewed only the surface of the polygon. It was because of this simplified

assumption that the examples in Figs. 10.2 and 10.6 show the entire image projected to the projection

plane.

At first glance, one would think that the entire image given by a vehicle’s onboard camera is

potentially capable of showing a view of the primitive. The question is, if the camera is facing the

primitive should the entire image be considered as a candidate to contain visual information of that

primitive. Albeit one distracted answer would be yes, the entire image can be used, the fact is that in

real applications this is not the fact. In some cases, the camera is mounted in positions so that only

a portion of the image views the scene around the vehicle, while the other portion captures a part of

the vehicle itself. Figure 10.7 shows a couple of examples. In Fig. 10.7 (a), an image from the stereo
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camera of the AtlasCar is shown. The lower part of the image views the front of the AtlasCar body.

In Fig. 10.7 (b), an image front the Talos forward center camera also views portion of the vehicle,

in this case a mechanical structure mounted in the front of the vehicle to accommodate Laser Range

Finder (LRF) sensors.

One could argue that the cameras should be positioned so that they only view the outside scene,

but this can be a difficult exercise especially in vehicles such as the Talos, where the large number of

sensors makes it nearly impossible to find a combination of positions for all sensors so that none of

them captures part of the vehicle. Partial occlusion of onboard sensors by the host vehicle is a real

problem, and a solution must be devised to deal with it. The solution to this problem is to compute

which portion of the sensor data is viewing the vehicle, and then to discard it.

Let us consider the case of a single camera onboard a vehicle travelling a given scenario. Three

coordinate frames are defined: the world (W), vehicle (V) and camera (C) coordinate frames. In

section 10.2, eq. (10.1) provided an overall view of the direct projection mechanism. Considering the

mechanism in detail, we can say that pixels from an image are to be mapped onto the world coordinate

frame, that is:

x = projection(X ), (10.12)

where x is the position of a point / pixel, thus defined in the camera coordinate frame, and X is a 3D

point / vertex defined in the world coordinate frame. Note that the 3D point is defined over R3 space,

while the pixel is defined in R2 space (although its position in the image is actually in the N2 space,

it is converted to R2 space). In detail, eq. (10.12) is composed of:

x = K ·C TW · X , (10.13)

where K is the intrinsic matrix of the camera and CTW is the transformation between the camera

(a) (b)

Figure 10.7: Images from onboard cameras sometimes view portions of the host vehicles: (a) Atlas-
Car stereo camera; (b) Talos forward center camera.
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coordinate system and the world coordinate system. Note that we use handwritten notation, e.g., X ,

for the variables represented in R3 space, and machine type notation, e.g., x, for variables defined in

R2 spaces. The CTW transform can in turn be replaced by its corresponding lower order transforms:

x = K ·C TV ·V TW · X , (10.14)

where CTV is the transformation from a camera’s coordinate frame to the vehicle’s coordinate frame,

and VTW is the transformation from the vehicle to the world coordinate frames. Let us now consider

a vehicle moving around a scenario. While the vehicle is moving, images acquired from the cameras

change. As a conclusion, something in equation (10.14) must change also. Intrinsic camera values

(K matrix) are fixed and, since the camera is rigidly fixed to the vehicle structure, also the CTV

transform is fixed, regardless of the vehicles position. The only quantity in eq. (10.14) that varies

with vehicle position (or mission time t, considering that the vehicle is moving) is the VTW transform.

This makes perfect sense, as the vehicle moves around, so will the transform from the vehicle to the

world coordinate frames be updated. We will notate this time dependency of the transform as VTt
W,

which turns eq. (10.14) into:

x = K ·C TV · VTt
W · X ∀t ∈ [0, inf[, (10.15)

where t is the mission time. Dependencies will henceforward be notated as right super indexes. Now

consider a pixel that is a view of the host vehicle. It can be any of the pixels in Fig. 10.7 that capture a

part of the vehicle. Applying the inverse projection (detailed in chapter 5) to eq. (10.15) would make

it possible to retrieve the 3D point X that is viewed by pixel x. In the case of these pixels that view

the vehicle’s body, the inverse projection would lead to an erroneous mapping because it assumes that

the pixel is viewing part of the scenario outside the vehicle, when in fact it views part of the vehicle.

In other words, X is in fact a different point in 3D contained by the vehicle body. This new 3D point

is notated as X̂ . For this point the expression of the inverse projection obtained from eq. (10.15) is

not valid. However, if the point is defined in the vehicle reference system (X̂ ) one can state that:

x = K ·C TV · X̂ , (10.16)

which means, since both K and CTV are constant over time, that the pixel will always view the same

portion of the vehicle. This is an important conclusion because it proves that the pixels that view the

vehicle are always the same. And this is true for all the images of the given camera. In other words,

since the position of the invalid pixels is always the same in the image, a mask can be created offline

to discard them in every image. The remainding pixels, i.e., those that are not discarded, can then be

used in eq. (10.15), since the equation is valid for all other cases.

In order to discard the pixels that view the host vehicle, we use a manual calibration where a

user defines a polygon in the image that contains the pixels that view the scene. As discussed before,
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(a) (b) (c)

(d) (e) (f )

Figure 10.8: Image bounding polygons for the camera of the Talos viewing location C, sequence 1:

(a) forward camera; (b) 6 millimeter lens forward camera; (c) rear camera; (d) forward left camera;

(e) forward right camera; (f ) the coordinate frames of the all the cameras.

this procedure is executed offline, and needs only to be made once for each camera. We refer to this

polygon as the image bounding polygon.

Figure 10.8 shows the image bounding polygons for all the cameras onboard the Talos vehicle.

Two of the cameras view portions of the vehicle. It is the case of cameras forward center (Fig.

10.8 (a)) and forward right (Fig. 10.8 (e)). In these cases the image bounding polygons exclude

the regions where the cameras view portions of the vehicle. Note that this can be used as a general

solution, meaning it can be employed also in the cases where the camera does not view the vehicle

body. In these cases the image bounding polygon corresponds to the image canvas, as shown in Figs.

10.8 (b), (c) and (d). Finally, Fig. 10.8 (e) shows the local coordinate frames of all the cameras. Note

that the forward center and forward center 6 millimeter cameras are very close and their coordinate

frames overlap, which is why in the figure only four coordinate frames are shown for five cameras.

10.3.3 Projection Polygon

It was already discussed that approaches detailed in sections 10.2 and 10.3.1 are in fact simplified.

Section 10.3.2 introduced this topic commenting on the fact that it is not possible to assume that the

entire image views a given primitive. One of the situations that may occur, is that a camera views

part of the vehicle body. This problem was addressed in section 10.3.2. The solution is to define, for

each camera and in an offline procedure, the image bounding polygon. In the region of the image
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that is inside the image bounding polygon, we are sure that no vehicle body is viewed. Hence, in

that region, only the scenario around the vehicle is viewed. The question that is addressed in this

section is the following: even if only the region inside the image bounding polygon is considered, is

it possible to ensure that all the pixels view a single geometric polygonal primitive. In other words, in

the simplified examples of Figs. 10.2 and 10.6, only the support plane of primitives is employed. It is

used directly to define the projection plane. However, the contours of the primitive where not taken

into account, as they should be. This section shows how it is possible to address this problem. To take

into account a primitive bounding polygon in order to compute the region of the image that actually

contains visual information of that primitive. Note that an image does not necessarily always contains

information about a given primitive. For example, consider that a geometric polygonal primitive was

detected on the right side of the vehicle. If the image provided by the camera facing the left side of

the vehicle is to be used, then it is sure not to contain any visual information of that primitive.

Let r notate the list of vertices of the image bounding polygon. These vertices are defined in

image space. To compute the vertices in the world coordinate frame we use eq. (10.15), that is:

r = K ·C TV · VTt
W · R ∀t ∈ [0, inf[, (10.17)

where R is the list of vertices in the image bounding polygon, viewed from the world coordinate

frame. In order to compute the 3D world coordinates of those vertices, we use the inverse projection,

that is, eq. (10.17) becomes:

R =
[
K ·C TV · VTt

W

]−1
· r ∀t ∈ [0, inf[, (10.18)

which is a system of equations without solution. Since a detailed discussion on this topic is presented

in chapter 5, we will not focus on the complete explanation here. It is suffice to say that the system is

complete when a plane is defined so that it is assumed that the 3D point (R in this case) lies on that

plane. In other words, the following system of equations must be solved:

⎧⎨
⎩R =

[
K ·C TV · VTt

W

]−1
· r ∀t ∈ [0, inf[

a · Rx + b · Ry + c · Rz + d = 0
, (10.19)

where Rx notates the x component of 3D point R, and a, b, c and d, the Hessian form coefficients

of the projection plane. The objective is to introduce all the factors that affect the projection of the

image of a camera. From the previous discussion and the observation of eq. (10.19), we can say that

the factors that affect a projection are:

• The geometric polygonal primitive to which texture should be mapped, since it defines the

coefficients a, b, c and d of the second equation.

• The camera, for three reasons: first, the intrinsic parameters (K) are unique to each camera,
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second, the image bounding polygon (r) is also configured independently for each camera,

and, third, because transform CTV also changes according to the cameras position.

• the mission time t, since it affects the VTt
W transform.

Suppose a given situation where a vehicle is travelling a scenario, and producing a geometric

representation, that is, a list of geometric polygonal primitives. We will consider k, the index of the

geometric polygonal primitives, k ∈ [0, Nk[, where Nk is the number of primitives. As the vehicle

travels, images are acquired from different cameras. We will use index l to notate the camera index,

l ∈ [0, Nl[, where Nl is the number of cameras onboard the vehicle. Also, mission time t is taken into

account. Using the super index notation to refer the indexes of both the cameras and the primitives,

eq. (10.19) becomes:

⎧⎨
⎩R =

[
Kl ·C Tl

V · VTt
W

]−1
· rl ∀t ∈ [0, inf[

ak · Rx + bk · Ry + ck · Rz + dk = 0
. (10.20)

Equation (10.20) shows that a given projection depends on three factors: the geometric primitive

index k, the camera index l, and mission time t. We shall disregard the dependency of mission time for

now, since it will be addressed in detail in chapter 11. At present, lets assume that we are considering

only a moment in time, which we will call the time of projection tp, hence, t = tp.

For a given time of projection tp, a camera l, and a primitive k, using eq. (10.20), it is possible

to compute the projection of the image bounding polygon, represented in the world coordinate frame.

We refer to this asR{k,l,t=tp}, i.e., the list of 3D vertices that correspond to the tuple {k, l, t = tp}.
Figure 10.9 (a) shows a birds eye view of a scene. In this case only a single primitive is detected,

which corresponds to the ground plane. The bounding polygon of that primitive is shown in blue in

Figs. 10.9 (a) and (b). The set of possible values of k is composed of a single index, e.g., k ∈ {0}.
All five cameras are used in the projection. Hence, l ∈ {0, 1, 2, 3, 4}.

As a consequence, there will be five different image bounding polygons and the same number

of the projections of these to the world coordinate frame. Figure 10.9 (b) shows all these polygons:

R{k=0,l=0,t=tp}, R{k=0,l=1,t=tp}, R{k=0,l=2,t=tp}, R{k=0,l=3,t=tp} and R{k=0,l=4,t=tp}. Note these

are the projections in world coordinate frame of the polygons defined in image coordinate frame. In

other words, the polygons shown in Fig. 10.9 (b) correspond to the solving of eq. (10.20) for each of

the image bounding polygons rl shown in Figs. 10.8 (a), (b), (c), (d) and (f ). For example, the image

bounding polygon R{k=0,l=0,t=tp} (l = 0 is the index for forward center camera) shown in Fig. 10.8

(a) is easily identifiable in Fig. 10.9 (b) because of the contours on the bottom part of the image are

also present in the 3D view of Fig. 10.9 (b).

Previous paragraphs have described how the image bounding polygons are projected to the world

coordinate frame. The main objective, is to compute which is the subset of pixels in an image (given

the set of all the pixels in the image) that are viewing the primitive. More specifically, the problem
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(a) (b)

Figure 10.9: Projections of the image bounding polygons shown in Fig. 10.8 to the world coordinate

frame, considering the ground plane primitive (shown in blue). Data from location C, sequence 1: (a)

the scene viewed from a birds eye view; (b) the projections of the image bounding polygons.

is the following: for a given projection defined by the tuple {k = kp, l = lp, t = tp} where kp, lp

and tp are the projection primitive, projection camera and projection time respectively, which is the

region in the image that contains pixels that view the primitive. We propose to obtain this region

in the image by computing what we call projection polygon. This polygon, when viewed in image

space, will delimit the pixels that are a view of the primitive kp.

Chapter 8 provided a detailed description of the generation and refinement of the geometric po-

lygonal primitives. More specifically in section 8.3.1, the representation of the geometric polygonal

primitives is discussed. In that section, it is said that geometric polygonal primitives required a des-

cription of the support plane in Hessian form as well as a list of vertices that define the primitives

bounding polygon. The coefficients of the primitive’s support plane are directly used in eq. (10.20)

so no further discussion is required on this matter. Regarding the representation of the primitive’s

bounding polygon, section 8.3.5 describes it in detail. In particular, the explanation from eqs. (8.2) to

(8.7) shows that the primitives bounding polygon is defined over a local primitive coordinate system.

Since this local primitive primitive coordinate system is defined so that its X and Y axes are contained

by the primitive’s support plane, when a vertex of the bounding polygon is viewed under the local

coordinate frame its Z coordinate will always be equal to zero. In this way, because the Z coordinate

is discarded, the vertices of the primitives bounding polygon are defined in R2, and the list of these

vertices is defined as P, or, in this case, Pk.

Let P represent the local primitive’s coordinate frame, and WTP the transform from the world co-

ordinate frame to the primitive’s local coordinate frame. Since this transform depends on the primitive

in question, following the previous conventions we will notate it WTk
P. In the notation introduced be-

fore it was defined that handwritten characters are used for variables defined in R3, while machine

type characters are used for variables in R2. As an example, the image bounding polygon is repre-
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sented as r, when viewed from the camera reference system in the image space, and R if we refer

to some projection of that point to the 3D world coordinate frame. Since non capital machine type

characters are used for representing points (or lists of points) in image space, we use capital machine

type characters to represent the point viewed in R2 space in the primitive’s local coordinate frame.

Therefore, the list of vertices of the image bounding polygon that is viewed from the primitives local

coordinate frame is referred to as R. This is the reason why the symbol for notating the list of vertices

in the primitives support point is referred to as Pk.

The projection polygon (represented by H) is computed as the intersection (∩) between the pri-

mitive’s bounding polygon Pk and the projection of the images bounding polygon Rl, viewed in the

primitives local coordinate frame:

H{k,l} = Pk ∩ Rl, (10.21)

where Rl is obtained by:

Rl = f
([WTP

]−1 · Rl
)
, (10.22)

and f is a function that discards the Z coordinate of a 3D point, i.e., f : R3 → R2. Since the projection

polygon H{k,l} is defined in the local coordinate frame of primitive k and what is sought is the polygon

in image space, the expressions in eqs. (10.17) and (10.22) are combined and result in:

h{k,l} = K ·C TV · VTt
W · WTP · g(H{k,l}), (10.23)

where g is a function that adds a zero value coordinate to a 2D point, i.e., g : R2 → R3. It is also

possible to compute the 3D coordinates viewed in world coordinate frame of h{k,l}, referred to as

H{k,l}, using the following expression:

H{k,l} = WTP · g(H{k,l}), (10.24)

Note also, that from eq. (10.21) the projection polygon H{k,l} is obtained from the intersection

of the image bounding polygon and the primitive’s bounding polygon. In the case that the image

does not view portions of the vehicle body, the image bounding polygon corresponds to the image

canvas. When this occurs, and if the image canvas contains the entire primitive’s bounding polygon,

the projection polygon is in fact equal to the primitive’s bounding polygon. In other words, if Pk ⊆ Rl,

then the following applies:

H{k,l} = Pk ∩ Rl = Pk, when Pk ⊆ Rl. (10.25)

Figure 10.10 (a) shows a scenario where the Talos vehicle has detected a single primitive (marked

in blue) corresponding to a wall in front of it. The scene corresponds to location D, sequence 1. Only
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the forward center camera is used in this example. From eq. (10.20), the image bounding polygon r,

shown in Fig. 10.8 (a), is projected to the world coordinate frame using the primitive’s support plane.

R is shown in Fig. 10.10 (b) in dark color. From eq. (10.21), the projection polygon H{k,l} results

in the intersection of the two polygons shown in Fig. 10.10 (b) (actually, the polygons shown in this

Fig. are Pk and Rl, but the intersection is done in 2D with polygons Pk and Rl). In Fig. 10.10 (c)

the projection polygonH{k,l} is shown in dark color. Finally, Fig. 10.10 (d) shows an image with the

image bounding polygon rl (in red) and the projection polygon h{k,l} (in blue).

The presented algorithm is able to define which of the pixels in an image are a view of the se-

lected primitive. It is also possible to know whether an image views the primitive or not. When the

intersection computed in eq. (10.21) is a null set, then it means that none of the image pixels view the

primitive.

(a) (b)

(c) (d)

Figure 10.10: The algorithm for computing the projection polygon in image space: (a) location D,

sequence 1, a single primitive detected (blue); (b) the image bounding polygon (dark color); (c)

the projection polygon (dark color); (d) the image with the image bounding polygon (red) and the

projection polygon (blue) .
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This section has described how the projection polygon is computed. The solution is general,

which means it is valid for any camera, mounted on any vehicle. All that is required is a description of

the camera, of its position, and a few other variables in order to compute the projection polygon. The

algorithm is also capable of identifying whether a camera views, partially or not, a given primitive.

These tools will be used in the following chapters when the mechanism that executes texture mapping

onto the polygonal primitives is presented.

10.3.4 Mapping Images to Geometric Polygonal Primitives

The previous sections have described several algorithms or parts of algorithms that are used in the

mapping of images to polygonal primitives. The problems that those algorithms have solved are:

• How color is transferred from an image that is a discrete space to 3D geometry which is a

continuous space, using interpolation over triangles. Texture mapping and interpolation tech-

niques, section 10.2;

• How the problem of affine texture mapping can be solved if a DDT triangulation is performed

over the image. DDT triangulations, section 10.3.1;

• How to handle the fact that images from onboard cameras may be partially occluded by the

vehicle body. Image bounding polygons, section 10.3.2;

• How to compute which region of the image contains visual information from a primitive. Pro-

jection polygons, section 10.3.3;

This section focuses on how to merge all these algorithms in order to map images onto geometric

polygonal primitives. To demonstrate the entire process, a scene with a single primitive and a single

camera is used. The scene shown in Fig. 10.11 (a) is used. In this image, a house is shown. A visual

analysis immediately concludes that there are several planes in the 3D structure that are captured in

the image. For now, one plane will be used: the wall of the house, where the doors and windows

are located. Figure 10.11 (b) shows a view of the 3D scene, including the camera’s position and the

location of the primitive’s support plane.

The primitive contains information not only about the support plane, but also regarding its boun-

ding polygon (H{k,l}). The first step is to compute the projection polygon (eq. (10.21)) and project

it to the image. Figure 10.12 (a) shows the projection polygon in image space ( h{k,l} ), while Fig.

10.12 (b) shows the same polygon represented in 3D (H{k,l}). Note that h{k,l} is not convex. It

is not possible to assume that H{k,l} is convex, since h{k,l} is obtained from the intersection of two

polygons, P{k} and R{l}. In order to ensure the convexity of h{k,l}, one would have to ensure the

convexity of both P{k} and R{l}. While it is possible to ensure the convexity of P{k}, if a convex

hull operator is used to compute the primitive’s bounding polygon (see section 8.3.5), in the case of
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Figure 10.11: Demonstration scene for mapping images to geometric polygonal primitives: (a) a view

of the image of the scene; (b) the 3D scene with the location of the camera and the support plane of

the primitive that corresponds to the wall of the house, where the windows and the door are.
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Figure 10.12: The projection polygon: (a) in the image space; (b) in 3D space.

R{l} this is not possible, since the image bounding polygon often needs to have a non convex shape

to delimit the portions of the image that view the vehicle body (see Fig. 10.8 (a), for an example). In

conclusion, there is no assurance that the projection polygon is convex. This seems like a minor detail

at the moment, but will be important further ahead, since a special mechanism must be proposed for

handling the non convexity of the projection polygon.

The second step is to compute the line segments that describe regions of high gradient in the

image. As described in section 10.3.1, this is vital to ensure accurate texture mapping. However, in
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this case, Hough lines are searched only in the area of the image delimited by the projection polygon.

This is a more efficient operation since only a portion of the image is processed, instead of the entire

image. Figure 10.13 (a) shows the line segments detected in the region delimited by the projection

polygon.

The third step is to compute a Delaunay triangulated mesh. In section 10.3.1, it was suggested

that the starting and end points of the detected line segments are used as input vertices, and the line

segments are used as input constraints to a constrained Delaunay triangulation (see eq. (10.8)). Since

it is important to keep the boundaries defined by the projection polygon, this information must also be

taken into account in the constrained Delaunay function. Hence, we propose to extend the set of input

vertices and constraints to the constrained Delaunay triangulation using the vertices and line segments

of the projection polygon. Let h
{k,l}
i be the ith vertex of the projection polygon h{k,l}. Considering

there are M line segments detected using Hough transform and N vertices in the projection polygon,

the set of vertices (SV) to input to the triangulation is:

SV = {sl0,el0,sl1,el1...,slM−1,e
l
M−1,h

{k,l}
0 ,h

{k,l}
1 ,h

{k,l}
N−1}, (10.26)

and the set of constraints (SC) is:

SC =
{
sl0e

l
0,s

l
1e

l
1, ...,s

l
M−1e

l
M−1,h

{k,l}
0 ,h

{k,l}
1 , ...,h

{k,l}
N−2,h

{k,l}
N−1,h

{k,l}
N−1,h

{k,l}
0

}
, (10.27)

(a) (b)

Figure 10.13: Setting up the constrained Delaunay triangulation: (a) line segments detected using

Hough lines transform; (b) vertices and constraints used as input to the constrained Delaunay trian-

gulation.
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Figure 10.14: Triangular mesh: (a) in image space; (b) projected to 3D space.

which results in a constrained Delaunay operation (cDelaunay) as follows:

t = cDelaunay(SV, SC). (10.28)

Figure 10.13 (b) shows all the vertices and line segments used as input to the constrained Delaunay

triangulation. It is possible to see that some constraints are derived from the detected line segments

(shown in Fig. 10.13 (a)), while others come from the projection polygon (shown in Fig. 10.12 (a)).

Figure 10.14 (a) shows the triangular mesh obtained using a constrained Delaunay triangulation.

The mesh is shown in the image space, i.e., referred as t. As can be seen, some of the edges in

the mesh are constrained, while others, which are generated automatically, are left unconstrained.

Figure 10.14 (b) shows the projection of the triangular mesh to 3D world space (T ). Note that the

mechanism of mapping a mesh t in image space into a mesh T in 3D space is done here resorting

to the inverse projection expression detailed in eq. (10.20). However, for reasons that will become

clearer in the next sections, the algorithm that is actually employed is more complex. Details on this

will be provided in the next sections. For now, it is sufficient to think of T as the mesh obtained by

inverse projecting t.

The fourth step of the process is to iterate through all triangles in the mesh and map the texture

contained by them to the 3D world. The mapping of a triangle’s texture onto 3D was discussed in

section 10.2, so there is no need to go in detail. Figure 10.15 (a) shows the triangular mesh with a

texture overlay. Figure 10.15 (b) only shows the texture.

This section has presented the algorithm that was devised for mapping images onto geometric

polygonal primitives. The process consists of four steps:
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• Compute the projection polygon;

• Compute the line segments using Hough in the region delimited by the projection polygon;

• Run a constrained Delaunay triangulation using both the line segments and the projection poly-

gon as input vertices and constraints;

• Map each triangle in image space to 3D and apply texture.

10.3.5 Handling the Convexity of Delaunay Meshes

Section 10.3.4 has described the process for mapping texture onto polygonal primitives. Results from

this process are shown in Fig. 10.15. Although the results seem to execute an accurate mapping, a

more careful observation notes that the shape of the textured area in Fig. 10.15 does not correspond

to the shape of the projection polygon (which is shown in Fig. 10.12). For example, on the left

bottom part of the textured region, a brick wall is textured. This brick wall is actually in front of the

wall with the doors and windows. Fig. 10.16 (a) shows zoomed view of the triangulated mesh. Fig.

10.16 (b) shows the projection polygon overlayed onto the triangulated mesh. The brick wall that

was referred is the one contained by triangle 11-12-13 (see indexes on Fig. 10.16 (a)). Although it

is out of the projection polygon, it appears on the triangulated mesh. The reason is that Delaunay

triangulations triangulate the entire convex hull space of the points given as input vertices. This is an

intrinsic characteristic of the Delaunay method, it cannot be changed. The option is to detect which

(a) (b)

Figure 10.15: Triangular mesh in 3D space: (a) triangles and texture; (b) texture only.
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triangles are inside the projection polygon and which are outside of it. This is done using a recursive

algorithm which will be presented next.

A somewhat complex notation will be used. For this reason it is described in the following lines.

Let a given triangulated mesh containing several triangles, be denoted as t{v0,v1,v2}, where v0, v1, v2

are the indices of the vertices of the triangle. It can also be denoted as ti, where i is the index

of the triangle. Similarly, an edge is denoted as e{v1,v2}. Each triangle has two flags associated

to it: flag is_visited and flag is_inside. The first assesses if the triangle was already visited or

not, and the second indicates if the triangle is outside or inside the given polygon, in this case the

projection polygon. Function set(t{v0,v1,v2}), f lag, value) writes the value value to the flag flag

of triangle t{v0,v1,v2}. Function get(t{v0,v1,v2}, f lag) reads the current value of the flag flag of

triangle t{v0,v1,v2}. Function edge(t{v0,v1,v2}, j) recovers the jth edge (j ∈ {0, 1, 2}) of triangle

t{v0,v1,v2}. Edges also have an additional flag is_boundary to indicate whether or not they are part

of the projection polygon (it is read using get(edge(t{v0,v1,v2}, j), is_boundary)). Finally, function

neighbor(t{v0,v1,v2}, j) returns the triangle that is the neighbor of triangle t{v0,v1,v2} over edge j.

Just to give some examples of the application of the functions, from Fig. 10.16 (a) and (b), one

(a)

(b)

Figure 10.16: A detailed view of the triangulated mesh: (a) the index of each vertex; (b) the projection

polygon overlayed onto the mesh.
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can see that, edge(t{4,19,3}, 0) = e{4,19}, that get
(
edge(t{17,16,18}, 0), is_boundary

)
= false, that

get
(
e{13,12}, is_boundary

)
= true, or that neighbor(t{10,6,4}, 1) = t{6,5,4}.

The algorithm starts in a triangle that contains one of the outer segments of the mesh. That way

it is possible to know the is_inside state of this initial triangle. Then, the algorithm propagates from

the starting triangle to others. A propagation from one triangle tparent to another triangle tchild is

done over an edge epropagation. If epropagation is a boundary edge, then the is_inside state of tchild

should be the opposite of the state of tparent. The procedure is propagated to the entire mesh in order

to attribute a value to the flag is_inside of all the triangles in the mesh. It is considered that the

is_boundary flag is already defined for all the edges in the mesh. Note that, to make this possible,

Algorithm 10.1 Compute which triangles are inside the projection polygon

Input: A triangulated mesh t with M triangles

Output: The triangulated mesh t, where get(ti, is_visited) = true, ∀i ∈ {0, 1, ...,M − 1}
for i = 0→M − 1 do � Initialize the is_visited flag of all triangles

set(ti), is_visited, false)
end for
Compute a random edge on the outer limit of the triangulation, e{vout1,vout2}
Get initial triangle, that contains the outer limit edge, t{vout1,vout2,vk}
if get(e{vout1,vout2}, is_boundary) == true then � Set the is_inside flag for initial triangle

set(t{vout1,vout2,vk}), is_inside, true)
else

set(t{vout1,vout2,vk}), is_inside, false)
end if
Set initial triangle as visited, set(t{vout1,vout2,vk}), is_visited, true)
while Q¬ empty do � Propagate through the mesh

Set parent triangle as the first on the queue list, tparent ← Q0

Set parent triangle flag visited, set
(
tparent, is_visited, true

)
Remove parent triangle from queue list Q, i.e., remove first element from Q
for j = 0→ 2 do � Cycle the edges of the parent triangle

Compute neighbor triangle over edge j, tchild ← neighbor(tparent, j)
if tchild exists then � If edge j is an outer edge there is no neighbor triangle

if get
(
tchild, is_visited

)
== false then

if get(edge(tparent, j), is_boundary) == false then
set
(
tchild, is_inside, get

(
tparent, is_inside

))
else

set
(
tchild, is_inside,¬get

(
tparent, is_inside

))
end if
Add child triangle to queue list, Q ← {Q,tchild}

end if
end if

end for
end while
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it is required that edges in the projection polygon are also edges in the triangulated mesh. This way

for each segment of the boundary polygon, there is a corresponding edge in the mesh, which is set to

have the is_boundary flag to true. This is the reason why segments of the projection polygon are

set as constraints to the constrained Delaunay triangulation (see eq. (10.26)), to ensure they are edges

in the mesh and can be mapped to have the corresponding is_boundary flag set accordingly. The

procedure is presented in Algorithm 10.1.

Using Algorithm 10.1 it is possible to compute, for each triangle, whether it is inside our outside

the projection polygon. Figure 10.17 shows the computed state of each triangle for the example shown

in Figs. 10.15.

Figure 10.17: The inside or outside state of each triangle (or face) in the mesh.

(a) (b)

Figure 10.18: Texture mapping only triangles inside the projection polygon: (a) triangles and texture;

(b) texture only. Figure 10.15 shows results when all triangles are mapped.
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Texture mapping triangles is a procedure that iterates all triangles and maps each of them. If an

additional test is added to this procedure, making so that only triangles that are inside the projection

polygon are texture mapped, then it is possible to handle the convexity of Delaunay triangulated

meshes. Results are shown in Fig. 10.18. By comparing these results with the primitive’s texture

mapping of all triangles (shown in Fig. 10.15), one can see that the problems with inaccurate mapping

of areas not included in the projection polygon are solved with this technique.

10.4 Results

Previous sections have explained in detail the procedure that was devised to map texture from images

to geometric polygonal primitives. This section will present some results regarding this methodology.

It is quite difficult to devise a way of qualitatively comparing the results of texture mapping 3D

models. Partial results from previous sections, show the proposed approach is capable of producing

view pleasant textured polygonal primitives. But of course that other texture mapping techniques

should work with the same accuracy. The question here is not whether or not the proposed approach

is capable of producing better textured 3D models of the environment, but rather that it is capable of

doing it much faster. To this factor contrives especially the fact that the generation of the 3D models

themselves is much faster using the proposed geometric polygonal primitives, as shown in chapter 8.

The other key factor is that the proposed approach is devised in a way so that it is capable of refining

the texture when new visual information is received. This item will be detailed in chapter 11, but it

is important to refer it now. In conclusion, we do not claim that the proposed approach for texture

mapping polygonal primitives is intrinsically better than standard texture mapping techniques, but we

do emphasize that it works just as good as any other techniques. More importantly, we claim that

the proposed texture mapping approach can handle the texture mapping of geometric primitives and,

as will be shown later, will be capable of improving texture with new visual data. To the best of our

knowledge, this last capability is not reported in the literature. Under these considerations this section

will present only qualitative results regarding the texture mapping of polygonal primitives, focusing

more on the flexibility of the proposed approach. All it is required to texture map a given primitive

is a description of the primitive and a description of the camera / image that provides the texture.

Everything else is computed automatically. Multiple projections generated from several cameras /

images can be computed over a great number of primitives. This way, it is possible to generate

complex textured models. In the following lines, several examples are given that show the flexibility

of the proposed approach.

10.4.1 Two Cameras Overlapping Projections

Figure 10.19 shows an example at location C, sequence 1, where a wall in front of the vehicle gen-

erates a primitive. The primitive is shown in blue on Fig. 10.19 (a), together with the scene around
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(a)

(b) (c)

(d) (e)

(f )

(g)

Figure 10.19: Texture mapping a primitive with images from different cameras: (a) the scene; (b)

image from the forward center camera; (c) image from the forward center 6 millimeter camera; (d)

right side detail of the triangulated mesh, forward center camera; (e) the same for forward 6 millimeter

camera; (f ) primitive with texture using forward center camera; (g) the same for 6 millimeter camera.
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the vehicle, and several primitives in blue. The primitive in front of the vehicle is going to be texture

mapped. The image bounding polygon can also be seen in black. As discussed before, the Talos

vehicle has five onboard cameras. Two of them are facing the front of the vehicle. Hence, there are

two alternative texture mappings for that primitive: using the forward center camera, or using the

forward center 6 millimeter camera. The difference between these two cameras is that the latest has a

larger focal length, and therefore it captures zoomed images of the environment. The forward center

camera, on the other hand, has a smaller focal length but captures a wider view of the scene. The

image from the forward center camera is shown in Fig. 10.19 (b), and the image from the forward

center 6 millimeter camera is shown in Fig. 10.19 (c). In both Figs. the corresponding image boun-

ding polygon is shown in red, and the projection polygon is shown in blue. It is observable that the 6

millimeter camera captures a more zoomed in image. The region contained by the projection polygon

for the 6 millimeter camera is larger. Since both cameras have the same image resolution, the region

also contains more pixels. As a consequence, it can provide a more refined mesh, with more vertices

and triangles that describe changes in the image. Fig. 10.19 (d) shows a detail (on the right side of the

primitive) of the triangulated mesh using the forward center camera, and the same detail is shown for

the forward center 6 millimeter camera in Fig. 10.19 (e). As expected, in the case of Fig. 10.19 (e),

there is a finner mesh, consequence of the larger number of pixels. The textured primitive is shown in

Fig. 10.19 (f ) (forward center camera) and Fig. 10.19 (g) (forward center 6 millimeter camera). The

natural consequence of having finner meshes is that texture is also finner. This is clearly noticeable in

a comparison of Figs. 10.19 (f ) and (g).

10.4.2 Two Cameras Non Overlapping Projections

The previous case has shown how two cameras can be used to map a single primitive. For now, we

do not consider how to fuse information from two or more cameras (this is only addressed in chapter

11). Hence, in the case depicted in Fig. 10.19, one would have to somehow make a decision on

whether to use one camera or another. However, this is not always the case. Figure 10.20 shows a

case where the same wall panel that is shown in Fig. 10.19 is used, but the vehicle is now at location

D (of sequence 1). In other words, the vehicle is in a different position, which enables its forward

center camera to view just a portion of the right side of the primitive, and its forward left camera to

view another portion (on the left side) of the same primitive. Fig. 10.20 (a) shows the scene and the

vehicle’s position. In dark colors, the projections of the images projection polygons to 3D space are

shown. From this its possible to see that both cameras view different portions of the primitive. This

is also shown in the images from the cameras, in Figs. 10.20 (b) and (c). This situation opens the

possibility of composite texture mapping. For instance, there are sometimes situations where two or

more cameras can map different areas on the same primitive.
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(a)

(b) (c)

Figure 10.20: A situation where two cameras map different portions of the same polygon: (a) the

scene with the vehicle position; (b) image from the forward left camera; (c) image from the forward

center camera.

10.4.3 Single Camera Multiple Primitives

Yet another case that may occur is that one single image can be used to texture map several primitives.

In this example, the same demonstration scene that was used in section 10.3.4 is employed. Consider

a single image (Fig. 10.21 (a)) that views a building. Three primitives are detected: the wall of

the house, with the windows and the door (primitive 0), the roof of the house (primitive 1) and the

brick wall in front of the house (primitive 2). The support planes of each primitive are depicted in

Fig. 10.21 (b). Each primitive will generate a projection polygon, as depicted in Figs. 10.21 (c)

(in image space) and (d) (in 3D space). Meshes are independently built using, for each primitive,

the detected Hough line segments (Fig. 10.21 (e)) and information from the projection polygon.

The entire set of inputs to the constrained Delaunay triangulations is shown in Fig. 10.21 (f ). The

computed triangulated meshes are shown in Fig. 10.22 (a) in the image space, and in Fig. 10.22 (b),
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Figure 10.21: A case where a single image texture maps several primitives: (a) the image scene; (b)

the support planes of each primitive; (c) the projection polygons in image space; (d) the projection

polygons in 3D space; (e) the detected Hough line segments; (f ) the input vertices and constraints to

the Delaunay triangulation.
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Figure 10.22: Triangulated meshes and textured primitives: (a) meshes in image space; (b) meshes in

3D space; (c) and (d) texture mapped primitives.

projected to the corresponding primitive’s support plane. Finally, Figs. 10.22 (c) and (d) show the

obtained textured scene.

10.4.4 Qualitative Analysis

Figure 10.22 shows a texture mapped complex scene representation containing several primitives.

Note that also the ground plane primitive is shown in this case. The mechanism for texture mapping

the ground primitive is exactly the same as for any other primitive. From this point of view, the pro-

posed approach can be seen as a full generalization of the technique of Inverse Perspective Mapping,

which was documented in detail in chapter 5.
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(a)

(b)

Figure 10.23: Two different views of a textured complex scene representation, sequence 1.

10.5 Conclusions

This chapter has addressed the problem of texture mapping geometric polygonal primitives. Results

show that it is possible to texture map complex scenes. Scene representations may contain several

primitives and can make use of multiple cameras to provide the texture. The proposed approach

is capable of dealing with several problems associated with the projection of textures onto to 3D

models. Previous sections have described in detail the algorithms proposed to handle these problems,

and the results presented in this section show that it is possible to map texture accurately. It is also

important to highlight the flexibility of the proposed approach, since it can deal with combinations

of multiple primitives and multiple projection cameras, in order to build complex 3D textured scene

representations.
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Chapter 11

Photometric Scene Refinement

This chapter proposes a framework for refining the photometric representation of the scene that is

computed as described in chapter 10. In some cases, after the texture from an image is applied to a

geometric polygonal primitive, another image is received that views the same primitive. If this second

image contains higher quality texture, it should somehow replace the previous texture. In this chapter,

the proposed mechanism for handling these cases is presented.

In section 11.1, the problem is introduced. Related work is presented in section 11.2. The pro-

posed approach is described in section 11.3 and, finally, results and conclusions are given in sections

11.4 and 11.5.

11.1 Introduction

Chapter 10 has described in detail the proposed algorithms for mapping images to geometric polygo-

nal primitives. As posed in that chapter, the problem could be stated as follows: given a description

of a camera / image and a description of a polygonal primitive, how to map the texture in the image

to the primitive. The texture mapping of one image to a camera was generically referred to as a pro-

jection. In the results presented in that section, several possibilities for the combinations of mapping

were shown. Here is a small list:

• Projection of a single camera to a single primitive;

• Projections of multiple cameras to non overlapping regions of a single primitive;

• Projections of regions of a single camera to multiple primitives;

• Projections of multiple cameras to multiple primitives.

Despite the exhaustive list of examples that were shown, one was deliberately skipped. How to

handle cases where one or more images map to overlapping regions of the same primitive. More
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than an example, it is rather a family of cases that require a higher level of generalization from the

algorithm.

One of the advantages of the proposed scene representation is that it is capable of removing dupli-

cate data. For example in the case of the geometric polygonal primitives, the expansion mechanism

was able to discard data of the same object (see chapter 9 for details). As a consequence, the algorithm

provides a deterministic representation of the environment. In other words, it makes a deterministic

decision (even if based of probabilistic methods) about the shape, size and other properties of the

scene. For example, a given geometric description of a wall in the scene places the wall in a specific

position, without error margins or areas of probability. More than a limitation from the algorithm,

this is more of a philosophic decision on how to approach the problem of scene reconstruction from

massive multi sensor data. In our opinion, there are many advantages to this. We list here some of

them. We will use the word processing to refer the computations done for obtaining a scene represen-

tation and the word post-processing to refer to any other processing that could be done on top of the

reconstructed scene, i.e., that would use the reconstructed scene as input.

• Processing speed and complexity: given the amount of data used as input for the computation

of a scene representation, it would be very difficult to generate a more complex probabilistic

representation;

• Post-processing speed: if other subsequent processes are going to process the reconstructed

scene, they will do it faster with a deterministic representation;

• Post-processing simplification: the level of complexity inherent to massive multi sensor data is

lowered after reconstruction;

• Visualization: it would be quite difficult and counter intuitive to visualize a probabilistic repre-

sentation of the scene.

Hence, the option is to have a scene representation that contains a single value for each property

tuple it represents (a tuple could be a position in space, its color and temperature, for example). In

3D, for example, if two range measurements of the same object say that the object is at different

locations, the objective of the scene representation algorithm is to end up with a description of the

object that is unique. In the example, the object would have to be described as being positioned in

one of the locations the two measurements described or, for example, in an average location. Still,

the object is described in a single, unique location. When this philosophy is applied to photometric

properties, the functionality should be exactly the same. An object (the same location of the object)

must be described with a single color.

The problem is what to do when there are two or more color measurements of the same region of

the same object. Under the current framework, the same question can be reshaped to: how to handle
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multiple camera projections that map onto overlapping areas of the same primitive. The following

sections will present the algorithms proposed to solve this problem.

11.2 Related Work

Section 10.3.4 has described in detail the process of mapping images, or rather the portion of the ima-

ges that are bounded by the projection polygon, onto the polygonal primitives. The process consists

of computing a triangulated mesh contained inside the projection polygon. This is done, for each

projection, in the image space. This local image triangulated mesh is referred to as t. In all chapter

10, especially in the part where results are presented (section 10.4), only a single triangulated mesh

is shown per primitive. Actually, to be more precise, some results in that section do present several

meshes on the same primitive, but those meshes never overlap. That being said, when triangulated

meshes are shown in 3D, what is actually shown are the projections to the 3D world coordinate frame

of the local image mesh t. In other words, what is shown are the triangulated meshes T . This is the

case in Fig. 10.14 (b), Figs. 10.19, (d) (e), or in Fig. 10.22 (b).

To illustrate the methods that will be discussed, the example mentioned in section 10.4.2 (shown

in Fig. 10.19) is used. The triangulated meshes T for each of the four projections in that example are

shown in Figs. 11.1 (a), (b), (c) and (d). Figures 11.2 (a), (b), (c) and (d) show the textures obtained

using each of the local projections. From the figures it is possible to conclude that these meshes do

overlap between each other, and that some projections provide considerably better quality textures

than others.

In theory there are several alternatives to perform the fusion of the overlapped data. If we consider

that there is a way of assessing the quality of each projection, then it would be possible to rank all

projections in terms of the supposed quality it has to be texture mapped. Future sections will address

this issue with more detail. For now let us just consider that there is a function q(C{k,l,t}) that can

output a normalized score value for each of the projections, that translates the quality the projection

has for texture mapping. Furthermore, let us consider that in addition to the measurement of the

quality of each projection in general, the quality function can evaluate and score each of the triangles

in the triangulated mesh of each projection. Let t
{k,l,t}
i denote the ith triangle in the local mesh

of projection {k, l, t}. The quality function that evaluates each triangle is notated as q(t{k,l,t}i ). If

these functions are available, then some other alternative fusing strategies could be devised. Below,

some possible strategies for achieving the texture mapping of a primitive with multiple projections

are listed:

• Texture map all local textures to 3D space and use alpha channel to average them;

• Compute a new triangulated mesh (in the 3D space) using all the vertices and constraints of

local meshes as input;
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(a)

(b)

(c)

(d)

Figure 11.1: Local image meshes from example shown in Fig. 11.8: (a), (b), (c), (d), local triangu-

lated meshes from projections C{k=4,l=0,t=t0}, C{k=4,l=0,t=t1}, C{k=4,l=0,t=t2} and C{k=4,l=3,t=t2},

respectively.

• Rank all projections using the projection quality function and texture map only from the best

scoring projection;

• Rank all triangles in all projections using the triangle quality function. When two triangles

overlap, map only the best scoring one.

The first option listed is the most straightforward one. It consists of averaging the textures pro-

vided by each local mesh. This could be achieved by setting the alpha channel of all local meshes so

that they average out. The primitive would have several layers, each with a given triangulated mesh,

as shown in Fig. 11.3 (a). Figure 11.3 (b) shows the texture obtained using an alpha map strategy for

the fusion. The results are not good. Several artifacts arise from the blind averaging of all the textures.

Furthermore, there are also other disadvantages with this approach. Since all local meshes are kept,

the memory required to store local meshes from all projections would become quite large. Another

problem is that, with the increase of projections, the computational load to project all the meshes to
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(a)

(b)

(c)

(d)

Figure 11.2: Textures obtained from local image meshes of the shown in Fig. 11.8: (a), (b), (c),

(d), textures from projections C{k=4,l=0,t=t0}, C{k=4,l=0,t=t1}, C{k=4,l=0,t=t2} and C{k=4,l=3,t=t2},

respectively.

the 3D space would increase as well. For all these reasons, it does not seem to make sense to keep all

the local projection triangulated meshes and mix them at the time of visualization. Anyhow it does

not seem to be a good solution just to use all the meshes at the same time. From the observation of

Fig. 11.2 it is possible to conclude that some textures have a much better quality than others.

The second listed option is to compute a new triangulated mesh, using as inputs all the vertices

and constraints of the local meshes. This new mesh would have to be computed on the primitive’s

local coordinate frame. Figure 11.4 illustrates this strategy. Consider four projections of the wall

panel primitive depicted in Figs. 11.1 and 11.2. For each projection, the global triangulated mesh

is recomputed by adding the vertices and constraints of the current projection. Figures 11.4 (a), (c),

(e) and (g) show all the vertices used as input to the global mesh with one, two, three and the four

projections, respectively. One problem with this approach is that there is always some error associated

with the projection. That means that two projections will never texture map the objects precisely at

the same position. Because of this, the vertices of a second projection never overlap the first, even if

they are viewing exactly the same portion of the same object. Due to precision errors, the mapping
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(a)

(b)

Figure 11.3: Textures obtained from local image meshes of the shown in Fig. 11.8: (a), (b), (c),

(d), textures from projections C{k=4,l=0,t=t0}, C{k=4,l=0,t=t1}, C{k=4,l=0,t=t2} and C{k=4,l=3,t=t2},

respectively; (e) the overlay of all textures using an alpha channel fusion strategy.

is always slightly deviated. As a consequence, the textures generated from all the vertices appear to

be flickered. Figures 11.4 (b), (d), (f ) and (h) show the textures generated for each of the meshes

computed from the set of vertices shown in Figs. 11.4 (a), (c), (e) and (g), respectively. Figure 11.4

(i) shows a detail of Fig. 11.4 (h). Here, the flickering phenomena is clearly visible. The word start

written on the right side of the panel is actually deteriorated from the fact that all the vertices are

kept. In addition to the poor quality textures, there are also other disadvantages associated with this

strategy. Since all the local meshes’ vertices are added, the global mesh will quickly grow in size and

require large amounts of memory space.

The problem with the second listed option seems to be that the vertices from different projections

that in fact were views of the same location of the same object are projected to slightly different

positions. From this idea a more complex derivation of the previous option could be devised: to

test for each vertex whether or not it is close enough to a vertex already mapped from a previous

projection. In other words, the procedure consists of testing if vertices are very close (Euclidean

distance) to others, and, if so, to handle their insertion onto the global mesh. Handling insertion here

means that if two vertices are mapped very close to each other, only one can be present in the global

mesh. The choice of which vertex should be kept can be done using the projection quality functions

discussed above. The procedure can be viewed as a conditional insertion of all the vertices from local

image meshes to the global mesh. Figure 11.5 shows an example of such a procedure. In the shown

example, the vertices from the more recent meshes, signaled with higher temperature colors in Fig.

11.4, will always have better quality than the vertices from the old meshes.

In Fig. 11.5 (a), only two projections are added to the global mesh. Then in Figs 11.5 (b) and

(c), two other projections are added and new vertices appear in the global mesh. At the same time,

vertices from older projections tend to disappear. However, in the final global mesh there are still
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(a) (b)

(c) (d)

(e) (f )

(g) (h)

(i)

Figure 11.4: Adding all vertices in the local image meshes to produce a global mesh. Projections are

colored with a black to orange colormap: (a), (c), (e) and (g) all the vertices used as input to the global

mesh with one, two, three and four projections, respectively; (b), (d), (f ) and (h) textures generated

for each of the meshes computed from the set of vertices from (a), (c), (e) and (g), respectively. (i) a

detail of (h).
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vertices from multiple projections. As a result, the texture, shown in Fig. 11.5 (i), shows a very poor

quality. This approach is also incapable of executing a reasonable fusion of the visual information

from multiple projections.

The third option concerned the ranking, according to the quality function, of all the available

projections. Then, only the best ranked projection is texture mapped. Such approaches do not con-

template the fact that the best projection may not be able to map an entire primitive. For example,

from an observation of all the local meshes in Fig. 11.2, one could argue that the best quality mesh is

in fact the one provided by projection C{k=4,l=0,t=t2} (shown in Fig. 11.2 (c)). The problem is that if

(a)

(b)

(c)

(d)

Figure 11.5: Conditional adding of all the vertices in the local image meshes to produce a global

mesh. Projections are colored with a black to orange colormap: (a), (b) and (c), all the vertices used

as input to the global mesh with two, three and four projections, respectively; (d) the texture mapped

from the final stage of the global mesh.
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Figure 11.6: Mapping using triangle quality functions.

this mesh is used for texture mapping the left side of the primitive is left unmapped.

To avoid that problem, the fourth option listed concerned the ranking of triangles instead of the

complete projections. All triangles from all the local meshes are inserted onto the global mesh.

Whenever two triangles intersect, the one with the highest quality is kept and the other is discarded.

However, there is a problem: erased triangles often overlap other triangles in just a portion of their

area. When deleted, these triangles leave empty spaces where no texture is provided. This phenom-

ena is visible at the regions where triangles from one projection connect to triangles from another

projection. The resulting texture using this method is shown in Fig. 11.6. The untextured gaps at the

frontiers between projections make the overall quality of mapping insufficient.

In conclusion, none of the strategies seems to provide reasonable textures. Each have their own

problems. In the following section, we present the proposed approach for solving this problem. It

consists in a slightly more complex derivation of the fourth option, but, as will be shown, is capable

of generating higher quality textures.

11.3 Proposed Approach

This section addresses the problem of how to represent multiple projections, in particular what is

the proposed framework to deal with multiple projections over time. One issue that was deliberately

left out of the discussions and results of chapter 10 was the mission time. In section 10.3.3, the

deductions that end up in eq. (10.23) proposes an expression for the computation of the projection

polygon, where right side super indexes indicated a dependence over variables k, the primitive index

and l, the camera index. Under the assumption proposed in that chapter, that only a snapshot in time

was used for each scene reconstruction, e.g., mission time t = tp, then the projection polygon would

only be dependent on the camera and the primitive. This is why the projection polygon was notated as

h{k,l} in eq. (10.23). However, if we wish to generalize entirely and do not make the assumption that

t = tp, but rather that t ∈ [0,∞[, then an observation of eq (10.23) shows that the variable mission

time affects the transform from the vehicle to the world coordinate frames, VTt
W. This makes perfect

sense if one considers that the vehicle is moving around in a scenario. As the vehicle moves around

(and variable t increases), the transform VTt
W is constantly updated, to reflect the fact that the vehicle,
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and the onboard cameras, are in a different position in the world. As a consequence, the projection

polygon must be notated not as h{k,l} but instead as h{k,l,t}. This means that, a single camera l = lp

can generate multiple projections over a single primitive k = kp, as long as there is a difference in

variable t.

This insight is of particular importance to the framework that is going to be proposed. There is one

unique projection to each different set of the tuple {k, l, t}. The framework we propose is interesting

(a) (b)

(c) (d) (e)

(f ) (g) (h)

Figure 11.7: An example of overlapping projection polygons in multiple projections of the same mis-

sion time: (a) a 3D scene with the primitive k = 0 (in blue) and the image bounding polygons (black

to orange colormap); (b) the same scene with the projection polygons represented; (c) a detailed view

of (b); (d), (e), (f ), (g), (h), images from projections C{k=0,l=0,t=tp}, C{k=0,l=1,t=tp}, C{k=0,l=2,t=tp},

C{k=0,l=3,t=tp} and C{k=0,l=4,t=tp}, respectively.
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since it generalizes a projection using such a tuple. In doing so, all cases are considered, those that

were presented in chapter 10 and others where there is overlap between two or more projections to

the same primitive. Note that, under the proposed framework, there is no actual difference between

two overlapping projections from the same camera at different times, or two overlapping projections

from different cameras at the same time or even at different times. All cases are treated in the same

way.

Two examples are provided to show how projections are referenced. In the first example, shown in

Fig. 11.7, a polygon representing the ground plane (k = 0) is to be texture mapped using information

from all five cameras onboard the Talos l ∈ {0, 1, 2, 3, 4}. In this case, a single moment in time is

considered, thus t = tp. Projections are notated by the symbol C{k,l,t}. Figure 11.7 (a) shows the

scene around the robot, bounding polygon of the polygonal primitive P{k=0} shown in blue. The

image bounding polygons R{k=0,l={0,1,2,3,4},t=tp} (projected to 3D space) are shown in colors black

to orange. A black to orange colormap is used to color the projections as they are computed. Hence,

a black signaled primitive was computed first, and the orange was computed more recently. The

highest the color temperature, the more recent the primitive. Figure 11.7 (b) shows the projection

polygons H{k=0,l={0,1,2,3,4},t=tp} (in 3D space), using the same colormap. Figure 11.7 (c) shows

a detail of Fig. 11.7 (b). In both figures, overlapping of the projection polygons is clearly visible.

There are five projections, each corresponding to one of the cameras in the Talos. Actually, there are

five projections because each of the images from the cameras does have some portion of information

about the primitive in question. This remark is just to say that sometimes cameras do not generate

a projection. It is the case when the projection polygon does not exist, which occurs if there is

no intersection between the image bounding polygon and the primitive’s bounding polygon (see eq.

(10.21)). Figures 11.7 (d), (e), (f ), (g), (h) show the images for the front center (l = 0), front center 6

millimeter (l = 1), rear center (l = 2), front left (l = 3) and front right (l = 4) cameras respectively.

In this example it is shown that overlaps in the projection polygons of several cameras may occur,

even for a fixed mission time. In this case the ground primitive’s texture would have to be computed

using all five projections, that is, using information from projections C{k=0,l=0,t=tp}, C{k=0,l=1,t=tp},

C{k=0,l=2,t=tp}, C{k=0,l=3,t=tp} and C{k=0,l=4,t=tp}.

The second example is shown in Fig. 11.8. In this case, the vehicle travels from location C to

location D, sequence 1 of the Massachusetts Institute of Technology (MIT) data set. Images are feed

to the algorithm at three locations: location C, location D and an intermediate location between those

two. Figure 11.8 (b) shows the vehicle at each location. Only images from cameras front center

(l = 0) and front left (l = 3) are given to the algorithm. In this example, the primitive (index

k = 4) corresponds to the wall panel in front of the vehicle, represented in blue, on the left side of

Figs. 11.8 (a) and (b). Also, it is considered that the vehicle was at location C at mission time t0,

at the intermediate location at t = t1, and at location D at time t = t2. At location C (right side

vehicle in Fig. 11.8 (b)) both the front center and front left cameras are tested to see if they can
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(a)

(b) (c)

(d) (e) (f )

Figure 11.8: An example of overlapping projection polygons in multiple projections at different mis-

sion times t0, t1 and t2: (a) a 3D scene with the primitive k = 4 (in blue) and projection poly-

gons (black to orange colormap); (b) the vehicles position at times t0, t1 and t2, respectively from

right to left in the figure: (c), (d), (e), (f ), images from projections C{k=4,l=0,t=t0}, C{k=4,l=0,t=t1},

C{k=4,l=0,t=t2} and C{k=4,l=3,t=t2}, respectively.

generate a projection. However, since that, at location C, the vehicle is front facing the wall primitive,

only the front center camera generates a projection, projection C{k=4,l=0,t=t0}. The front left camera

does not view the primitive in question at that location. At the intermediate location (vehicle in the

middle of Fig. 11.8 (b)), the same occurs and a new projection is added, projection C{k=4,l=0,t=t1}.

At location D, the vehicle has turned right which makes so that both cameras view a portion of

the primitive. Projections C{k=4,l=0,t=t2} and C{k=4,l=3,t=t2} are added. Figure 11.8 (a) shows the

projection tuples at their corresponding position. The same black to orange colormap as that of the
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previous example is used. Image bounding polygons for each projection are also shown with the

same colormap. Figures 11.8 (c), (d), (e) and (f ) show the images for projections C{k=4,l=0,t=t0},

C{k=4,l=0,t=t1}, C{k=4,l=0,t=t2} and C{k=4,l=3,t=t2}, respectively. Also in this example there is a

significant overlap between the several projection polygons.

Using a tuple based on the identification of the primitive, the camera, and the mission time it is

possible to have a description of a unique projection. The term projection is understood as an image

captured from a camera that can be used to map some texture to the polygon. There are several

properties associated to a projection. By properties we mean variables that are used to describe the

projection or that are computed to execute the projection and stored in the projection data structure.

The previous three properties are obvious, but there are some others. All of them are listed in the

following lines:

• A primitive k to where the image should be projected to, defining the plane coefficients a, b, c

and d and the primitive’s bounding polygon p, P or P;

• A camera l that provided the image;

• A mission time t associated with the time in which the image was captured;

• The image captured by the camera at time t;

• An image bounding polygon r,R or R;

• A projection polygon h,H or H;

• A triangulated mesh t, T or T.

Note that right super indices are removed from some variables to simplify the notation, since it

is obvious in this case that variables depend on the projection and thus, of the {k, l, t} tuple. The

notation for symbols that was introduced before is kept: machine type small symbols, e.g., r, for R2

data in image space, handwritten symbols, e.g., R, for R3 data represented in 3D world coordinate

frames, and machine type capital symbols, e.g., R, for R2 data in the primitive’s local coordinate

frame.

Although the itemized list signals all possibilities of representation for some variables, e.g., r,

R or R, this does not mean all this representations are actually stored. In fact, typically, only one

representation is stored in memory and the others are computed when necessary (see section 10.3.3

for details on this topic).

11.3.1 Mapping Multiple Projections

Several possible approaches to the problem of how to handle multiple projections in the texture map-

ping of a primitive were described. Some approaches concerned the addition, conditional or not, of
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the vertices in the local meshes to compute a global mesh. These approaches are those which give

less interesting textures. Several reasons have been exposed when these approaches were analysed.

However, there is one which was not addressed and that is the most important. Local meshes are com-

puted using constrained Delaunay triangulations. These triangulations take as input a set of vertices

and a set of constraints. These are generated by a Hough line detection algorithm, that selects the

ideal constraints so that triangulated mesh contains triangles with smooth color transitions. Hence,

local meshes contain several triangles. The configuration of the mesh, that is, the triangles and the

edges, is defined so that the texture mapping operation is accurate. Different mesh configurations do

not ensure the same accuracy. Chapter 10 provides details on this subject. That being said, the atomic

unit for projection should be the triangles, since that Data Dependent Triangulation (DDT) ensure

that they map texture accurately. Vertices based approaches cannot guarantee that triangles are kept.

Thus, they also do not ensure that the local mesh configurations are passed to the global mesh. In

our opinion, this is the main reason why vertex based approaches show such poor texture mapping

performance.

The strategies with the best potential for obtaining accurate mappings seem to be the strategies

where triangles from the local meshes are added to the global mesh. The biggest problem in these

cases is that erased triangles often leave untextured regions between the borders where the primitives

overlap.

In this section, we present an algorithm that is capable of texture mapping primitives from multiple

projections. The philosophy behind the method is that, in order to ensure the most accurate texture

possible, local meshes’ triangles should be kept with the same configuration. In principle, this can

ensure an accurate texture.

Let M be the global triangulated mesh. Only a single global mesh exists per primitive. Like local

image meshes, the global mesh is also defined in R2. However, global meshes are defined in the

corresponding local primitive’s coordinate frame. This global mesh can also be viewed in 3D world

coordinates (M), or even projected to some image space (m). Note that it is not the same to refer a

local triangulated mesh represented in 3D (T ) or the global mesh represented in the same space (M).

While T notates the transform of a local image mesh (t) to 3D space, M notates the global mesh.

For simplification purposes, let the right super index j indicate a projection with an unique tuple. A

local triangulated mesh from projection j = {k, l, t} is notated as tj . Local triangulated meshes

contain T j number of triangles. Individual triangles are notated as tji , ∀i ∈ {0, 1, ..., T {k,l,t}}, when

indicating the ith triangle of the local mesh j, or notated as tj{v1,v2,v3}, in the case the vertices v1,

v2 and v3 are specified. Likewise, triangles in the global mesh are notated as Mn, ∀n ∈ {0, 1, ..., N},
where N is the number of triangles in the global mesh. When the vertices of the triangles are specified,

then the notation M{V1,V2,V3} is used.

The algorithm works by incrementally building the global mesh. The term incremental is used

since the global mesh is updated every time a new projection is used to refine it. The update of the
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global mesh with a new projection is executed by iterating over all triangles in the local projection

mesh. Each triangle may or may not update or refine the mesh. For each triangle tji , a set of operations

are executed. First, all the operations are listed. Later on, each will be described in detail.

• Map tji (in image space) to the primitive’s local coordinate frame (Tji ). This new triangle is

referred to as the candidate triangle;

• Assess if there is any overlap between the candidate triangle (Tji ) and any of the existing tri-

angles in the global mesh Mn, ∀n ∈ {0, 1, ..., N}. Compute a list of overlapping global mesh

triangles;

• Assess the benefit of inserting the candidate triangle to the mesh;

• If there is benefit, execute the insertion of the candidate triangle in the global mesh.

The first step is to compute what is called the candidate triangle. A local triangle is mapped

to the local primitive’s coordinate frame. In other words, each triangle tj{v1,v2,v3} is mapped to

Tj{V1,V2,V3}. Section 10.3.3 has described in detail how direct and inverse projection expressions are

used to transform points defined in the image coordinate space to points defined in the primitive’s

local coordinate frame, e.g., from t to T. Hence, no further details are required on this topic. Let

map be a function that transforms points in the image coordinate frame to points in the primitive’s

local coordinate frame. The mapping of a triangle from one space to the other is done by mapping

the vertices of the triangle:

Vo = map(vo), ∀o ∈ {1, 2, 3}. (11.1)

Using eq. (11.1) it is possible to map triangle tj{v1,v2,v3} to triangle Tj{V1,V2,V3} and thus generate

the candidate triangle.

The second step is to check whether the candidate triangle overlaps with any of already existing

triangles on the global mesh. Let intr(A,B) be a function that tests intersection between triangles A

and B. The test can be written as:

do_intersect = intr(Tj{V1,V2,V3},Mn), ∀n ∈ {0, 1, ..., N}, (11.2)

where N corresponds to the total number of triangles in the global mesh M. There are several ap-

proaches to triangle triangle intersection tests, that provide fast and efficient algorithms [Moller 1997]

[Chang & Kim 2009] [Sappa & García 2000].

In the particular application at hand the objective is to detect if there is overlap between the tri-

angles. Here, there is a distinction between overlap and intersection. In fact, what must be assessed

is whether or not an insertion of the candidate triangle onto the global mesh will affect the confi-

guration of the latest. To affect the existing configuration means to change the configuration of the

Miguel Armando Riem de Oliveira Ph.D. Thesis



338 11.Photometric Scene Refinement

already existing triangles. This is referred to as the overlap test. This concept is not the same as a

pure intersection test, since that there are some cases where the triangles do intersect but the mesh

configuration is not altered. The overlap test is based on a set of rules that analyse the output of the

intersection test. In our case, the intersection implementation in [Fogel et al. 2012] is used. Details

are provided in [Devillers & Guigue 2002]. This is a sophisticated implementation since it returns

not only whether or not the triangles intersect but also what are the geometric types computed from

the intersection. A triangle to triangle intersection can result in an empty set, whenever there is no

intersection, in a point, a line segment, or a polygon.

Figure 11.9 shows several examples. Consider the already existing global primitive mesh M to be

composed by a single triangle (depicted in blue in Fig 11.9). The candidate triangles are shown in

red. In each case, the geometries returned by the intersection function are as follows: an empty set

(d), points (a) and (e), line segments (b) and (f ), and polygons (c). If we consider the cases where the

insertion of the candidate triangle (in red) does not change the configuration of the already existing

global mesh (in this case, the initial global mesh is composed of a single triangle, in blue), we can

say that in case (a), (b) and (c) the mesh would be altered, and that, in cases (d), (e) and (f ) the mesh

would remain unaltered. This concept will be more easily understood when the triangle insertion

mechanism is presented. The overlap test is based on a set of rules that analyse the return of the

intersection function (intr), between candidate triangle Tji and global mesh triangle M{V1,V2,V3}. It

returns yes if the triangles overlap or no otherwise. Note that the algorithm does not consider the

possibility of degenerate triangles. These cases are handled previously. The algorithm is detailed in

eqs. (11.3), (11.4) and (11.5):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

no, if
(

intr
(
Tji ,M{V1,V2,V3}

)
= empty set

)
yes, if

(
intr

(
Tji ,M{V1,V2,V3}

)
= list of polygons

)
Go to (11.4), if

(
intr

(
Tji ,M{V1,V2,V3}

)
= pointsX : X = {X0,X1, ...,XN}

)
Go to (11.5), if

(
intr

(
Tji ,M{V1,V2,V3}

)
= line seg.L : L = {S0E0, ...,SNEN}

)
(11.3)

⎧⎨
⎩no, if

(
∃Vg : Vg = Xo

)
, ∀Vg ∈ {V1,V2,V3}, ∀o ∈ {0, 1, ..., N}

yes, otherwise
(11.4)

⎧⎨
⎩no, if

(
∃Vg : Vg = So, ∧∃Vh : Vh = Eo

)
, ∀Vg,Vh ∈ {V1,V2,V3}, ∀o ∈ {0, ..., N}

yes, otherwise
(11.5)

The third step is to assess the benefit of inserting the candidate triangle in the global mesh. Benefit

is understood as the improvement of the quality or extension of the area of the primitive that is texture
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Figure 11.9: The triangles overlap test: (a) intersection returns points, overlap true; (b) intersection

returns line segments, overlap true; (c) intersection returns polygons, overlap true; (d) intersection

returns empty, overlap false; (e) intersection returns points, overlap false; (f ) intersection returns line

segments, overlap false;
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mapped. When no overlap was detected between the candidate triangle and any of the triangles in

the global mesh there is no knowledge about the quality of the mesh at that location. If there is no

overlap, then the existing mesh will remain unaffected, in the way that existing triangles will remain

unchanged. In this case, the addition of the candidate triangle onto the global mesh is considered

beneficial. Although there is no information of the influence this operation will have the quality of

the mesh, it does extend the area of the mesh and thus, the area of the primitive that is texture mapped.

As a result, the rule is to consider the insertion of the candidate triangle as beneficial, whenever no

overlap is detected.

When the candidate triangle overlaps some of the triangles in the existing global mesh, then, the

benefit is evaluated using the quality functions. The quality functions were introduced in section

11.2. Here, we will use the notation q(Tji ) to denote the quality of the ith candidate triangle of the jth

projection, and q(Mn) to denote the quality of the nth global mesh triangle. The specific details of the

implementation and configuration of these quality functions will only be addressed in section 11.3.3.

For now, it is just necessary to assume that they are designed so that, for every triangle, they return

a normalized score. When q(Tji ) = 1, the quality is the best possible, and when the q(Tji ) = 0, the

quality is considered the worst possible. When the quality of the candidate triangle is larger than the

quality of all the triangles it overlaps, then it is considered that the mesh will increase its quality and

the insertion is considered beneficial.

Let L = {L0, L1, ..., LN} be the list of indices of the triangles from the global mesh M that are

overlapped by the candidate triangle. The overall algorithm used to to assess if the insertion of the

candidate triangle Tji is beneficial is shown in eq. (11.6):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

beneficial, if
(
L = empty set

)
otherwise

⎧⎨
⎩beneficial, if

(
q(Tji ) > α · q(MLg)

)
, ∀g ∈ {0, ..., N}

not beneficial, otherwise

(11.6)

where N is the number of existing triangles in the global mesh, and α ≥ 1 is a cost parameter. As will

be shown in the following lines, the insertion of the candidate triangle implies some computational

load, especially because the global mesh needs to be restructured. Since there are computational

costs involved in restructuring the mesh, the cost parameter is used to control how much better the

quality of candidate triangle must be to any other triangle it overlaps, in order for the insertion to be

considered beneficial.

Finally, the fourth step concerns the insertion of the candidate triangle. As observed in the pre-

vious lines, the insertion of the candidate triangle is only operated if there is no overlap between

the candidate triangle and the existing global mesh, or, when there is overlap, if the quality of the

candidate triangle is larger than that of the triangles it overlaps.

The global primitive mesh is built as a constrained Delaunay triangulation. Hence, a description of

the mesh contains a set of vertices, edges and constraints. The implementation from [Yvinec 2012]
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is used, since it allows an incremental meshing procedure. In other words, the toolbox contains a

description of the current mesh and allows several operations that change the configuration of the

mesh. Hence, it is possible to add and remove vertices, as well as add and remove constraints. Note

that the unconstrained edges are automatically computed by the algorithm. In fact, this is what makes

it a meshing algorithm.

The key objective of an insertion is that the candidate triangle’s configuration is preserved on the

updated mesh. However, if the candidate triangle does not ovelap any of the existing mesh triangles,

then the configuration of the existing mesh should also be preserved. On the other hand, if there are

some triangles that overlap the candidate triangle, that means (since an insertion operation has been

called) that the candidate triangle’s configuration should be preserved but that there is no need to

preserve the configuration of the overlapping triangles.

In order to comply with those objectives, several change operations must be done on the existing

mesh. We combine these into a set of sequential operations over the mesh that guarantee that the

objectives of the insertion are achieved. Figure 11.10 is be used to demonstrate the necessity of

the proposed set of operations, by comparing the proposed set of operations with other possibilities.

Figure 11.10 (a) shows a situation where an existing mesh should be altered with the insertion of

a candidate triangle (in red). It is clear that there is overlap between the triangles, so the objective

will be to execute a set of operations on the mesh that guarantee that the candidate triangles shape is

preserved. In this case, since the triangles overlap, the shape of the existing mesh triangle cannot be

preserved. We assume that the existing mesh was built from the insertion of a triangle from a different

projection. This implies that the triangle has all three edges constrained (blue squares, in Fig. 11.10

(a)). For now, it is not trivial to grasp why this is so. Think of the existing mesh triangles as triangles

that resulted from previous insertion operations. Once the complete insertion process is explained,

that conclusion will be clear.

Let insert(V,M) be a function that inserts vertex V into mesh M. At first sight, one might think

that a simple insertion of all the vertices of the candidate triangle Tj{Va,Vb,Vc} into the global mesh M

would be sufficient:

M∗ = insert
(
V,M

)
, ∀V ∈ {Va,Vb,Vc}, (11.7)

where M∗ is the updated mesh. Figure 11.10 (b) shows the updated mesh after the insertion of the

three vertices, indices 4, 5 and 6 (see vertices indices in the Fig. 11.10). The updated mesh does not

preserve the configuration of the candidate triangle. In other words, there is no triangle with vertices

4,5,6 in the updated mesh. The expression that asserts if the configuration of the candidate triangle is

preserved can be stated as follows:

Tj{Va,Vb,Vc} is preserved, if
(
∃M∗{Vd,Ve,Vf} ∈ M∗ : Vd = Va ∧ Ve = Vb ∧ Vf = Vc

)
. (11.8)
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One of the reasons why the simple insertion of the vertices does not work is that the existing

mesh had some constrained edges. After the mesh is updated, these constraints continue to exist (see

squares on edges 1-2, 2-3, and 1-3 in Fig. 11.10 (b)). The configuration of the candidate triangle

is not kept because no constraints over the edges of that triangle are set. Hence, the second alter-

native is to execute an additional operation on top of the insertion of vertices Va, Vb and Vc. Let

add_constraint(e,M) be a function that adds a constraint on edge e. The operation can be expressed

as follows:
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Figure 11.10: The insertion operation: (a) candidate triangle and initial mesh; (b) insertion of candi-

date triangle’s vertices; (c) insertion of the candidate triangle’s vertices and constraints; (d) prepara-

tion of the mesh followed by the insertion of the candidate triangle’s vertices and constraints.
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M∗ = add_constraint
(
e,M

)
, ∀e ∈ {Va-Vb,Vb-Vc,Va-Vc}. (11.9)

Figure 11.10 (c) shows the updated mesh after this procedure is executed. Also in this case

the configuration of the candidate triangle is not preserved. The reason is that there are conflicting

constraints inserted in the mesh. For example, initially, the global mesh had a constraint over edge

1-2 (see indices in Fig. 11.10). At the same time the constraint Va-Vb is inserted into the mesh. Since

these two constraints intersect, a new vertex is created at the intersection point (vertex 7). Since a

vertex is created at the intersection of the two initial constrained edges, four new edges are created

(edges 4-7, 7-8, 1-7 and 7-10). All of these edges are constrained. From Fig. 11.10 (c), one can see

that the overal result of this approach is that neither the candidate triangle nor the existing mesh is

preserved. The reason is that contradictory (intersecting) constraints are inserted in the mesh.

The proposed approach is to execute a preparation of the mesh before the new vertices and con-

straints are inserted. The problem in the previous alternative was that there were intersecting con-

straints. Since the key objective is to preserve the configuration of the candidate triangle, it is feasible

to assume that the constrained edges of the candidate triangle should impose over the constraints

of the existing mesh. The solution is to compute the intersection between constrained edges and to

remove the constraints from the global mesh, before inserting the vertices and constraints of the can-

didate triangle. This is referred to as the mesh preparation stage. After this stage is complete, the

global primitive mesh is referred to as prepared global primitive mesh. Let E = {e0,e1, ...,eN , }
be the list of the global mesh constrained edges that intersect any of the candidate triangle’s edges,

and remove_constraint(e,M) a function that removes the constraint from edge e in the mesh M. The

prepared mesh M′ is obtained as follows:

M′ = remove_constraint
(
e,M

)
, ∀e ∈ E, (11.10)

and the second stage of the proposed approach is to execute the operations described in eqs. (11.7)

and (11.9) on the prepared mesh.

Fig. 11.10 (d) shows the results of this approach. The mesh preparation stage detected the follow-

ing intersections (indices in Figs. 11.10 (a) and (d)): Va-Vb intersects with V1-V2, Va-Vb intersects

with V1-V3, Vb-Vc intersects with V1-V2 and Vb-Vc intersects with V1-V3. As a result, the constraints

of edges V1-V2 and V2-V3 are removed. Note that in Fig. 11.10 (d), the prepared mesh (not the initial

global mesh) is shown in blue, and those constraints no longer appear. More important, the candidate

triangle’s configuration is preserved (triangle 4-5-6). In this particular case, the initial configuration of

the mesh is lost, since there was overlap between the candidate triangle and the initial mesh triangle.

The proposed procedure for the insertion of triangles is capable of preserving the configuration of

candidate triangles. In the following sections, several examples are given that show the flexibility of

the proposed approach in more complex meshes.
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11.3.2 Sequential Updating of Complex Meshes

Section 11.3.1 described the proposed mechanism for the insertion of candidate triangles in an exist-

ing mesh. It was also explained that candidate triangles are only inserted into the mesh if they do not

overlap any triangle with a higher quality. This section will show some more complex examples of

the overall mesh refinement algorithm in action.

Suppose an initial mesh M, created by previous projections, that contains seven vertices and six

triangles. It is referred to as mesh at iteration j = 0. Now suppose there are three new projections

available to map to the initial mesh Cj=1, Cj=2, Cj=3. Here, the super indexes j could be mapped to

any {k, l, t} projection tuple, provided each tuple is unique, i.e., these are different projections. Each

projection contains a single triangle to map to the global mesh. Triangles T1{Va,Vb,Vc}, T2{Vd,Ve,Vf} and

T3{Vg ,Vh,Vi}, correspond to projections Cj=1, Cj=2, Cj=3, respectively. Initially, candidate triangle

T1{Va,Vb,Vc} is mapped to the initial global mesh M, which results in a new mesh M∗. Then, the second

candidate triangle T2{Vd,Ve,Vf} is inserted into the new mesh M∗, resulting in the updated mesh M∗∗.

The process is repeated for the remaining candidate triangles.

In this example the quality of each triangle, which will be referred to as q, is:

q
(
Mn
)
< q

(
T1{Va,Vb,Vc}

)
< q

(
T2{Vd,Ve,Vf}

)
< q

(
T3{Vg ,Vh,Vi}

)
∀Mn ∈ M, (11.11)

and the mesh update cost parameter is α = 1, which means that there is no cost associated to the

updating of the mesh (see eq. (11.6)). In other words, all three candidate triangles are selected

beneficial for insertion since that, even if they overlap, they are sure to have better quality than any

other already existing triangles. The initial mesh is shown in Fig. 11.11 (a), along with the three

candidate triangles.

Figure 11.11 (b) shows the mesh after the insertion of the first candidate triangle, i.e., M∗. Since

there is no overlap (according to the definition of overlap in section 11.3.1), the candidate triangle is

added to the mesh (M∗{4,5,8}), and edges M∗{4-5}, M∗{5-8}, and M∗{4-8} are constrained. Also, since there

was no overlap detected, the initial configuration of the mesh is preserved.

The second insertion is shown in Fig. 11.11 (c). In this case, there is overlap between candidate

triangle T2{Vd,Ve,Vf} and triangle M∗{2,5,7} (seen in Fig. 11.11 (b)). From eq. (11.11), it is possible to

conclude that:

q
(
M{2,5,7}

)
< q

(
T2{Vd,Ve,Vf}

)
, (11.12)

and from the observation of Figs. 11.11 (a) and (b), it is also clear that:

M{2,5,7} = M∗{2,5,7}, (11.13)

and thus, that:
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Figure 11.11: The insertion operation, example 1: (a) candidate triangles and initial mesh M; (b) first

insertion, mesh M∗; (c) second insertion, mesh M∗∗; (d) third insertion, mesh M∗∗∗.

q
(
M{2,5,7}

)
= q

(
M∗{2,5,7}

)
, (11.14)

which results in the following:

q
(
M∗{2,5,7}

)
< q

(
T2{Vd,Ve,Vf}

)
. (11.15)

Since the quality of the candidate triangle is higher than the quality of the overlapping triangle,

T2{Vd,Ve,Vf} should be inserted to the mesh. In terms of intersections, an intersection between edges

Vd-Ve and edge M∗{5-7} (seen in Fig. 11.11 (b)), is detected. As a result, the constraint from edge
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M∗{5-7} is removed. The insertion results in a new triangle M∗∗{9,10,11}. Note also that the overlapping

triangle M∗{2,5,7} was not preserved, i.e., it does not exist in the new mesh M∗∗.

Finally, the third insertion detects that triangle T3{Vg ,Vh,Vi} overlaps triangles M∗∗{3,4,5}, M∗∗{4,5,8} and

M∗∗{2,3,5}. With regards to triangles M∗∗{3,4,5} and M∗∗{2,3,5}, since they existed in the initial mesh, a similar

deduction to that presented in eqs. (11.12) to (11.14) may be applied, which leads to:

q
(
M∗∗{3,4,5}

)
< q

(
T3{Vg ,Vh,Vi}

)
, (11.16)

and to:

q
(
M∗∗{2,3,5}

)
< q

(
T3{Vg ,Vh,Vi}

)
. (11.17)

With regards to triangle M∗∗{4,5,8}, from the observation of Fig 11.11 it is possible to conclude that:

M∗∗{4,5,8} = T1{Va,Vb,Vc}, (11.18)

and thus, that:

q
(
M∗∗{4,5,8}

)
= q

(
T1{Va,Vb,Vc}

)
, (11.19)

which, based on eq. (11.11), results in:

q
(
M∗∗{4,5,8}

)
< q

(
T3{Vg ,Vh,Vi}

)
. (11.20)

Hence, the candidate triangle T3{Vg ,Vh,Vi} has a larger quality than all the triangles it overlaps. This

is why this candidate triangle is also marked for insertion. Edges M∗∗{3-4}, M∗∗{4-5} and M∗∗{3-5} intersect the

edges of T3{Vg ,Vh,Vi} which is why their constraints are removed (actually, in this case they disappear

after the candidate triangle is inserted).

The insertion of candidate triangles sometimes creates not only the candidate triangle itself, but

also some additional triangles on the mesh. For example, in Fig. 11.11 (c), the insertion of T2{Vd,Ve,Vf}
causes the removal of triangle M∗{2,5,7}, and the addition of a triangle M∗∗{9,10,11}, which is a copy of the

candidate triangle. However, there are also other triangles that did not existed previously on the mesh

M∗ but occur in mesh M∗∗. It is the cases of triangles M∗∗{2,5,9}, M∗∗{5,9,11}, M∗∗{5,8,11}, M∗∗{2,6,9}, M∗∗{2,6,9},

M∗∗{6,7,9} and M∗∗{7,9,10}.

In section, 11.2, several alternatives to the implementation of projection quality functions are dis-

cussed. These functions provide the quality of a triangle, using as input the projection that generated

it. In other words, the input for computing the quality associated with each triangle is based on the

{k, l, t}, primitive, camera, time, tuple. The problem is that meshes have two types of triangles. Some

have a parent projection, for example triangle M∗∗{9,10,11} = T2{Vd,Ve,Vf} has as parent projection Cj=2.

But there are some others that are created automatically and hence have no projection associated to
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them. It is the case, for example, of triangle M∗∗{7,9,10}. We refer to this type of triangles as orphan

triangles, meaning they have no parent projection. The problem is that, since the quality functions

require as input the {k, l, t} of the projection, they cannot be computed for orphan triangles.

Figure 11.12 shows the same sequence of insertion as in Fig. 11.11. The status of the triangles

with respect to their parent projection is shown. Initially, it is assumed that all the triangles in the

mesh correspond to projection 0, i.e., to Cj=0. This is why in Fig. 11.12 (a) all triangles are marked

in blue. After the first insertion, Fig. 11.12 (b), since there was no overlap, the existing triangles

(a) (b)

(c) (d)

Figure 11.12: The projection parent status of each triangle (same example as in Fig. 11.11): (a)

candidate triangles and initial mesh M; (b) first insertion, mesh M∗; (c) second insertion, mesh M∗∗; (d)

third insertion, mesh M∗∗∗.
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are not altered, which is why they continue to belong to Cj=0. The inserted triangles are marked

to belong to projection Cj=1. The second insertion, Fig. 11.12 (c), destroys some triangles from

projection Cj=0 and creates some new ones. All these triangles are left orphan of projection. The

third insertion removes not only some triangles from projection Cj=0, but also destroys the triangle

from projection Cj=1.

As seen, the sequential insertion of triangles can cause some of the triangles in the mesh to be

left without a projection parent. Suppose that now that fourth insertion is to be made over mesh M∗∗∗,

and that the fourth candidate triangle T4 is positioned so that it overlaps triangles M∗∗∗{2,6,9}, M∗∗∗{6,7,9}
and M∗∗∗{7,9,10}. This is shown in Fig. 11.13. Since those overlapping triangles are projection orphans,

it is not possible to compute their quality with respect to a projection. Unlike triangles with parent

projections, these triangles do not derive directly from a triangle computed in the image space of some

projection. In other words, they do not derive from the DDT triangulation executed over an image of

some projection. Because of this, there is no guarantee that these orphan triangles are compliant with

edges in the projection images.

For this reason, we propose that orphan triangles are set to have the quality -1. Since the quality

function that is computed over triangles with parent projections returns values in the interval [0, 1],

the effect this has on the algorithm is that orphan triangles are there to fill the gaps left unmapped by

real projections, but are considered to have such poor quality that any triangle from any projection

will have a higher quality. This mechanism achieves a very interesting effect of filling the holes left

by the projections. In Fig. 11.6 these gaps are visible.
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Cand. T4 vertices
Cand. T4 edges

(a) (b)

Figure 11.13: Insertion over orphan triangles (same example as in Fig. 11.11): (a) candidate triangles

and initial mesh M∗∗∗; (b) the same as in (a) but with the color of each triangle associated to the

corresponding parent projection.
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In conclusion, the proposed approach for the update of a global primitive mesh consists of a set of

procedures that are capable of updating the mesh whenever new, better quality triangles are available

for insertion, but at the same time the mechanism is capable of filling the gaps left empty using orphan

triangles. Several textured primitives using this algorithm will be shown in section 11.4, where it will

be shown that this algorithm generates view pleasant textures, which did not occur in the approaches

mentioned in section 11.2.

11.3.3 Projection Quality Functions

Previous sections have described the proposed mechanism used to refine a primitive’s global mesh.

The mechanism consists of inserting candidate triangles on the existing mesh. A candidate triangle

should be inserted into the mesh if its projection quality is higher than the quality of all the triangles

it overlaps. In the previous sections, the projection quality of triangles was an abstract concept. In

this section, it will be discussed how the projection quality of a triangles can be computed.

The first task is to define the concept of the projection quality of a triangle. One could say that a

triangle is more adequate for projection, i.e., has a better projection quality, if the textured primitive

that results from mapping the portion of the image contained by the triangle has in turn a good quality.

However, the decision on whether a candidate triangle has good quality or not must be made prior to

the mapping of that triangle into the global primitive mesh. In other words, the quality of the triangle

must be estimated. The information available to each candidate triangle is related to the projection

of its parent. A projection as the notation C{k,l,t}, where k is the index of the primitive to which the

projection’s triangles are to be mapped, l is the index of the camera that provided the image, and t is

the mission time at which the image was acquired by the camera. Hence, the quality function q of a

triangle T{k,l,t}, that belongs to projection C{k,l,t} can be written as:

q
(
T{k,l,t}

)
= f
(
k, l, t

)
. (11.21)

The interesting point is that under the proposed mechanism for the management of the update of

global primitive meshes is very flexible. Several criteria may be proposed, according to the require-

ments of the mission or the desired characteristics of the representation.

This work is done under the assumption that the environment around the vehicle is geometrically

static. This means that the geometric shape of the objects does not change over time, nor there are

moving obstacles in the environment (or, if there are, they can be filtered a priori, see chapter 8 for

a discussion on this topic). However, a geometrically static environment may not be photometrically

static. Immediately, the iconic pictures of the Times Square, New York City, come to mind (Fig.

11.14). The electronic advertising panels, although in the same position and with the same geometry,

change their photometric appearance periodically. In such a case, one could design a quality func-

tion that accounted only for the time variable of the projection, giving preference (higher quality) to
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Figure 11.14: Times Square: example of a photometrically non static environment.

projection images that are acquired more recently.

q
(
T{k,l,t}

)
=

Δtmax −min
(
tcurrent − t,Δtmax

)
Δtmax

, (11.22)

where t is the time at which the image from projection C{k,l,t} was acquired, tcurrent is the current

time, i.e., the time in which the projection is actually being mapped, min is a function that return

minimum or the two arguments, and Δtmax the maximum time window from which all the projections

have an equally bad quality value. In other words, Δtmax is a saturation value for the maximum time

difference allowed to the difference tcurrent − t.

Another situation that may occur is that one camera has a better quality than another. Suppose

that the vehicle contains only two cameras, camera l = 0, and camera l = 1, and that for some reason

camera l = 0 always provides much better quality images when compared to those of camera l = 1.

One reason could be for example that camera l = 1 is not well focused, or that its images have a

great deal of flickering. If this is known, a preference can be established before hand, and the quality

mapping function can be devised to reflect this:

q
(
T{k,l,t}

)
=

⎧⎨
⎩1, if(l = 0)

0, if(l = 1)
(11.23)

The quality function can also be computed from an analysis of the image used for the projection.

In Fig. 11.15 (a) a given projection contains an image that was taken when the camera was facing

a road. The sun is hidden behind the trees, which is why the image does not present shadows or

saturated colors. Figure 11.15 (b) shows an image from a second projection. Although the camera is

the same in both projections, since the vehicle moved a bit to the front, the image from the second

projection is directly facing the sun. As a consequence, the image shown in Fig. 11.12 (b) contains
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(a) (b)

Figure 11.15: Example of images from two different projections but from the same camera: (a) image

with good quality; (b) image with bad quality.

several shadows and saturated regions. The same camera can provide images with very different qual-

ities, in different projections. In this case, the projection quality function could reflect the outcome of

an image processing analysis made on the image of projection.

q
(
T{k,l,t}

)
= processing

(
I{k,l,t}

)
, (11.24)

where I{k,l,t} is the image of projection {k, l, t}, and processing is an image processing procedure

that would provide a measure of how many shadows there are in the image, or of how saturated its

colors are.

Although interesting in theory, the previous approaches could be difficult to implement in practice.

The most straight forward solution, and perhaps the most logical, is to assume that a projection has a

higher quality whenever it is capable of providing an image of the primitive with a higher resolution.

Note that this is not directly related to the size of the triangles computed in image space. Since a

DDT triangulation is used, large triangles can exist because they represent smooth color surfaces. But

the key is that, if an image from a projection contains a large number of pixels that are a view of the

primitive, then the image should have large quality. On the other hand, if the portion of the image

that views the primitive has a small number of pixels, the projection quality of the image should not

be so good. Figure 11.16 (a) shows a scene with four projections over the primitive in front of the

vehicle (k = 4). The vehicle is traveling from the right to the left of the scene. At time instant t1

the vehicle is at the position on the right, and captured images with its front center camera, projection

C{k=4,l=0,t=t1}, and from its front 6 millimeter camera C{k=4,l=1,t=t1}. At instant t2 the vehicle

is on the position on the left, and again captured images using its front center camera, projection

C{k=4,l=0,t=t2}, and from its front 6 millimeter camera C{k=4,l=1,t=t2}. The images from projections

C{k=4,l=0,t=t1}, C{k=4,l=1,t=t1}, C{k=4,l=0,t=t2} and C{k=4,l=1,t=t2} are shown in Figs. 11.16 (b),
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(a)

(b) (c)

(d) (e)

Figure 11.16: Quality functions for multiple projections at different mission times t1 and t2: (a) a 3D

scene with the primitive k = 4 (in blue) and the vehicle’s position at times t1 and t2, respectively from

right to left in the figure: (c), (d), (e), (f ), images from projections C{k=4,l=0,t=t0}, C{k=4,l=0,t=t1},

C{k=4,l=0,t=t2} and C{k=4,l=3,t=t2}, respectively.

(c), (d) and (e), respectively.

In a first example, let us focus only on the projections generated by the front center camera

(l = 0). From the analysis of Figs. 11.16 (b) and (d) it is possible to conclude that the projection

C{k=4,l=0,t=t2} seems to have a higher quality when compared to C{k=4,l=0,t=t1}. The reason is that

there is a higher resolution view of polygonal primitive. This is caused by the fact that the image of

projection C{k=4,l=0,t=t2} was acquired at time t2, and that the camera was closer to the primitive

k = 4 at time t2, than at time t1. We propose to evaluate the quality of the projection (and thus of the

triangles to which it is parent) by measuring the distance between the position of the camera at the

time of projection and the local primitive’s coordinate frame. In Fig. 11.16 (a), the local coordinate
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frames of each cameras at times t1 and t2 are shown as the small (red-green-blue) reference system

on the roof of the vehicle. The local primitive coordinate frame is shown also as a red-green-blue

reference system located near the primitive. In section 10.3.3 the different coordinate frames involved

in the reconstruction algorithm were presented and discussed. In sum, the there is a coordinate frame

for each camera, a coordinate frame for the vehicle, the world, and a local coordinate frame for each

primitive. The origin of the coordinate frame of camera l, i.e., a point Cl
p = [0, 0, 0]) viewed in the

camera l local coordinate frame, can be viewed from perspective of the coordinate frame of primitive

k, at time t (Pk
p) is given by:

Pk

p = Cl

TV · VTt
W · WTP · Cl

p, (11.25)

and the distance between both coordinate frames is given by the difference between the origin of the

primitives local coordinate frame (Pk
o) and Pk

p. Since the coordinates of (Pk
o), when viewed at the

local coordinate system of polygon Pk are located at the origin, then Pk
o = [0, 0, 0], and the distance

(D) between those points is obtained by:

D = dist
(

Pk

p, Pk

o
)
= ‖Pk

pi‖, (11.26)

where dist is a function that computes the Euclidean distance between two points. One solution could

be to define the quality of the projection based on this distance:

q
(
T{k,l,t}

)
= 1− min

(
D{k,l,t}, Dmax

)
Dmax

, (11.27)

where Dmax is the maximum distance allowed, a saturation value from which all distances have equal

zero quality, and D{k,l,t} is obtained for each projection using eq. (11.26).

The quality function presented in (11.26) works for images that have similar focal distance. Since

D{k=4,l=0,t=t2} < D{k=4,l=0,t1}, the function would return a higher quality for the projection showed

in Fig. 11.16 (d), when compared to the projection shown in Fig. 11.16 (b), which makes sense.

However, if other cameras are involved, especially other cameras which have different focal dis-

tances, the solution presented in eq. (11.27) would not work. For example, consider only two pro-

jections: C{k=4,l=0,t=t2}, shown in Fig. 11.16 (d) and C{k=4,l=1,t=t1}, Fig. 11.16 (c). A visual

analysis would lead to the conclusion that C{k=4,l=1,t=t1} has higher quality. However, since that

D{k=4,l=0,t=t2} < D{k=4,l=1,t1}, the criteria proposed in eq. (11.27) would give the opposite result.

This is because of the fact that camera l = 1 has a higher focal distance than camera l = 0. Thus, we

propose to extend eq. (11.27) using also the focal distance of each camera:

q
(
T{k,l,t}

)
=
(
1−

min
( f l

fmax
D{k,l,t}, Dmax

)
Dmax

)
, (11.28)

where f l is the focal distance of camera l, and fmax is the largest focal distance amongst all cameras
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used for representing the environment.

This section presented several possible solutions for the computation of projection quality func-

tions. The flexibility of the proposed approach was shown by the vast range of possibilities that may

be used for the quality functions, and how this choice may influence the obtained representation. In

the particular case of the MIT data set, the Talos vehicle contains five cameras, and the results that

will be presented in section 11.4 use the projection quality functions proposed in (11.28).

11.4 Results

In this section several results will be shown that prove the concept of the refinements of photometric

primitives. Several examples are given, to show the flexibility of the proposed algorithm. As already

discussed in section 10.4, there is no ground truth available in the MIT data set. To the best of our

knowledge, excluding simulation setups, there are no data sets available that contain geometry as

well as texture ground truth. At least, no data sets that are comparable to the MIT data set, both in the

amount of data and the variety of sensors. Because of this, it is not possible to present quantitative

results. Hence, in the examples that follow, several qualitative results are presented.

11.4.1 Texture Improvement Over Multiple Projections

The first result is collected from sequence 1 of the MIT data set. The vehicle is approaching a wall

panel, which has the word start written on it. It is shown in Fig. 11.17. A single primitive, the

one representing the wall, is considered in this representation (k = 4). Only the cameras front

center (l = 1) and front left (l = 3) are used for generating projections. Projections are generated

at three different times, t1, t2 and t3. At time t1, the front left camera does not see the primitive.

Hence, only the projection containing the front center camera image is generated. This is projection

C{k=4,l=1,t=t1}, shown in black in Fig. 11.17 (a). At time t2 the vehicle as moved forward a little bit.

The front left camera still does not view the primitive so only projection C{k=4,l=1,t=t2} is generated.

It is shown in red in Fig. 11.17 (a). At time t3 the vehicle has moved forward and turned slightly to

the right. As a consequence, the front center camera views only a right side portion of the primitive,

projection C{k=4,l=1,t=t3}. It is shown in orange in Fig. 11.17 (a). Since the vehicle has turned to

the right, the front left camera now views a left side portion of the primitive, generating projection

C{k=4,l=3,t=t3}. It is shown in yellow in Fig. 11.17 (a).

Images from projections C{k=4,l=1,t=t1}, C{k=4,l=1,t=t2}, C{k=4,l=1,t=t3} and C{k=4,l=3,t=t3}

are shown in Figs. 11.17 (b), (c), (d) and (e), respectively. For each projection, a local mesh is

computed in image space using DDT triangulations. Local triangulated meshes are shown in Figs.

11.17 (b), (c), (d) and (e). Note that, for a better visualization of the mechanism, triangulated meshes

are purposely configured to generate large triangles. This observation is valid throughout this entire

section, whenever triangulated meshes are visualized.
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(a)

(b) (c)

(d) (e)

Figure 11.17: Computing a representation for a vertical wall: (a) a 3D view; (b) camera front center

projection at time t1, black color; (c) camera front center projection at time t2, red color; (d) camera

front center projection at time t3, orange color; (e) camera front left projection at time t3, yellow

color;

Figure 11.18 shows the evolution of the global triangulated mesh over time. At time t1, only

projection C{k=4,l=1,t=t1} is available to compute the global mesh. Hence, the global mesh is com-

posed only of triangles with parent projection C{k=4,l=front center,t=t1} and eventually of some or-
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phan triangles (11.18 (a)). At time t2, a new projection C{k=4,l=1,t=t2} becomes available. The

global mesh is then updated using this new information (11.18 (b)). Note that since the image of

projection C{k=4,l=1,t=t2} is acquired when the vehicle is closer to the wall (by comparison with

C{k=4,l=1,t=t1}), the quality of the triangles of mesh C{k=4,l=1,t=t2} is better. As a consequence, the

global mesh now contains a majority of triangles from C{k=4,l=1,t=t2}. Since two projections are

added, let us consider two separate stages at time t3. The first stage regards the insertion of projection

C{k=4,l=1,t=t3}. Since that the image from this projection was acquired closer to the wall primitive,

most of the local triangles in C{k=4,l=1,t=t3} are mapped to the global mesh. However, since only a

right side portion of the primitive is seen, the left side of the primitive retains triangles from previous

projections (Fig. 11.18 (c)). Note that orphan triangles (in blue) are generated to fill the gaps between

the triangles with parent projections. The second stage of time t3 concerns the insertion of projection

C{k=4,l=3,t=t4}, which views only the left portion of the wall primitive. Again, since the front left ca-

mera (l = 3) is very close to the primitive at time t = t3, most of the local mesh triangles are inserted

onto the global mesh (Fig. 11.18 (d)). Again orphan triangles fill the gaps between projections.

The resulting textured primitive is show in Fig. 11.19. At time t1, the texture was provided by

(a)

(b)

(c)

(d)

Figure 11.18: The evolution of the global primitive’s mesh. (a) time t = t1; (b) time t = t2; (c) time

t = t3, insertion of front center camera; (d) time t = t3, insertion of front left camera.
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an image captured with the camera very far away. As a result, the texture is blurred and with small

resolution (Fig. 11.19 (a)). At time t3, a projection is added where the resolution increases slightly,

which is why the texture presented in Fig. 11.19 (b) is less blurred. At time t3, first stage the right

side of the primitive is mapped with a much higher resolution (Fig. 11.19 (c)). Finally, at time = t3,

second stage the left side of the primitive is also mapped with high resolution texture. In section 11.2,

Fig. 11.6 showed a similar approach to the proposed one. However, in that case, the visual quality

of the computed textures where deteriorated by the gaps on the connections of different projections.

The orphan triangle mechanism provides a solution for this problem and contrives to the generation

of higher quality textures.

The quality functions provide an efficient mechanism that drives the global mesh towards good

quality textures, by selecting which triangles from local meshes should be mapped to the global mesh.

Suppose for example that the scene presented in Fig. 11.17 had occurred in inverse order. Instead

of approaching to the wall primitive, the vehicle would actually be driving backwards moving away

from the primitive. In this case, the textured primitive generated at the first instant, when the vehicle

was closer to the primitive would be similar to the texture shown in Fig. 11.19 (d), with a global

(a)

(b)

(c)

(d)

Figure 11.19: The evolution of the global primitive’s texture. (a) time t = t1; (b) time t = t2;; (c)

time t = t3, insertion of front center camera; (d) time t = t3, insertion of front left camera.
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mesh similar to that of Fig. 11.18 (d). In subsequent projections, the images would be collected with

the camera further away from the primitive, and the local mesh triangles would have less quality.

As a consequence, the initial texture would be maintained since no better quality triangles would be

provided to refine the global mesh.

11.4.2 Evolution of the Global Primitive Mesh

In the next example, we consider a similar scene to the one presented in Fig. 11.17 (a). Throughout

the three time instants t = t1, t = t2 and t = t3, the vehicle is moving forward. From t1 to t2

the vehicle drives straight, and from t2 to t3 the vehicle turns slightly to the right. In this case the

primitive that represents the ground plane is used for texture mapping (k = 0). As a consequence,

there is always a portion of the images from the projections that view the ground. In other words, at

all instants any of the cameras view a portion of the ground, since they are pointed downwards. We

will consider three different cases, each generating a unique scene representation:

• In the first case only the front center camera (l = 1) is used for projection. Hence there will be

three projections: C{k=0,l=1,t=t1}, C{k=0,l=1,t=t2} and C{k=0,l=1,t=t3}.

• In the second case only the rear center camera (l = 4) is used for projection. Hence there will

be three projections: C{k=0,l=4,t=t1}, C{k=0,l=4,t=t2} and C{k=0,l=4,t=t3}.

• In the third case only the front left camera (l = 3) is used for projection. Hence there will be

three projections: C{k=0,l=3,t=t1}, C{k=0,l=3,t=t2} and C{k=0,l=3,t=t3}.

The final global primitive meshes (those obtained after inserting projections at times t1,t2 and t3)

for each case are displayed in Fig. 11.20 (a), (b) and (c), for cases one, two and three, respectively.

Fig. 11.20 (a) shows the distribution of triangles according to the parent projection. In this case,

the images are provided by the front center camera. This camera, as its name suggests, is facing the

front of the vehicle. As the vehicle moves forward, the ground in front of the vehicle that has been

previously mapped by other projections is now visible in images at a closer range. The effect this has

on the distribution of triangles according to their parent projection is that more recent projections tend

to override older projections. This is why in Fig. 11.20 (a) the red color (projection at t2) overrides

the black color (projection at t1), and the yellow color (projection at t3) overrides any of the previous

two.

The second case is shown in 11.20 (b). Here, since the camera is facing the rear side of the

vehicle, the opposite phenomena occurs: since the vehicle is moving away from the ground behind

it, older projections were taken at closer distances. As a consequence, the red color (projection at t2)

overrides the yellow color (projection at t3), and the black color (projection at t1) overrides any of the

previous.
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(a) (b)

(c)

Figure 11.20: Global primitive meshes for three different cases of mapping of a single camera to the

ground plane primitive: (a) front center camera; (b) rear center camera; (c) front left camera; Colors

denote the projection instant: t1 black, t2 red and t3 yellow.

Figure 11.20 (c) shows the third case. Here, since the camera is facing the left side of the vehicle,

a hybrid phenomena takes place. For each projection, there is always a portion of the triangles, i.e.,

those that map the ground directly in front of the camera at that instant, that have a higher projection

quality than any others.

Figure 11.21 shows the images from all projections displayed in Fig. 11.20, as well as the local

triangulated meshes. Figure 11.22 shows the percentage of triangles each projection contains in the

global primitive mesh, as a function of the mission time.

Figure 11.22 (a) shows the results for the front center camera. At time t1, only triangles from

the first projection (black) and orphan triangles (blue) exist. Then, at time t2, the triangles from the

second projection (red) are added to the global mesh. As a consequence, the percentage of triangles
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Figure 11.21: Images and local triangulated meshes for all projections shown in Fig. 11.20: Left

column, front center camera (Fig. 11.20 (a)); Middle column, rear center camera (Fig. 11.20 (b));

Right column, front left camera (Fig. 11.20 (c)); First row: time t1; Second row: time t2; Third row:

time t3;

from the first projection (black) decreases dramatically. At time t3, the third projection again takes

the major slice of percentage and the previous two projections decrease. This results were expected

behaviour from the analysis of Fig. 11.20 (a). In front facing cameras (when the vehicle is moving to

the front), more recent projections tend to contribute with a larger portion of the total triangles in the

global mesh.

In the case of rear facing cameras (again, when the vehicle is moving towards the front), less recent

cameras will tend to contrive the majority of the triangles in the global mesh. This is observable in

Fig. 11.22 (b), where the first projection (black) is, at all times, the one with the largest percentage of

triangles. Whenever a new projection is added (second projection in red at time t2 or third projection

in yellow at time t3) it always gets a smaller portion than any of the previous projections.

In the case of the front left facing cameras, Fig. 11.22 (c), there is a hybrid phenomenon as

discussed before. The percentage of projections tends to be the same for all projections, which is why

the second projection (red) when first mapped at time t2 achieves approximately the same percentage

of triangles as the first projection (black). They continue to have similar percentages also at time t3.

At time t3, the third projection (yellow) obtained a higher value of percentage because the vehicle as
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turned slightly to the right and the left camera faced an area of the ground that was not previously

mapped by any of the previous projections.

The previous example has shown that the proposed quality functions are capable of handling

multiple projections and accurately decide which are the best quality projections to map to the global

mesh. However, that example was simplified since only one camera was considered to provide pro-

jections in each case. Given that the Talos vehicle contains five cameras, how do they map over the

ground primitive. In this example, the five cameras onboard the Talos are considered. The ground

polygon is used for texture mapping. The same sequence from the previous example is used: the

vehicle is moving forward and three time instants are used to generate projections. Each time instant

t1, t2 and t3 generates five projections, one for each camera. Figure 11.23 (a) shows the state of the
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Figure 11.22: Number of triangles from each projection over the total number of triangles in the

global mesh as a function of mission time, for the examples shown in Fig. 11.20: (a) front center

camera; (b) rear center camera; (c) front left camera;
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(a) (b)

(c)

Figure 11.23: Distribution of triangles according to projection. Rear center camera only: (a) a 3D

view; (b) projection at time t1; (c) projection at time t2; (d) projection at time t3

global mesh after time t1. Five projections are contained in the mesh. At time t2, the global mesh

incorporates many of the projections that are computed at this time (Fig. 11.23 (b)). The same occurs

at time t3 (Fig. 11.23 (c)). The resulting mesh is an intricate mosaic of triangles coming from several

projections.

Figure 11.24 shows the fifteen images used to compute these representations. An interesting

observation is that at time t1, the area of projection from the rear center camera was not connected

to the areas of projection of the other cameras. Note that the red triangles in Fig. 11.23 (a) are not

connected to any triangle with a parent projection, only to orphan triangles. This unmapped region

is understood if one thinks of the ground that is bellow the vehicle. There is no coverage from the

cameras of this region, which is why only orphan triangles (blue) occupy it. At time t2, the vehicle

has moved in front, and the ground that was bellow it at time t1 is now visible from the rear center

camera. Hence, the areas mapped by the rear cameras connect to the areas mapped by the other
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Figure 11.24: Images and local triangulated meshes for all projections shown in Fig. 11.23: First

row front center teleobjective camera; Second row front center camera; Third row, front right camera;

Fourth row, front left camera; Fifth row, rear center camera; Left column: time t1, (Fig. 11.20 (a));

Middle column: time t2, (Fig. 11.20 (b)); Right column: time t3, (Fig. 11.20 (c));

cameras, as seen in Fig. 11.23 (b). At time t3, since the vehicle has turned to the left, the rear camera

now views a different portion of the ground that had not been captured by any other camera. Note,

in Fig. 11.23 (c), how the triangles of the rear camera (the brightest yellow at the bottom right side)

map a region that was not seen before and was previously covered only by orphan (blue) triangles.
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As the vehicle moves and turns around, more and more of the ground that was not viewed before

is covered by the cameras. This is a clear example of why integrating several projections over time

is advantageous. A composite photometric description of the environment can be obtained that was

impossible to compute without the capability of integrating multiple projections. Although it might

be more obvious in this case, this conclusion is valid not only for the ground polygonal primitive but,

in potential, to any other primitive.

Figure 11.25 shows the percentage of triangles of each projection as a function of the mission

time. The amount of projections increases at each time instant. At time t3, the amount of different

projections (fifteen) makes so that the percentage obtained by each is relatively small (around 10%).

In the previous sections, the algorithm for the insertion of candidate triangles was explained. The

idea is to insert candidate triangles whenever they have a better quality that the existing triangles they

overlap. As each time instant, only newly acquired projections are used to update the mesh. Hence,

triangles from previous iterations, if removed, will not be retested for insertion. The algorithm is

designed this way so that it may run fast. Consider the present example. If at all times, all projections

(new and previous) were considered, at time t3, the global mesh would have to cycle fifteen local

meshes. This represents many tenths of thousands of triangles, and the number would continue to

increase. In the end, the algorithm would not be able to comply with real time or near real time

demands. Because of this, the triangles of a given projection are tested for insertion a single time.

That means that if they are removed they will never again be reinserted. This can be observed in Fig.

11.25 by the fact that none of the projections actually increases the number of triangles it contains.

Either the percentage stays the same, or it decreases.

Another important observation that should be made about the results displayed on Fig. 11.25 is

related to the orphan triangles. From the observation of the graph it may seem that the number of
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Figure 11.25: Number of triangles from each projection over the total number of triangles in the

global mesh as a function of mission time, for the examples shown in Fig. 11.23.
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orphan triangles it does not decrease. One could ask what would be the quality of the texture if a high

percentage of orphan triangles is present in the mesh. In fact, this phenomenon could lead to a loss

in the overall quality of the primitive’s mesh, because, as discussed before and unlike triangles with

parent projections, orphan triangles do not give guarantee of having an accurate mapping of texture.

However, this is not the case. Although the percentage of orphan triangles increases from t1 to t2, it

remains stable from t2 to t3. In the results shown in Figs. 11.22 (a) and (b) the percentage actually

decreases. Consider also that, in Fig. 11.25, the maximum observable percentage of orphan triangles

is of 23%. This means that there are 77% of triangles that have parent projections. Although this

global value is distributed by the large number of projections, the fact is that the greatest portion of

the meshes triangles are triangles with a parent projection and, thus, with guaranteed texture mapping

quality.

11.4.3 Full Scene Geometric and Photometric Reconstruction

Previous examples have focused on describing particular characteristics of the proposed scene recon-

struction algorithm. In the next example an entire scenario reconstruction is shown. The scenario is

composed of the entire sequence 1, of the MIT data set. To perform photometric reconstruction and

refinement, all five cameras onboard the Talos vehicle are used. A view of the scenario by means of

an accumulated point cloud is shown in Fig. 11.26 (a). Four views of the scenario are fixed, so that

they record the evolution of the representation over time. We refer to these as virtual cameras:

• Virtual camera 1, shown in Fig. 11.26 (b), views the scene as shown red in Fig. 11.26 (a);

• Virtual camera 2, shown in Fig. 11.26 (c), views the scene as shown green in Fig. 11.26 (a);

• Virtual camera 3, shown in Fig. 11.26 (d), views the scene as shown blue in Fig. 11.26 (a);

• Virtual camera 4, shown in Fig. 11.26 (e), views the scene as shown yellow in Fig. 11.26 (a).

The vehicle travels the entire scenario in three minutes, starting from the right (near the green

virtual camera) to the left (just above the blue virtual camera), in Fig. 11.26 (a). At periodic intervals,

all detected polygonal primitives are tested for mapping with all five cameras. At times t1 = 30,

t2 = 60, t3 = 90, t4 = 120, t5 = 150 and t6 = 180 seconds the images from the virtual cameras

record the status of the scenario representation at the corresponding time. Figures 11.27, 11.28, 11.29,

11.30, 11.31 and 11.32 show the representation viewed by each of the virtual cameras at times t1, t2,

t3, t4, t5 and t6, respectively.

Geometric primitives are represented in the environment by the blue-green polygons. A blue to

green colormap is used to color the primitives according to their index, the more recently detected the

primitive, the more green it is. Photometry is represented by the texture mapped onto the primitives.

Note that at each of the time instants new projections will update the global meshes of the detected
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(a)

(b) (c)

(d) (e)

Figure 11.26: Full reconstruction of the sequence 1, MIT data set: (a) a top view of the entire scenario;

(b) virtual camera 1, red in (a); (c) virtual camera 2, green in (a); (d) virtual camera 3, blue in (a); (e)

virtual camera 4, yellow in (a);
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polygonal primitives. Hence the scenario representation will evolve photometrically over time. Fur-

thermore, as discussed in chapter 8, also the geometric representation will evolve over time, since

geometric polygonal primitives are also refined. For a better visualization of the representation, the

primitive that represents the ground plane will not be textured.

At time t1 (Fig. 11.27) only two geometric primitives are detected. Since one of them is the

ground plane, only the other is texture mapped. At time t2 (Fig. 11.28), more geometric primitives

are detected near to the vehicle. These new primitives are texture mapped, and the previous one is

refined using new projections. The process continues until, in Fig. 11.32 the final scene representation

is obtained. During the course of the evolution of the representation, several photometric refinements

are observable.

For example at time t4 (Fig. 11.30 (c)) there is an unmapped primitive (light green polygon

without texture). The reason was that the primitive is to the rear left of the vehicles position (at t4).

At that time, there was laser data from that primitive, which was why the corresponding geometric

polygonal primitive was generated, but the cameras did not view that particular primitive. At time t5

(Fig. 11.31), the vehicle is in a different position, from where the cameras are already able to view

that primitive. As a result, that same primitive appears mapped in Fig. 11.31.

Another clear example occurs at times t5 and t6. At time t5, Fig. 11.31 (d), one of the detected

geometric primitives is only partially mapped. Again, at that time, the cameras only viewed a portion

of that primitive. However at time t6 that same primitive is now completely texture mapped.

(a) (b)

(c) (d)

Figure 11.27: Reconstruction of sequence 1, MIT data set. Scene representation at time t = t1 = 30
seconds: virtual cameras 1, 2, 3 and 4, (a), (b), (c) and (d), respectively.
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(a) (b)

(c) (d)

Figure 11.28: Reconstruction of sequence 1, MIT data set. Scene representation at time t = t2 = 60
seconds: virtual cameras 1, 2, 3 and 4, (a), (b), (c) and (d), respectively.

(a) (b)

(c) (d)

Figure 11.29: Reconstruction of sequence 1, MIT data set. Scene representation at time t = t3 = 90
seconds: virtual cameras 1, 2, 3 and 4, (a), (b), (c) and (d), respectively.
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(a) (b)

(c) (d)

Figure 11.30: Reconstruction of sequence 1, MIT data set. Scene representation at time t = t4 = 120
seconds: virtual cameras 1, 2, 3 and 4, (a), (b), (c) and (d), respectively.

(a) (b)

(c) (d)

Figure 11.31: Reconstruction of sequence 1, MIT data set. Scene representation at time t = t5 = 150
seconds: virtual cameras 1, 2, 3 and 4, (a), (b), (c) and (d), respectively.
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(a) (b)

(c) (d)

Figure 11.32: Reconstruction of sequence 1, MIT data set. Scene representation at time t = t6 = 180
seconds: virtual cameras 1, 2, 3 and 4, (a), (b), (c) and (d), respectively.

11.5 Conclusions

As discussed in the previous sections, the refinement of texture is done by means of a constrained

Delaunay triangulation. This triangulated mesh is defined in the local primitive’s coordinate frame

and, because of this, is a 2D triangulation. The global primitive mesh, as it is called, is built by insert-

ing triangles from local meshes computed in the image space of each projection. From multiple local

meshes, the global mesh is computed using quality functions to assert whether triangles should be in-

serted. The proposed algorithm is capable of refining a mesh from multiple projections, maintaining

a good visual quality of the textures. Perhaps most important, the mechanism fill the gaps in the mesh

where there are to triangles with parent projections with orphan triangles. Using this mechanism, the

holes that could exist between textures of different projections are replaced by orphan triangles where

texture is interpolated, resulting in a better overall quality of the texture.

Quite often, different projections are generated at different times. Let us consider an example of a

vehicle travelling through a scenario. As it moves, its cameras capture different images. Each image

generates a projection. One very interesting feature of the algorithm is that not only it can select the

best texture from a set of multiple projections, but it is also capable of providing the best texture at a

given time. In other words, for a given primitive, there is not a single texture that represents it. The

texture of a primitive may evolve if new projections are added to the global mesh. We say may evolve,

since that, depending of the configuration of the projection quality functions, a primitive’s texture is
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refined only if better texture is provided by more recent projections.

This chapter presented results that show that the proposed algorithm is capable of dealing with

multiple cameras, multiple projections, and multiple primitives, and come up with a visually appea-

ling scenario representation that is refined over time. At the moment, the photometric generation and

refinement of geometric primitives is not computable in real time. Hopefully, future implementations

that undergo code optimizations, and are supported by better hardware platform, will achieve real

time performance.
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Chapter 12

Conclusions

The work presented in this document has addressed the general problem of how technology can be

applied to motor vehicles to enable them to be aware of the surrounding environment. This automatic

awareness will increase the safety, thus significantly contributing to solving the problem of road

accidents. There were four main objectives for the proposed work, which were tackled and developed

as discussed next:

• The development of perception based algorithms that process onboard sensor data and generate

information about the road scene. This objective was acomplished with the development of:

− A flood fill based algorithm for detecting the area bounded by the road delimiting lane

markers;

− A lane marker detection algorithm based on comparing simple statististics collected

from line candidates;

− A road maintenance area navigation algorithm, based on the color segmentation of

orange pins and a convex hull operation in polar space for determining the location of the

base of the pins.

• The development and integration of basic software functionalities in the autonomous driving

robotic prototypes, that allows them to participate in autonomous driving competitions. This

objective was carried out by:

− The implementation of the flood fill road detection algorithm in the Atlas2000;

− The implementation of the statistical analysis based algorithm for lane marker detection

on the AtlasMV;

− The implementation of the multi-camera, multi-modal Inverse Perspective Mapping

(IPM) algorithm in the active perception Pan and Tilt Unit (PTU) onboard the AtlasMV;
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− The developement and implementation of the Laboratory of Automation and Robotics

Toolkit (LARtk) software architecture in the Atlas2000 and AtlasMV robotic prototypes;

− The development of a novel path planning algorithm that uses data from the IPM image

and a Laser Range Finder (LRF). It was implemented in the AtlasMV robot.

• The testing and assessement of the effectiveness of the proposed algorithms on a full scale

vehicle was acomplished by:

− The testing of the proposed IPM approaches in the AtlasCar and the comparisson of the

results with the classical approach;

− The testing and implementation of both the LARtk and the Robot Operating System

(ROS) software architectures in the AtlasCar.

• The development of alternative data representations that may cope with multiple sensors and

that improve the effectiveness of subsequent processing algorithms was achieved by the deve-

lopment of:

− A multi-camera, multi-modal approach to IPM.

− Several algorithms for computing the color correction of images.

− An integrated geometric and photometric scene representation that is computed much

faster than alternative techniques.

− Mechanisms for refining both the geometric and the photometric representations over

time.

The main focus of this thesis was on the development of algorithms and techniques for enhanced

representation of onboard sensor data. Finding alternative sensor data representations is very useful,

since it may improve the effectiveness of algorithms used in the perception of road-like scenarios.

Additionally, these intermediate scene representations may be advantageous since thay are devised

to cope with the large amounts of data, thus enabling real-time computation. One example is the

Velodyne laser [Velodyne 2012], which is now considered a standard in autonmous vehicles, but that

generates 1.3 million range data points per second. It was shown that classical approaches (such as 3D

triangulations) are unable to process such large amounts of data in real-time. The polygonal primi-

tives scene representation approach has proved to be six times faster than alternative methodologies.

Nonetheless, it was not possible to achieve real-time computation of geometric polygonal primitives.

It should be possible to improve parts of the algorithm to address this issue. Another advantage of

intermediate representations is that they can cope with the asynchrony of the data in multi sensorial

setups. This is particularlly important, since that autonomous vehicles are equipped with a vast num-

ber of sensors of varied nature. Additional advantages related to the usage of an intermediate data

representation framework are discussed in section 12.2.
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Throughout the course of the work, the testing and validation of algorithms in real robotic plat-

forms were done in multiple occasions. The Atlas2000 and the AtlasMV robotic prototypes were used

as test beds for many of the proposed algorithms. This work has also contributed in the development

of these prototypes. These robots have participated in the Autonomous Driving Competition (ADC)

of the Portuguese Robotics Open (PRO) and have won the competition a total of six times. Further-

more, this work has contributed to the development of the AtlasCar, the first full scale autonomous

vehicle developed in Portugal. These developments were discussed in chapter 3.

Several software architectures were used for programing the robots. Both Carnegie Mellon Robot

Navigation Toolkit (CARMEN) and ROS software architectures were implemented on the robots or

on applications used to test the algorithms. Additionally, this work contributed to the development of

LARtk, an extension of CARMEN that features shared memory functionalities for easing the transfer

of large messages. Nowadays, ROS seems to be the standard for robot programming, due to the very

large community supporting it. However, the usage of CARMEN and the development of LARtk

have been very important to have a better insight of ROS. In fact, the underlying architectures are

very similar, relying on separate modules and inter process communications. Chapter 4 addressed

these topics.

In chapter 5, a novel multi-camera, multi-modal IPM technique was presented. The technique

makes use of a LRF sensor to produce higher quality IPM images when compared to classical IPM

approaches. Artifacts caused by other vehicles or pedestrians, which appear in a classical IPM image,

are filtered in the proposed approach.

Chapter 6 focused on the issue of color correction of images for quality mosaicking. Three dif-

ferent algorithms were proposed. It was shown that they are very effective and, in most cases, better

than the state of the art.

In chapters 7 through 11, a novel scene representation algorithm was proposed that relies more

on 3D data processing. Chapters 8 and 9 presented 3D processing algorithms designed to compute a

geometric scene representation. It was shown that a polygonal primitive based approach can be very

efficient and is computed in less time than other triangulation approaches.

Chapters 10 and 11 proposed algorithms for texture mapping the geometric representation, thus

extending the representation with the photometric dimension. There are no techniques proposed in

literature similar to the proposed approach, in particular in what concerns the capability to cope with

changing the photometric representation as new data is received.

In sum, during the course of the work, the following specific contributions were made:

• A multi-camera multi-modal IPM methodology that uses data from a LRF to enhance the IPM

resulting image. Results have shown that the images produced by this approach are more

precise than images computed using the classical IPM approaches;

• Three alternative color correction algorithms for obtaining quality mosaics. Results have shown

that these techniques are more efficient and robust than the state of the art;
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• A methodology based on geometric polygonal primitives, that computes an accurate geometric

scene representation in approximately one sixth of the time of the fastest 3D triangulation

approach tested. Additionally, a method was proposed to refine the polygonal primitive based

representation over time;

• A methodology for texture mapping the geometric polygonal primitive representation using

Data Dependent Triangulation (DDT). Additionally, a methodology for refining the model’s

texture over time was proposed;

• The integration of some of the algorithms described in previous lines (as well as others) into

three robotic prototypes. Testing and evaluation of the algorithms in real platforms used in

several competitions.
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12.2 Future Work

Future work may include improvements on many of the algorithms described before. However, this

section will focus on the advantages inherent to a intermediate sensor representation framework, in

particular, to the one proposed in chapters 8, 9, 10 and 11.

The question that is addressed is whether or not it is preferable to process sensor data directly with

the traditional algorithms (pattern recognition algorithms for road, traffic sign or pedestrian detection)

or instead to have an algorithm that collects raw sensor data and generates an intermediate representa-

tion of that data. Rather than analysing the raw sensor data, traditional pattern recognition algorithms

are alternatively used to process the intermediate representation of the data. The advantages brought

by the second option are many. They are discussed in the following lines.

First of all, an intermediate scene representation algorithm is specifically devised for coping with

multi-sensor setups. Thus, unlike traditional algorithms, it specializes in handling common problems

such as the asynchrony and the large size of the data received from sensors. It was shown in chapter

7 that current autonomous vehicles generate very large amounts of data. Traditional algorithms have

difficulties in processing that much data in real-time. Furthermore, very often the data collected by the

sensors is repeated, as in the case of a vehicle stopped in a static environment. In a traditional setup,

recognition algorithms would repeatedly process the data. An intermediate representation frame-

work can cope with this issue by keeping the representation unchanged whenever the sensor data is

repeated.

The proposed approach for an intermediate sensor representation comprises the computation of

a 3D model, along with the corresponding texture. There is a very important advantage associated

with this. The efficiency of traditional image based pattern recognition algorithms is very sensitive to

changes in the perspective from which objects are observed. A 3D textured intermediate representa-

tion may synthesize images of the reconstructed scene from any desired point of view. By selecting

the adequate point of view, synthesized images can be free of perspective distortions. If these synthe-

sized images are given to the recognition algorithms, it is expected that their efficiency significantly

improves. Note that this is the underlying idea of the IPM methodology: to compute a perspective

distortion free bird’s eye view of the road surface, and then to process that image. A 3D texture

representation is capable of synthesizing images from any surface, not just the road.

Since the representation is computed from the input of several sensors, subsequent processing al-

gorithms would actually be searching for patterns in a representation that is a composition of multiple

sensor inputs. Suppose for example that there are two cameras facing the front of the host vehicle.

Another vehicle in front is located so that the images from each camera capture only half of the ve-

hicle. Unless designed in very complex ways, traditional recognition algorithms (in this case used

for detecting a vehicle) are not suited to process images with only half of a vehicle. An intermediate

representation can fuse the texture from both cameras and synthesize an image where the vehicle is

completely visible, thus enabling the detection of the vehicle. In this way, recognition algorithms
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may be kept simple and straightforward, since that it is the representation algorithm that does the job

of synthesizing an adequate image for processing, by selecting an adequate point of view and fusing

information from several sensors.

The final advantage provided by an intermediate scene representation can be viewed as more

futuristic concept. Driving a vehicle is actually a very complex task. It is vital for the driver (or

the autonomous system) to have a high level of understanding of the road scenario. More than that,

the task of driving requires also the ability to anticipate the actions of other agents on the road.

In other words, driving comprises not only a comprehensive analysis of the road scenario by the

driver / vehicle, but in addition an estimation of the intentions of the other entities in the proximity

of the vehicle. An intermediate scene representation may be very valuable to ascertain this second

component. From an intermediate sensor representation, it is also possible to synthesize the estimated

view of other agents. This is a first step in making an autonomous system grasping not only the

position and velocity of pedestrians and other vehicles, but also being capable of formulating an

estimate about what they view and, consequently, about the intentions of those subjects.
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Appendix A

Images from sequence 1, Massachusetts Institute of Technology (MIT) dataset. Sequence 1 is com-

posed of locations A through E.

(a) (b)

(c) (d) (e)

(f ) (g) (h)

Figure A.1: Location A of the sequence. Isometric (a) and bird’s eye (c) view of the 3D data; front

6mm (b), front (e), rear (h), left (f ) and right (g) camera images; (e) satellite view of the location.
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(a) (b)

(c) (d) (e)

(f ) (g) (h)

Figure A.2: Location B of the sequence. Isometric (a) and bird’s eye (c) view of the 3D data; front

6mm (b), front (e), rear (h), left (f ) and right (g) camera images; (e) satellite view of the location.

(a) (b)

(c) (d) (e)

(f ) (g) (h)

Figure A.3: Location C of the sequence. Isometric (a) and bird’s eye (c) view of the 3D data; front

6mm (b), front (e), rear (h), left (f ) and right (g) camera images; (e) satellite view of the location.
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(a) (b)

(c) (d) (e)

(f ) (g) (h)

Figure A.4: Location D of the sequence. Isometric (a) and bird’s eye (c) view of the 3D data; front

6mm (b), front (e), rear (h), left (f ) and right (g) camera images; (e) satellite view of the location.

(a) (b)

(c) (d) (e)

(f ) (g) (h)

Figure A.5: Location E of the sequence. Isometric (a) and bird’s eye (c) view of the 3D data; front

6mm (b), front (e), rear (h), left (f ) and right (g) camera images; (e) satellite view of the location.
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Appendix B

Images from sequence 2, MIT dataset. Sequence 2 is composed of locations A through I.

(a) (b)

(c) (d) (e)

(f ) (g) (h)

Figure B.1: Location A of the sequence. Isometric (a) and bird’s eye (c) view of the 3D data; front

6mm (b), front (e), rear (h), left (f ) and right (g) camera images; (e) satellite view of the location.
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(a) (b)

(c) (d) (e)

(f ) (g) (h)

Figure B.2: Location B of the sequence. Isometric (a) and bird’s eye (c) view of the 3D data; front

6mm (b), front (e), rear (h), left (f ) and right (g) camera images; (e) satellite view of the location.

(a) (b)

(c) (d) (e)

(f ) (g) (h)

Figure B.3: Location C of the sequence. Isometric (a) and bird’s eye (c) view of the 3D data; front

6mm (b), front (e), rear (h), left (f ) and right (g) camera images; (e) satellite view of the location.
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(a) (b)

(c) (d) (e)

(f ) (g) (h)

Figure B.4: Location D of the sequence. Isometric (a) and bird’s eye (c) view of the 3D data; front

6mm (b), front (e), rear (h), left (f ) and right (g) camera images; (e) satellite view of the location.

(a) (b)

(c) (d) (e)

(f ) (g) (h)

Figure B.5: Location E of the sequence. Isometric (a) and bird’s eye (c) view of the 3D data; front

6mm (b), front (e), rear (h), left (f ) and right (g) camera images; (e) satellite view of the location.
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(a) (b)

(c) (d) (e)

(f ) (g) (h)

Figure B.6: Location F of the sequence. Isometric (a) and bird’s eye (c) view of the 3D data; front

6mm (b), front (e), rear (h), left (f ) and right (g) camera images; (e) satellite view of the location.

(a) (b)

(c) (d) (e)

(f ) (g) (h)

Figure B.7: Location G of the sequence. Isometric (a) and bird’s eye (c) view of the 3D data; front

6mm (b), front (e), rear (h), left (f ) and right (g) camera images; (e) satellite view of the location.
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(a) (b)

(c) (d) (e)

(f ) (g) (h)

Figure B.8: Location H of the sequence. Isometric (a) and bird’s eye (c) view of the 3D data; front

6mm (b), front (e), rear (h), left (f ) and right (g) camera images; (e) satellite view of the location.

(a) (b)

(c) (d) (e)

(f ) (g) (h)

Figure B.9: Location I of the sequence. Isometric (a) and bird’s eye (c) view of the 3D data; front

6mm (b), front (e), rear (h), left (f ) and right (g) camera images; (e) satellite view of the location.
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Appendix C

Results from the extraction of geometric surface reconstruction in sequence 1 of the MIT data

set for approaches Ball Pivoting Algorithm (BPA), Greedy triangulation (GT), Poisson Surface

Reconstruction (POIS) and Geometric Polygonal Primitives (GPP) parameters set 2;

(a) (b)

(c) (d)

Figure C.1: Qualitative comparison of several surface reconstruction methodologies in location A of

MIT sequence 1: (a) BPA; (b) GT; (c) POIS; (d) GPP parameters set 2;
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(a) (b)

(c) (d)

Figure C.2: Qualitative comparison of several surface reconstruction methodologies in location B of

MIT sequence 1: (a) BPA; (b) GT; (c) POIS; (d) GPP parameters set 2;

(a) (b)

(c) (d)

Figure C.3: Qualitative comparison of several surface reconstruction methodologies in location C of

MIT sequence 1: (a) BPA; (b) GT; (c) POIS; (d) GPP parameters set 2;
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(a) (b)

(c) (d)

Figure C.4: Qualitative comparison of several surface reconstruction methodologies in location D of

MIT sequence 1: (a) BPA; (b) GT; (c) POIS; (d) GPP parameters set 2;

(a) (b)

(c) (d)

Figure C.5: Qualitative comparison of several surface reconstruction methodologies in location E of

MIT sequence 1: (a) BPA; (b) GT; (c) POIS; (d) GPP parameters set 2;
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Appendix D

Results from the extraction of geometric surface reconstruction in sequence 2 of the MIT data set for

approaches BPA, GT, POIS and GPP parameters set 2;

(a) (b)

(c) (d)

Figure D.1: Qualitative comparison of several surface reconstruction methodologies in location A of

MIT sequence 2: (a) BPA; (b) GT; (c) POIS; (d) GPP parameters set 2;
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(a) (b)

(c) (d)

Figure D.2: Qualitative comparison of several surface reconstruction methodologies in location B of

MIT sequence 2: (a) BPA; (b) GT; (c) POIS; (d) GPP parameters set 2;

(a) (b)

(c) (d)

Figure D.3: Qualitative comparison of several surface reconstruction methodologies in location C of

MIT sequence 2: (a) BPA; (b) GT; (c) POIS; (d) GPP parameters set 2;
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(a) (b)

(c) (d)

Figure D.4: Qualitative comparison of several surface reconstruction methodologies in location D of

MIT sequence 2: (a) BPA; (b) GT; (c) POIS; (d) GPP parameters set 2;

(a) (b)

(c) (d)

Figure D.5: Qualitative comparison of several surface reconstruction methodologies in location E of

MIT sequence 2: (a) BPA; (b) GT; (c) POIS; (d) GPP parameters set 2;
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(a) (b)

(c) (d)

Figure D.6: Qualitative comparison of several surface reconstruction methodologies in location F of

MIT sequence 2: (a) BPA; (b) GT; (c) POIS; (d) GPP parameters set 2;

(a) (b)

(c) (d)

Figure D.7: Qualitative comparison of several surface reconstruction methodologies in location G of

MIT sequence 2: (a) BPA; (b) GT; (c) POIS; (d) GPP parameters set 2;
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(a) (b)

(c) (d)

Figure D.8: Qualitative comparison of several surface reconstruction methodologies in location H of

MIT sequence 2: (a) BPA; (b) GT; (c) POIS; (d) GPP parameters set 2;

(a) (b)

(c) (d)

Figure D.9: Qualitative comparison of several surface reconstruction methodologies in location I of

MIT sequence 2: (a) BPA; (b) GT; (c) POIS; (d) GPP parameters set 2;
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