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ANÁLISIS DE TEXTURAS

MEDIANTE

REPRESENTACIONES SOBRECOMPLETAS

RESUMEN

En años recientes el procesamiento de imágenes y la visión por computadora han jugado

un papel importante en diversas áreas tecnológicas y científicas debido principalmente a que

la sociedad moderna destaca la visión sobre el resto de los sentidos. A lo largo del tiempo los

requerimientos de las aplicaciones y la complejidad de los problemas han ido en aumento, por

lo que cada vez es más difícil proponer un modelo general, ya que en muchos casos la solución

dependerá de las características intrínsecas del problema. En paralelo, el avance en el conocimiento

del sistema visual humano ha permitido proponer modelos de representación de imágenes más

sofisticados. Dichos modelos incorporan fenómenos simples que ocurren en las primeras etapas

del sistema visual y adaptan los estímulos visuales para un procesamiento posterior. La presente

tesis tiene como objetivo investigar características de la visión como la sobrerrepresentación y la

orientación de los campos receptivos para proponer nuevos algoritmos de inspiración biológica.

A partir de los trabajos de Gabor, Daugman y Hubel proponemos un modelo sobrecompleto de

representación de imágenes y lo comparamos con diversos modelos presentes en el estado del

arte. Nuestro modelo basado en funciones de Gabor optimiza la redundancia de la información

y la distribuye de manera uniforme en diferentes bandas de frecuencia y en orientaciones, con

resultados prometedores. Es bien conocido que los modelos de Gabor generan representaciones

multidimensionales por lo que proponemos una etapa de reducción de la dimensión basada

en la teoría de Fisher y los métodos kernel, lo que conduce a una mejor caracterización de la

escena visual. Para validar nuestra propuesta hemos realizado experimentos de segmentación y

clasificación de texturas sintéticas, además, incluimos un caso de estudio sobre clasificación de

imágenes médicas. En la última parte de la tesis sostenemos la hipótesis de que la combinación

de descriptores globales y locales mejora la capacidad discriminante. Presentamos un estudio

sobre descriptores locales, en específico sobre patrones binarios, y proponemos un esquema

combinado para clasificar texturas. Los resultados de los experimentos son consistentes con la

teoría y demuestran la efectividad de nuestra propuesta.
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OVERCOMPLETE IMAGE REPRESENTATIONS

FOR

TEXTURE ANALYSIS

ABSTRACT

In recent years, image processing and computer vision have played an important role in many

scientific and technological areas mainly because modern society highlights vision over other

senses. Throughout time application requirements and complexity have been increasing. Due to

the fact that in many cases solutions depend on intrinsic characteristics of problems it is difficult to

propose a universal model. In parallel, advances in understanding the human visual system have

allowed to use sophisticated image models that incorporate simple phenomena, which occur in

early stages of the visual system. Such phenomena suit visual stimuli for further processing. This

thesis aims to investigate characteristics of vision such as over-representation and orientation of

receptive fields in order to propose bio-inspired image models. Starting from studies of Gabor,

Daugman, and Hubel we present an overcomplete image model that takes advantage of redundant

information. Furthermore, we performed a comparison with several models from the state-of-art.

Our proposal is based on Gabor filters and optimizes redundant information; such an information

is distributed uniformly onto frequency bands and orientations with promising results. It is well

known that Gabor models generated high-dimensional representations, therefore, we included a

step where data dimension is reduced using Fisher theory and kernel methods. This step leads to a

better characterization of visual scenes. In order to validate our method, we performed several

experiments of segmentation and classification using synthetic textures. The last part of this

dissertation claims that the combination of global and local descriptors will provide robust features

that lead to an improvement in the classification rate. We included a study of local descriptors,

specifically based on local binary patterns, and introduced a combined scheme for classifying

textures of lung emphysema. The results of the experiments are consistent with the theory and

demonstrate the effectiveness of our proposal.
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– Research is what I’m doing when I don’t know what I’m
doing.

Wernher von Braun

1
Introduction

1.1 Motivation

IT has been over 40 years since Martin Minsky from MIT linked a camera to a computer in order

to achieve that “computers understand images and videos.” [4] At that time there was great

excitement about the use of algorithms to process digital data and retrieve three-dimensional

structures from still images and use them to understand scenes.

The first steps in image analysis research consisted in developing interfaces between the visual

world and computers. However, the visual input stage was regarded by researchers just as an easy

issue prior to solve more difficult problems such as higher-level reasoning and planning. During

this period, Rosenfeld and Pfaltz [5] proposed several algorithms for processing digitized pictorial

information, such algorithms describe techniques for manipulation of intensity data defined on

uniform grids. Early advances and efforts were encouraged partially by the space race. One

of the first applications reported in the literature was geometrical rectification of digital images

obtained from the first Earth Resources Technology Satellite launched by the United States National

Aeronautics and Space Administration in 1972 [6].

However, digital image processing is hardly new; first applications date back to 1920 where

newspapers were digitized and sent by a submarine cable between London and New York. Since

then, research and development in visual information are moving forward at an extremely fast

pace. We can say that image analysis is a research area that integrates several disciplines such as

mathematics, optics, electronics, among others.
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A good example of this convergence and an important contribution that speeded up the progress

of image analysis was the development of multiresolution analysis and wavelet theory. In the

late 70’s Jean Morlet [7, 8] presented an alternative to the Short-time Fourier transform; the

procedure consisted in applying a window to a signal and then compute the Fourier coefficients.

This operation depends on two parameters: the location and the frequency of the window. In this

direction, the French mathematical school has made significant contributions; Alex Grossmann

[9] worked on a concept where a signal could be decomposed into wavelets and then back; he

proposed an inverse Morlet transform. Later in 1985, Yves Meyer [10] applied in harmonic analysis

both transforms in order to study certain singularities in the Hilbert space domain. Meyer’s work

led to the construction of a wavelet basis with excellent time-frequency properties. In 1986,

Stépane Mallat [11] conceived a structure in multiple scales divided into frequency bands. Such a

structure allows to analyze large image features using large windows whereas fine features are

analyzed with small windows in the spatial domain. This model was inspired by the Laplacian

pyramid originally proposed by Burt and Adelson [12]. Donoho et al. [13] extended this work by

proposing complex wavelets.

Since the beginning, image analysis has been interconnected with the Human Visual System

(HVS). A proof of this relationship is the fact that psychophysical and physiological experiments

have shown that multi-scale transform, which is a mathematical tool, seems to appear in the visual

cortex of mammals. Additionally, in many applications the final user is a human being; in fact,

early attempts to understand the HVS were based on extracting edges [14].

One of the primary goals of low-level vision is to extract geometric information from visual

scenes. This is possible because of two operations: edge detection, which identifies locations

where image intensities change abruptly, John Canny [15] proposed an edge detector based on

Gaussian derivatives in order to take advantage of some properties of the HVS; and stereopsis,

which synthesizes a depth map from two or more images. Perhaps the most important book that

summarizes the first advances in the area is Vision by David Marr [16] where vision is treated as

an information processing system with three levels of analysis.

Due to the large amount of data that the HVS must process, it is reasonable to think that the

visual cortex of mammals has evolved over the years and uses efficient coding strategies. Barlow

[17] established the idea that the goal of photoreceptors in the retina is to transform visual input in

such a manner that the HVS takes advantage of the redundancy [18]. Redundant or overcomplete

representations are interesting in the sense that their inherent redundancy can be exploited to

increase the robustness of the visual representation.

So far, overcomplete schemes based on Gabor filters have been useful in many image analysis

applications. A Gabor filter in spatial domain is a Gaussian function multiplied by a complex

exponential; its shape is Gaussian in both spatial and frequency domains. The filter is closely

localized in space and frequency. Furthermore, simple cells of the visual cortex of mammals are

best modeled as a family of self-similar 2D Gabor filters.
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Nevertheless, Gabor filters present some drawbacks that can be summarized as follows: (i) the

filter averaging is not null, therefore the DC component influences intermediate bands. Gabor

filters overlap more at lower frequencies than at higher ones yielding a non-uniform coverage of

the Fourier domain; (ii) the traditional arrangement in scales and orientations of Gabor filters does

not cover uniformly the Fourier plane leading to an inaccurate reconstruction. In fact, they are

band-pass filters by definition so that they cannot cover lowest and highest frequencies; and (iii) it

is not possible to build a complete orthogonal basis of Gabor functions. Non-orthogonality implies

that exact reconstruction using the same filters for analysis and synthesis will not be possible unless

an overcomplete dictionary is considered. Despite previous drawbacks, Gabor-based techniques are

considered the state-of-art in texture characterization, which is one of the most difficult problems

in image analysis.

In this dissertation, new contributions are reported in the following six chapters. Initial work

was focused on an image model derived from the visual cortex of mammals. In order to build

such a model Daugman and Field’s studies were considered and the filter bank parameters were

optimized. Additionally, even scales were rotated by a constant factor consisting of the half a

distance between filter centers. These modifications resulted in a logarithmic model that separates

and distributes frequency bands in a better way. Furthermore, this approach reduces redundancy.

Since Gabor filters have been successfully used in problems involving textures, we included a

study of local texture operators. Also, the problem of rotation invariance was addressed. An

analysis about the influence of local contrast was performed as well. This dissertation uses higher

order moments to characterize the response of Gabor filters, we conducted several experiments to

assess their performance with different versions of Gabor filters. The final part of this dissertation

proposes a better characterization of textures by combining global and local descriptors. To validate

the hypothesis experiments of segmentation and classification were performed on both synthetic

textures and medical images.

1.2 Organization and outline

This dissertation is organized as follows: in Chapter 2 an introduction about the visual cortex

is given; we reviewed essential concepts of bases and frames and introduced basic definitions

required to build our proposal. In Chapter 3 the classical Gabor paradigm is presented; we also

analyzed fundamental results involved in the development of Gabor functions and its limitations. A

major improvement is shown, we computed optimal filters in order to match simple psychophysical

aspects of the HVS. We used a novel scheme based on log-Gabor filters. In Chapter 4 we investigated

the advantages of log-Gabor filters by comparing their performance with regular Gabor filters. In

Chapter 5 a detailed overview of local binary patters is given, we analyzed the most significant

extensions that have been written in the literature from theoretical to a practical perspective,

whereas Chapter 6 is dedicated to classification of emphysematous patterns. Finally in Chapter 7

the conclusions and further research are drawn.
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– A scientist is not a person who gives the right answers,
he’s one who asks the right questions.

Claude Lévi-Strauss

2
From biology to linear algebra

2.1 Human visual system

THE HVS must process a huge amount of spatio-temporal information in real-time. Therefore,

it has developed coding strategies to represent natural images. As a result, we are able

to recognize and categorize thousands of objects and compute millions of data every day

without any effort. This task is possible because the HVS focuses on important aspects of the

visual field that are used as low-level visual features in a cognitive process based on experience.

Although the optical system of the eye is complex, the mechanism of image formation can be

simplified as follows: visual stimuli pass through the optics of the eye as inverted images until they

reach the bottom of the retina. Curiously, the incoming stimuli must go through the bulk of the

retina’s neural apparatus to reach photoreceptors. This fact, according to evolutionists, causes

a degradation of the formed image. This arrangement of the retina is said to be inverted [19]

because visual cells are oriented so that their sensory ends are in opposite position to the incident

light, see Fig. 2.1.

Two types of photoreceptors can be distinguished in the retina. On one hand, rods are

responsible for monochromatic vision under low light conditions (scotopic conditions). They

employ a sensitive photopigment called rhodopsin, which perceives and absorbs the green-blue

light [1]. Around 120 millions of rods are concentrated in the peripheral region of the retina, thus,

most people will find that they can see better if they focus their gaze just off to the point of view

[20].
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Figure 2.1: A schematic section through the human eye with an enlargement of the retina; the gray
arrow indicates the light direction. This picture was modified with permission of Prof. Dr.
Helga Kolb [1].

On the other hand, cones are in charge of photopic vision and high acuity tasks like reading

and target detection –this may be thought as the ability of the eye to see fine details. Cones

are densely concentrated in the fovea (around 4.5 millions of cones are in the central region of

the retina) but rapidly reduce in number towards the periphery. They differ from rods in shape

because they are shorter with a broad base and bulb-shaped. Despite the fact that most mammals

are dichromatic, primates and humans are trichromatic because they have three types of cone

cells according to their visual pigments [21]. In combination, three types of cones enable us to

perceive color. Thus, while the visual resolution is superior with cones, rods are better for motion

estimation.

The information from photoreceptors is processed by Retinal Ganglion Cells (RGC) via two

intermediate neurons: bipolar and amacrine cells. The latter have diverse morphologies; up to 40

different types of amacrine cells allow us to adjust sensitivity or contrast changes [22]. RGC gather

information and send their output toward the Lateral Geniculate Nucleus (LGN) through the optic

nerve using synaptic connections. LGN is inside the thalamus and is the principal structure that

connects the eye to the back of the brain where the primary visual cortex (V1) is located. However,

LGN not only connects axons of RGC to V1 but it is a relay structure with feedback connections,

which can be both excitatory or inhibitory. In fact, it was discovered that LGN may perform certain

normalization of visual stimuli and is involved in visual quality assessment [23].
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2.1 Human visual system

V1 or striate cortex is a layer of 2mm thick that encompass cells and is responsible for creating

a representation of the space. Each cell has a receptive field, which is a region where the presence

or absence of a stimulus will cause cellular activation.

According to Hubel and Wiesel [20, 24], there are three types of cells: (i) simple cells are

known to be line detectors, they have narrow and elongated excitatory and inhibitory zones divided

by a straight line. These cells are selective to orientation and spatial frequency of a stimulus;

(ii) complex cells are the most common cells in the striate cortex. They have larger receptive fields

than simple cells without clear excitatory or inhibitory zones. Many complex cells respond best

to moving edges with a specific orientation and direction. These neurons are powerful motion

detectors; and (iii) hypercomplex cells have very large receptive fields that may combine complex

cells’ signals. These types of cells respond to a specific orientation but are “end-stopped”, namely

the cell is inhibited if the oriented stimulus extends beyond a specific part of the corresponding

receptive field. These neurons are powerful corner detectors.

V1 encodes information in terms of local contrast and is organized into orientation columns.

This configuration allows to detect edges of objects in the visual world. Furthermore, V1 is

connected to many other regions such as V2, which is responsible for the phenomenon of color

constancy, while V5/MT plays an important role in motion processing. Nevertheless, these topics

are out of scope of this dissertation, for further details see [25].

So far, there has been progress in understanding the HVS but there is still much work to be

done. Researchers have claimed that we have understood only a small portion of the primary visual

cortex of mammals [19, 26–28]. The majority of current theories about the HVS are based on

responses to simple stimuli like checkerboards, sinusoidal functions, edges, and random patterns.

These theories have been extended to natural environments without success due to natural image

statistics vary from one scene to another. In fact, the original idea that the primary visual cortex

performs global Fourier transforms has been ruled out because the bandwidths and the local spatial

properties of cortical neurons restrict an adequate extraction of Fourier coefficients. Furthermore,

the receptive fields of some types of ganglion cells cover visual space repeatedly; such an overlap

does not guarantee that different cell types encode entirely independent information. Therefore,

natural stimuli cannot be fully characterized by their spatial power spectrum [29]. The inference to

be drawn from this fact is that we need to understand the process of vision in terms of redundancy

(overcompleteness).

The formulation of a mathematical theory of the visual cortex should have many advantages,

for instance, we can quantify the spatial computations performed by each cell. The first strategy

was based on sending pulses to the retina for recording ganglion cell responses. This model is

known as Population Coding (PC) [30] that is implemented by an arrangement of neurons where

each one of them responds to a set of inputs I(x). Simultaneously, the outputs of some neurons

are combined to determine the information at ai. This model takes advantage of information

redundancy for improving the decision making process, see Fig. 2.2.
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Figure 2.2: Population coding model. ai makes inferences about visual information by the analogous
process of image analysis-synthesis.

Nevertheless, one disadvantage of PC is that redundancy generates complex statistic depen-

dence among neurons of the input stream. Consequently, one goal for researchers is to reduce

that dependence, so that images can be approximated in terms of a collection of statistically

independent events.

In 1961, Horace Barlow [17] discovered that one of the main goals of visual processing is,

indeed, the reduction of the redundancy (sparseness). In addition, he found that if the brightness of

the neighboring points in an image are similar, then the retina reduces the redundant information.

Therefore, two questions arise: how large is the set of receptive fields that best describe all natural

scenes (how overcomplete) and how many of them are active in a single scene (how sparse)?

We have learned that computations to enhance features of a visual scene can be made easier if

we employ an orthogonal basis, where certain characteristics become obvious in the transform

domain; allowing each element in the space to be written as a linear combination. However, the

conditions to a basis are very restrictive and the representation is non-redundant. In such a case,

corruption or loss of transform coefficients can be fatal. The redundant counterpart of orthogonal

bases are called frames and since they are less constrained than bases, they are used when we

need more flexibility. The main difference between bases and frames is that the former is a unique

representation and uses a number of vectors equal to the dimension of the space. When this

number is larger, we can still have a representative set of vectors, except that the vectors are no

longer linearly independent and the resulting set is no longer called a basis but a frame. Intuitively,

we can think about a frame as a basis with at least one element added.

In the following Section 2.2 we present the essential concepts of bases and frames from a

Hilbert theory approach (named after David Hilbert).
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2.2 Hilbert spaces

Since objects in nature may appear in a very large range of orientations and scales, vision systems

must extract them from any background. Hence, space characterization is the first step to describe

any object. Commonly, such a space is based on the Hilbert theory. The two basic concepts of

linear algebra in the Hilbert theory are vector space and inner product. These concepts induce a

norm, thus, a Hilbert space is a normed space.

In signal theory, a classical problem is to represent a signal as a convergent series of elementary

functions of the same structure. This problem is generally addressed with linear combinations and

concepts of bases. Initially, we assume that objects are vectors in a finite-dimensional vector space

in Rn and Cn. However, there are only two basic operations defined in a vector space: addition of

two vectors and multiplication by a scalar. Formally, we can say:

Definition 2.1 By a vector space we mean a non-empty set V with two operations:

1 a mapping (x, y)→ x + y from V × V into V called addition.

2 a mapping (λ, x)→ λx from C × V into V called multiplication by a scalar.

We must define operations that can measure the elements within the vector space. If the

concept of norm between two vectors, defined as the absolute value of the difference between

them is introduced, then a vector space becomes a metric space. This progression allows us to

measure similarities by finding distances among vectors. Moreover, if a metric space is considered

as a closed set, namely a representative subset of vectors that can describe any vector in the same

space then the space becomes a Hilbert space denoted by H, here, the norm is defined by an

inner product.

However, we need more elements in order to characterize vectors in a common reference mark.

Although bases are not limited to Hilbert spaces, we can use them to represent vectors in H.

A basis is a set of linearly independent vectors used to represent every vector in a given vector

space, formally we say:

Definition 2.2 A finite subset Φ = {φi}i∈N+ of a vector space V is a basis of V if:

1 the vectors in Φ are linearly independent.

2 V = span (Φ).

This definition is very useful because we can describe an object using its approximations. For

instance, an approximation of a natural image can be a low-pass version of it, which is a blurred

version of the original one. Typically, a basis is used to highlight salient features such as edges,

patterns, and textures; this operation often facilitates subsequent processing tasks.
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Elements of the space V are generated by the subset Φ using linear combinations. Furthermore,

we can say that the dimension of the space V, dim (V), is n if i = {1, . . . , n}.

We considered finite-dimensional vector spaces and sequences of finite energy or sequences

of finite square sums, x, where x = (. . . , x−1, x0, x1, . . .) are in general complex values. For such

spaces, the inner product between two vectors x and y is defined as:

〈x, y〉 =
∑
i∈J

Wixiy∗i (2.1)

where ∗ denotes the complex conjugate, J is some index set, and W is a diagonal matrix. Here, we

considered W = I.

Eq. (2.1) associates each pair of vectors with a scalar quantity. The inclusion of a distance

allows intuitive geometrical notions of length of a vector and the angle between two vectors.

Also the concept of an inner product induces an associated norm, as well. In general, the idea

of a norm is an abstract generalization of the length of a vector in a vector space as follows:

Definition 2.3 A function ‖•‖ on a vector space V is called a norm if:

1 ‖x‖ = 0 ⇐⇒ x = 0;

2 ‖λx‖ = |λ| ‖x‖ ∀x ∈ V and λ ∈ C;

3 ‖x + y‖ ≤ ‖x‖ + ‖y‖ ∀x, y ∈ V.

Norm in a vector space is a generalization of the distance between two points in R2. In Hilbert

spaces, a norm is defined using Eq. (2.1) as follows:

‖x‖ =
√
〈x, x〉

=

√∑
i∈J

|xi|
2 (2.2)

2.3 Orthonormal bases

Bases play a prominent role in the analysis of vector spaces. They are used in both finite-

dimensional cases and infinite-dimensional cases.

Definition 2.4 A basis is called an orthonormal basis if:〈
φi, φ j

〉
= δi− j (2.3)

where δk = 1 for k = 0, otherwise δk = 0.
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It is possible to represent the signal of interest through an orthogonal projection by using a

subset of basis vectors as follows:

x =
∑
i∈I

〈x, φi〉 φi (2.4)

this means that the representation of the signal x is a sum of projections onto a space V.

The terms Ci = 〈x, φi〉 are the coefficients in the expansion of x over the base Φ. The conse-

quence of this definition is that all x ∈ V have a unique representation in terms of the elements of

the base.

Considering the previous Eq. (2.4), we can state that, indeed, there is a set of unique coefficients,

{Ci}
n
i=1, that can be used to define the best approximation of x as follows:

Definition 2.5 Let x̂(k) be the best approximation of x using the orthogonal set

{φ0, φ1, . . . φk−1} and x̂(0) = 0 then:

x̂(k+1) = x̂(k) + 〈x, φk+1〉 φk+1 (2.5)

This means that the new best approximation is the sum of the previous best approximations.

However, such representations are not redundant or are not based on the PC model. Therefore,

problems of corruption or loss of information in the transform coefficients may appear. In [31]

these limitations were addressed. One way to avoid them is with frames, originally proposed in

1952 by Duffin and Schaeffer [32] in order to reconstruct band-limited signals from irregularly

spaced samples.

2.4 Frames

It took almost 50 years to the frame theory gain attraction from researchers. It is well known

that the use of redundancy in engineering systems improves robustness and numerical stability.

Motivated by this observation, redundant signal expansions have found widespread use in many

different engineering disciplines. The main promoters to this effort are Daubechies, Grossman,

and Meyer [31, 33].

The idea behind this theory relies on the fact that redundancy is generated with the expansion of

the signal of interest. This approach has been used in coding [34], denoising [35], and restoration

and enhancement [36].

The notion of bases in finite-dimensional spaces implies that the number of representative

vectors is the same as the dimension of the space. For instance, the number of vectors in R2 is 2,

whereas in R3 is 3, and so on. When this number is larger than the dimension of the space, the set

is no longer linearly independent and the result is no longer a basis.

In the following paragraphs we will start from the scratch using a simple orthonormal basis in

order to illustrate how to build a frame.
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(a) (b)

Figure 2.3: Biorthogonal frames in R2. (a) Frame Φ = {φ1, φ2, φ3} and (b) its dual frame Φ̃ ={
φ̃1, φ̃2, φ̃3

}
.

Let Φ = {φ1, φ2} = {(1, 0) , (0, 1)} be an orthonormal basis in R2. Then, using the Eq. (2.4), we

can state that the following projection of x is true:

x = 〈x, φ1〉 φ1 + 〈x, φ2〉 φ2 (2.6)

But what happen if a third vector (e.g., φ3 = φ1 + φ2) is added to the basis Φ? The answer is

that the property of linear independence is lost. However, these vectors must be able to represent

every vector in R2 since their subset is able to do so.

In order to build a frame, it is possible to add a zero vector to Eq. (2.6) as follows:

x = 〈x, φ1〉 φ1 + 〈x, φ2〉 φ2 + (〈x, φ2〉 − 〈x, φ2〉) (φ1 − φ2)︸                              ︷︷                              ︸
0

(2.7)

The previous expression was rearranged, such that:

x = 〈x, φ1〉 φ1︸     ︷︷     ︸
a

+ 〈x, φ2〉 φ2︸     ︷︷     ︸
b

+ 〈x, φ2〉 φ1︸     ︷︷     ︸
a

− 〈x, φ2〉 φ2︸     ︷︷     ︸
c

− 〈x, φ2〉 φ1︸     ︷︷     ︸
c

+ 〈x, φ2〉 φ2︸     ︷︷     ︸
b

= 〈x, φ1 + φ2〉 φ1︸            ︷︷            ︸
a

+ 〈x, 2φ2〉 φ2︸       ︷︷       ︸
b

+ 〈x, −φ2〉 (φ1 + φ2)︸                 ︷︷                 ︸
c

(2.8)

the factor (φ1 + φ2) can be recognized as φ3. In addition, we defined the next three variables as

follows:
φ̃1 = φ1 + φ2

φ̃2 = 2φ2

φ̃3 = −φ2

(2.9)

12 of 87



2.4 Frames

If we replace Eq. (2.9) into Eq. (2.8), thus, the expansion can be rewritten as:

x =
〈
x, φ̃1

〉
φ1 +

〈
x, φ̃2

〉
φ2 +

〈
x, φ̃3

〉
φ3

=

3∑
i=1

〈
x, φ̃i

〉
φi

(2.10)

Herein, it is possible to use matrix notation: M =

1 0 1

0 1 1

 and N =

1 0 0

1 2 −1

 in order to

rewrite the Eq. (2.10) as:

x =

3∑
i=1

〈
x, φ̃i

〉
φi

= MN ∗x

(2.11)

The redundant set of vectors M = {φi}i=1,2,3 is called frame, see Fig. 2.3(a), whereas the set

N =
{
φ̃i

}
i=1,2,3

is known as a dual-frame, see Fig. 2.3(b). Moreover, M is orthogonal to N , thus,

φi and φ̃i are interchangeable, namely that the filter used for analysis is the same filter used in

synthesis: MN ∗x = NM ∗x.

This relationship of biorthogonality can be represented as:〈
φ̃i, φ j

〉
= δi− j (2.12)

however, not necessarily such frames preserve the norm [37].

2.4.1 MERCEDES-BENZ FRAME

Consider Φ = {φ1, φ2, φ3} in matrix form: Φ =

 0 −

√
3
2

√
3
2

11 − 1
2 − 1

2

 with its corresponding expansion:

x =

3∑
i=1

〈x, φi〉 φi

= ΦΦ∗x

(2.13)

which is one of the most popular frames. It is known as Mercedes-Benz Frame (MBF), the reason

for this naming becomes evident in Fig. 2.4. It was originally proposed by Peres-Wooters [2] in

quantum information theory and is a collection of three vectors in R2.

Since Eq. (2.13) is used for analysis and reconstruction, Φ is known as a dual-frame –at first

sight, you can think that represents a generalization of an orthogonal basis except that the vectors

are not linearly independent. Frames of this type are called tight frames.
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Figure 2.4: The unit-norm MBF is an example of a dual-frame. This frame can be generated by
rotations with steps of 2π

3 . MBF is used mainly in image restoration problems [2].

In order to preserve the normalization, ΦΦ∗ = I, the factor 2
3 is introduced

ΦΦ∗ =

0 −

√
3
2

√
3
2

1 − 1
2 − 1

2




0 1

−

√
3
2 − 1

2√
3
2 − 1

2

 =

3
2 0

0 3
2

 (2.14)

So that the unit-norm expansion is computed as:

x =
2
3

3∑
i=1

〈x, φi〉 φi

=
2
3

ΦΦ∗x

(2.15)

Let us now calculate the norm of the coefficients Ci using Eq. (2.2) as follows:

‖C‖2 =

3∑
i=1

|〈x, φi〉|

=
3
2
‖x‖2

(2.16)

note that the expansion equation of the MBF has a scaling factor of 2
3 .

If a frame is tight and all vectors have unit norm –as in this case– the inverse of the scaling

factor represents the redundancy. In this case, about 3
2 or 50% more vectors are needed to describe

any vector in R2. This frame also minimizes the mean squared error [38].
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2.4.2 TIGHT FRAMES

In Section 2.4.1 we introduced the concept of frames by examples. We now present the formal

definition of a frame.

Definition 2.6 Let Φ = {φi}i∈I be a set in Hilbert space H then Φ is a frame if there

exist two constants 0 < A ≤ B < ∞, such that for all x in H:

A ‖x‖2 ≤
∑
i∈I

|〈x, φi〉|
2 ≤ B ‖x‖2 (2.17)

where A and B are the frame boundaries.

Frame boundaries are related to stability. Kovačević [39] pointed out that in order to ob-

tain a stable reconstruction, the transform coefficients Ci have to be bounded. In other words,

reconstruction of any signal x is possible if and only if Eq. (2.17) is true and A and B are close.

When the condition A = B is fulfilled, a frame becomes a tight frame and then we can rewrite

Eq. (2.17) as: ∑
i∈I

|〈x, φi〉|
2 = A ‖x‖2 (2.18)

Now, it is possible to place the factor A into the summation

∑
i∈I

∣∣∣∣∣∣
〈

1
√

A
x, φi

〉∣∣∣∣∣∣2 = ‖x‖2 (2.19)

Φ =

{(
1√
A

)
φi

}
i∈I

is called a “tight frame-1” and we can establish the following definition:

Definition 2.7 If Φ = {φi}i∈N+ is a tight frame-A then the signal x can be represented

as follows:

x =
1
A

∑
i∈I

〈x, φi〉 φi (2.20)

Although Eq. (2.20) is similar to a basis expansion (except for the factor A) is not a “general

basis” because its elements are not linearly independent (i.e., the mutual inner product is not

zero). Therefore, the expansion is not unique.
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– I learned very early the difference between knowing the
name of something and knowing something.

Richard P. Feynman

3
Overcomplete image models

3.1 Introduction

IN the previous chapter we have seen that a common approach to represent images is by

linear superposition of basis functions. In fact, decomposition of an image into its structural

components is a common task in image processing. State-of-the-art methods analyze local

derivatives for distinguishing image variations due to shading or reflectance. Fourier analysis

is the most common way to characterize images in the space-frequency domain using sine and

cosine functions, however, this type of expansion is limited [40]. As an alternative, we used a

more general and powerful methodology based on the so-called overcomplete methods (also called

overcomplete dictionaries) [41–43].

Commonly, we say that such methods are biologically-inspired because the V1 area is strikingly

overcomplete [44]. In other words, there are many more cells than are needed to represent the

visual information. There are around 300 neurons per LGN in human beings and consequently

such a configuration introduces redundancy.

A few years ago, it was believed that receptive fields of simple cells performed quasilinear

transformations to the light that is perceived by the retina [45]. However, latter works have

discovered that receptive fields also perform some nonlinear operations such as normalization of

the contrast, rectification, and filtering to extract texture boundaries. In fact, there is evidence

that quasilinear and nonlinear texture-boundary processes, each with an appropriate contrast

normalization, may operate in parallel to provide a higher visual analysis.



Chapter 3. Overcomplete image models

Unlike the basis, the decomposition of an image using overcomplete methods is not unique,

however, this may provide some advantages such as greater flexibility in approximations (for

instance, an image can be decomposed onto multiple bases) and the increased stability of the

representation namely less sensitive to noise. Another advantage is that we can explain high-

dimensional data images in terms of a concise set of primitive features [46].

Many computational vision models have incorporated some biological properties of vision.

They have shown the functioning of V1 by representing an image with an overcomplete set of

visual neurons [47]. Thus, the motivation in this chapter is to investigate the advantages of

biologically-inspired overcomplete models.

This chapter is organized as follows: in Section 3.2 we reviewed the classical Gabor paradigm,

which is optimal in terms of the uncertainty principle. We discussed the fundamental results

involved in the development of Gabor functions and its limitations. Here, a major improvement

was proposed: we computed optimal filter parameters in order to match simple psychophysical

aspects of the HVS. In Section 3.3 we present a novel scheme based on log-Gabor filters and

summarized its properties. We also computed optimal parameters to match simple phenomena of

the HVS in this approach. Finally, in Sections 3.4 a methodology for extracting features based on

Gabor filters is presented.

3.2 Gabor filters

The work initiated by Hubel and Wiesel [20] shows that every simple cell is connected to its

neighbors by the mechanism of inhibitory or excitatory responses that may occur at an axoaxonal
synapse, which is a synapse between the axon of one cell and the axon of another, and responds to

visual features located around a particular position with a specific frequency band and orientation.

Such a spatial structure have a remarkable resemblance to Gabor filters, see Fig. 3.1. This fact

suggests that simple receptive fields may provide the best possible simultaneous description of the

spatial position and spectral content of visual stimuli as well.

In [48], Goesta Granlund proposed a general operator, which corresponds to a 2D Gabor filter,

addressing the octave spacing of frequencies as well. John Daugman later showed a equivalence

between the experimental findings on orientation selectivity of visual cortical neurons and the

structure based on 2D Gabor functions. So, we can say that Gabor functions are a good choice for

obtaining localized frequency information. Since their conjoint area has a lower limit analogous to

the uncertainty principle proposed by Heisenberg, they offer the best simultaneous localization of

spatial and frequency information. It means that the product of the uncertainties in frequency and

time must be greater that a fixed constant; therefore the accuracy in one domain limits the best

possible accuracy in the other one:

(∆x∆ω) ≥
1

4π
(3.1)

where ∆x is the interval where the signal is not zero and ∆ω is the bandwidth.
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3.2 Gabor filters

Figure 3.1: Receptive field profiles of simple cells in a cat visual cortex. A comparison between receptive
field profiles (first column) and Gabor filters (second column). Residual values obtained
by subtracting the best-fitting 2D Gabor filter and a measured profile (third column).
In 97% of cell studies the residual values can be neglected. Images were borrowed and
modified from [3].

John Daugman’s work focused on proving that the conjoint time-frequency properties of

one-dimensional Gabor function are still satisfied for the two-dimensional case. In 1987, Jones

and Palmer [49] confirmed that Gabor filters provided good fits to the receptive field profiles

that they measured in cat visual cortex, see Fig. 3.1. However, there are other functions with

additional parameters that fit to biological profiles such as Differences of Gaussians (DoG) or

Hermite functions [50, 51].

Daugman [52] also found that such psychophysical features could be modeled with Gabor

functions, which are defined as the product of a complex sinusoid and a Gaussian function that

acts as a modulator or signal envelope. Starting from the definition in 1D, we can use Euler’s

identity and prove that a Gabor function consists of two filters, as follows:

gω0 (x) = e−πα
2 x2+iω0 x

= e−πα
2 x2

eiω0 x

= e−πα
2 x2

[cos (ω0x) + i sin (ω0x)]

= e−πα
2 x2

cos (ω0x) + ie−πα
2 x2

sin (ω0x)

= ge (x) + igo (x)

(3.2)

where ge represents an even-symmetric filter, whereas go is an odd-symmetric filter. Note that the

Gaussian function is a particular case when ω = 0.
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(a) (b)

Figure 3.2: Gabor functions in spatial domain. (a) Even-symmetric Gabor function, ge (t), that it is
able to detect salient edges. (b) Odd-symmetric Gabor function, go (t); this function is
ideal for detecting step-like discontinuities.

Moreover, it has been found that certain pairs of cells have their receptive fields located in the

same position but with a relative separation in phase of ∆φ = 90◦, which means that they are in

quadrature phase 1. As we showed in Eq. (3.2), both real and imaginary parts can be separate in

order to check that they are in quadrature phase, see Fig. 3.2.

2D Gabor functions are a generalization of 1D elementary functions or logons, originally

proposed by Dennis Gabor [53] in 1946 for signal expansion. Gabor’s work is a continuation and

partly parallel to the works of Harry Nyquist [54] and Claude Shannon [55] who found the theory

of communication. Gabor functions are band-pass filters and occupy the smallest possible volume

in the time-frequency space, where orthogonal axes correspond to spatial (x, y) and frequency (u, v)

variables. The volume meets the theoretical lower bound of the uncertainty principle as follows:
(∆x) (∆y) (∆u) (∆v) ≥ 1

16π2 . The canonical 2D Gabor filter is defined in spatial domain as:

g (x, y) = Ke
− 1

2

[
(x−x0)2+γ2(y−y0)2

α2

]
+i(2π[u0(x−x0)+v0(y−y0)]+φ)

(3.3)

where K =
γ

2πα2 is the normalizing constant; (x0, y0) are the center of the filter, (u0, v0); and φ

represent the radial frequency and the phase of the sinusoidal signal, respectively. (α, γ) are the

space constants of the Gaussian envelope along x- and y-axes respectively and they control the

filter bandwidth.

In order to simplify Eq. (3.3) we only considered filters centered at the origin (x0 = 0, y0 = 0).

Although the phase is implicitly encoded, it was ruled out because it can take very different values

even if it is sampled at image locations only a few pixels apart. This fact makes it difficult to extract

reliable and discriminative features from the phase responses. So, the equation is reduced as:

g (x, y) = Ke
− 1

2

(
x2+γ2y2

α2

)
[cos (2πu0x) + i sin (2πu0x)] (3.4)

1Two signals are in quadrature phase, φ, if the difference between phases is constant and equal to ± π
2
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3.2 Gabor filters

(a) (b)

Figure 3.3: 2D Gabor functions in the spatial domain. (a) Real part, which is an even-symmetric
function and (b) imaginary part that corresponds to an anti-symmetric function.

As in the previous Eq. (3.2), the Euler’s identity was also applied to Eq. (3.3) in order to

separate real and imaginary parts, g (x, y) = ge (x, y) + igo (x, y) where:

ge (x, y) = Ke
− 1

2

(
x2+γ2y2

α2

)
cos (2πu0x) (3.5)

is an even-symmetric function, which responds with a maximum in zero, see Fig. 3.3(a). This

property provides suitable functions for detecting salient edges. On the other hand,

go (x, y) = Ke
− 1

2

(
x2+γ2y2

α2

)
sin (2πu0x) (3.6)

is an odd-symmetric function, which responds to zero-crossing, see Fig. 3.3(b). This function is

ideal for detecting step-like discontinuities [56].

Traditionally, a rotation transform is applied to Gabor filters to move them onto a specific angle

and take advantage of their directionality, g∗θ (x, y) = Rg (x, y). Thus, using the rotation matrix

R =

 cos θ sin θ

− sin θ cos θ

 (3.7)

and applaying to Eq. (3.5) yields a 2D polar Gabor function as follows:

g∗θ (x, y) = e
− 1

2

(
x̃2+γ2 ỹ2

α2

)
cos (2πu0 x̃) (3.8)
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α

(0, 0)α
γ

Bu

−u0 u0

F {•}

F−1 {•}

Bθx
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y

Figure 3.4: Fourier transform pair of a 2D Gabor filter. The figure illustrates the dependence between
spatial and frequency bandwidths.

with
x̃ = x cos θ − y sin θ

ỹ = x sin θ + y cos θ
(3.9)

this procedure is applicable in a similar manner to the odd-symmetric filter to obtain the imaginary

part.

In the spatial domain, 2D Gabor filters are complex sinusoids modulated by 2D Gaussian

functions, while in the frequency domain they are shifted Gaussians. Heisenberg’s principle states

that there is a trade-off between these representations. The filter’s spatial-frequency and orientation

bandwidths are linked and a circular filter envelope in the space domain is supported by the sum

of two circular regions in the frequency domain. Centers of those regions correspond to the filter’s

modulation frequency. Additionally, we can say that spatial-frequency and orientation bandwidths

are inversely related to the space-domain envelope diameter, see Fig. 3.4.

The frequency and orientation selectivity properties of Gabor functions can be more explicit in

the Fourier domain. If we consider that ge is a pure-real even-symmetric function, then its Fourier

transform, F {ge}, is given by 1
2

[
Ĝ (u, v) + Ĝ (−u,−v)

]
, which is a symmetric function about the

y-axis, see Fig. 3.5(a), whereas go is a pure-real odd-symmetric function and its Fourier transform,

F {go}, is 1
2

[
−iĜ (u, v) + iĜ (−u,−v)

]
, which is a symmetric function around the origin. Note that if

both even and odd parts are used, they closely approximate to a Hilbert transform pair namely

negative frequencies become zero. Therefore, the Fourier transform of g (x, y) is given by

Ĝ (u, v) = e
−2π2α2

[
(ũ−u0 cos θ)2+ 1

γ2 (ṽ+u0 sin θ)2
]

(3.10)

Ĝ (u, v) represents a rotated Gaussian function by an angle θ with u0 frequency units shifted

along the x-axis and (ũ, ṽ) = (u cos θ,−u sin θ).
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3.2 Gabor filters

(a) (b)

Figure 3.5: Fourier transform of a 2D real Gabor function. (a) In the frequency domain the even-
symmetric filter is represented by two real-valued Gaussian functions symmetrically placed
respect to the origin. (b) Contour lines of a Gabor filter in the frequency domain. Note
that Gaussian filters are deformed as they approach to the origin due to the average of all
DC components.

The selection of the optimal Gabor parameters is an open issue because they depend mainly on

the application problem, therefore is very difficult to propose a general scheme. There are many

possibilities, one of them is to experiment with the width of the Gaussian envelope by changing
(α, γ) values, which determine resolution in both spatial and frequency domains.

G (u, v) is a band-pass filter and its bandwidth is controlled by α and γ; if the aspect ratio

λ = α
γ = 1, then Eq. (3.10) represents an axisymmetric filter. However, the main issue lies on

choosing radial-frequencies (ui) that define the degree of overlapping between two adjacent filters.

The higher the central frequency of the Gabor sinusoidal carrier, the smaller area the Gaussian

envelope will cover in the spatial domain [57].

A class of self-similar functions can be obtained by appropriate translations namely changing

radial-frequency values and rotations (θ) of a Gabor function to form an array. If we assume that

the number of translations is T and the number of rotations is R then the filter bank consists of

T × R filters.

Psychophysical experiments have shown that frequency bandwidths of simple receptive fields

in the HVS are about one octave2 apart [52, 58]. To fulfill this condition, the half-amplitude

bandwidth (Bu) of each filter was linked to its central frequency as follows:

α =

√
log (2)

(
2Bu + 1

)
√

2πu0
(
2Bu − 1

) (3.11)

2An octave is the bandwidth between two frequencies, one of which is double the other.
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Chapter 3. Overcomplete image models

Note that the maximum possible discrete frequency of an image along x- or y- axes is 1
2 cycles

per pixel. Beyond this limit, the radial bandwidth will be very large, thus, the filtering may cause

artifacts [59]. Therefore, the maximum number of frequency bands must be computed by dividing

the central frequency by the size of the image. So, we selected the four following dyadic values

u = {
√

2, 2
√

2, 4
√

2, 8
√

2} to build an optimal filter bank with 4 scales, the central frequency should

be given in cycles/image-width. On the other hand, if the central frequency is very small, then

filters will behave as low-pass filters rather than band-pass filters; this fact usually leads to a loss of

information in classification problems.

In order to determine the optimal angular bandwidth (Bθ), we considered axisymmetric filters

and set γ = 1 in Eq. (3.12). In this way, Bθ ≈ 36◦ but for computational efficiency Bθ = π
6 was

chosen. This setting resulted in a filter bank with 6 orientations.

α

γ
=

√
log (2)

√
2πu0 tan

(
Bθ
2

) (3.12)

3.3 Log-Gabor filters

Gabor filters possess a number of interesting mathematical properties: first, they have a smooth

and indefinitely differentiable shape; and second, they do not have side lobes neither in space nor

frequency domain. Nevertheless, they present some important drawbacks such as the maximum

bandwidth limited to approximately one octave and Gabor filters are not optimal if one is seeking

broad spectral information with maximal spatial localization [60]. In the following list we reviewed

three important drawbacks.

• The Gabor filter averaging is not null, hence, the DC component influences the intermediate

bands. Filters overlap more at lower frequencies than at higher ones yielding a non-uniform

coverage of the Fourier domain, see Fig. 3.6(a). In many image-based applications, variation

of DC components generally deteriorates system performance. To deal with this problem,

researchers commonly use zero DC Gabor filters by setting (x = 0, y = 0) to zero. Additionally,

to eliminate the influence of the power of Gabor filters, a normalized version is used,

gn (x, y) =
g(x,y)
‖g(x,y)| .

• Gabor filters have been successfully used for image analysis and applications where exact

reconstruction is not required because the traditional arrangement in scales and orientations

does not cover uniformly the Fourier plane, therefore, the reconstruction is not exact.

In fact, Gabor filters are band-pass filters by definition; they can not cover lowest and

highest frequencies. In parallel, different methods for reconstruction improvement have been

proposed: Gross et al. presented a method to cover more uniformly the Fourier domain [61],

in [62], Nestares et al. introduced a method to recover the highest frequencies, and in [63],

Lee showed an improvement for the reconstruction stage.
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3.3 Log-Gabor filters

(a) (b)

Figure 3.6: Frequency response profiles of (a) Gabor filters and (b) log-Gabor filters. Note that DC
component is minimized by the introduction of the logarithm.

• It is not possible to build a complete orthogonal basis of Gabor functions. Non-orthogonality

implies that exact reconstruction using the same filters for analysis and synthesis will not

be possible unless an overcomplete dictionary is considered [56]. However, several sparse

coding algorithms have been used to address this issue such as Matching Pursuit, which

chooses one by one the highest coefficients in all the dictionary and Basis Pursuit, which

solves the linear system minimizing a penalizing function corresponding to the sum of the

amplitude of all coefficients. Both of these algorithms perform iteratively and globally

through all the dictionary [47].

In order to avoid these drawbacks, in 1987, David Field [64] proposed Log-Gabor filters, which

are defined in the frequency domain as Gaussian functions shifted from the origin because of the

singularity of the log function, see Fig. 3.6(b).

By definition they always have a null-DC component and can be optimized to produce filters

with minimal spatial extent in an octave scale multi-resolution scheme. Additionally, this filtering

scheme not only achieves important mathematical properties, it also follows the knowledge on the

receptive field properties of simple cells in the V1 area.

Compare to the state of art, log-Gabor filters show excellent ability to segregate image in-

formation. We used the biological knowledge about V1 as a useful guide for choosing the best

parameters in order to achieve an optimal filtering scheme. It is important to provide good image

quality from the human perceptual point of view because human beings are the ultimate receivers

in most applications.
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(a) (b)

(c) (d)

Figure 3.7: Example of a Log-Gabor Filter. (a) Concentric rings of the radial component of the filter.
(b) The angular component is only defined for the half of the plane in order to reduce
redundancy. (c) The product of radial and angular components. (d) Contour lines of a
log-Gabor coefficient shifted from the origin.
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3.4 Gabor jets

Log-Gabor filters can be split into two components: radial component, see Fig. 3.7(a), and

angular component, see Fig. 3.7(b). The former controls the frequency band and the latter

controls the orientation. The two components are multiplied together to construct the overall filter,

Ĝ (ρ, θ) = ĜρĜθ, see Fig. 3.7(c) and Fig. 3.7(d).

Ĝ (ρ, θ) = e
− 1

2

 log
(
ρ

u0

)
log

( αρ
u0

)

2

e
− 1

2

[
(θ−θ0)
αθ

]2

(3.13)

where (ρ, θ) represent polar coordinates; u0 is the central frequency; θ0 is the orientation angle; αρ
and αθ determine the scale and the angular bandwidth respectively.

In order to better cover the Fourier plane, we introduced a modified multi-scale decomposition

scheme. The even scales were rotated by a constant factor consisting of the half a distance between

filter centers. Based on experiments, we set αρ = 0.75 that results in a minimal overlap among

scales one octave apart and αtheta =
pi
6 as it was mentioned in Section 3.2.

This implementation fulfills the following constraints: (i) an optimal localization in space,

frequency, and orientation through the use of logarithmic filters; (ii) a resemblance to receptive

fields of V1 simple cells; (iii) this configuration of filters is particularly suited for coding local

contrast changes in natural images; and (iv) when log-Gabor filters are compared with other

schemes, such as biorthogonal wavelets, translation invariant wavelets, and steerable pyramids,

the log-Gabor filters have shown a significant improvement in the noise removal capability by

using simple threshold operations [47].

3.4 Gabor jets

The main drawback when using Gabor or log-Gabor filters is the high degree of redundant

information. For each real-value pixel in the image I there are S ×D complex values corresponding

to the number of scales, S , and orientations, D, of the filter bank. This means that neighboring

pixels share about the same information and, hence, can be approximated for only salient Gabor

coefficients namely important coefficients in terms of energy, statistics, or even visual aspects.

Buhmann et al. [65] introduced the concept of Gabor jets by concatenating the responses of

all Gabor coefficients at a specific position into a vector, see Fig. 3.8. Although they used a different

Gabor family, the fundamentals of Gabor filters not change.

The Gabor jet, JI (x, y), of an image I at the pixel position (x, y) is define by

JI (x, y) = {Jk (x, y)|k = 1, . . . , S × D} (3.14)

where

Jk (x, y) =
{
I ? g(s,θ)

}
(x,y) (3.15)

JK stands for the k-th coefficient of the feature vector extracted from the convolution of the image I
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Jk (x, y)

Jk−1 (x, y)

J1 (x, y)

JI (x, y)

I ? g(s,θ)

Figure 3.8: A Gabor jet vector, JI (x, y), is built by concatenating the responses of all Gabor coefficients
at a specific position into a single vector.

and the k-th Gabor filter at pixel position (x, y). Here,
∣∣∣JI

∣∣∣, can be seen as the response of a different

complex cell. Thus, we can establish the following idea:

The absolute values around an offset point are relatively stables for a small displacements d∣∣∣JI (x, y)
∣∣∣ ≈ ∣∣∣JI (x + dx, y + dy)

∣∣∣ (3.16)

This allows us to perform a downsampling procedure (↓) by a factor of N in order to minimize

redundant information. For instance, let A be an image of 31 × 31 pixels and let B be a Gabor

filter bank with 6 orientations and 4 scales. Therefore, the length of the Gabor jet JA (x, y) at pixel

position (x, y) will be 24 complex values and a possible feature vector will have 23064 bins. If a ↓ 3

procedure is applied, then the feature vector will be 15384 bins.
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– Some scientists claim that hydrogen, because it is so
plentiful, is the basic building block of the universe. I
dispute that. I say there is more stupidity than hydrogen,
and that is the basic building block of the universe.

Frank Zappa

4
Texture segmentation

4.1 Introduction

FOR human beings, an image is not just a group of pixels but a collection of objects and

regions that are somehow related to each other, and in spite of the large variation of visual

scenes, the HVS has no problems interpreting them. In the real world, images often do not

exhibit uniform intensities but variations in brightness, color, texture, or other attributes which

form a certain pattern.

Since an image is made up of pixels, texture can be defined as an entity consisting of mutually

related pixels and group of pixels called texture primitives or texture elements (texels). It is

generally believed that the HVS uses them as effective features to discriminate objects because

the brain is able to decipher important variations in data at smaller scales. However, the issue of

texture characterization lies on the fact that some spatial patterns can be quite simple as stripes

while others can exhibit complex behaviors. From a mathematical point of view, it is usual to

analyze spatial distributions of pixels as intensity variations from regularity, where texture contains

periodic patterns, to randomness, where texture looks like unstructured noise.

Texture plays an important role in distinguishing one region from another because intensity

variations may reflect different areas, shapes, or objects. According to Dixit et al. [66], there are

three fundamental features that human beings use to interpret images: spectral, textural, and

contextual information. However, only texture features provide information about the structural

arrangement of a surface or region and the relationship with its surrounding environment.



Chapter 4. Texture segmentation

The first steps towards computational texture characterization were made by Julesz [67]

who investigated texture perception and conjectured that two textures are not unconsciously

distinguishable if their second order statistics are identical. Afterward, he proved that his own idea

was false [68] but he established that texture might be modeled by low-order statistics.

Based on the fact that texture possesses spatial continuity at both local and global scales and

can exhibit a large number of features, it has been widely used to perform segmentation. The

occurrence of texture in an image is useful because when two or more regions meet, an edge is

formed. We used this fact and defined texture segmentation as a division of the whole image into

homogeneous regions characterized by the same texture.

Therefore, texture segmentation can be performed in two different ways: as gray level segmen-

tation or as feature segmentation.

In [69], the following four approaches for texture segmentation have been recognized: (i) sta-

tistical methods analyze spatial distributions of pixels by computing local features at each point of

the image and deriving a set of statistics. These statistics may describe properties such as mean,

variance, skewness, kurtosis, and so on. They are based on the assumption that intensity variations

are more or less constant within a texture region and take a greater value outside their boundary

[70]. Latest approaches in this category use Markov fields to model relationships among pixels

within regions and over time [71]; (ii) spectral methods collect a distribution of filter responses for

a further classification. For instance, researchers have used Gabor filters to discriminate between

different kind of textures. These methods emphasize the extraction of appropriate features for

discriminating among specific textures. A comparative study can be found in [72]. Many algo-

rithms in this category are focused on face recognition and classification as in [73]; (iii) structural

methods characterize texture by a set of primitives, which are organized according to a certain

placement rule that defines the spatial relationship among primitives and may be expressed in

terms of adjacency [74]; and (iv) stochastic methods assume that textures are the realization of a

stochastic process and estimate parameter associated with the process, e.g., [75] uses a Bayesian

approach as a texture descriptor.

The aim of texture segmentation is to produce homogeneous regions with respect to texture

primitives that correspond to objects in the real scene under study. However, it is still an open

and complicated problem, which is strongly influenced by the quality of data. For this reason, we

must consider two fundamental issues: what is the feature that best discriminates textures? and

what is the underlying model that defines region homogeneity and, thus, specifies what a good

segmentation should be?

Based on the fact that the HVS can segment textures robustly, many segmentation schemes

use biological models. There is an evidence that perceptually texture differences correspond to

differences in local spatial frequency content [76]. This suggests that a good algorithm must

decompose a texture image into a joint space/spatial frequency representation and then use this

information to locate regions of similar local spatial frequency content.
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(a) (b) (c)

Figure 4.1: Half-amplitude bandwidth of (a) an ensemble of 2D Gabor filters in the frequency domain;
(b) 2D Log-Gabor filters; and (c) contour comparison between Gabor filters and log-Gabor
filters before rotating log-Gabor even bands.

In particular, Gabor filters, see Section 3.2, provide the ability to perform multiresolution

decomposition; they offer the best simultaneous localization of spatial and frequency information

and respond to a limited range of signals which form a repeating structure in some direction and

in some frequencies [77]. In the literature we can find quite a few papers devoted to texture

segmentation using Gabor filters [58, 76, 78, 79]. Moreover, texture segmentation techniques

can be either supervised or unsupervised. The latter stand out because it does not need any prior

knowledge concerning textures. This is very useful due to the fact that no prior information is

available in most practical applications [80, 81].

Despite the fact that Gabor filters optimize the theoretical limit of joint resolution between

space and frequency domain, they do not have zero-mean, which induces a DC component in

frequency bands. In addition, they do not have a uniform coverage of the frequency domain. These

drawbacks may cause errors in the extraction of the appropriate texture features.

In this Chapter, the Jain and Farrokhnia’s work [79] is visited; the motivation here is to

investigate the advantages of log-Gabor filters, Section 3.3, by comparing their performance with

Gabor filters, Section 3.2. Log-Gabor filters allow to eliminate DC component; they can yield a fairly

uniform coverage of the frequency domain in an octave scale scheme and preserve redundancy at

the same time, see Fig 4.1. This proposal is partially based on some recommendations given by

Clausi and Jernigan [82] and Bovik et al. [58].

In the next Section 4.2, the Jain and Farrokhnia’s algorithm is presented along with a modifi-

cation to prevent that the algorithm uses random seeds in k-means. In Section 4.3 experimental

results are presented. Conclusions are drawn in Section 4.4.
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(a) (b)

Figure 4.2: Ensemble of a Gabor filter bank in (a) the spatial and (b) Fourier domain. Four radial
frequencies u =

{
8
√

2, 16
√

2, 32
√

2, 64
√

2
}

cycles/image-width and four orientations

θ =
{
0, π

4 ,
π
2 ,

3π
4

}
.

4.2 Jain and Farrokhnia’s unsupervised method

This method uses a multi-channel filtering approach, which involves two processing steps: linear

filtering, where an image is filtered by a set of channels, see Fig. 4.2. The objective in this step is

to estimate the energy in the filter output within a local region. Previous studies pointed out that

Gaussian-like filters are, by far, the better choice [72, 83]; and post-processing step, this process

typically involves a non-linear point operation followed by computation of some local statistics.

Jain and Farrokhnia proposed a bank of even-symmetric Gabor filters (4 orientations and 7

scales) to characterize the channels; each filter response is subjected to a bounded nonlinear

transformation that behaves as a blob detector. They included a statistical stage to capture image

features. Finally, the feature vectors are classified using k-means. The complete algorithm is

summarized in Algorithm 4.1.

Algorithm 4.1: Jain and Farrokhnia’s unsupervised method.
Input: I := texture image

Input: NofT := number of textures

Output: SI := segmented image

1 begin

2 FI := Gabor filter bank(I);

3 BI := non-linearity (FI);

4 FVI := local energy computation (BI);

5 SI := k-means(FVI, NofT);

6 end
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4.2 Jain and Farrokhnia’s unsupervised method

4.2.1 FEATURE EXTRACTION

The frequency and angular bandwidths, (Bu, Bθ) respectively, can be set to constant values to match

psychovisual data. We used Eq. (3.11) to determine the value of the Gaussian envelope along the

x-axis (α). Psychophysical experiments showed that frequency bandwidths of simple cells in the

visual cortex are one octave apart namely Bu = 1. By setting the frequency cut-off to -6 dB, we

determined the ratio α = 0.56
u0

namely the half-amplitude bandwidth of each filter is linked to its

central frequency.

We determined the optimal Bθ by considering Eq. (3.12); we assumed that the filters are

isotropic, so we set α = γ = 1. In this way, Bθ ≈ 36◦ but for computational efficiency Bθ = π
6 was

chosen. This setting suggest to use a filter bank consisting of 6 orientations while the number of

scales is constrained by the size of the images.

The following values of radial frequency were used: u =
{
2
√

2, 4
√

2, 8
√

2, 16
√

2, 32
√

2, 64
√

2
}

cycles/image-width for an image of size 256×256. In this way, we guarantee that the pass-band

filter with the highest radial frequency falls inside the image array. At this point, we rule out

low-pass filter and filters with low radial frequencies because these filters capture spatial variations

that are too large for textures [82].

Each filtered image, fi, was subjected to a sigmoid function that can be interpreted as a blob

detector. Jain used an empirical value of γ = 0.25. We reached the best performance using γ = 0.1.

φ ( fi) = tanh (γ fi) =
1 − e−2γ fi

1 + e−2γ fi
(4.1)

Jain and Farrokhnia also suggested to apply a Gaussian window function to each filtered image.

The bandwidth of each Gaussian function is proportional to the average size of intensity variations

in the image.

4.2.2 CLUSTERING

The last step consists in integrating the features corresponding to different filters to produce a

good segmentation. If feature vectors are capable of discriminating patterns belonging to different

textures, each patterns will form a cluster. Each feature vector was built using the 36 Gabor filters

by concatenating the responses of all coefficients at a specific position, “Gabor-jets-like style”, see

Section 3.4. Furthermore, we included the spatial coordinates of the pixels, the mean, and the

variance as additional features in every vector.

The clustering algorithm used in this approach is k-means with initial random seeds. The

issue of clustering or grouping n objects into k groups arises in many scientific disciplines and is

not always easy to obtain an optimal partition. The k-means algorithm is very popular, however,

the algorithm is prone to the initializing values which greatly influence the determination of an

optimal solution.
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We used an initialization procedure proposed in [84] where a bootstrap method for finding

seeds was used. This method consists in clustering several subsamples of the dataset using k-means.

Each cluster produces a different set of candidates from which the initializers are chosen. The

complete algorithm is summarized in Algorithm 4.2.

Algorithm 4.2: K-means bootstrap algorithm.
Result: Image pixels are assigned to K classes (labeled pixels)

Input: DS := dataset

Input: K := number of classes

1 begin

2 for i← 1 to 10 do

3 subDS := a random subset of DS;

4 randSeeds := extractRandomSeeds(subDS);

5 [centroids[i], labels of subDS] := k-means(randSeeds, subDS, K);

6 end

7 initializers = average of centroids;

8 [centers, labels of DS] := k-means(initializers, DS K);

9 end

4.3 Experimental results

The algorithm previously described was tested using textures extracted from the Brodatz album

[85]. We used both Gabor and log-Gabor filters into the pipeline in order to compare their

performance. All tests were assessed using image mosaics from two to five textures of size

256×256, see Fig. 4.3 (first row). The final segmentation with Gabor filters is shown in Fig. 4.3

(second row) and Fig. 4.3 (third row) illustrates results using log-Gabor filters.

We used confusion matrices and computed the accuracy rate (AR), which is the number of

correct guesses(elements in the diagonal), using the next equation:

AR =

 ∑k
i ai,i∑k

i, j ai, j

 100% (4.2)

where (i, j) are the matrix indexes and k is the number of textures in the image.

Due to complexity the five-texture case is the most interesting one. Note that the gap between

Gabor and log-Gabor filters is wider, see Fig. 4.4, because segmentation using Gabor filters observed

more artifacts than log-Gabor filters near the circular border. Furthermore, qualitative assessment

suggests that log-Gabor misclassification is caused by the circular convolution. Next, we present the

final texture segmentation using confusion matrices. Table 4.1 shows the Gabor filter performance

while Table 4.2 summarizes the result using log-Gabor filters.
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Figure 4.3: (First row) Brodatz images used for segmentation. two mosaics: D16 and D21; three
mosaics: D79, D21, and D17; four mosaics: in clockwise direction D77, D16, D17, and
D79; five mosaics: D55, D77, D84, D24, and D17. The number indicates the page of
the album where the texture was taken. Segmentation results obtained using a total of
36 filters. The feature vectors were built using the spatial coordinates of the pixels, the
mean, and the variance (second row) with even-symmetric Gabor filters and (third row)
log-Gabor filters.
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Table 4.1: Confusion matrix for the experiment with five textures and Gabor filters. We obtained
an AR = 91.48%. Jain and Farrokhnia reported 80% of pixels correctly segmented. The
precision of the algorithm decreases because the algorithm cannot distinguish the border
between D55 and D17 patterns.

Predicted values

1 2 3 4 5
A

ct
u

al
va

lu
es

1 11895 1167 0 561 757

2 0 14164 0 0 126

3 0 736 12385 613 666

4 0 0 0 14496 0

5 498 131 0 327 7014

Table 4.2: Confusion matrix for the experiment with five textures and log-Gabor filters. We obtained
an AR = 94.93%. This means that our proposal achieved over a 4% of pixels correctly
classified.

Predicted values

1 2 3 4 5

A
ct

u
al

va
lu

es

1 14106 242 0 32 0

2 108 13810 224 0 148

3 0 501 12510 1384 5

4 209 9 0 14262 16

5 110 99 81 156 7524

We computed precision and sensibility for both schemes using the confusion matrices. From

Table 4.1, precision = 91.19% (±7.08%) and sensibility = 91.17 (±7.89%), while from Table 4.2

precision = 95.35% (±3.28%) and sensibility = 94.88% (±4.74%). This represents an increase over

4% of pixels correctly classified with our proposal, namely more than 2000 pixels. Note that

precision differs from AR because it only measures the number of true positives, which are the

proportion of positive cases that were correctly identified, while AR measures true positives and

false negatives.

The final accuracies for all the cases are shown in Fig. 4.4; note that in the case of two textures,

both Gabor and log-Gabor filters have almost the same performance but by increasing the number

of classes, Gabor filters classify more pixels incorrectly, which lead us to think that in case of more

complex patterns log-Gabor filters can do a better segmentation with fewer errors. Furthermore,

in all cases log-Gabor filters overcame Gabor filters.
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Figure 4.4: The final accuracies for both Gabor and log-Gabor filters. Note that as increasing the
number of classes the accuracy goes down and the gap between Gabor and log-Gabor
filters is wider.

4.4 Conclusions

Since Gabor filters have been successfully used in texture segmentation, we are interested in

compare our proposal with the state-of-art method under the same conditions. We selected the

optimal parameters for Gabor filters and kept the equivalent values in the log-Gabor scheme.

Although Jain and Farrokhnia’s algorithm is already proven, we modified some stages and added an

initialization of centroids for k-means classifier. Based on biological studies we considered six scales

and six orientations –Jain and Farrokhnia used only 4 scales. Results showed that log-Gabor filters

overcame Gabor approach in complex textures. For the test of five textures log-Gabor provides

94.92% of accuracy while Gabor scheme scored 91.48% of pixels correctly classified. Both schemes

outperform Jain and Farrokhnia’s report. The major differences occur at the borders between

textures. The confusion matrices, in Table 4.1 and Table 4.2, show that major mistakes were found

between textures D55 and D17 for Gabor scheme and between D77 and D84 for log-Gabor filters

respectively.
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– Science never solves a problem without creating ten more.

George Bernard Shaw

5
Texture analysis and retrieval

5.1 Introduction

TEXTURE is a fundamental property of images. It is composed of repetitive patterns and

represents perceptually homogeneous regions. It has been studied in the field of visual

perception and computer vision. We can find many methods of analysis in the literature

that describe texture in terms of its intrinsic features. However, texture may appear in many

different ways, therefore, the algorithms should also take into account the purpose for which an

image is used. Commonly, texture is employed in early stages of visual information processes such

as segmentation (see Chapter 4) and classification [86].

The goal of texture analysis is to provide a mathematical description of the spatial behavior

of intensity values in any given region. The first step in texture analysis is the feature extraction

where salient characteristics are computed for further computer vision tasks. To facilitate this

step, good descriptors are needed; a key property of a desired descriptor is its robustness to

environmental changes including both geometrical and photometric transformations.

There have been studies about robust texture descriptors that are invariants to geometrical

transformations such as planar rotation, translation, and scaling. Such descriptors are based mainly

on a statistical analysis of texels in the spatial domain [87, 88]. Other approaches have been

proposed in the spectral domain, nevertheless, the majority of such methods have not been capable

to perform well for real-world textures, they are computationally too complex to meet real-time

requirements.
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Figure 5.1: Many non-parametric local transformations have emerged in the literature, most of
them are based on the paper of Ojala et al. We present seven examples using the bark
texture (D12) (first row). LBP, LBPmin

P,R , LBPdom
P,R , LBPuni

P,R, LBPnum
P,R , LBPni

P,R, and LBPmed
P,R

labeled textures (second row). The results were magnified by a factor of 4x for a better
visualization (third row).

Recent trends in texture analysis attempt to unify the concepts of statistical and structural

approaches, see Section 4.1. Ojala et al. [74] have addressed the problem correctly and observed

that these two concepts have complementary characteristics that allow to model texture as a

distribution. They recovered the Wang and He’s work [89] and proposed a two-level local operator,

which compares values within a square mask against their central pixel. This operator belongs to

a group of non-parametric local transformations, which are distinguished by the use of ordered

information among data. They rely on the relative order of pixel values and transform an image

into an array of integer labels, see Fig. (5.1). The pixel-wise information of textures is encoded as

a histogram that can be interpreted as the fingerprint of the analyzed object.

In this direction, Zabih and Woodfill [90] proposed two non-parametric local transforms. The

first transform, called Rank Transform , is defined as the number of pixels within a local square

region that are lesser than their central pixel value. The second one, named Census Transform ,

maps a local square neighborhood into a bit string that represents the set of neighbor pixels that are

lesser than their central pixel value. Both RT and CT depend solely on a set of pixel comparisons.

Nevertheless, a limitation of these type of methods is that the amount of information associated to

a pixel is not very large, which induces noise sensitivity. Another limitation is that local measures

rely heavily upon the intensity of a central pixel. However, the last drawback can be avoided by

doing comparisons using local means or median values instead of central pixel intensities.

In this chapter we present a detailed overview of the original work of Ojala et al, Section 5.2.

We analyzed the most significant extensions that have been proposed in the literature from

theoretical to a practical perspective, for a recent review see [91]. In Section 5.2.3 we performed
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5.2 Local binary patterns

the assessment of seven algorithms in presence of rotational changes, noise degradations, contrast

information, and different sizes of masks using the USC-SIPI database [92]. This study included

classification tests using the Kullback-Leibler distance. The second part of this chapter is dedicated

to texture retrieval applications. Finally, the results are shown in Section 5.3.1.

5.2 Local binary patterns

The Local Binary Pattern (LBP) descriptor [74] was proposed by Ojala et al. It is based on the idea

that textural properties within an homogeneous region can be mapped into patterns that represent

micro-features. The original method uses a fixed rectangular 3 × 3 mask called texture spectrum,

which represents a square neighborhood around a central pixel. The values within the rectangular

mask are compared with their central pixel; those ones lesser than the central value are labeled

with “0” otherwise with “1.” The labeled pixels are multiplied by a weighting function according

with their positions to form a pattern chain. Afterward, the sum of the eight pixels replaces the

value of the central pixel, see Fig. 5.2.

This method describes differences of intensities and produces 28 labels. After this process is

completed for the whole image, a histogram is computed so that can be interpreted as a fingerprint

of the analyzed object. One advantage is that this method has very low-computational and spatial

complexity. Ojala et al. have claimed that this type of threshold operations provide a robust way

for describing local texture patterns.

Although this method provides information about local spatial structures, it is not invariant

to rotational changes and does not include contrast information, which has been demonstrated

to be crucial to improve the discrimination of some textures. Tan et al. [93] have revisited the

approach and demonstrated that a generalization of the LBPs called Local Ternary Patterns is more

discriminant and less sensitive to noise for texture analysis. After the initial LBP proposal, many

modifications and improvements have emerged in the literature, most of them are related to face

analysis where it is assumed that input faces are registered. For a thorough description of LBP

operators see two recent surveys and a book monograph [73, 94, 95].
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Figure 5.2: Based on a 3 × 3 rectangular mask, the LBP algorithm computes comparisons between a
central pixel and its surrounding neighbors. In this example, the central value is pc = 10
and the final label is 27.
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5.2.1 MODIFICATIONS OF THE ORIGINAL LOCAL BINARY PATTERN IMPLEMENTATION

In this section, a large set of LBP methods was analyzed. We summarized the main characteristics

of the selected algorithms. In particular, we focused our study on schemes that provide rotational

invariance because their direct implication in real-world textures, which can occur at arbitrary

orientations and they may be subjected to varying illumination conditions.

• In [96], Ojala et al. proposed a generalization of their own operator called Circular-LBP.

Such generalization uses a circular neighborhood instead of a fixed rectangular region.

The sampling coordinates of the neighbors are calculated using the expression: (xp, yp) =

(xc + R cos[ 2πp
P ], yc − R sin[ 2πp

P ]); if a coordinate does not fall at an integer position, then the

intensity values are bilinearly interpolated. This improvement is denoted by the subscript

(P,R) and allows to choose the spatial resolution (R) and the number of sampling points (P)

as follows:

LBPP,R (gc) =

P−1∑
p=0

s
(
gp − gc

)
2p (5.1)

where gc, is the central pixel at (xc, yc) and
{
gp

∣∣∣p = 0, . . . , P − 1
}

are the values of the neigh-

bors.

The Heaviside function is defined as:

s (x) =

 1 if x ≥ 0

0 otherwise
(5.2)

Eq. (5.1) represents a “texture unit” composed of P + 1 elements (central pixel included). In

total, there are 2P possible texture units that describe spatial patterns in a neighborhood of P

points.

LBPP,R achieves invariance against any monotonic transformations by considering the sign

of the differences in s
(
gp − gc

)
. Note that LBP8,1 is approximately equivalent to the original

3 × 3 square LBP.

• In order to minimize the effects of rotation, Pietikäinen et al. [97] proposed a modification

called Rotational-Invariant-LBP(LBPmin
P,R ). The main idea is to apply a circular shift to a

pattern chain to find the minimum integer value that it may represents. An arbitrary number

of binary shifts is made until the value matches one of the 36 different patterns when using a

neighborhood size of P = 8.

LBPmin
P,R (gc) = min

{
ROR

(
LBPP,R (gc) , i

)∣∣∣i = 0, . . . , P − 1
}

(5.3)

where ROR (x, i) performs a circular bit-wise right shift operation i times. Nevertheless, this

method achieves rotational invariance only when a rotation of 90◦ is applied.
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• The authors of the original LBP observed that over 90% of texture patterns can be described

with a few spatial transitions, which are the changes (0/1) in the labeled LBP [96]. Therefore,

they introduced a measure of uniformity, U
(
LBPP,R (gc)

)
, that describes fundamental features

such as bright spots, flat areas, and edges. For instance, when P = 8, there are 9 uniform

patterns out of 36 unique rotational invariant patterns.

U
(
LBPP,R (gc)

)
= |s (gP−1 − gc) − s (g0 − gc)| +

P−1∑
p=1

∣∣∣∣s (
gp − gc

)
− s

(
gp−1 − gc

)∣∣∣∣ (5.4)

which corresponds to the number of spatial transitions. So that, the Uniform-LBP (LBPuni
P,R)

can be obtained as:

LBPuni
P,R (gc) =


P−1∑
p=0

s
(
gp − gc

)
if U

(
LBPP,R (gc)

)
≤ 2

P + 1 otherwise

(5.5)

Note that non-unifom patterns are grouped in a unique bin and are consider as noise.

• Yan Ma [98] proposed the Number-LBP (LBPnum
P,R ) as an extension of the Eq. (5.5) by dividing

non-uniform patterns into groups based on the number of “1” or “0” bits as follows:

LBPnum
P,R (gc) =



P−1∑
p=0

s
(
gp − gc

)
if U

(
LBPP,R (gc)

)
≤ 2

Num1
{
LBPP,R (gc)

}
if

U
(
LBPP,R

)
> 2 and

Num1
{
LBPP,R (gc)

}
≥ Num0

{
LBPP,R (gc)

}
Num0

{
LBPP,R (gc)

}
if

U
(
LBPP,R

)
> 2 and

Num1
{
LBPP,R (gc)

}
< Num0

{
LBPP,R (gc)

}
(5.6)

where Num1 {•} is the number of “1” and Num0 {•} is the number of “0” in the non-uniform

pattern.

• Liu et al. [99] stated that the likelihood of a central pixel only depends on its neighbors.

Hence, they proposed the Neighbor-intensity-LBP (LBPni
P,R), which can be obtained by

replacing the value of the central pixel with the average of its neighbors as follows:

LBPni
P,R (gc) =

P−1∑
p=0

s
(
gp − µ

)
2p (5.7)

where

µ =
1
P

P−1∑
p=0

gp (5.8)

is the average of the P neighbors.

43 of 87



Chapter 5. Texture analysis and retrieval

• The presence of noise can seriously impair the performance of LBPs. The Zabih and Woodfill’s

proposal [90] named Median-LBP, replaces the central pixel with the median of itself and

its P neighbors as follows:

LBPmed
P,R (gc) =

P−1∑
p=0

s
(
gp − g̃

)
(5.9)

where g̃ represents the median of the P neighbors and the central pixel.

This modification is still invariant to rotation but less sensitive to noise. It is also invariant to

monotonic illumination changes.

• Fu and Wei [100] addressed the problem of noise by considering that in most cases a central

pixel provides more information than their neighbor counterparts. Thus, they redefined

Eq. (5.2):

s (x) =

 1 |x| ≥ c

0 |x| < c
(5.10)

where c is a fixed threshold.

With this modification, they proposed the Centralized-LBP(LBPcen
P,R) as follows:

LBPcen
P,R (gc) =

P
2 −1∑
p=0

s
(
gp − gp+ P

2

)
2p + s (gc − gtot) 2

p
2 (5.11)

and gtot is defined as:

gtot =
1

P + 1

gc +

P−1∑
p=0

gp

 (5.12)

The algorithm considers correlations between opposite pixel points, therefore, it is not

invariant to rotational changes.

• In [101], Tan et al. proposed an extension called Extended-LBP (LBPext
P,R) by using the value

of a central pixel plus a tolerance interval t as a local threshold. t is a user-specific value,

usually set at “1”.

Each pixel in the interval gc ± t is quantized as zero. Pixels above the tolerance interval are

labeled with “1” and those ones below the interval are labeled with “−1” as follows:

s (x) =


1 if x > t

0 if |x| ≤ t

−1 if x < −t

(5.13)

x is the difference between the P neighbors and their central pixel.

Each ternary pattern is split into upper and lower patterns and each pattern is encoded as a

separate LBP. Finally, the histograms are concatenated.
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• Referring to Fig. 5.2, it is simple to compute the differences between a given central pixel,

gc, and its P neighbors as dp =
{
gp − gc

∣∣∣p = 0, 1, . . . , P − 1
}
. Guo et al. [102] suggested to

consider both the sign and magnitude of dp to form the Completed-LBP (LBPcom
P,R ). dp is split

into two components as follows:

dp = sp ∗ mp =

 sp = sign
(
dp

)
mp =

∣∣∣dp
∣∣∣ (5.14)

where sp and mp are the sign and magnitude of dp respectively.

• Liao et al. [103] proposed the Dominant-LBP (LBPdom
P,R ), which is a modification of Eq. (5.5).

The authors are based on the fact that in practice LBPuni
P,R is not well suited to encode some

complicated pattern textures such as curvature edges and crossing boundaries of corners. A

possible explanation is that the extracted uniform patterns do not have a dominant proportion

to represent an object (or image).

Liao et al. have shown that given a set of training images, the required number of patterns

that better represent textures corresponds to at least 80% of the pattern occurrences. This

procedure guarantees a suitable framework for representing textures, see Liao et al. pseudo-

algorithm in Algorithm 5.1.

Algorithm 5.1: Liao’s algorithm for calculating the Dominant-LBP
Input: A := An image

Output: DOMH := LBPdom
P,R histogram

1 begin

2 AH := compute LBPuni
P,R histogram of A;

3 SAH := sort AH in descending order;

4 DOMH := extract 80% of pattern occurrences;

5 end

5.2.2 ADDING CONTRAST INFORMATION TO LBPS

Previously in [104], Ojala et al. studied the use of a joint representation LBPP,R/VARP,R, where

VARP,R represents the local variance. However, VARP,R is a continuous signal, hence, it has to be

quantized. On the other hand, Guo et al. [102] included complementary information of local

contrast in a new scheme called Local Binary Pattern Variance (LBPVP,R).

So, a rotation invariant measure of local variance can be defined as:

VARP,R (gc) =
1
P

P−1∑
p=0

(
gp − u

)2
(5.15)

where
{
gp

∣∣∣p = 0, . . . , P − 1
}

are the neighbors of gc and u = 1
P
∑P−1

p=0 gp.
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Since LBP histograms do not include information of variance, VARP,R can be used as an

adaptive weight to adjust the contribution of the LBP code in the histogram calculation. The

LBPVP,R descriptor offers a solution for that as follows:

LBPVP,R (k) =

N∑
i=1

M∑
j=1

ω
(
LBPP,R (i, j) , k

)
, k ∈ [0,K] (5.16)

and

ω
(
LBPP,R (i, j) , k

)
=

 VARP,R (i, j) LBPP,R (i, j) = k

0 otherwise
(5.17)

The advantage of a conjoint scheme, LBPP,R/VARP,R, is the use of both local spatial and contrast

information simultaneously. Variance quantization can be done by distributing all the quantized

variance values into a histogram with the same number of bins that the LBP histogram. It is

important to consider that few bins will fail to provide enough discriminative information while

too many bins may lead to sparse and unstable histograms.

5.2.3 EXPERIMENTAL RESULTS

We conducted experimental tests using a set of rotated texture images from the USC-SIPI image

database, available at [92]. This set consists of thirteen grayscale textures of 512 × 512 pixels,

however, for purposes of efficiency, the images were rescaled at 64 × 64 and 128 × 128 pixels with 8

bits/pixel using bicubic interpolation.

The textures bark (D12), brick (D94), bubbles (D112), grass (D9), leather (D24), pigskin

(D92), raffia (D84), sand (D29), straw (D15), water (D38), weave (D16), wood (D68), and wool

(D19) –the number between parenthesis is the identification number in the Brodatz texture book

[85]– were digitized at seven different rotation angles: {0, 30, 60, 90, 120, 150, 200} degrees. As

the main advantage the USC-SIPI dataset provides a hardware-rotated subset of textures avoiding

in this way the introduction of artifacts.

It is possible to distinguish two types of methods: Rotational-Invariant-LBP, Neighbor-intensity-

LBP, Median-LBP, and Dominant-LBP are modifications or extensions based on the Circular-LBP.

Such methods compute labels based on pattern chain values. On the other hand, Number-LBP is a

refined model of the Uniform-LBP and computes labels based on the number of transitions in a

pattern chain.

The first experiment consisted in computed the Normalized Measure of Dispersion Cv of each

LBP image, then we compared the Cv of the reference images (non-rotated image) against its

corresponding six rotated versions.

Cv =
σ

µ
(5.18)

where σ and µ represent the standard deviation and the mean respectively.
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Table 5.1: The slight numerical variations of the Cv indicates the robustness of the extracted features.
The lower the coefficient of variation the higher the robustness to rotational changes.

LBPmin LBPmin
P,R LBPni

P,R LBPmed
P,R LBPdom

P,R LBPuni
P,R LBPnum

P,R

µ64 0.0104 0.0057 0.0162 0.0100 0.0100 0.0071 0.0049

σ2
64 0.0094 0.0175 0.0321 0.0350 0.0350 0.0303 0.0329

µ128 0.0089 0.0053 0.0089 0.0050 0.0050 0.0046 0.0033

σ2
128 0.0086 0.0122 0.0222 0.0299 0.0299 0.0275 0.0241

Table 5.1 summarizes the statistical variations of Cv among all the orientations and operators.

µ64 and σ2
64 represent the mean and the variance of Cv in images of 64 × 64 pixels, while µ128

and σ2
128 represent the mean and the variance of Cv in images of 128 × 128 pixels, respectively. A

robust rotational invariant representation should provide a Cv with no variations namely the best

descriptor is the one that generates the lowest variance. We should note that LBPmin and LBPmin
P,R

differ in that the former does not use interpolated neighbors but the latter does. In this experiment

the interpolated neighbors minimized the mean µ but increased the variance σ2.

5.2.4 KULLBACK-LEIBLER DISTANCE

Since a LBP histogram acts as a fingerprint of a texture, it is possible to consider a similarity

measures to assess distances among all different textures. Although the Kullback-Leibler divergence

(KL) –a generalization of the Shannon’s entropy– is not a true metric rather it is a relative entropy

measure, it can be used as a suitable descriptor for measuring distances between histograms or

feature vectors.

The distance between two images with their corresponding histograms is defined as follows:

DKL (A, B) =

b−1∑
i=0

Pi (B) log
Pi (B)
Pi (A)

(5.19)

where A and B are histograms with b-bins length each and Pi denotes the probability of the i-bin.

The classification procedure setup consisted in comparing the histogram of each reference

pattern against all the rotated images. The distances were sorted in an increasing order and the

closest one was retrieved. This experiment was performed for images of 64 × 64 and 128 × 128

pixels, (see Table 5.2).

The classification rates are consistent with those reported in the literature. Pietikäinen [97]

reported an error rate of 38.5% for the LBPmin algorithm. Here, we reached 38.46%. The best rate

was achieved with the LBPdom
P,R , one possible reason is that this approach rules out 20% of patterns

that in many cases can be interpreted as noise.
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Table 5.2: Comparison of seven descriptors using the KL distance. # textures is the number of images
correctly classified from a total of 91 textures.

64 × 64 128 × 128
ReferencesScheme

# textures Accuracy (%) # textures Accuracy (%)

LBPmin 56 61.54 66 72.53 [97]
LBPmin

P,R 53 58.24 63 69.23 [97]
LBPni

P,R 57 62.64 65 71.43 [99]
LBPmed

P,R 54 59.34 71 78.02 [90]
LBPdom

P,R 68 74.73 73 80.22 [103]
LBPuni

P,R 67 73.63 73 80.22 [96]
LBPnum

P,R 63 69.23 73 80.22 [98]

5.2.5 NOISE SENSITIVITY

LBP is very sensitive to noise, specially when a small neighborhood is used. Since the amount of

information associated to a pixel is not very large, even a small change in any pixel could lead to

a different label. Table 5.3 shows the classification performance using noisy images of 128 × 128

pixels. Seven algorithms were evaluated with the addition of Gaussian noise with mean µ = 0

and standard deviation σ = 0.1 and under the effects of Poisson noise. Noise was added using

the Matlab imnoise function. According to Table 5.3 and the images analyzed, LBPdom
P,R performed

best for Gaussian noise. This operator discards 20% of random patterns that in many cases are

considered noise. On the other hand, LBPmed
P,R reached the higher rate for textures with Poisson

noise. LBPmed
P,R replaces central pixels with the median of the P neighbors and the central pixel.

This procedure reduces the effects of noise such as Salt and Pepper and Poisson.

Table 5.3: Performance of seven LBP descriptors under additive Gaussian noise with media µ = 0 and
σ2 = 0.1 and Poisson noise. # textures is the number of images correctly classified from a
total of 91 textures.

Gaussian noise Poisson noise
Scheme

# textures Accuracy (%) # textures Accuracy (%)

LBPmin 55 60.44 71 78.02
LBPmin

P,R 52 57.14 66 72.53
LBPni

P,R 51 56.04 73 80.22
LBPmed

P,R 53 58.24 74 81.32
LBPdom

P,R 61 67.03 69 75.82
LBPuni

P,R 60 65.93 69 75.82
LBPnum

P,R 51 56.04 51 56.04
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5.2.6 ADDING VARIANCE

Illumination variation is one of the most important challenges for the current descriptors. Tan et al.

[93] claim that LBP performance decreases almost exponentially under extreme conditions. The

LBP by itself is only invariant to monotonic illumination changes and does not entail the contrast

information of textures, which is important in the discrimination process.

We used Eq. (5.16) to compute the local variance of the test images. We are interested in

combined information of LBPs and local variance. However, VARP,R produces continuous values

that should be quantized. Ojala et al. [104] proposed to quantize variance values so that all bins

in the histogram have an equal number of elements. So far, establishing the number of bins is still

an open issue. LBP and VARP,R histograms could be combined in two ways, jointly or mixed [105].

In the former, similar to 2D joint histograms, we can build a 3D joint histogram, while in the latter,

a large histogram is built by concatenating both LBP and VARP,R histograms to form the so-called

“pseudo-joint histogram.”

Table 5.4 shows classification rates of seven descriptor with and without VARP,R information

on images of size 128 × 128. We used the pseudo-joint histogram approach. As we expected, the

results obtained with joint pairs of features provided the best performance with error rates around

7.70%. This fact emphasizes the importance of using other features besides LBP information. In

fact, if we consider only the local variance as a feature descriptor, the result reached 86.81% of

textures correctly classified.

In Fig. 5.3 we present a comparison between LBPuni
P,R and LBPuni

P,R + VARP,R confusion matrices.

There is a strong indication that local variance is more discriminant than LBP features themselves

in the classification process. A Fisher discriminant score [106] will allow to select the most

informative features by rejecting those noisy features.

Table 5.4: Comparison of texture classification including local variance information. # textures is the
number of images correctly classified from a total of 91 textures.

LBP LBP + VARP,R
Scheme

# textures Accuracy (%) # textures Accuracy (%)

LBPmin 66 72.53 76 83.51

LBPmin
P,R 63 69.23 81 89.01

LBPni
P,R 65 71.43 81 89.01

LBPmed
P,R 71 78.02 80 87.91

LBPdom
P,R 73 80.22 81 89.01

LBPuni
P,R 73 80.22 84 92.30

LBPnum
P,R 73 80.22 82 90.10
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(a) (b)

Figure 5.3: Performance comparison between (a) LBPuni
P,R and (b) LBPuni

P,R + VARP,R. In most of the
cases, the variance information minimized the error rate except for the “grass” class. In
general, the variance information increases up to 12% the classification rate.

5.2.7 NEIGHBORHOOD SIZE

Another important issue of the LBPs is the neighborhood size. The next experiment was aimed

to assess the radius size influence in texture classification. Table 5.5 presents the classification

performance of the seven LBP approaches with radius R = {1, 2, 3} on images of size 128 × 128. The

highest classification rate was achieved with LBPdom
P,R and R = 2, while higher radius size caused

poor classification rates.

Table 5.5: Comparison of texture classification using different neighborhood size from a total of 91
textures: R = {1, 2, 3}.

Scheme R = 1 Accuracy (%) R = 2 Accuracy (%) R = 3 Accuracy (%)

LBPmin
P,R 63 69.23 71 78.02 56 61.54

LBPni
P,R 65 71.43 71 78.02 70 76.92

LBPmed
P,R 71 78.02 64 70.33 57 62.64

LBPdom
P,R 73 80.22 74 81.32 67 73.63

LBPuni
P,R 73 80.22 72 79.12 70 76.92

LBPnum
P,R 73 80.22 68 74.73 63 69.23
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5.3 Image retrieval

In the previous Section 5.2 we presented several texture classification experiments based on a

procedure consisted in comparing distances between histograms; such distances are sorted in

increasing order and the closest one is retrieved. This is the simplest case of the Content-based

Image Retrieval (CBIR) approach, which has become an active research area due to the massive

amount of digital image collections. CBIR extracts visual information of an image such as color

[107] or texture [108] and its goal is to retrieve the closest images from a data bank using features

that best describe the scene in an image query [109].

CBIR uses image features to catch similarities among images, therefore, feature extraction

is a crucial stage. Theoretically, having more features implies a greater ability to discriminate

images. However, this is not always true because not all features are important for understanding

or representing a visual scene [110].

Although spectral methods are computationally complex to meet real-time requirements, they

have proven to be powerful tools for characterizing textures, (see Chapter 3). Such methods collect

a distribution of filter responses and extract features from the first and second order statistics

[111]. Especially, the use of Gabor filters in texture analysis was motivated because the studies

of Daugman on visual modeling of simple cells. He found that the experimental findings on

orientation selectivity of visual cortical neurons were previously observed by Hubel and Wiesel in

cats [25, 52, 112].

In [113], Manjunath and Ma proposed a method for texture analysis where input images are

filtered using a set of Gabor filters and the mean and the standard deviation are taken to build

a feature vector or image query. This method is generally accepted as a benchmark for texture

retrieval. Nevertheless, as we mentioned earlier, Gabor filters have not zero mean, this fact leads

to non-uniform coverage of the Fourier domain; the distortion may cause fairly poor pattern

retrieval accuracy.

We propose a simple yet efficient image retrieval approach, see Fig. (5.4), based on a novel

log-Gabor filter scheme, see Section 3.3. The first step is to compute the image coefficients, C(S ,Θ),

as follows:

C(S ,Θ) (x, y) = F−1
{
Î (u, v) • ĜS ,Θ (ρ, θ)

}
(5.20)

where Î (u, v) is the given image in the Fourier domain and ĜS ,Θ (ρ, θ) is the log-Gabor filter, see

Eq. (3.13), at the scale S and orientation Θ.

The coefficients represent texture characteristics in a particular scale and orientation, thus,

energy signatures such as mean, µ(s,θ), and variance, σ2
(s,θ), that belong to the coefficient C(S ,Θ) can

be used as texture features for constructing an image query as follows:

t =
[
µ(0,0), σ

2
(0,0), . . . , µ(S−1,Θ−1), σ

2
(S−1,Θ−1)

]
(5.21)
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texture
patch
I (x, y)

Log-Gabor
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Figure 5.4: Block diagram of our proposal. After the extraction of the mean and variance from each
log-Gabor coefficient, we can build an image query for retrieving the 16 closest patches in
the dataset.

We used, in Section 5.2.4, the KL divergence as a similarity measure. In addition, we propose

the Jensen-Shannon (JS) divergence [114] for evaluating distances between two textures A and B.

The advantage of JS against KL divergence is that JS is a true metric. The JS divergence, denoted

by ψ is defined as follows:

ψ =
√

2DJS (A, B) (5.22)

where

DJS (A, B) =
1
2

DKL

(
A,

A + B
2

)
+

1
2

DKL

(
B,

A + B
2

)
(5.23)

5.3.1 EXPERIMENTAL RESULTS

To validate our proposal, we used a set of twenty grayscale textures of 512 × 512 pixels from

the USC-SIPI dataset [92] and provided an experimental evaluation composed of the following

stages: (i) each texture was divided into sixteen non-overlapping patches of 128 × 128 pixels in

order to build a database of 320 images; (ii) each patch was processed with a log-Gabor filter bank

(4 scales and 6 orientations); the additional parameters that fit biological profiles were borrowed

from [59]; (iii) for each coefficient, the mean and the variance were calculated and concatenated

in order to build the corresponding feature vector. We must note that Manjunath and Ma used

the mean and the standard deviation, however, we used the mean and the variance because they

improved the retrieval performance.

In this way, we got 320 feature vectors of 48-bins length each. Each feature vector was used as

a query pattern to calculate distances among the patches. The distances were sorted in increasing

order and the closest sixteen patches were retrieved. Since each texture was divided into 16

patches, in the best-case scenario, a single query should return all the 16 patches that belong to the

same texture; furthermore, by repeating this operation with the rest of the patches, the algorithm

should retrieved 256 patches per texture. In order to measure the performance of our proposal we

followed the recommendations in [113, 115] and computed the Retrieval Accuracy (RA), which is

the standard metric for evaluating CBIR systems and is listed in Table 5.6.
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Table 5.6: The RA was computed for both Gabor and log-Gabor filters with DKL and DJS distances.
D* means the Brodatz texture and # indicates the number of patches correctly retrieved.

Gabor filters Log-Gabor filters

DKL DJS DKL DJS

# RA (%) # RA (%) # RA (%) # RA (%)

D1 256 100.00 256 100.00 256 100.00 256 100.00

D3 186 72.65 181 70.70 177 69.14 175 68.35

D4 256 100.00 256 100.00 256 100.00 256 100.00

D5 220 85.93 224 87.50 227 88.67 229 89.45

D6 256 100.00 256 100.00 256 100.00 256 100.00

D9 231 90.23 233 91.01 254 99.21 254 99.21

D10 191 74.60 194 75.78 217 84.76 221 86.32

D11 256 100.00 256 100.00 256 100.00 256 100.00

D15 183 71.48 179 69.92 194 75.78 187 73.04

D20 256 100.00 256 100.00 256 100.00 256 100.00

D24 240 93.75 238 92.96 243 92.92 242 94.53

D26 256 100.00 256 100.00 256 100.00 256 100.00

D56 256 100.00 256 100.00 253 98.82 256 100.00

D66 178 69.53 178 69.53 200 78.12 202 78.90

D93 231 90.23 234 91.40 242 94.53 244 95.31

D104 256 100.00 256 100.00 256 100.00 256 100.00

D105 136 53.12 136 53.12 205 80.07 203 79.29

D106 134 52.34 136 53.12 173 67.57 177 69.14

D109 163 63.67 163 53.67 227 88.67 227 88.67

D112 200 78.12 198 77.34 190 74.21 191 74.60

µ – 84.79 – 84.80 – 89.73 – 89.84
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Note that the lowest rate was achieved with the D106 texture and Gabor filters; the RA

corresponds to 52.34% and 53.12% using DKL and DJS metrics respectively. On the contrary, with

the same texture, the log-Gabor scheme achieved 67.57% and 69.14% of accuracy with DKL and

DJS metrics respectively. These rates resulted in 39 and 41 more patches correctly classified. In

general, our proposal achieved an average RA of 89.84%, which represents an increase of 259

patches correctly classified regarding Manjunath and Ma’s proposal.

In the ideal case, given a single query, all the sixteen patches that belong to the same texture

should be retrieved. An important metric that assesses this specific case is called Full Retrieval Rate

(FRR). Our proposal achieves 52.18% of query patterns fully retrieved, it means a 6.56% higher

rate compare to the Gabor scheme with 45.62%, (see Table 5.7).

Table 5.7: FRR for Gabor and log-Gabor filters. Given a single query (patch), all the sixteen patches
that belong to the same texture are retrieved. # indicates the number of patches fully
retrieved.

Gabor filters Log-Gabor filters

# FRR (%) # FRR (%)

DKL 146 45.62 165 51.56

DJS 147 45.93 167 52.18

The Overall Retrieval Rate (ORR) measures the total number of patches correctly retrieved and

is presented in Table 5.8. The Gabor scheme achieved 84.78% and 84.80% of patches retrieved

correctly with DKL and DJS metrics respectively. On the other hand, our proposal achieved 89.72%

and 89.84% of patches retrieved correctly with DKL and DJS metrics respectively. These rates

represent increases up to 4.94% using KL divergence and 5.04% using Jensen-Shannon divergence.

Table 5.8: Total number of patches correctly retrieved for Gabor and log-Gabor schemes.

Gabor filters Log-Gabor filters

ORR (%) ORR (%)

DKL 84.78 89.72

DJS 84.80 89.84
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– Nothing shocks me. I’m a scientist!

Harrison Ford as Indiana Jones

6
Applications in medical imaging

6.1 Introduction

THE continuous development of texture analysis techniques has allowed to increase the

information that can be obtained from images. Its goal is to improve visual skills of

radiologists by extracting features that may be relevant to more accurate diagnoses. It

is noticeable the use of texture patterns in medical imaging to distinguish between pathological

and healthy tissue [116]. In recent years, Computed Tomography (CT) have made available a

large collection of two-dimensional and three-dimensional images that capture the structure and

function of different types of anatomical structures. Therefore, there has been an increased interest

to describe, classify, and segment anatomical parts based on texture characteristics.

Along this chapter we addressed the problem of characterization and classification of Chronic

Obstructive Pulmonary Disease (COPD), which is a progressive and irreversible lung condition

typically related to emphysema. It hinders air from passing through airpaths and causes that

alveolar sacs lose their elastic quality, increasing the risk of death. Findings of COPD may be

manifested in a variety of CT studies. Nevertheless, visual assessment of CT images is time-

consuming and depends on trained observers. Hence, a reliable computer-aided diagnosis system

would be useful to reduce time and inter-evaluator variability. COPD describes a collection of

lung diseases that are characterized by parenchymal destruction and gradual limitation of airflow.

Although it can manifest as either emphysema, chronic bronchitis, or both; the former is the

most common pathophysiological manifestation and is mainly attributable to tobacco smoking

[117, 118].



Chapter 6. Applications in medical imaging

Studies of the World Health Organization reports that 65 million people have COPD worldwide

and predicts that COPD will be responsible for 10% of the world’s mortality by 2030 [119].

Therefore, in order to prevent other health complications such as pneumothorax and respiratory

infections, accurate characterization of emphysema is required for the development of efficient

treatment options.

Literature [120] recognizes three types of emphysema: (i) Paraseptal (PS), also known as

distal acinar emphysema, is characterized by destruction of distal airway structures, alveolar

ducts, and alveolar sacs. The process is localized around the pleura; (ii) Panlobular (PL) or

panacinar emphysema destroys uniformly alveoli and prevails in the lower half of the lungs;

and (iii) Centrilobular (CL) or centriacinar emphysema is the most common type of pulmonary

emphysema. It begins in the respiratory bronchioli and spreads peripherally. Most of the damage

is usually contained to the upper half of the lungs.

Spirometry is the gold standard criterion to establish a diagnosis of emphysema. It measures the

volume of air that a patient is able to expel from lungs after a maximal inspiration. Nevertheless,

this method does not allow to discriminate pathological subphenotypes of emphysema. Attenuation

values of CT images, which are expressed in the Hounsfield Unit (HU) scale, have been used for

identification of pathological changes in lung parenchyma because they are linked to physical

density of lung tissue [121]. Hayhurst et al. [122] showed that attenuation values in patients who

had CL differed from healthy patients with Normal Tissue (NT). Density mask is another method

to quantify emphysema. This technique describes the amount of air presented in a CT image and

consists of computing the percentage of pixels with attenuation values lesser than a previously

selected threshold. Routinely, –910 HU is taken as the standard threshold but recently Madani et al.

[123] observed that if the threshold lies somewhere between -960 to -980 HU then the correlation

with emphysema is greater. Mean lung density [124] defined as the percentage of lung below

-950 HU is another objective measure of the extent of macroscopic emphysema. All these metrics

consider that emphysema causes an abnormal enlargement of air spaces, thus, the air-tissue ratio

in an emphysematous lung should increase, whereas density should decrease proportionally to the

amount of emphysema. Nevertheless, they are too sensitive to scanner calibration and noise. In

addition, they cannot distinguish emphysema patterns due to averaging effect. On the other hand,

texture analysis in lung CT images may provide new insights towards the construction of a reliable

computer-aided diagnosis system because it is capable of identify changes in lung parenchyma and

abnormalities associated with emphysema.

Sørensen et al. [125] combined textural features using LBPs to classify three classes of

emphysema and achieved an accuracy above 90%. In [126], fractal analysis was proposed to

classify 3258 emphysema patches of size 64 × 64 pixels. A simpler alternative based on kernel

density estimation of local histograms was introduced in [127]. A different approach was presented

in [128] where the authors used meta-data to label lung samples. In [129] a technique based on

the embedded probabilistic PCA was used to classify interstitial lung abnormalities, while in [130],

the Riesz transform was presented to obtain features of lung abnormalities.
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We propose a novel approach that exploits the advantages of Complex Gabor Filters (CGF),

such as the strong correlation with the HVS, and simultaneously encodes local intensity information

provided by LBPs (see Chapter 5).

Since low-attenuation areas in lung CT images describe different emphysema patterns, the

discrimination problem was focused on the characterization of local intensities and global spatial

variations. Our proposal considers these aspects and provides a robust representation for each type

of emphysema. Therefore, an improvement in the classification rate can be attained.

This chapter is organized as follows: we described our proposal and the construction of the

feature vectors in Section 6.2. In Section 6.3 a set of global and local descriptors is presented. In

Section 6.4 we briefly explained the discriminant analysis theory for reducing dimensionality. The

data are describe in Section 6.5, while the experiments and results are detailed in Section 6.6.

Finally, our work is summarized in Section 6.7.

6.2 A bio-inspired model for feature extraction

We propose the combination of complex Gabor filters and local binary patters for a better charac-

terization of emphysema; the former are global descriptors, whereas the latter are local operators.

In order to assign a given patch to one of several patterns, we used a methodology composed of

three stages: (i) feature extraction; (ii) dimensionality reduction using Kernel-Fisher Discrimi-

nant Analysis (KFDA); and (iii) classification using k-Nearest Neighbor classifier (k-NN) . In the

following paragraphs we detailed our proposal.

In the mid-eighties, Daugman found out that the shape of Gabor functions and the psy-

chophysical properties of simple receptive fields have a close match [25, 52, 53]. Furthermore, he

proved that the conjoint time-frequency properties of 1D Gabor functions are still satisfied for the

two-dimensional case.

We presented in the previous Section 3.2 Gabor filters. They are defined as the product of

Gaussian functions and complex sinusoids, (see Fig. 3.2). Since Gabor filters can be divided into

two parts: ge (x, y) and go (x, y), we can use them to build CGF. Note that in Section 4.2 we only

used the even-symmetric part to build Real Gabor Filters (RGF).

In this chapter we constructed a filter bank of 24 complex filters distributed in 4 scales and 6

orientations. The goal of feature extraction is to identify similar characteristics or patterns that

are common to a specific class. Such patterns may vary slightly within the class but they must be

sensitive enough to discriminate elements from different classes. Gabor filters perform an analysis

in a specific orientation and a frequency band and extract characteristics called complex Gabor

coefficients denoted by C(s,θ).

Each coefficient can be computed as follows:

C(s,θ) (x, y) =

√
E2

(s,θ) (x, y) + O2
(s,θ) (x, y) (6.1)
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with
E(s,θ) = I ? ge(s,θ)

O(s,θ) = I ? go(s,θ)
(6.2)

where I is the given image and ? indicates the convolution. go(s,θ) and ge(s,θ) are the odd-symmetric

and even-symmetric filters at the scale s and orientation θ, respectively.

Theoretically, the more the features, the greater the ability to discriminate images. Nevertheless,

this statement is not always true because not all features are important for understanding or

representing visual scenes [110]. Our study not only was focused on energy signatures such as the

mean and the standard deviation but on higher-order statistics to increase the ability to extract

characteristics.

Since Gabor coefficients can be considered as probability density functions, the mean, the

standard deviation, the skewness, and the kurtosis are enough to provide a good approximation

to them [131]. We investigated the following set of statistics, where M and N are the size of the

coefficient.

• Mean

µ(s,θ) =
1

NM

N∑
x=1

M∑
y=1

C(s,θ) (x, y) (6.3)

• Standard deviation

σ(s,θ) =

√√√
1

NM

N∑
x=1

M∑
y=1

(
C(s,θ) (x, y) − µ(s,θ)

)2 (6.4)

• Skewness (Υ) is a measure of asymmetry; it can be positive, which means that the distribution

tends to the right, negative when the distribution tends to the left, or even zero, which

typically implies a symmetric distribution:

Υ(s,θ) =
µ3

(s,θ)

σ3
(s,θ)

(6.5)

• We also included a measure of contrast (Ψ) using kurtosis (K)

Ψ(s,θ) =
σ(s,θ)

K0.25
(s,θ)

(6.6)

where K(s,θ) =
µ4

(s,θ)

σ4
(s,θ)

represents the degree of peakedness of a distribution. We followed

the recommendations in [132] and used 0.25 to reduce the contrast value when it comes

distributions with biased peaks and to increase it with polarized distributions.
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(a) (b) (c) (d)

Figure 6.1: Example of the LBPuni
8,1 operator applied to COPD. (first row) emphysema patches in the

window [−1000,−500] HU, (second row) the labeled images; and (third row) shows their
histograms. All the images were magnified by a factor of 4 for a better visualization. (a)
NT, (b) PS, (c) PL, and (d) CL

We used the previous descriptors to characterize emphysema patterns and to construct Complex

Gabor Feature Vectors (CGFV) as follows:

CGFV =
[
µ(0,0), σ(0,0), Υ(0,0), Ψ(0,0), . . . ,

µ(s−1,θ−1), σ(s−1,θ−1), Υ(s−1,θ−1), Ψ(s−1,θ−1)
] (6.7)

6.2.1 EXTENDED COMPLEX GABOR FEATURE VECTORS WITH LOCAL BINARY PATTERNS

Along with Gabor functions, LBPs have been successfully applied to texture classification, (see

Section 5.2) . This approach is based on the idea that textural properties within homogeneous

regions can be mapped into histograms that represent micro-features, (see Fig. 6.1).

We propose to concatenate a CGFV and its corresponding LBPuni
P,R histogram, see Eq. (5.5), into

a single sequence to build a mixture descriptor called Extended-complex Gabor Feature Vector

(ECGFVP,R) that represents any given texture patch:

ECGFVP,R =
[
CGFV , Hi

]
(6.8)
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where the subscript (P,R) indicates what LBPuni
P,R was used and

Hi =

N∑
x=1

M∑
y=1

C {L (x, y) == i | i = 0, . . . , P + 1} (6.9)

with

C (A) =

 1 if A is true

0 otherwise
(6.10)

In this way, ECGFVP,R simultaneously encodes global texture characteristics extracted by Gabor

filters and local information provided by LBPs.

6.3 Other methods

• Log-Gabor Functions (LGF) [64]. Already presented in Section 3.3, they are defined in the

frequency domain as Gaussian functions shifted from the origin, (see Fig. 3.7). They have a

null DC component and can be split into two components, radial and angular filters. We also

constructed a filter bank of 24 filters distributed in 4 scales (even scales were rotated by a

constant factor consisting of the half a distance between filter centers) and 6 orientations

and computed the log-Gabor coefficients LG(S ,Θ) as follows:

LG(S ,Θ) (x, y) = F−1
{
Î (u, v) • Ĝ(S ,Θ) (ρ, θ)

}
(6.11)

with ρ =
√

u2 + v2, θ = arctan
(

v
u

)
, and θ0 = Θ. Thus, the feature vectors, LGFV, were built

in the same way as CGFVP,R vectors using the set of four statistics previously described in

Section 6.2.

• Sparse Gabor Coding (SGC1). Gabor filters provide redundant representations, which may

hamper classification tasks. As proposed first by [133], this problem may be solved using a

greedy algorithm. This approach corresponds to first choosing the single filter Φi that best

fits the image, I(x, y), along with a suitable coefficient ai, such that the single source aiΦi is a

good match to the image:

i = arg max j

(〈
I (x, y)
‖I (x, y) ‖

,
Φ j

‖Φ j‖

〉)
(6.12)

where 〈·, ·〉 represents the inner product.

The associated coefficient is the scalar projection: ai = 〈I(x, y), Φi
‖Φi‖2
〉. Knowing this choice,

the image can be decomposed as: I (x, y) = aiΦi + R where R is the residual image. We then

repeat this 2-step process on the residual until some stopping criterion is met.

1In collaboration with Dr. Laurent Perrinet from the Institut de Neurosciences Cognitives de la Méditerranée,
Aix-Marseille University, France
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This procedure is known as the Matching Pursuit algorithm, which has proven to be a good

approximation for natural images [134]. Measuring the ratio of extracted energy in the

images, N = 256 edges were on average enough to extract 90% of the energy of whitened

images on all sets of images. Thus, We used this set of sparse coefficients as the input vector

for the classification framework.

• Gray-level Co-occurrence Matrices (GLCM2) were proposed by Haralick [135]. This de-

scriptor evaluates spatial relationship among gray levels. Each pixel in an image I (x, y) is

assigned to one of Ng gray levels. The GLCM matrix is composed of a set of Pi j|i, j = 1, . . . , Ng

values. Here, Pi j represents the number of occurrences of two pixels with gray levels i

and j separated by a distance d in the direction of the angle θ. The GLCM’s elements are

normalized, providing the relative frequency of occurrence for a pair of gray levels. The

element p (i, j) denotes the probability of finding the pair of levels (i, j) in the image, which

is obtained as:

p (i, j) = Pi j

 Ng∑
i, j

Pi j


−1

(6.13)

10 features were chosen to capture texture properties: energy, contrast, correlation, ho-

mogeneity, entropy, autocorrelation, dissimilarity, cluster shade, cluster prominence, and

maximum probability. In our study, Ng was set to 8 according previous works focused on

texture analysis [72]. The distance parameter, d, was set to 1 while four different angle

values were assessed: 0, 45, 90, and 135 degrees. Thus, a total of 40 descriptors (10 statistical

features for each of the four orientations) were obtained for each texture.

• Discrete Tchebichef Moments (DTM) [136] are computed by projecting the image I (x, y)

onto the set of Tchebichef polynomial kernels, see Fig. 6.2. DTM provides a unique represen-

tation of the image in the spanned Tchebichef space. The moment Tpq (p, q = 0, 1, . . . , N − 1)

of order s = p + q is defined as:

Tpq =
1

ρ̃ (p,N) ρ̃ (p,N)

N−1∑
x=0

N−1∑
y=0

t̃p (x) t̃q (y) I (x, y) (6.14)

t̃p(x) and t̃q(x) are scaled Tchebichef polynomials and ρ(n,N) is its squared norm.

Tpq quantifies the correlation between the image I (x, y) and the kernel t̃p (x) t̃q (y). Hence,

this magnitude will be higher for images characterized by repetitive patterns occurring at a

similar rate to the kernel.

The following feature evaluates the similarity between the image and the varying patterns

implemented by s-order Tchebichef kernels: T (s) =
∑

p+q=s |Tpq|, (s = 0, 1, . . . , 2N − 2). The

analysis based on DTM yields a vector of length 2N − 1 to describe the texture attributes.

2In collaboration with Dr. Victor Marcos from the Instituto de Óptica, CSIC, Spain.
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Figure 6.2: Tchebichef polynomials of the first kind from zero to four order.

6.4 Multi-class kernel Fisher discriminant analysis

It must be considered that the size of a training set should be exponentially increased with the

dimensionality of the input space. Such problem, sometimes called “curse of dimensionality” has

been widely investigated, e.g. in [137, 138]. Since the previous methods generate high dimensional

feature vectors and a limited dataset is available in our problem, we added a discriminant analysis

step to prevent overfitting. Another motivation for reducing feature vector dimension is that

psychophysical findings indicate that perceptual tasks such as similarity judgment tend to be

performed on a low-dimensional representation [139].

Discriminant analysis was firstly introduced by Ronald Fisher for two class problems (Fisher

Discriminant Analysis, FDA) and remains to be one of the most popular methods for dimensionality

reduction [140]. Contrary to PCA, FDA projects feature vectors onto a line which preserves

direction useful for data classification. Below, we briefly present the general Fisher approach to

C-classes (NFDA).

Let X1 =
{
x1

1, x1
2, . . . , x1

l1

}
, . . . , XC =

{
xC

1 , xC
2 , . . . , xC

lC

}
be samples from C classes, then Fisher’s

projection is given by the vector w which maximizes:

J (w) =
wTSBw
wTSWw

(6.15)

S B is the between scatter matrix defined by:

SB =

C∑
i=1

li (µi − µ) (µi − µ)T (6.16)

where µi = 1
li

∑li
j=1 xi

j and µ is the overall mean.
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On the other hand, S W is the within class scatter matrix defined by:

SW =

C∑
i=1

S i (6.17)

where S i =
∑li

j=1

(
xi

j − µi
) (

xi
j − µi

)T
.

Thus, the optimal projection matrix w∗ are the C − 1 largest eigenvalues of S−1
W SB.

However, NFDA has an important limitation because it assumes Gaussian likelihoods. To

overcome it, Sebastian Mika ety al. proposed a non-linear generalization by mapping the original

data into some feature space and computing FDA there [141]. Thus, the goal is to find w∗ ∈ ζ that

maximize:

J (w) =
wTSΦ

B w

wTSΦ
Ww

(6.18)

where SΦ
B and SΦ

W are the corresponding matrices in ζ and Φ is a mapping function from input

data into a higher dimensional (possibly infinite) inner product space (ζ).

A drawback of using Eq. (6.18) is that the mapping function Φ must be calculated but in

some cases is not possible. Mika et al. reformulated the algorithm in terms of inner products and

proposed the kernel Fisher discriminant analysis (KFDA) for two class problems. The idea is to solve

FDA limitations by calculating dot products of mapped data points without a mapping function Φ.

First, it is necessary to define a kernel matrix of an inner product, k (x, y) = 〈Φ (x) ,Φ (y)〉, instead

of computing the explicit mapping function. Thus, K (m, n) = k (Xm, Xn) where X =
⋃C

i=1 X
i.

There are three popular kernels: (i) polynomial kernel, k (x, y) = (xy + a)b; (ii) sigmoidal kernel,

k (x, y) = tanh (axy + b); and (iii) Gaussian kernel or Radial Basis Function (RBF), k (x, y) = e−
1
2
‖x−y‖2

a2 .

For all kernels a, b ∈ R+. It follows that:

wTSΦ
B w = αPαT

wTSΦ
Ww = αQαT (6.19)

and the between scatter matrix is defined by

P =

C∑
j=1

l j
(
µ j − µ

) (
µ j − µ

)T
(6.20)

where µ j = 1
l j

∑
∀n∈X j

K (m, n) and µ = 1
l

∑
∀n

K (m, n).

Q is the within class scatter matrix defined by:

Q = KKT −

C∑
j=1

l jµ jµ
T
j (6.21)

we used Q = Q + rI to guarantee that Q is positive definite.
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Finally, α∗ is built with the C − 1 largest eigenvalues of Q−1P and the projection can be

computed as:

y = Kα∗ (6.22)

This method reduces ECGFVP,R length to C − 1 bins.

6.5 Material

We used two datasets labeled by experienced pulmonologists: the Bruijne and Sørensen dataset

(BS), which was provided by Prof. Dr. Bruijne and Dr. Sørensen [125]. It consists of 168 non-

overlapping patches of size 61 × 61 pixels manually annotated in 25 subject which were previously

divided in three groups: healthy non-smokers, smokers without COPD, and smokers with moderate

or severe COPD. These patches belong to three types of patterns: NT (59 patches from 8 subjects),

CL (50 patches from 7 subjects), and PS (59 patches from 10 subjects); so that the NT patches were

annotated in healthy non-smokers, while the CL and PS patches were annotated in both smokers

with and without COPD; and Brigham and Women’s Hospital dataset (BWH). This dataset was

provided by researchers from the Brigham and Women’s Hospital using a subset of the COPDGene

study [127, 129]. The COPDGene study uses 342 CT scanners located in 16 sites. In total, 1337

patches, which belong to 353 subjects, were randomly selected. The distribution per pattern is:

NT (370 patches from 74 subjects), PS (184 patches from 52 subjects), and PL (148 patches from

39 subjects). In addition, BWH includes three subtypes of CL (mild, moderate, and severe): CL1

(170 patches from 5 subjects), CL2 (287 patches from 84 subjects), and CL3 (178 patches from 49

subjects), respectively. The size of the samples was chosen to fit the physical extent of emphysema

within the secondary lobule corresponding to 31× 31 pixels. Prior to the application of our method,

the data were normalized by the global mean and the standard deviation. Neither BS nor BHW

contains private information of patients.

6.6 Experiments and results

Parameter selection is a fundamental step in any classification problem, its goal is to find a global

optimum to achieve the best results in terms of accuracy and bias. 10-fold cross-validation is a

simple and yet widely employed technique for model validation that randomly splits up data into

10 disjoint subsets of approximately equal size. For each fold the remaining 9 subsets are used to

train the model, the average of all folds should provide an estimate of the model.

However, in order to reduce bias, Varma et al. [142] recommend a nested procedure that

consists in splitting up the data into 10 folds, for each fold the remaining 9 subsets are again

splitting up into 10 subsets and used to train the model. In this dissertation, during the training

stage, we used the proposal of Varma et al. and chose the parameters found in the inner circle of

the cross-validation that maximized the average accuracy.
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The validation stage consisted in evaluating the full datasets with 10-fold cross-validation and

with leave-one-patient-out cross-validation. We used k-NN classifier and the Euclidean distance

as metric; such a distance was computed from input samples to every training data, so that we

classified samples using the majority rule among the k-closest vectors.

6.6.1 BS DATASET

The first experiments were performed on the BS dataset; we completed several tests varying

k = {1, 2, . . . , 25}. In [125], Sørensen et al. used k = 1, here the best rate was achieved with k = 20.

Since KFDA projects data onto a new space where class separation is maximized, the variations in

classification rates due to changes in k were minimized, (see Fig. 6.3). We used the RBF kernel

with a = 543,;the classification rates in the range a < 450 and a > 550 decreased dramatically due

to the variance of the kernel.

In order to assessed our proposal, we tested three possible combinations of CGFV and LBPuni
P,R

by varying the number of neighbors and radius length: {8, 1}, {16, 2}, and {24, 3}; these values are

recommended in the literature for testing purposes [96]. We borrowed the Precision (Pr) and

the Sensitivity (Se) from the confusion matrices. Furthermore, we computed the F1-Score, which

measures the accuracy of a test: F1-Score = 2 ∗ Pr ∗ Se
Pr + Se .

The results using the BS dataset were summarized in Table 6.1. The best accuracy, 93.51%,

was achieved using ECGFV16,2, which is a combination of CGFV and LBPuni
16,2. We set R = 2 that

led to a higher accuracy of about 6%.

On the contrary, R > 2 caused lower accuracies. This suggest that local variations, which can

be interpreted as edges, may be useful for characterizing emphysema patterns. We also increased

the number of neighbors, P = 16, that made our proposal less sensitive to noise.

We made an assessment of the methods previously described in Section 6.3, we evaluated each

(a) (b) (c)

Figure 6.3: KFDA on the BS three-class dataset. The data were reduced into a 2D space. The vectors
were produced by (a) CGFV (96-dimensional space); (b) LBPuni

8,1 (10-dimensional space);
and (c) ECGFV8,1 (109-dimensional space). The final space depends on the number of
classes
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Table 6.1: Classification rates of ECGFV8,1, ECGFV16,2, and ECGFV24,3 in the BS dataset. All the
data are expressed in (%)

ECGFV8,1 ECGFV16,2 ECGFV24,3

NT CL PS mean(±std) NT CL PS mean(±std) NT CL PS mean(±std)

Pr 81.03 88.00 90.00 86.34(±4.71) 88.71 95.83 96.55 93.70(±4.33) 78.69 89.36 88.33 85.46(±5.89)

Se 79.66 88.00 91.53 86.40(±6.10) 93.22 92.00 94.92 93.38(±1.47) 81.36 84.00 89.83 85.06(±4.34)

F1-Score 80.34 88.00 90.76 86.37(±5.40) 90.91 93.88 95.73 93.51(±2.43) 80.00 86.60 89.07 85.22(±4.69)

Table 6.2: F1-Score of several methods on the BS dataset. The extended approach was built by
concatenating LBPuni

8,1 to the corresponding method. All data are in (%).

Methods
F1-Score

LGF GLCM DTM

single 72.98 73.76 60.96

extended 79.88 78.96 76.97

approach and its extended version, which was built by concatenating a LBPuni
8,1 histogram to the

corresponding method to form a single sequence. Results are shown in Table 6.2, note that SGC is

not presented because the results are not statistically significant.

Furthermore, we carried out a comparison of CGFV, LBPuni
8,1, LBPuni

16,2, and LBPuni
24,3. We also

computed the performance of Gabor filters using only the real part, R(s,θ), see Eq. (6.1). The

estimated classification accuracies are shown in Table 6.3.

We are interested in that our proposal generalizes to unseen patients and events. Therefore,

we assessed our algorithm using leave-one-patient-out cross-validation. Table 6.4 shows classifi-

cation rates and comparisons among CGFV, LBPuni
P,R, and R(s,θ) which are distinguished as “single

descriptors” and ECGFVP,R, distinguished as “extended descriptor.” Although Sørensen et al.

used the same dataset, a straightforward comparison is not possible because they did not report

classification rates for patches of 51 × 51 pixels.

Table 6.3: Comparison rates of CGFV, LBPuni
P,R, and R(s,θ) in the BS dataset. R(s,θ) denotes Gabor

feature vectors using only real filters. All the data are expressed in (%)

Pr Se
Descriptor

NT CL PS mean(±std) NT CL PS mean(±std)
F1-Score

LBPuni
8,1 68.85 79.59 74.14 74.19(±5.37) 71.19 78.00 72.88 74.02(±3.54) 74.11

LBPuni
16,2 74.60 79.59 82.14 78.78(±3.84) 79.66 78.00 77.97 78.54(±0.97) 78.66

LBPuni
24,3 73.33 85.11 77.05 78.49(±6.02) 74.58 80.00 79.66 78.08(±3.04) 78.28

CGFV 70.37 75.00 87.10 77.49(±8.64) 64.41 78.00 91.53 77.98(±13.56) 77.73

R(s,θ) 65.38 71.15 84.38 73.64(±9.74) 57.63 74.00 91.53 74.39(±16.95) 74.01
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Table 6.4: Comparison rates in the BS dataset using leave-one-patient-out cross validation. All the
data are expressed in (%)

Pr Se
Descriptor

NT CL PS mean(±std) NT CL PS mean(±std)
F1-Score

LBPuni
8,1 61.40 76.60 67.19 68.40(±7.67) 59.32 72.00 72.88 68.07(±7.58) 68.24

LBPuni
16,2 74.58 76.60 75.81 75.66(±1.09) 74.58 72.00 79.66 75.41(±3.90) 75.54

LBPuni
24,3 69.84 82.61 77.97 76.80(±6.46) 74.58 76.00 77.97 76.18(±1.70) 76.49

CGFV 53.33 64.44 82.54 66.77(±14.74) 54.24 58.00 88.14 66.79(±18.58) 66.78

si
n

gl
e

R(s,θ) 57.41 66.00 82.81 68.74(±12.92) 52.54 66.00 89.83 69.46(±18.88) 69.10

ECGFV8,1 77.19 87.76 85.48 83.48(±5.56) 74.58 86.00 89.83 83.47(±7.93) 83.48

ECGFV16,2 83.87 93.48 91.67 89.67(±5.10) 88.14 86.00 93.22 89.12(±3.70) 89.39

ex
te

n
de

d

ECGFV24,3 80.00 87.23 90.16 85.89(±5.23) 81.36 82.00 93.22 85.53(±6.67) 85.71

6.6.2 BWH DATASET

The BWH dataset was previously used in [127] where the authors achieved an accuracy around

66%. Also in [129], the dataset was used with a technique based on the embedded probabilistic

PCA; the authors achieved a final rate of 69%.

Note that this dataset includes three subtypes of CL (mild, moderate, and severe), which

increases the complexity of the classification tasks. The classification rates of the BWH dataset

are summarized in Table 6.5. We kept the same configuration, k = 20 and a = 543, and also

assessed three possible combinations of CGFV and LBPuni
P,R. The best F1-Score was achieved with

ECGFV16,2 = 71%. AS in the previous Table 6.1, we set R = 2 that led to a higher accuracy of

about 5%, while R > 2 caused lower accuracies.

We also performed comparison among all methods and the BWH dataset, (see Table 6.6). Note

that Low Attenuation Areas (LAA) often exhibit a variety of shapes in patients with CL; some

patients show LAA with well-defined borders, while others do not. CL is not a single morphological

feature, therefore, the lower precision and sensitivity rates are among the three severity levels of

CL.

We carried out a comparison among the methods: CGFV, LBPuni
8,1, LBPuni

16,2, LBPuni
24,3, and R(s,θ).

The estimated classification accuracies are shown in Table 6.7. Note that all the single descriptor

rates were lower than those obtained by our proposal.

Table 6.5: Classification rates of ECGFV8,1, ECGFV16,2, and ECGFV24,3 in the BWH dataset. All the
data are expressed in (%)

ECGFV8,1 ECGFV16,2 ECGFV24,3

NT PS PL CL1 CL2 CL3 mean(±std) NT PS PL CL1 CL2 CL3 mean(±std) NT PS PL CL1 CL2 CL3 mean(±std)

Pr 77.43 83.42 73.03 58.20 63.11 57.69 68.81(±10.72) 80.79 85.28 78.23 65.25 62.54 61.64 72.29(±10.34) 79.27 86.63 78.01 56.72 60.62 57.93 69.86(±12.94)

Se 86.22 87.50 75.00 41.76 72.13 42.13 67.46(±20.66) 88.65 91.30 77.70 45.29 70.38 50.56 70.65(±19.22) 87.84 88.04 74.32 44.71 67.60 47.19 68.28(±19.03)

F1-Score 81.91 85.41 74.00 48.63 67.32 48.70 67.66(±16.00) 84.54 88.19 77.96 53.47 66.23 55.55 71.00(±14.81) 83.34 87.33 76.12 50.00 63.92 52.01 68.79(±15.92)

67 of 87



Chapter 6. Applications in medical imaging

Table 6.6: F1-Score of several approaches on the BWH dataset. The extended vectors were built by
concatenating the LBPuni

8,1 histogram to the corresponding method. All data are in (%).

Methods
F1-Score

LGF GLCM DTM SGC

single 56.79 45.13 45.27 32.96

extended 61.00 57.05 55.77 51.58

Table 6.7: Comparison rates of CGFV, LBPuni
P,R, and R(s,θ) in the BWH dataset. The latter denotes

Gabor feature vectors using only the real filters. All the data are expressed in (%)

Pr Se
Descriptor

NT PS PL CL1 CL2 CL3 mean(±std) NT PS PL CL1 CL2 CL3 mean(±std)
F1-Score

LBPuni
8,1 57.46 70.56 61.54 29.85 54.67 33.01 51.18(±16.25) 77.03 82.07 43.24 11.76 67.25 19.10 50.08(±30.07) 50.62

LBPuni
16,2 58.17 80.09 57.47 36.26 55.26 29.81 52.84(±17.91) 78.92 91.85 33.78 19.41 65.85 17.42 51.21(±31.91) 52.01

LBPuni
24,3 59.74 84.74 58.25 30.65 52.87 29.09 52.56(±20.74) 74.59 87.50 40.54 22.35 64.11 17.98 51.18(±28.57) 51.86

CGFV 70.55 79.05 72.90 44.71 52.40 55.56 62.53(±13.52) 80.27 90.22 76.35 22.35 57.14 47.75 62.35(±25.04) 62.44

R(s,θ) 70.00 78.10 69.09 51.81 51.30 53.90 62.37(±11.46) 81.35 89.13 77.03 25.29 55.05 42.70 61.76(±24.92) 62.06

Leave-one-patient-out cross-validation was performed in the BWH dataset, Table 6.8 summa-

rized rates and comparisons of all the methods. The best rate was achieved with our proposal,

ECGFV16,2. Note that when it comes BWH, the variance es greater than in BS, this increase of the

variance was due to BWH includes three subtypes of CL. However, CL is not a single morphological

feature.

Table 6.8: Comparison rates in the BWH dataset using leave-one-patient-out cross validation. All the
data are expressed in (%)

Pr Se
Descriptor

NT PL PS CL1 CL2 CL3 mean(±std) NT PL PS CL1 CL2 CL3 mean(±std)
F1-Score

LBPuni
8,1 55.89 68.49 58.04 26.09 52.16 26.53 47.87(±17.56) 74.32 81.52 43.92 10.59 63.07 14.61 48.01(±30.25) 47.94

LBPuni
16,2 57.65 79.90 51.76 32.97 55.46 31.52 51.54(±17.90) 78.38 90.76 29.73 17.65 68.99 16.29 50.30(±32.93) 50.91

LBPuni
24,3 58.95 82.81 57.01 29.32 55.39 30.77 52.38(±19.99) 72.97 86.41 41.22 22.94 66.20 17.98 51.29(±28.07) 51.83

CGFV 69.72 79.43 69.62 41.05 51.15 50.00 60.17(±14.85) 80.27 90.22 74.32 22.94 54.36 40.45 60.43(±25.76) 60.30

si
n

gl
e

R(s,θ) 68.69 77.36 72.26 34.57 49.17 50.00 58.68(±16.62) 79.46 89.13 75.68 16.47 51.57 44.94 59.54(±27.07) 59.11

ECGFV8,1 77.94 84.26 73.47 59.17 62.15 54.29 68.55(±11.76) 85.95 90.22 72.97 41.76 70.38 42.70 67.33(±20.84) 67.94

ECGFV16,2 80.84 85.35 77.33 60.34 61.76 59.86 70.91(±11.54) 88.92 91.85 78.38 41.18 68.64 49.44 69.74(±20.79) 70.32

ex
te

n
de

d

ECGFV24,3 78.61 87.30 77.08 52.31 59.94 58.16 68.90(±13.93) 88.38 89.67 75.00 40.00 66.20 46.07 67.55(±20.98) 68.22

6.7 Conclusions

We proposed a new approach to quantify up to six emphysema patterns based on complex Gabor

filters and local binary patterns. This joint model allows to encode global texture characteristics

with local information simultaneously. We presented the complex Gabor model for texture analysis
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and summarized its properties related to the HVS. Since Gabor-based methods transform images

into a high-dimensional feature vectors, we applied kernel Fisher discriminant analysis via the

kernel trick to avoid computing a mapping function and to find the most discriminant non-linear

boundary among classes. We performed 10-fold cross-validation and leave-one-patient-out cross

validation to assess our proposal. In general, extended descriptors increased classification rates

around 15% in the BW dataset. Concerning the BWH dataset our method achieved a F1-Score

of 70.32; that means 10% above any single descriptor. This rate was mainly influenced by the

misclassified three severity levels of CL. However, our proposal outperformed all the methods.

These results have shown that the proposed method is a promising technique that yields a good

performance in emphysema classification. Furthermore, this approach may be useful in other

textural classification scenarios beyond medical imaging.

69 of 87



Chapter 6. Applications in medical imaging

70 of 87



– If people let the government decide what foods they eat
and what medicines they take, their bodies will soon be in
as sorry a state as the souls who live under tyranny.

Thomas Jefferson

7
Conclusions and future work

In recent years bio-inspired image models have captured the attention of researchers; such a

phenomenon has been partially supported because of the advance in understanding of the HVS,

which is a complex system based on a retinotopic organization that performs parallel processing

by lateral, feedforward, and feedback connections. Among all the components that form the HVS,

the retina and the striate cortex are the ones where we have achieved a better knowledge. The

former is regarded as a preprocessing stage that adapts visual stimuli for subsequent processing,

while the striate cortex is considered as a low-level descriptor.

Understanding the encoding process of visual information may lead to overcome limitations

of existing signal-processing-based methods. Although the models used in image processing

and computer vision are simplifications derived from psychophysical experiments, they have

incorporated more complex features. In the previous chapters we established that the HVS

decomposes visual stimuli in multiple frequency bands and different orientations where lower

frequencies represent the context of the scene and higher frequency bands contain edges, texture

information, and noise.

Literature distinguishes two types of image models: those ones that incorporate perceptual

aspects such as contrast adaptation and visual masking; and models that mimic the structure and

organization of the HVS. The latter is the most popular model. Researchers have focused efforts

to propose innovative designs based on it for image processing and computer vision tasks. The

perception of objects depends primarily on the ability of the HVS to extract continuous edges from

a visual scene. However, the retina received fragmented edges due to the size of receptive fields.
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Therefore it must implement mechanisms for integrating information and building the perception

of continuous edges.

In this dissertation we analyzed and proposed an image model based on the studies of Daugman

and Field. Our proposal is selective in both orientation and frequency bands. We applied the

logarithmic function to Gabor filters in order to remove the DC component that disturbs frequency

bands. In addition, we rotated the even bands in order to better cover the Fourier plane.

The HVS exploits redundancy as well. It converts visual stimuli into signals and then encodes

them; therefore it must distinguish useful signals and rule out redundant information; for example,

signals received by adjacent receptive fields. As we saw in Chapter 2, redundant systems are more

robust than orthogonal ones because they are less sensitive to noise and can expand images in

different ways. Gabor filters meet the previous characteristics, they have been used successfully in

texture analysis and other applications which do no require image reconstruction such as denoising

and edge extraction because it is not possible to reconstruct images with no artifacts from the

expansion. However, Gabor filters are considered as optimal filters and reach the optimal trade-off

between space and frequency domains.

We compared the classical Gabor model and our proposal in a texture segmentation problem.

We revisited the Jain and Farrokhnia’s algorithm, which is an unsupervised texture segmentation

method applied on the Brodatz dataset. The results showed that our proposal outperformed the

classical model because their frequency bands are better distributed, such a configuration leads to

a better management of redundancy. This experiment allowed to discover that there is an optimal

point where is possible to take advantage of the redundant information to discriminate textures;

before or after this point the discrimination rate decays. Further experiments were performed with

our proposal in texture classification and image retrieval using several distance metrics among

histograms.

The second part of this dissertation stated that joint representations improve texture char-

acterization because they simultaneously encode global characteristics with local information.

This combined approach leads to a better texture classification rates. Furthermore, we included a

study on local operators for the purpose of characterizing textures locally. Furthermore texture

classification experiments were conducted in order to assess their performance and robustness to

rotational changes.

The last part was dedicated to solve a classification problem of lung CT images. We included

phase information to build vectors from complex Gabor functions. Furthermore, we appended LBP

histograms to each vector to improve texture characterization. We also analyzed a set of global

and local texture descriptors to characterize emphysema morphology. The results have shown the

effectiveness of our proposal and that the combination of global and local descriptors provides

robust feature vectors that lead to an improvement in the classification rate. The results suggest

that combined descriptor methods such as Gabor schemes and LBPs are robust descriptors that

outperform the state-of-the-art models.
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However, combined methods have many parameters and their optimization depends mainly on

the application. No single approach did perform best or very close to the best for all images and

experiments. Therefore, it is difficult to propose a general or universal solution. This thesis also

made clear that composite models are required to better characterize textures.

For four years we have studied textures from different approaches and in a variety of appli-

cations. We have left evidence that our proposals compete with state-of-art methods. We have

taken advantage of the overcomplete information but there is much work to be done. To our

knowledge the next step involves sparsity and sparse models. There is evidence that through sparse

algorithms, overcomplete information can be optimized. Also edge extraction must be included in

the sparse coding. Such improvements should yield a better characterization of textures and offer

efficient descriptors for object recognition.
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