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compañeiros de Parma (Youssef, Lara, Pouya, Hamid e Matteo). Foi un pracer ter a

posibilidade de aprender con todos vos durante os últimos tres anos e espero que, o
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estancias realizadas (Dr. Bai Li en la Universidad de Nottingham y Dr. Sergio Damas

en el European Center for Soft Computing), ası́ como a los principales organizadores

y coordinadores de la red europea en la que he podido formarme como investigador,

ingeniero y persona, en especial, Oscar Cordón, Sergio Damas, Carmen Peña y Oscar
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Abstract

This PhD dissertation is focused on the development of algorithms for the automatic

segmentation of anatomical structures in biomedical images, usually the hippocampus

in histological images from the mouse brain. Such algorithms are based on computer

vision techniques and artificial intelligence methods. More precisely, on the one

hand, we take advantage of deformable models to segment the anatomical structure

under consideration, using prior knowledge from different sources, and to embed the

segmentation into an optimization framework. On the other hand, metaheuristics and

classifiers can be used to perform the optimization of the target function defined by the

shape model (as well as to automatically tune the system parameters), and to refine the

results obtained by the segmentation process, respectively. Three new different methods,

with their corresponding advantages and disadvantages, are described and tested. A

broad theoretical discussion, together with an extensive introduction to the state of the

art, has also been included to provide an overview necessary for understanding the

developed methods.

9



Chapter 1

Introduction

All of science is nothing more than the refinement of everyday thinking.

Albert Einstein, Physics and Reality, 1936

Umberto Eco, in [10], considers scientificity more as a working model to follow

than as a content itself (and, in that case, being only applicable to formal and natural

sciences). In particular, he tries to broadly define under what criteria a work can be

called scientific, stating that an investigation can be considered scientific if it meets the

following requirements:

1. It deals with a recognizable and defined object ( [...] argomento riconoscibile e

definito [...]).

2. It must say things about this subject that have not yet been said, or to examine

things that have already been said from a different viewpoint ( [...] dire su questo

oggetto cose che non sono già state dette oppure rivedere con un’ottica diversa

le cose che sono già state dette [...]).

3. It must be useful to other people ([...] deve essere utile agli altri [...]).

4. It must provide elements for verification and refutation of the hypothesis pre-

sented, and therefore has to provide the necessary inputs for its public monitoring

10
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([...] deve fornire gli elementi per la verifica e per la falsifica delle ipotesi che

presenta e pertanto deve fornire gli elementi per una sua continuazione pubblica

[...]).

A good methodological starting point for this PhD dissertation could be to fill

the previous ‘template’, trying to answer why this research work fulfills each of the

mentioned requirements.

With respect to the first one, the ‘recognizability’ of the object under investigation,

we can affirm that this scientific work deals with medical image segmentation using
soft and bio-inspired computing. Therefore, the three crucial concepts of this work

are: medical imaging, image segmentation and soft and bio-inspired computing. On

the one hand, image segmentation is the accurate delineation of an object’s boundary

within an image or, in other words, the partition of an image into meaningful and

non-overlapping regions following some kind of criterion. On the other hand, medical

imaging is the production of visual representations of body parts, tissues, or organs, for

clinical diagnosis (medical procedures seeking to reveal, diagnose, or examine diseases)

or medical science (including the study of normal anatomy and physiology). Finally,

soft/bio-inspired computing is an area of artificial intelligence research focused on the

design of computational techniques to solve problems (in the presence of uncertain,

imprecise and incomplete information) by imitating nature’s approaches.

This research is conceived within a broader context: the MIBISOC Marie Initial

Training Network (“Medical Imaging using Bio-Inspired and Soft Computing”, FP7

PEOPLE-ITN-2008, GA n. 238819). The general area of this european project deals

with the application of intelligent systems, constituted by bio-inspired and soft comput-

ing techniques, to real-world medical imaging applications. Medical imaging is at the

heart of many of today’s improved diagnostic and therapeutic technologies, in which

computer-based solutions offer the opportunity to obtain quantitative measurement of

the medical condition, as well as the pre-processing techniques of filtering, sharpen-

ing, and focusing image details, to improve their interpretation by physicians. In fact,

bio-inspired and soft computing have already been applied to each of the fundamental

steps of medical image processing and analysis with promising results (e.g. restoration,
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Figure 1.1: MIBISOC partnership [1].

segmentation, registration or tracking). The consortium is composed of world-wide

recognized researchers from eight scientific institutions (six Universities, a R&D centre

and an enterprise) that are involved as full partners, and four technical partners (a hospi-

tal, an enterprise, a medical company and a R&D centre) that provide relevant industrial

and medical experience to the Early Stage Researchers (ESRs). Figure 1.1 describes

the MIBISOC partnership, including the complete medical imaging pipeline, from the

image acquisition process to the physician’s final diagnosis [1]. The collaboration of

experts from the area of medical imaging with those working on bio-inspired and soft

computing applications to computer vision aims at generating new and viable methods

and solutions from the combined ideas of the two communities.
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In relation to the ‘novelty’ of this scientific research, three characteristics should be

mentioned:

• this is one of the first, if not the first, systematic and rigorous approach to the

hybridization between deformable models (both parametric and geometric) and

soft-computing (metaheuristics and classifiers). This PhD dissertation is focused

on the segmentation of medical images, as well as on the study of the different

possibilites offered by soft computing approaches. This study uses statistical tests

and standard quality segmentation metrics extensively, unlike the majority of the

work in the field (usually ad-hoc and poorly tested);

• this research represents one of the few cases in which microscopy histological

brain images segmentation has been approached using deformable models (both

parametric and geometric) and metaheuristics, overcoming in many aspects state-

of-the-art methods; and

• finally, this PhD dissertation includes an extensive survey of related work, in

the absence of any other ‘review’ like this in the literature, and introduces three

novel automatic segmentation methods, applicable to different medical image

modalities, discussing the advantages and disadvantages of their use.

It is important to highlight, with regard to the ‘utility’ of improving the existing

medical image segmentation systems, the critical role that segmentation algorithms play

in image understanding tasks, as they allow one to automatically identify anatomical

structures and other regions of interest, or significantly reduce the workload for human

operators. Such algorithms are nowadays at the core of multiple tasks, like quantifica-

tion and measurement of tissue volumes, detection and localization of pathologies or

computer-integrated surgery. Furthermore, manual segmentation is not only tedious

and time consuming but it can be also inaccurate, hence the importance of developing

automatic and accurate segmentation methods.

Finally, with regard to the ‘verification and refutation of the hypothesis presented’,

all methods have been extensively compared and statistically tested using standard
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segmentation metrics. All algorithms and parameter configurations are described in

detail in order to favour repeatability by the scientific community, and the possibility to

refute the methods and hypotheses presented here (falsifiability/refutability). It is crucial

to stress the importance, and singularity, of this feature since many approaches, in this

research field, are only tested using few sample images, introduce extremely ad-hoc

methods, do not use standard metrics to evaluate the performance of the algorithms, or

do not apply statistical tests to draw accurate conclusions from the results obtained.

This PhD thesis has its origin halfway between engineering and applied research.

From a theoretical point of view, the idea is to investigate how hybridizations between

soft computing and computer vision techniques can improve methods that are presently

used to solve medical imaging problems. From the practical side, this PhD work

originates from a joint research project with the Molecular Biotechnology Center of

Torino, in which an accurate method to localize the hippocampus in histological images

was necessary in order to develop an image analysis pipeline for the identification of

synapse-enriched RNAs from in situ hybridization images of the brain.

To end this introduction, it is also necessary to clearly stipulate the conventions

followed with respect to language and style.

• This PhD dissertation has been written in English. The only part written in other

languages is the acknowledgements chapter, which includes the same text in four

different languages: Italian, English, Galician and Spanish.

• All quotations have been included in their original languages, whether in Italian,

English, Galician or Spanish. If the original quotation was written in any other

different language, such quotation has been translated into English (i.e., English

has been the language by default).

• One of the main purposes when writing this PhD dissertation has been to create

a self-contained document in which, to understand its content, it would not be

necessary to turn to other sources of information. Obviously, this aim can only be

fulfilled up to a certain level since, otherwise, there would be the risk of writing

an oversized text.
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• The content of this dissertation has been mainly extracted from the scientific

works published in journals and conferences during the PhD period. An interested

reader can also consult such publications (see section 9) in order to deepen his/her

knowledge about the methods, approaches and ideas developed and tested.

This PhD thesis is structured in three parts (Fundamentals, Proposed Methods,

and Final Remarks) and, in turn, every part is composed by three chapters, except

the last one with only two. First, after this introduction, we provide, in chapter 2,

the theoretical foundations of this investigation and, in section 3, the image datasets

and the kind of medical imaging modalities used in the experiments. In chapter 4, a

wide overview of previous related works is introduced. After that, in the second part,

three chapters follow with three different approaches to the segmentation of anatomical

structures: a parametric approach based on active shape models and ensemble classifiers

(chapter 5), a geometric method using eigenshapes (section 6) and, in chapter 7, a level

set approach including three different terms (intensity, boundaries and prior shape

knowledge) to segment different medical image modalities. Finally, in the last part of

this PhD dissertation, a discussion about possible future developments (in chapter 8)

and a summary of the conclusions obtained (chapter 9), are followed by four appendices

about the scientific papers published during the PhD period, the statistical tests used for

analyzing stochastic techniques behaviour, the standard segmentation metrics employed

to compare the performance of different segmentation algorithms, and the list of

abbreviations used throughout this document, respectively.



Part I: Fundamentals

This section includes three chapters that give an overview of the state-of-the-art of the

problem under consideration. First, the theoretical background is introduced, explaining

the techniques used in this research and the underlying concepts necessary to understand

it. After that, the medical imaging datasets used are presented and explained. Finally, an

extensive bibliographical study is presented refering to papers related with this topic.

16



Chapter 2

Theoretical Background

There is nothing so practical as a good theory.

Kurt Lewin, Problems of research in social psychology, 1951

Instead of his theory being as wide as reality,

his perception of reality may be as narrow as his theory.

Kenneth Craik, The nature of explanation, 1943

2.1 Medical Image Segmentation

Classically, image segmentation (IS) is defined as the partitioning of an image into

non-overlapping regions (sets of pixels) that are homogeneous with respect to some

visual feature, such as intensity or texture [11]. In order to locate the segmentation

process within the broader spectrum of computer vision algorithms, it is important

to establish a hierarchy of low-, middle- and high-level tasks. The low-level stage is

related to the application of primitive operations, like smoothing, enhancement, and

histogram transformations. The middle-level task is focused on image analysis, such

as classification, registration and segmentation. Finally, high-level tasks aim to give

meaning to the objects recognized in the previous stages and to develop cognitive

functions related with the human vision system.

17
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IS algorithms play a crucial role in many medical imaging applications, like the

quantification and measurement of tissue volumes, diagnosis, localization of patholo-

gies, and the study of anatomical structures, by automating or facilitating the delineation

of such structures and other regions of interest. This task is often challenging because of

poor image contrast and frequent artifacts that result in missing or diffuse organ/tissue

boundaries. Consequently, a good way of proceeding is to incorporate as much prior

information as possible about the problem to be solved, the image acquisition modality

or the anatomy, by considering models of the appearance of the structure of interest,

based on features such as texture, shape, spatial location of organs, etc. At the same

time, it is important to notice that manual segmentation is not only a tedious and time

consuming task but, sometimes, it may also be inaccurate, which shows the importance

of developing automated methods to accurately carry out such a task.

Using as taxonomic criterion the general principle by which segmentation is based

(pixel intensitiy, boundary localization, region detection, or prior knowledge about

shape), we could establish the following categories, that can be used in combination

with other techniques [12–14]:

• Thresholding techniques. A thresholding procedure attempts to determine an

intensity value, called the threshold, which separates the image into the desired

regions. The segmentation is then achieved by grouping all pixels with greater

intensity than the threshold into one class, and all other pixels into another class.

These global methods are effective when the intensity levels of the objects of

interest fall squarely outside the range of levels in the background. However,

since spatial information is ignored, blurred region boundaries can provoke havoc.

Image thresholding techniques are well known, and some of the most frequently

used methods date from the 70s, as Otsu’s method [15], but the problem is not

solved yet, and new approaches are required to deal effectively with different

signal and image modalities [16].

• Edge-based methods are focused on contour detection [17, 18]. These methods

make use of various edge operators to calculate the gradient of the image intensity

at each point, that provides information about the direction of the largest possible
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increase in terms of intensities and its value. The result shows how “abruptly”

or “smoothly” image intensity changes at that point, and therefore how likely

such a part of the image is to represent an edge, as well as how that edge is likely

to be oriented. Difficulties with boundary-based methods occur when objects

are overlapping, there is noise or artifacts in the image, or the object has fuzzy

boundaries.

• Region-based methods [19–21] usually proceed by partitioning the image into

connected regions by grouping neighboring pixels with similar features. Ad-

jacent regions are then merged according to some criterion, possibly based on

homogeneity or sharpness of region boundaries. Overstringent criteria create frag-

mentation; lenient ones overlook blurred boundaries and overmerge. However,

region-based approaches are generally less sensitive to noise than the boundary-

based methods. Many region-based segmentation techniques have been presented

in the literature, including region-growing and merging, clustering methods or

hierarchical segmentation.

• Deformable Models usually start from some initial boundary shape, using prior

information about the shape of the object to find, represented in the form of

curves, and iteratively modifies it by applying various shrink/expansion operations

according to some energy function. These models couple an energy-minimizing

approach with the preservation of some “elastic” contour shape. The main risks

with such methods are to get trapped into a local minimum and their sensitivity

to the initial contour location, which makes the choice of an appropriate model

initialization difficult and critical. This category will be described in more detail

below.

Anyway, most segmentation techniques are either region-based or edge-based. In

general terms, region-based techniques rely on common patterns in intensity values

clustering neighboring pixels based on similarity. The cluster is referred to as the

region, and the goal of the segmentation algorithm is to group regions according to their

anatomical or functional roles. Edge-based techniques rely on discontinuities in image
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intensities between distinct regions, and the goal of the segmentation algorithm is to

accurately locate the boundary separating them.

Although the performance of many segmentation techniques is generally good

when the contrast-to-noise ratio is high, it decreases rapidly when the structures are

insufficiently delineated and have low contrast like the neuroanatomic structures, such

as the thalamus or the putamen. Hence, it is really important to upgrade the existing

methods in order to improve their accuracy, robustness, or execution time. Also, it is

important to notice that most of the IS problems can be posed as optimization problems

where the desired segmentation minimizes some energy or cost function defined by the

particular application. This possibility is one of the fundamental reasons for hybridizing

soft computing technologies with IS algorithms.

2.2 Deformable Models

The term “deformable models” was first used in the late eighties [22, 23] with reference

to curves or surfaces, defined within the image domain, that are deformed under the

influence of “internal” forces, related with the curve features, and “external” forces,

related with the image regions surrounding the curve. Internal forces enforce regularity

constraints and keep the model smooth during deformation, while external forces are

defined such that the model is attracted toward an object or other features of interest

within the image.

There are basically two types of Deformable Models (DMs): parametric/explicit
and geometric/implicit [24]. The former represents curves and surfaces explicitly in

their parametric forms during deformation, allowing direct interaction with the model

and leading to a compact representation for fast real-time implementation. The latter

can handle topological changes naturally, since these models are based on the theory of

curve evolution and the level set method, representing curves and surfaces implicitly as

a level set of a higher-dimensional scalar function.

Despite the fundamental differences above explained, the underlying principles of



Chapter 2. Theoretical Background 21

both approaches are very similar. In fact, in spite of the great similarities between the

models, it is interesting to note the confusing terminology used. There are multiple

terms to refer to practically the same concepts, distinguished in many cases by minor

details: Deformable Models [22], Deformable Templates [25, 26], Active Shape Models

[27], Active Contour Models/Deformable Contours/Snakes [28], Deformable Surfaces

[29–31], Active Appearence Models [32], Statistical Shape Models [33],... In the next

two sections some of the best known DMs, as well as the key nuances that differentiate

them, will be reviewed.

Parametric Deformable Models

One of the first practical examples, called “snakes” or Active Contour Models (ACMs),

was presented shortly after the seminal works of Terzopoulos in [28]. An ACM

is a variational method for detecting object boundaries in images. Given n points

C0 = {p0
1, · · · , p0

n} that define the initial closed contour, such contour is deformed to

lie along the object boundary. The initial contour C0 is deformed to C1 = {p1
1, · · · , p1

n}
by minimizing a certain energy function. Let X(p) be a parameterization of contour C

and I be a image intensity. Then the energy is

E(C) = α

∫
|X ′(p)|2dp+ β

∫
|X ′′(p)|2dp− λ

∫
|∇I(X(p))|dp (2.1)

The first two terms represent the internal energy while the last term is the external

energy. The internal energy is responsible for smoothness, while the external energy

is responsible for attracting the contour toward the object boundary, and α (elasticity),

β (rigidity) and λ are the free parameters of the system and are determined a priori.

Smaller values for λ reduce the noise but can not capture sharp corners while larger

values can effectively locate the boundaries but being more sensitive to the noise. Also,

α and β prevent the snake from becoming non-continuous or breaking during the

iteration process of the optimization problem. The total energy can be written as

E(C) = Einternal(C) + λEexternal(C) (2.2)
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From the calculus of variations, it can be shown that the contour should satisfy the

Euler-Lagrange equation:

− d

dp
(αX ′) +

d2

dp2
(βX ′′)− λ∆I(X) = 0. (2.3)

Active Shape Models (ASMs) [34] add more prior knowledge to DMs. These shape

models derive a “point distribution model” from sets of labelled points (landmarks)

selected by an expert within a training set of images: in each image, a point, or set

of points, is placed on the part of the object corresponding to its label. The model

considers the points’ average positions and the main modes of variation found in the

training set. While this kind of model has problems with unexpected shapes, since

an instance of the model can only take into account deformations which appear in

the training set, it is robust with respect to noise and image artifacts, like missing or

damaged parts.

Active Appearance Models (AAMs) [32] extend ASMs by considering not only the

shape of the model, but also other image properties, like intensity, texture or color. An

appearance model can represent both the shape and texture variability seen in a training

set, and differ from ASMs in that, instead of searching locally about each model point,

they seek to minimize the difference between a new image and one synthesized by the

appearance model [35]. ASMs only use data around the model points, and do not take

advantage of all the gray-level information available in a whole object as the AAM

does.

Topological Active Nets (TANs) are a discrete implementation of an elastic mesh

with interrelated nodes [36], that integrates region- and boundary-based features. The

model has two kinds of nodes: the external nodes fit the edges of the objects whereas

the internal nodes model their internal topology. The advantage of this model is

the capability of fitting the edges of the objects while detecting their inner topology.

Contrariwise, the model is complex and has limitations regarding topological changes,

local deformations, and the definition of the energy functional. A TAN is defined

parametrically as v(r, s) = (x(r, s), y(r, s)) where (r, s) ∈ [0, 1] × [0, 1]. The mesh
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deformations are controlled by an energy function defined as follows:

E(v(r, s)) =

∫ 1

0

∫ 1

0

[Eint(v(r, s)) + Eext(v(r, s))] drds (2.4)

whereEint andEext are the internal and the external energy of the TAN, respectively. The

internal energy depends on first and second order derivatives which controls contraction

and bending of the shape and the structure of the mesh, whereas the external energy

represents the external forces governing the adjustment process (differentiating between

both types of nodes: external nodes fit the edges while internal ones model the inner

features of the objects).

Finally, Deformable Templates (DTs) represent shapes as deformations of a given

prototype or template. Prior knowledge of an object shape is described by a pro-

totype template, usually hand-drawn, which consists of the object’s representative

contour/edges, and a set of probabilistic transformations on the template. DTs have

been successfully applied to object tracking [26] and object matching [25]. To define

a deformable template, one needs, firstly, to mathematically define a prototype which

describes the prior knowledge about the object shape as the most likely appearance of

the object being sought. Secondly, one needs to provide a mathematical description of

the possible relationships between the template and all admissible object shapes, that

represent the possible transformations which can deform the basic template and turn it

into the target object, as appears in the image.

Geometric Deformable Models

Geometric DMs, proposed independently by [37] and [38], provide an elegant solution

to address the primary limitations of parametric DMs. These models are based on the

curve evolution theory [39–41] and the level set method [42, 43]: curves and surfaces

are evolved using only geometric measures, resulting in an evolution that is independent

of the parameterization. As in parametric DMs, the evolution is coupled with the

image data to recover object boundaries. Since the evolution is independent of the

parameterization, the evolving curves and surfaces can be represented implicitly as
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a level set of a higher-dimensional function and topological changes can be handled

automatically.

Amongst geometric models, the Level Set (LS) method [42] relies on an evolving

closed surface defined by a moving interface, the front, which expands from a point

out into the image, fitting itself to the region it is released within, and smoothing noise.

The interface Γ(t) can be characterized as a Lipschitz continuous function:
φ(t,x) > 0 for x inside Γ(t)

φ(t,x) < 0 for x outside Γ(t)

φ(t,x) = 0 for x on Γ(t)

The front, denoted by Γ, is represented by the zero level Γ(t) = {x|φ(t,x) = 0} of

a LS function φ(t,x). The φ evolution can be written in the following general form:

∂φ

∂t
+ F |∇φ| = 0

known as the LS equation, where F is called the speed function. This speed can depend

on position, time, the geometry of the interface (e.g. its normal or its mean curvature),

and the external physics. Among the advantages of LS methods is the natural ability for

a single surface to split and merge without losing its identity.

In any case, the definition of the LS function φ is essential. One common choice

is the signed distance function d(x), which gives the distance of a point to the surface

and the sign: generally d > 0 if the point x is outside and d < 0 if it is inside the

surface (assuming it is a closed surface). This definition is especially interesting to

avoid numerical instabilities and inaccuracies during computations. Even with this

definition, φ will not remain a signed distance function all the time and a reinitialization

procedure to keep the LS intact will be needed [44].

Due to its important influence in part of this research work, it seems worth to

dedicate a paragraph to explain the “Active Contours Without Edges” (CV) [45] method

presented in 2001 by Chan and Vese. This algorithm, based on the Mumford-Shah
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functional [46], was designed to detect objects whose boundaries are not necessarily

defined by gray level gradients; indeed, it ignores edges completely, making CV a region-

based method. The idea is to separate the image into two regions having homogeneous

intensity values. More formally, the process minimizes the energy functional shown in

Equation 2.5. The functional is used to evolve a LS representing the contour C, using

the conventional variational calculus approach. The evolving curve C is the boundary

of an open subset w of Ω (i.e., Ω is the image domain, w ⊂ Ω and C = ∂w), and the

regions C and Ω \ C determine the areas inside and outside C, respectively.

E(IC , IΩ\C , C) = µ · Length(C) + ν · Area(C)

+ λ1

∫
C

|I(x, y)− IC |2dxdy

+ λ2

∫
Ω\C
|I(x, y)− IΩ\C |2dxdy

(2.5)

In the equation, I is the pixel intensity value of the image to be segmented, and IC
and IΩ\C are the average values inside and outside C, respectively1. Along with the

length of C and its area, there are a third and fourth term representing the variance of

the intensity level (i.e., the homogeneity) inside and outside the closed contour. Each

term has a weight that determines its influence on the total energy, so that, for instance,

the smaller µ, the more the length of the curve can increase without penalizing the

minimization. The larger µ, the less freedom is there for the curve to increase in length,

thus, it will only be able to detect larger objects. The parameter ν is also a scaling term

for the area of the curve, but it can be set to 0 in the Euler-Lagrange derivation, since µ

is sufficient to scale the curve according to the objects that need to be detected. Finally,

λ1 and λ2 are weighting parameters for the forces inside the curve and outside the curve

respectively.

Some hybridizations between geometric and parametric DMs have already been

presented, like Geodesic Active Contours (GAC) [47], where the proposed approach

is based on the relation between active contours and the computation of geodesics or

1IC and IΩ\C are also named in many papers as c1 and c2, respectively
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minimal-distance curves, connecting classic “snakes” based on energy minimization

and geometric active contours based on the theory of curve evolution. The technique,

introduced in 1997, is based on active contours evolving in time according to intrinsic

geometric measures of the image. The evolving contours naturally split and merge,

allowing for the simultaneous detection of several objects and of both interior and

exterior boundaries.

The partial differential equation of the GAC is the following:

ut = α · div(g∇u/|∇u|)|∇u|+ β · g|∇u| (2.6)

where g is an edge indicator function (a positive and strictly decreasing function), u an

implicit representation of the curve C,∇ is the gradient operator, div is the divergence

operator (that measures the magnitude of a vector field’s source or sink at a given

point) 2, and α and β are the contour (internal force) and expansion (external force)

weights, respectively. The higher α, the more regularized/smoothed the contour. If β is

positive it expands outwards, if negative it expands inwards (moving faster and crossing

gradients, the smaller its value).

The problem is formalized as the minimization of the following energy:

E(C) =

∫ |C|ε
0

g(|∇I(C(s))|)ds, (2.7)

where |C|ε is the Euclidean length of a contour C, s is the arc length of the contour,

and ds is equivalent to |C ′(q)|dq, being C(q) a parameterized planar curve. This

method is equivalent to the minimization of the length of the curve C according to

a Riemannian metric, which depends on the local gradient of the image I . GAC

minimizes Equation 2.7 via a gradient descent scheme and a level-sets representation

2The divergence of a vector field is defined as

∇ ·V =
∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂z
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of the curve. Unfortunately, the method is sensitive to initialization and the global

minimum of Equation 2.7 is not always found.

2.3 Medical Image Registration

Image registration (IR) refers to the process of overlaying two or more images of the

same scene (taken at different times, from different viewpoints, and/or by different

sensors) or, in other words, the process of geometrically aligning multiple images

having a shared content [48]. The alignment is represented by a spatial transformation

that overlaps the common part of the images. One image, the scene, is transformed to

match the geometry of the other image, called the model.

Three main components characterize an IR method: the transformation model, the

similarity metric and the optimization process (see Figure 2.1). The transformation

model determines what kind of transformation can be used to align the images. Trans-

formation models vary greatly in complexity, ranging from simple combinations of

translation and rotation up to elastic transformations that can represent local deforma-

tions and warpings. The choice of the appropriate transformation model for a given

application is often crucial.

The similarity metric is the component that measures the quality of an alignment.

In medical applications, the most common approach, called intensity-based, compares

the joint distribution of intensity values between the scene and the model once a

transformation has been applied. The degree of matching can be computed from the

intensity distributions using measures such as the mean square error, the correlation

coefficient or the mutual information [49]. In an alternative approach, called feature-

based, the alignment is measured only on salient and distinctive features of the image,

such as lines, corners and edges, ignoring the rest of the image contents. This can

make the problem easier and speed up the registration provided these features can be

reliably detected automatically. This is rarely the case in medical imaging because

great precision and consistency is required; in the remainder of this article we focus on

intensity-based methods.
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Figure 2.1: Image registration general overview.

The optimization procedure is the component responsible for finding an appropriate

transformation to carry out the registration. A transformation is specified by a series of

parameters (e.g. a translation vector and a rotation angle), which turns the registration

into a continuous optimization problem. Classic numerical optimization algorithms such

as gradient descent, Newton’s method, Powell’s method and discrete optimization [50,

51] are among the most common choices for the optimization component, as well as

approaches based on EAs and other metaheuristics [52].

There are cases in which image registration is used as a preliminary step in a

segmentation process. An example of segmentation through registration is the atlas-

based segmentation, where the availability of an atlas in which the target region has

been already labeled is required (i.e., a typical or average image of the anatomical region

to be segmented). The atlas-based segmentation process [53] begins by registering

the atlas to the input image. Then, the region of the target image that overlaps the

labeled region in the atlas is the result of the segmentation process. Figure 2.2 shows a

slice of a brain magnetic resonance image and the corresponding deep brain structure
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segmentation obtained once the atlas is registered to the input image. The quality

of atlas-based segmentation depends closely on the accuracy of the registration step,

although the anatomical variability in the target region can limit the effectiveness of the

method.

Atlas Input image Registered image Result

Figure 2.2: An example of atlas-based segmentation [2].

2.4 Texture and Gray Level Co-Occurrence Matrix

A texture is a set of visual elements occurring in some regular or repeated pattern. First

order texture measures are statistics calculated from the original image values, like

variance, and do not consider pixel neighbour relationships. Second order measures

consider the relationship between groups of two (usually neighbouring) pixels in the

original image. Third and higher order textures (considering the relationships among

three or more pixels) are theoretically possible but not commonly implemented due to

their calculation time and difficult interpretation.

Gray Level Co-Occurrence Matrix (GLCM), also called Gray Tone Spatial Depen-

dency Matrix, was introduced by Haralick [54] in 1973, and considers the relation

between two pixels at a time, called the reference and the neighbour pixel. It is a

feature-based method that characterizes a texture as a homogeneous distribution of

feature values. A co-occurrence matrix describes how often a gray level appears in a

specified spatial relationship to another gray level. The entry at (i, j) of the GLCM

indicates the number of occurrences of the pair of gray levels i and j which are a

distance d apart along a given direction θ. The values of d (offset) and θ (direction) are

parameters for constructing the GLCM (starting in the upper left corner). A different
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co-occurrence matrix exists for each spatial relationship. For instance, if the neighbour

pixel is the one to the east (right) of each reference pixel, this can also be expressed as

a (1,0) relation: 1 pixel in the x direction, 0 pixels in the y direction. Another example:

the (1,1) spatial relationship is equivalent to 1 pixel in the x direction and 1 pixel in the

y direction or, in other words, θ = 315◦ and d=1 pixel.

A practical example of the GLCM calculation can be found in http://www.fp.

ucalgary.ca/mhallbey/the_glcm.htm. Let consider the following matrix

representing an image gray levels:

0 0 1 1

0 0 1 1

0 2 2 2

2 2 3 3

If we use the (1,0) spatial relationship the GLCM would be as follows:

2 2 1 0

0 2 0 0

0 0 3 1

0 0 0 1

Therefore, twice the reference pixel and its eastern neighbour are both 0 in the input

image. Also, twice the reference pixel is 0 and its eastern neighbour is 1, and three

times the reference pixel is 2 and its neighbour is also 2. With this example, one can

easily understand the computational burden of this approach. The input image of the

previous example had four gray level values (0, 1, 2 and 3), but using eight bit data (256

possible values) it would yield a 256 × 256 square matrix, with 65,536 cells.

The GLCM is not the only texture measure that has been proposed, but it is the

most commonly implemented one. Instead of, or in addition to, this approach, we could

employ Laws texture energy measures or Wavelet texture analysis.

http://www.fp.ucalgary.ca/mhallbey/the_glcm.htm
http://www.fp.ucalgary.ca/mhallbey/the_glcm.htm
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2.5 Soft Computing

As complexity rises, precise statements lose meaning

and meaningful statements lose precision

Lofti Zadeh

Opposite to traditional computing methods (hard computing), soft computing /

computational intelligence (SC) [55] techniques are not based on closed-form solutions

(e.g., a formula which solves a specific equation), but mostly on search/optimization

procedures (heuristics) and other approximate techniques which are able to solve prob-

lems also in the presence of qualitative, uncertain, imprecise or incomplete data. Such

techniques try to emulate humans’ ability when dealing with uncertainty, learning from

examples, generalizing knowledge, improving their performances based on experience,

cooperating to perform difficult tasks, or evolving (where evolution is considered as

a natural/stochastic process driven by “results”, and a conscious process driven by

experience or intelligence). Since Lotfi Zadeh coined the term “Soft Computing” in

1991, this technological area has developed rapidly both in its theoretical aspects and

in its business applications. These methods applied to real-world problems offer more

robust, tractable and less costly solutions than those obtained by more conventional

mathematical techniques.

The main constituents of SC are fuzzy logic, neural networks, evolutionary comput-

ing and probabilistic reasoning:

• Evolutionary Computation (EC) include a number of computational models

that reproduce natural evolution processes to optimize a goal which is generally

represented as a function: Evolutionary Algorithms (EAs) [56] and Swarm
Intelligence (SI) [57, 58]. The name of Evolutionary Computation comes from

the use of Darwinian-like evolutionary processes to solve difficult computational

problems, while SI is the discipline that deals with natural and artificial systems

composed of many individuals that coordinate using decentralized control and

self-organization. In fact, it comprises any attempt to design algorithms or
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distributed problem-solving devices inspired by the collective behavior of social

insect colonies and other animal societies.

• Artificial Neural Networks (ANN) [59–61] simulate a real nervous system

formed by a set of neural units coupled by means of synaptic connections. There-

fore, ANN is a mathematical/computational model inspired by the structure and

functional aspects of biological neural networks, mainly used in classification

and regression problems.

• Fuzzy Systems (FS) [62, 63] are interpretable models defined in natural language

and mainly focused on regression, classification and data mining. Fuzzy systems,

including fuzzy logic and fuzzy set theory, provide a rich and meaningful contin-

uous extension to standard binary logic, facilitating the opportunity for modeling

conditions which are inherently imprecisely or qualitatively defined.

• Probabilistic Reasoning (PBR) [64, 65] deals with knowledge representation

and reasoning and encompasses belief networks and parts of learning theory. A be-

lief network or Bayesian network is a directed acyclic graph with nodes including

probability information that represents the dependence between variables.

It is necessary to properly contextualize the term SC with other related words as

Artificial Life (AL), Artificial Intelligence (AI) and Machine Learning (ML). On the

one hand, SC is an area of AI2 research focused on the design of intelligent systems

to process uncertain, imprecise and incomplete information. On the other hand, AL
3 “investigates the scientific, engineering, philosophical and social aspects of our

technological ability of synthesizing behaviors similar to life, starting from scratch,

in computers, machines, molecules or other alternative means” [66]. Thus, from this
2See Table 2.1 for a broad outlook of AI [9]
3The first international conference on this field took place in Santa Fe, New Mexico, in 1987.

Chris Langton, organizer of such an event, coined the following famous definition: “AL is the study
of man-made systems that exhibit behaviors characteristic of natural living systems. It complements
the traditional biological sciences concerned with the analysis of living organisms by attempting to
synthesize life-like behaviors within computers and other artificial media. By extending the empirical
foundation upon which biology is based beyond the carbon-chain life that has evolved on Earth, Artificial
Life can contribute to theoretical biology by locating life-as-we-know-it within the larger picture of
life-as-it-could-be.”
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viewpoint, biologically inspired computing approaches like ANN, EC, cellular automata

and autonomous robotics would directly belong to this field of knowledge. Finally,

ML [67, 68] allows computers to learn, i.e. to gradually optimize their performance,

using example data or past experience, and Pattern Recognition (PR) is a branch of AI

devoted to the study of ANN, kernel methods, bayesian networks, gaussian mixture

models, continuous latent variables and Markov Models, among others, for solving

regression, classification and clustering problems.

Table 2.1: Definitions of AI organized according to four categories [9].

Systems that think like humans
“The exciting new effort to make computers think...

machines with minds, in the full and literal sense” [69]
“The automation of activities that we associate with human thinking,
activities such as decision-making, problem solving, learning ...” [70]

Systems that think rationally
“The study of mental faculties through
the use of computational models” [71]

“The study of the computations that make
it possible to perceive, reason, and act” [72]

Systems that act like humans
“The art of creating machines that perform functions

that require intelligence when performed by people” [73]
“The study of how to make computers do things
at which, at the moment, people are better” [74]

Systems that act rationally
“A field of study that seeks to explain and emulate intelligent behavior

in terms of computational processes” [75]
“The branch of computer science that is concerned with

the automation of intelligent behavior” [76]
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Metaheuristics

Any organized scheme to try to compose

an accurate model of human life

should contain some degree of anarchy.

Bertrand Russell, Sceptical Essays, 1928

As mentioned in previous sections, the segmentation task can be turned into an

optimization problem, in which some kind of energy functional needs to be mini-

mized/maximized, and solved by means of search/optimization methods. Following

[77], these optimization techniques can be broadly classified as calculus-based, enu-

merative, and guided stochastic search. While the calculus-based methods assume the

existence of derivatives, and are local in scope, restricting severely their application, the

enumerative techniques fail when the size of the search space is large, as in medical IS.

Guided stochastic search techniques are based on enumerative methods, but use addi-

tional information about the search space. These can be further divided into single-point

search (like Simulated Annealing) and multiple-point search (like population-based

algorithms), depending on whether they search considering just one point or several

points at a time. Another taxonomy for optimization algorithms can take into account

the direct or indirect nature of the solution search, depending on the use of derivatives.

According to this criterion, EAs would be located in the first class (direct methods),

while gradient methods (first order optimization algorithms) and the Newton method

(second order optimization algorithms) would be located in the second one.

The gradient descent and many other classic optimization techniques (like Newton’s

method, Levenberg-Marquardt algorithm or Nelder-Mead method) are effective when

the problems under consideration satisfy tight constraints (differentiable, continuous,

well-defined and convex functions). But when the search space is discontinuous, noisy,

high dimensional, non-convex and multimodal, then stochastic algorithms have been

found to consistently outperform traditional methods [78, 79]. Among the stochas-

tic approaches to continuous optimization, EAs and SI algorithms, as well as other

metaheuristics (MHs) [80], offer a number of attractive features: no requirement for a
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differentiable or continuous objective function, robust and reliable performance, global

search capability, virtually no need of specific information about the problem to solve,

easy implementation, and implicit parallelism. In particular, these techniques can

achieve very good results in continuous optimization problems, achieving a trade-off

between global exploration (to localize promising regions) and exploitation of the

located regions (using previously found solutions to obtain more accurate results).

MHs are approximate algorithms, in the sense that they do not guarantee to find the

optimal solution but a good approximation in reasonable time. They are not problem-

specific (permitting an abstract level of description) and usually non-deterministic algo-

rithms. The main objective of these optimization/learning procedures is to effectively

explore the search space, achieving a trade-off between intensification (exploitation of

the accumulated search experience) and diversification (global exploration of the search

space).

In this work, MHs are going to be organized according to the following taxonomy:

• Trajectory methods. The search process is characterized by a trajectory in the

search space, and can be seen as the evolution in (discrete) time of a discrete dy-

namical system. Examples of this category could be Tabu Search [81], Simulated

Annealing [82], Iterated Local Search [83] or Variable Neighborhood Search

[84].

• Population-based methods. These techniques deal in every iteration of the algo-

rithm with a set – a population – of solutions. In this case, the search process

can be seen as the evolution in (discrete) time of a set of points in the search

space. Paradigmatic cases in this regard are Evolutionary Algorithms [56], Swarm

Intelligence techniques [85], and Memetic Algorithms [86].

The most commonly used MHs in combination with computer vision techniques

in medical imaging problems are described in the next subsections. By far, the most

used metaheuristics in registration and segmentation are Genetic Algorithms, Particle

Swarm Optimization, Simulated Annealing, Differential Evolution, and Scatter Search.

Other approaches, even if not very often present in medical imaging literature, like
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Evolutionary Programming and Genetic Programming, are briefly introduced here for

historical reasons, in order to give a short overview of the field.

Genetic Algorithms

Genetic Algorithms (GAs) are stochastic, parallel search algorithms based on the

mechanics of natural selection [87–90]. GAs were designed to efficiently search

large, non-linear, poorly-understood search spaces where expert knowledge is scarce or

difficult to encode and where traditional optimization techniques fail. They are flexible,

robust, and try to exhibit the adaptiveness of biological systems.

These algorithms encode a potential solution to a specific problem into a chromosome-

like data structure and apply recombination operators to preserve critical information.

The main features of a GA are the encoding of individuals as strings of symbols, the in-

dividuals selection policy, and the use of both the mutation and recombination operators.

The basic working of a GA is shown in Algorithm 1.

Algorithm 1 Genetic Algorithm Pseudocode
Generate a random population of chromosomes
while stopping criterion is not met do

Decode each chromosome into an individual
Evaluate each individual’s fitness
Generate a new population, partly by cloning (copying), partly by recombining,
partly by mutating the chromosomes of some selected individuals (based on their
fitness)

end while

GAs process a population of solutions by three operations: selection, crossover

and mutation. In the initial formulation, the solutions were binary encoded; however,

other encoding types have been taken into account for the representation. In particular,

real encoding seems particularly natural when optimizing parameters in continuous

domains. In that case, a chromosome is a vector of real numbers, each of which is one

of the parameters to be optimized. GAs based on real-number representations are called

real-coded GAs (RCGAs).
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There is a compelling evidence indicating that classic discrete crossover operators

(DCOs), i.e., all the crossover operators used for binary encoding which are directly ap-

plicable to real coding (like the simple, two-point and uniform crossover operators), are

ineffective for RCGAs [91, 92]. Since the crossover operators that exploit the numerical

nature of the real coding (aggregation-based operators, like arithmetic or geometric, and

neighborhood-based crossover operators, like BLX-α or SBX) consistently outperform

the classic DCOs, these kinds of operators are strongly recommended.

Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a bio-inspired optimization algorithm introduced

by Kennedy and Eberhart [93]. It is based on the simulation of the social behaviour

of bird flocks, so it is clearly located within the SI techniques. In the last fifteen years

PSO has been applied to a very large variety of problems [94] and many variants of the

original algorithm have been proposed [95].

During the execution of PSO a set of particles moves within the function domain

searching for the optimum of the function (best fitness value). The motion of the

ith particle can be described by the following two simple difference equations which

regulate the particle’s position and velocity:

Pi(t) = Pi(t− 1) + vi(t)

vi(t) = w · vi(t− 1)

+ c1 · rand() · (BPi − Pi(t− 1))

+ c2 · rand() · (BGP − Pi(t− 1))

where Pi(t) and vi(t) are the position and velocity of the particle in the present

iteration, c1, c2 and w (inertia factor) are positive constants, rand() returns random

values uniformly distributed in [0, 1], andBPi is the best-fitness position visited so far by

the particle. In the basic algorithm (global-best PSO), BGP is the best-fitness position

visited so far by any particle of the swarm. However, there is a set of variants, termed
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local-best PSO, where the swarm is subdivided into particle neighborhoods which can

assume different topologies. In that case, BGP becomes BGPi and represents the

best-fitness position visited so far by any particle in the ith particle’s neighborhood.

The PSO variant used in this PhD presents two main features that differentiate it

from the original one. The first has been suggested by Liu et al [96]. Instead of using a

static inertia factor w, they adapt its value to the fitness function of each particle. In

particular, if the objective is to minimize the fitness value, the so-called adaptive inertia

weight factor (AIWF) is determined as follows:

w =

{
wmin + (wmax−wmin)·(f−fmin)

favg−fmin if f ≤ favg

wmax if f > favg

where wmax and wmin denote the maximum and minimum possible values of w,

f is the current fitness of the particle, favg and fmin are the average and minimum

fitnesses of all particles of the swarm, respectively. This way, w varies depending on a

particle’s fitness so that good particles tend to perform exploitation to refine results by

local search, while bad particles tend to further explore the search space.

The second change with respect to the original algorithm is the re-initialization of a

particle in case of stagnation. When a particle can not improve its best position in a

preset number of iterations, it moves to a random direction with very high velocity:

vn(t) = k · randn()

Pn(t) = Pn(t− 1) + vn(t)

where k > 1 is a constant and randn() returns random values from a Gaussian

distribution. This way, the search performed by PSO privileges exploration of the search

space to reduce the probability of falling into a local optimum.
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Differential Evolution

Differential Evolution (DE), first introduced by Storn and Price [97], has recently been

shown to be one of the most successful EAs for global continuous optimization [98].

Unlike traditional EAs, DE perturbs current generation individuals by the scaled dif-

ferences of other randomly selected and distinct individuals. Therefore, no separate

probability distribution has to be used for generating the offspring [99].

In DE, new individuals that will be part of the next generation are created by

combining individuals that are already members of the current population. Each

individual acts as a parent vector, for which a new solution, called donor vector, is

created. In the basic version of DE, the donor vector for the ith parent (Xi) is generated

by combining three random and distinct elements Xr1, Xr2 and Xr3. The donor vector

Vi is calculated as follows:

Vi = Xr1 + F · (Xr2 −Xr3)

where F (scale factor) is a parameter that strongly influences DE’s performances

and typically lies in the interval [0.4, 1]. Recently, several mutation strategies have

been applied to DE, experimenting with different base vectors and different numbers of

vectors for perturbations. For example, the original method explained above is called

DE/rand/1, which means that the first element of the donor vector equation Xr1 is

randomly chosen and only one difference vector (in this case Xr2 −Xr3) is added. See

Table 2.2 for a listing of some classic mutation methods.

After mutation, every parent-donor pair generates a child (called trial vector) by

means of a crossover operation. Two kinds of crossover are typically used: binomial

(also termed uniform) and exponential. The crossover is applied with a certain prob-

ability, defined by a parameter Cr (crossover rate) that, like F , is one of the control

parameters of DE. Then, the trial vector is evaluated and its fitness is compared to its

parent’s: the best survives and will be part of the next generation.

DE shares some features with SI techniques, mainly in the interaction among par-



Chapter 2. Theoretical Background 40

Table 2.2: Mutation methods in DE.

Name Donor Vector

DE/best/1 Vi = Xbest + F · (Xr1 −Xr2)

DE/target-to-best/1 Vi = Xi + F · (Xbest −Xi) + F · (Xr1 −Xr2)

DE/best/2 Vi = Xbest + F · (Xr1 −Xr2) + F · (Xr3 −Xr4)

DE/rand/2 Vi = Xr1 + F · (Xr2 −Xr3) + F · (Xr4 −Xr5)

DE/rand-to-best/2 Vi = Xr1 + F · (Xbest −Xi) + F · (Xr2 −Xr3) + F · (Xr4 −Xr5)

ticles and in the selection scheme. In particular, both DE and PSO are stochastic,

population based, real-valued algorithms, and designed for challenging continuous opti-

mization problems (non-differentiable, nonlinear and/or multimodal functions) using

few control parameters. DE can also be considered as an EA, but differs from traditional

EAs in the aspect of generating new vectors by adding the weighted difference vector

between two population members to a third member.

Memetic Algorithms

Memetic Algorithms (MAs) [86, 100] are hybrid global-local search methods in which

a local improvement procedure is incorporated to a traditional EA. MAs are also known

as Hybrid GAs, Lamarckian learning GAs, and Baldwinian learning GAs. The idea

is to imitate the effect of learning and social interaction during the life span of an

individual by some kind of (local) improvement mechanisms (memes [101]) applied to

the offspring created by the usual operators of an EA.

Regarding design issues, the frequency and intensity of individual learning directly

define the degree of evolution (exploration) against individual learning (exploitation) in

the MA search. Furthermore, when only a portion of the population undergo learning,

the issue of choosing which subset of individuals to improve need to be considered

to maximize the utility of MA optimization. Finally, the individual learning proce-

dure/meme used also favors a different neighborhood structure, hence there is the need

to decide which meme or memes should be used for the optimization problem at hand.
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Scatter Search

Scatter Search (SS) [102] is a MA based on a systematic combination (instead of

randomized, as is usual in EAs) between solutions taken from a subset of the population,

named the “reference set”, that is usually significantly smaller than a typical EA

population. SS is composed of five structural “blocks” or methods:

1. Diversification Generation: a population of solutions P is built with a certain

degree of quality and diversity. The reference set R is then drawn from P , and is

composed of the |R1| solutions with best fitness, and the |R2| solutions from P

(hence, |R| = |R1| +|R2|) that are farthest, based on a particular metric (usually

the Euclidean distance), from the reference set; the evolution process acts only

on R;

2. Solution Combination: in most problems a specific solution combination method

is needed, which can be applied to all solutions or only to selected ones (e.g.,

the best solutions, and/or randomly selected ones). In many cases an existing

crossover operator, borrowed from other EAs, can be employed;

3. Subset Generation: the procedure deterministically generates subsets of R, to

which the combination method is applied.

4. Improvement: to obtain high-quality solutions, an improvement method (typically

a local search method) is applied to the original solutions and/or to combined

solutions;

5. Reference Set Update: once a new solution is obtained (applying the combination

method) it replaces the worst solution in R only if it improves the quality of the

reference set in terms of fitness and/or diversity;

As improvement method in a MA, several well-known continuous local search

methods, like Solis&Wets [103] or Nelder&Mead’s simplex [104], have been commonly

used [105–108]. For instance, Solis&Wets local search method is a randomized hill-

climber with adaptive step size. Each step starts at a point x. A perturbation p is
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randomly chosen from a Gaussian distribution with standard deviation ρ. If either x+ p

or x− p has a better fitness than x, a move to the best point is performed and a success

is recorded, otherwise the position does not change and a failure is recorded. After N+

consecutive successes ρ is increased, for getting faster to the local optima, while after

N− failures in a row, ρ is consequently decreased.

Simulated Annealing

Simulated Annealing [82] (SA) tries to mimic the physical annealing process, where a

material is heated and slowly cooled into a uniform structure. SA may even perform

bad moves (i.e. changes which leads to worse fitness) accordingly to a probability

distribution dependent on the temperature of the system: a move is selected at random

and, then, as the temperature decreases, the probability of accepting a bad move

decreases (when temperature is zero, no bad moves are accepted, i.e. it behaves like

hill climbing). The main building blocks of the algorithm are three: the candidate

solution generation method (sometimes referred to as the neighborhood function), the

acceptance probability function mentioned earlier, and the cooling schedule.

Evolution Strategies

Evolution strategies (ES) [109–111] are typically applied to continuous optimization

problems, where an individual is a vector of real-valued parameters, mutation is nor-

mally performed by adding a normally distributed random value to each vector compo-

nent, and the selection is deterministic. The replacement strategies are called (µ, λ) and

(µ+ λ), being µ the parents and λ the children created using the evolutionary operators.

The survivor selection procedure of the former is based on the set of children, while the

latter uses the set of parents and children (elitism). The simplest version ((1 + 1)-ES)

operates on a population of size two: the current point (parent) and the result of its

mutation. Only if the mutant’s fitness is at least as good as its parents’, it becomes the

parent of the next generation. The main particularity of ES lies in the self-adaptation of

the standard deviation of the Gaussian distribution used in the mutation [112].
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Evolutionary Programming

Traditional Evolutionary Programming (EP) [113] was concerned with evolving finite

state automata for machine learning tasks. Representation and operators were special-

ized for this application area. Each parent gave birth, by mutation, only to one offspring,

and a replacement strategy was used to remove half of the individuals. Contemporary

EP [114] has evolved to use any representation and different evolution engines, and

nowadays differs from ES by using a stochastic form of replacement strategy, while it

also uses self-adaptation of Gaussian mutation in the case of real-valued genotypes.

There has long been a strong debate about the usefulness of crossover. The GA

community considers crossover to be the essential variation operator, while mutation is

only a background necessity. On the other hand, the historical ES and EP researchers

did not use any crossover at all, and even claimed later that it could be harmful. The

general agreement nowadays is that the answer is problem-dependent: If there exists a

“semantically meaningful” crossover for the problem at hand, it is probably a good idea

to use it. But otherwise mutation alone might be sufficient to find good solutions— and

the resulting algorithm can still be called an EA [115].

Genetic Programming

Genetic Programming (GP) is the youngest technique within this family of methods

[116, 117], and has a specific application area in machine learning and modeling tasks.

Parse-trees of formal expressions describing a model or a procedure is its natural

representation. Crossover and mutation operators are adapted so that they work on trees

(with varying sizes). The evolution engine is ”inherited” from GAs (GP has long been

seen as GA with a tree-based representation). On the other hand, syntactic expressions

– for instance LISP – can be viewed as programs, which makes GP the branch of EC

concerned with the automatic evolution of programs.
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Classification problems

Learning denotes changes in the system that are adaptive

in the sense that they enable the system to do the task or tasks

drawn from the same population more effectively the next time.

Herbert Simon

As explained in section 2.5, ML is concerned with the development of algorithms

and techniques that allow computers to learn. Learning is used when human expertise

does not exist (navigation on Mars), humans are unable to explain their expertise

(speech recognition), solution changes in time (routing on a computer network, junk

email), solution needs to be adapted to particular cases (user biometrics), humans are

expensive to train (zipcode recognition), or the problem size is too vast for our limited

reasoning capabilities (calculating webpage ranks, discovering astronomical objects).

The main idea is to learn general models from particular examples of data, trying to

build good and useful approximation to the data.

We can distinguish three main different kinds of problems in the ML framework:

supervised learning (regression and classification) and unsupervised learning (cluster-

ing). In supervised learning, a “teacher” presents inputs and desired outputs to the

system and, after a training process, the machine is theoretically able to generalize its

knowledge and classify/identify novel sets of data. In contrast, with unsupervised ML,

the system learns to properly execute a function on its own, through reinforcement

and/or automatically detecting patterns and regularities in the input data.

• Regression is related to predicting unknown or missing values. In other words, to

find a function that fits the input patterns.

• Clustering methods try to group the input data into classes before knowing a

priori the existence of any class. Therefore, clustering is a mathematical tool that

attempts to discover structures or certain patterns in a data set, where the objects

inside each cluster show a certain degree of similarity.
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• Finally, a classification algorithm tries to find the class to which a new instance

belongs to. The problem can be mathematically defined as a mapping f : P → C,

where P = {p1, p2, . . . pn} represents the input patterns to be classified and

C = {c1, c2, . . . cm} is the set of classes. After a training process, in which

patterns and regularities in the data have been detected, the model created by

training is tested using samples which were not included in the training set. Some

of the most commonly used classification methods (classifiers) are ANN, support

vector machines (SVM), and decision trees (DTrs).

Ensemble Classifiers

In statistics and ML, Ensemble Classifiers (ECL) apply multiple classifiers in order to

obtain better predictive performance than could be obtained from any of the constituent

models [118–120]. An ensemble consists of a set of individually trained classifiers, such

an ANN or DTrs, whose predictions are combined when classifying novel instances.

Thus, the basic idea is to learn a set of classifiers (experts) and to allow them to vote.

The main advantage is the improvement obtained in predictive accuracy, while the

principal disadvantage is the difficulty of perfectly understanding its working and a

higher computational load.

Essentially, there are four methods for constructing an ECL. All of them are based

on manipulating one of the following aspects:

• Training set. Multiple training sets are created by resampling the data according

to some sampling distribution. The sampling distribution determines how likely

an example is to be selected for training. Then, a classifier is built from each

training set using a learning algorithm.

• Input features. A subset of the input features is chosen to form each training set:

such subset can be chosen randomly or based on inputs given by domain experts.

This approach is really interesting for data that has redundant features.

• Class labels. When the number of classes is sufficiently large, training data
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is transformed into a binary class problem by randomly partitioning the class

labels into 2 disjoint subsets. Later, re-labelled examples are used to train a base

classifier and, by repeating the class labeling and model building steps several

times, an ensemble of base classifiers is obtained.

• Learning algorithms. Learning algorithms can be manipulated in such a way

that applying the algorithm several times on the same training data may result

in different models. Example: ANN can produce different models by changing

network topology or the initial weights of links between neurons.

Two of the most succesful ECLs are Boosting (each classifier works on the incor-

rectly classified instances of the previous one) and Bagging (each classifier is built

using a randomly drawn sample of the data). In particular, a Random Forest (RF) [121]

is an ECL that consists of a bagging of DTrs (usually CART [122]) with a randomized

selection of features at each split: a first randomization through bagging, and a second

randomization through predictor subsets; i.e. in addition to constructing each tree using

a different bootstrap sample of the data, in RF each node is split using the best among

a subset of predictors randomly chosen at that node. This strategy has been shown to

perform very well compared to many other classifiers: RF produces a highly accurate

classifier, it is able to handle a very large number of input variables, and is robust against

overfitting.
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Datasets

In this chapter, we describe the datasets and medical image modalities used in our

experiments, as well as we provide a short and general overview about the most

common medical imaging modalities.

3.1 Medical Imaging

Medical Imaging (MI) is the production of visual representations of microscopic bio-

logical entities and body parts, tissues, or organs, for use in clinical diagnosis (medical

procedures seeking to reveal, diagnose, or examine diseases) or medical/biological sci-

ence (including the study of normal anatomy and physiology); it encompasses computed

tomography (CT), magnetic resonance imaging (MRI), positron-emission tomography

(PET), single-photon-emission (SPECT), microscopy and ultrasound (US) imaging,

among others. MI refers to a number of techniques that can be used as non-invasive

methods, thus the body does not have to be surgically operated by medical practition-

ers to examine various organs and areas. According to the New England Journal of

Medicine, MI is one of the top developments that “changed the face of clinical medicine”

during the last millennium.

In Figure 3.1, a general overview of MI modalities can be seen. The figure shows a

47
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Figure 3.1: Major medical imaging modalities. Figure originally developed by Miguel
Ángel Peinado Montes (Service of Medical Physics and Radiation Protection, Central
Universitary Hospital of Asturias). From left to right: X-ray (RX), Fluoroscopy (Fluoro),
Molecular Imaging (MI), US, CT and MRI.

comparative table with the characteristics of every modality. The next sections will be

devoted to a brief explanation of the three image modalities used in the experiments.
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MI is a research field closely related to other scientific and technological disciplines

like:

• eHealth. A relatively recent term for healthcare practice supported by electronic

processes and communication [183].

• Health/Medical/Biomedical informatics. A discipline at the intersection of infor-

mation science, computer science, and health care, dealing with the resources,

devices, and methods required to optimize the acquisition, storage, retrieval, and

use of information in health and biomedicine.

• Computational biology. It involves the development and application of data-

analytical and theoretical methods, mathematical modeling and computational

simulation techniques to the study of biological, behavioral, and social systems.

• Bioinformatics. An interdisciplinary field that develops and improves upon

methods for storing, retrieving, organizing and analyzing biological data. The

primary goal of bioinformatics is to increase the understanding of biological

processes by means of computer science and information technology.

3.2 Microscopy Images

Microscopy imaging techniques are employed by scientists and researchers to improve

their possibilities to study the microscopic world. Indeed, advances in microscopy

enable visualization of a broad range of biological processes and features in cell

structure. An example of a publicly available database containing microscopy images

is the Allen Brain Atlas (ABA), a huge database that contains high-resolution images

mapping the expression patterns of most genes that are present in the genomes of the

analyzed organisms 1. The first release of the ABA was focused on mouse, and contained

the expression patterns of about 20,000 genes obtained by In Situ Hybridization (ISH)
1Gene expression is the process by which information from a gene is used in the synthesis of a

functional gene product (usually proteins). In non-protein coding genes such as ribosomal RNA (rRNA),
transfer RNA (tRNA) or small nuclear RNA (snRNA) genes, the product is a functional RNA.
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of mouse brain sections [184]. In a more recent release, a similar resource based on

spatially mapped microarray data has also been provided for the human brain [185].

There is wide availability of brain images containing morphological and functional

information on the hippocampus in different organisms. Thus, it has become extremely

important to design image analysis methods that accurately, robustly, and reproducibly

identify the hippocampus region, to automatize any relevant analytic procedure. In the

ABA, for each gene under consideration, several images are provided, corresponding to

different sections of the brain. Each image is labelled according to the corresponding

images of a reference atlas comprising 132 coronal and 21 sagittal sections spaced at

100 µm and 200 µm intervals, respectively.

In order to understand how gene-expression images are obtained, it is fundamental

to know that ISH is a technique that allows for precise localization of a specific segment

of nucleic acid within a histologic section. The underlying basis of ISH [186] is

that nucleic acids, if preserved adequately, can be detected through the application

of a complementary strand of nucleic acid to which a reporter molecule is attached2.

Visualization of the reporter molecule allows to localize DNA or RNA sequences in

heterogeneous cell populations (like tissue samples). ISH is a powerful technique for

localizing specific nucleic acid targets within fixed tissues and cells, allowing one to

obtain temporal and spatial information about gene expression.

Completing the ABA required imaging more than 1 million individual brain sections

at cellular resolution labeled via colorimetric ISH (cISH) or Nissl staining at a resolution

sufficient to visualize individual cells. To perform such a task, a high-throughput, fully

scalable, automated microscopy platform capable of imaging more than 3000 brain

sections daily was developed. This system runs 24 h per day and 7 days per week

with minimal operator supervision. The platform comprises a barcode scanner, a fully-

automated microscope, stage, slide loader, digital camera, and custom software for

managing the microscopy process. When operating at full capacity, the imaging system

generates approximately one terabyte of uncompressed image data daily. Image data

2A reporter molecule is a molecule, whose presence is readily detected (for example, a fluorescent
molecule), that is attached to a DNA sequence we wish to monitor.
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Figure 3.2: A screenshot image from the Brain Explorer application [7].

from the platform are freely available online as part of the ABA [7]. In Figure 3.2, a

screenshot image from the Brain Explorer application, that can be used to display ABA

data in three dimensions, is displayed. This shot shows the orientation of sagittal and

coronal slices through the brain. Brain Explorer may be downloaded for free from the

ABA Web site at http://www.brain-map.org.

The key features of the Allen Mouse Brain Atlas are: open, public online access;

image-based data comprising genome-wide coverage; comprehensive anatomic cov-

erage of the adult mouse brain; microscopic resolution down to the cellular level (see

Figure 3.3); sophisticated data search and viewing tools; interactive Brain Explorer 3-D

viewer (see Figure 3.2); and detailed anatomic reference atlas of the adult mouse brain

that can be viewed with the data. From now on, since the microscopy images used in

this research represent tissues, the terms ‘microscopy images’ and ‘histological images’

will be equally used.

http://www.brain-map.org
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Figure 3.3: Examples of sagittal slices from the Allen Mouse Brain Atlas.

3.3 Computed Tomography Images

X-ray CT is a medical imaging technique in which a three-dimensional image of a

body structure, created using X-rays, is constructed by computer from a series of plane

cross-sectional images acquired along an axis. These cross-sectional images are used

for diagnostic and therapeutic purposes in various medical disciplines. In fact, CT has

proven to be a valuable tool for medical diagnostic and, in 1979, the Nobel Prize in

Medicine was awarded to the inventors: Allan M. Cormack and Godfrey N. Hounsfield.

CT is based on the equation that quantifies the attenuation of the radiation beam

passing through a given material (fat, muscle, water, bone, ...), called Beer-Lambert law

[8, 187]:

Ix = I0 · e−µx

where Ix is the intensity value of the radiation X after passing an object of thickness

x (number of emergent photons), I0 is the intentisty value of the radiation incident

on the same surface (number of incident photons), and µ is the linear attenuation

coefficient, whose value depends on the atomic number, the density of the material

and the wavelength of the incident radiation beam. In optics, the Beer-Lambert law

relates the absorption of light to the properties of the material through which the light

is travelling, stating that there is a logarithmic dependence between the transmission
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of light through a substance, the substance absorption coefficient, and the distance the

light travels through the material.

Both CT and conventional X-rays take pictures of internal body structures. In

conventional X-rays, the structures overlap: they are often obscured by other organs or

bones, making diagnosis difficult. In a CT image, a full 3D dataset is acquired which

can be processed to show any structure within it. During CT imaging, an X-ray tube

rotates around the patient so that multiple images are collected from many angles and,

integrating over all the different views, it is possible to compute the density of any voxel

within the 3D structure to be analyzed (Radon transform3).

Figure 3.4 shows a radiation beam passing through a region with different densities,

and another radiation beam passing through a region with uniform density. Although

the total attenuation is similar in both cases, the attenuation profile through the thickness

is different. In this case, a conventional radiography only offers the average µ value

of the path traversed by the X-ray beam. However, CT gives the average attenuation

of each one of the voxels of the body structure, i.e. it provides the different µ values

(µ1A, µ2A, µ3A, and µ4A). Having said that, it is not possible to have all this information

using a single beam, but it is necessary to apply different beams to each voxel from

different angles (projections).

The experiments performed with CT in this PhD dissertation are described in Section

7, and include the 10 CT images (representing lungs and knee) used in [134].

3.4 Magnetic Resonance Images

Magnetic Resonance Imaging (MRI) is an imaging modality which uses external

magnetic fields and non-ionizing radiation to provide cross-sectional images from the

human body (therefore, with no exposure to harmful radiation). The main principle on
3The Radon transform is widely applicable to tomography: the creation of an image from the

scattering data associated with cross-sectional scans of an object. If a function f represents an unknown
density, then the Radon transform represents the scattering data obtained as the output of a tomographic
scan. Hence the inverse of the Radon transform can be used to reconstruct the original density from the
scattering data.
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Figure 3.4: Similar total attenuation in two different situations. At the top, a beam
passes through an area with different densities while, below, it passes through an area
with uniform density. CT is able to discriminate between one case and the other, while
X-rays are not. Example taken from [8].

Figure 3.5: Examples of CT images: knee (left) and lung (right)
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which MRI is based was published by Felix Bloch and Edward Mills Purcell in 1946:

they demostrated that certain nuclei, subjected to the action of an intense magnetic field,

are able to absorb energy from radio frequency (RF) waves and emit, in turn, RF signals

that can be received by an antenna. Thanks to this discovery, they received the Nobel

Prize in Physics in 1952. The first experiences applying MR to the biomedical science

took place in the 1950’s, and the first MR machine was created and patented in 1972 by

Raymond Damadian. In the 1970’s, Paul Lauterbur and Peter Mansfield studied how

to generate pictures from MR scans and how such a scan can be done. In 2003, both

researchers obtained the Nobel Prize in Physiology and Medicine “for their discoveries

concerning magnetic resonance imaging”.

MR is based on the interaction of magnetic fields and RF waves with the physical

matter. The physics fundamentals of this technique are summarized in Figure 3.6.

Essentially, an MRI scanner is a device in which the patient lies inside a large magnet

where the magnetic field is used to align the magnetization of some atomic nuclei in the

body; RF waves are applied to systematically alter the alignment of this magnetization,

and the signal emitted by the patient, after the magnetic impulse ends, is received and

used to construct the image.

The basis of MRI is the behavior of the hydrogen nuclei under the influence of

magnetic fields. A hydrogen nucleus is made up of a single proton, and protons have

a spin4. Moreover, since these particles are electrically charged, when spinning, they

produce a tiny magnetic field whose direction is the axis of rotation (magnetic dipole).

Hydrogen is the base element of the MRI diagnostic techniques because it is the most

abundant one in the human body (60-90%) and, from the technical point of view, it is

the easiest atom to deal with magnetic fields. However, the principles and concepts

are applicable to any atomic nucleus that has a non-zero magnetic moment: nuclei

with odd number of nucleons (protons and/or neutrons), since, otherwise, the magnetic

moments are canceled. Thus, although the hydrogen nucleus (1H) has a significantly

higher magnetism due to the value of the gyromagnetic constant, also different nucleus

4The spin is an intrinsic form of angular momentum carried by elementary particles, composite
particles (hadrons), and atomic nuclei. The spin is the source of the MR signal: a nucleus with spin is
magnetic.
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Figure 3.6: General Overview of the MRI physics fundamentals
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Figure 3.7: Left: T1 relaxation. Recovery of signal in the Mz direction. T1 is the time
in ms for recovery of the 63% of the original M. Right: T2 relaxation. Decrease in
signal in the xy plane. T2 is the time in ms for 63% of the transverse magnetization to
be lost.

have great interest from the medical point of view (31P or 23Na).

The magnetization, that is generated when the patient is placed within a MRI ma-

chine, is oriented in the sense and direction of the external magnetic field (longitudinal

magnetization, Mz). After that, a RF pulse, equal to the right Larmor frequency5, is

applied to the anatomical area under study. Such RF pulse is “received” by the protons,

producing an energy transfer by “resonance” to the precessing protons6. During the

RF pulse, the protons are all oriented in the same direction at the same time, and their

vectors are added, resulting a vector oriented in the transverse direction (transverse

magnetization, Mxy): therefore, the RF pulse decreases the longitudinal magnetization

and establish a new transverse magnetization.

The relaxation process starts by disconnecting the RF pulse. There are two relaxation

processes, related to every magnetization, which are characteristics of each tissue: T1

(longitudinal) and T2 (transverse). T1 is the time for longitudinal magnetization to

recover the 63% of its equilibrium state. T2, instead, is the time necessary for the

transverse magnetization to be reduced by 63% of its maximum strength (see Figure

5The Larmor frequency is a specific frequency of each type of nucleus and depends on the intensity
of the external magnetic field. For instance, the Hydrogen Larmor frequency in a magnetic field of 1
Tesla is 42.58 MHz.

6The presence of the external magnetic field causes, in addition to the orientation of the moment, a
rotational movement of the protons around the field called precession movement.
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3.7). The RF signal emitted in the process of relaxation of the protons, that form each

elementary volume, is very weak. To intensify it, consecutive RF pulses separated

by pauses are used, forming a sequence that is repeated several times. The use of

appropriate parameters allows one to study the relaxation times of different tissues and,

therefore, to differentiate them (see Figure 3.8): echo time (TE) and repetition time

(TR). TE is the time that passes since the pulse is sent until the signal is received. TR

refers to the time interval between successive pulses of RF. The spin echo sequence

is made up of a series of events : 90◦ pulse - 180◦ rephasing pulse at TE/2 - signal

reading at TE. This series is repeated at each time interval TR, eliminating the constant

inhomogeneities of the magnetic field (due to the MR equipment) and allows one to

obtain the true T2 value (instead of T ∗2
7).

Basic MRI scans include T1-weighted MRI (T1WI), T2-weighted MRI (T2WI)

and T ∗2 -weighted MRI (T2∗WI). T1WI is a MRI where the contrast is predominantly

dependent on T1, and can be created by using short TE and TR times in conventional spin

echo sequences. T1WI are very anatomic, in the sense of facilitating the morphological

study of the different anatomical regions. The shorter TE, the stronger the signal

obtained from a tissue, but the difference in intensity between a tissue A and B would be

very small. However, differences in T2 curves are more pronounced with a long TE, and

therefore, the contrast between the different tissues is better (T2WI). The T2-weighted

images are more physiopathological and they further facilitate the diagnosis (see Figures

3.9 and 3.10).

In chapter 7, 17 T1-weighted brain MR images retrieved from a NMR database with

their associated manual segmentations [188] were used in the experiments.

7T2 relaxation corresponds to inhomogeneities of molecular origin that involve phase difference in
protons (spins). The sum of such inhomogeneities with the constant ones inherent to the magnetic field is
called T ∗2 .
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Figure 3.8: Different tissues in the body interact with RF energy in different ways.
For example, fat will give up the RF energy it received during the 90 degree RF pulse
very quickly (short T1 and an even shorter T2 time). Conversely, water takes longer
to give up the absorbed RF energy (relax), and therefore has longer T1 and T2 times.
This image has been taken from http://mri-2010.blogspot.it/2010/10/
october-lecture-notes-1-image-density.html

http://mri-2010.blogspot.it/2010/10/october-lecture-notes-1-image-density.html
http://mri-2010.blogspot.it/2010/10/october-lecture-notes-1-image-density.html
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Figure 3.9: T1 and T2 decay curves. The TR enhances or minimizes the difference
in signal due to differences in the T1 of tissues. The TE enhances or minimizes the
difference in signal due to differences in the T2 of tissues. Source of this figure:
http://www.revisemri.com/questions/basicphysics/

http://www.revisemri.com/questions/basicphysics/
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Figure 3.10: Examples of MR images. T1-weighted (left) and T2-weighted (right)
images of brain, cervicothoracic spine and right shoulder.



Chapter 4

Medical Image Segmentation using
Deformable Models and Soft
Computing

It is fundamental to understand that the combination of internal and external forces in a

DM determines a target function to minimize, whose minimum is theoretically located

at the boundary of the object to segment. This target function can be very complex

(noisy, highly-multimodal) and most classic algorithms fail at minimizing it [79, 123].

Hence, the global search capabilities of metaheuristics can be very beneficial to optimize

this function. Furthermore, the automatic learning of DM parameters is also possible

using these intelligent techniques [5]. In fact, automatic parameter configuration is

desirable since it is known that manual parameter tuning is a time-consuming task

and may introduce a bias in comparing an algorithm with a reference, when there is

better knowledge of the algorithm under consideration with respect to the reference or,

possibly, different time is available for tuning them.

In the literature several examples can be found which hybridize parametric DMs and

metaheuristics. In [124] and [125], snakes are combined with an optimization procedure

based on GAs. In [126] a GA evolves a population of medial-based shapes extracted

from a training set, using prior shape knowledge to produce feasible deformations while

62
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also controlling the scale and localization of these deformations. In [127] an ACM

is applied to the automatic segmentation of PET images of liver, and a GA is used

to find optimal parameters values for the edge detection step. In [128], the authors

have described a method for interactive segmentation of 3-D medical images that relies

on an edge detector and an elastic contour model for both of which the parameters

are optimized by a GA. The method uses a small set of manually traced contours of

the structure of interest and two cascaded modules: a nonlinear edge detector and an

interpolator based on an elastic contour model. PSO has also been successfully used

in conjunction with various types of DMs. Asl and Seyedin [129] apply the technique

proposed in [130] using PSO instead of a GA, obtaining similar results in terms of

precision but in shorter time. In [131], a multi-population PSO is used to drive an active

contour model, emphasizing the capability of the model to adapt to shapes with strong

concavity. With respect to standard and extended TANs, the minimization of TANs

energy to segment CT images is carried out by means of GA and memetic algorithms

[132], Differential Evolution [133] and SS [134].

In relation to geometric DMs, much fewer proposals of hybridization have been

presented. In [135] a GA is used to perform LS curve evolution using texture and shape

information to automatically segment the prostate in CT and MRI pelvic images. In [5],

a GA is used to find an optimal set of parameters that characterize the LS method in

CT and MRI segmentation. Finally, in [136], the initial segmentation based on the LS

method is refined using swarms of intelligent agents.

MRI, due to the higher percentage of medical imaging papers that deals with it, is

the modality that has most benefited from the use of MHs. This is probably because of

its resolution, greater than ultrasound and molecular imaging, good contrast, low noise

levels and its non-invasive nature, since it uses only magnetic fields and radio frequency

waves. In relation to the intelligent techniques used, there are many successful MHs that

have not been applied yet to this research field. For instance, no work has been published

using the CHC binary-coded evolutionary algorithm or Ant Colony Optimization (ACO)

when dealing with medical IS problems. In general terms, MHs have been focused on

optimizing the parameters of the DM, avoiding problems with the initialization of the
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model and local minima, and learning the system parameters automatically.

To understand the growing importance of this research field, the histogram at the top

of Figure 4.1 displays the scientific production in medical IS, by executing the Scopus

query:

"image" AND ("medical" or "biomedical")

AND ("segmentation" OR "localization" OR "partition")

Regarding the scientific production about medical IS using MHs, shown at the

bottom of Figure 4.1, the following query was run in Scopus:

"image" AND ("medical" or "biomedical")

AND ("segmentation" OR "localization" OR "partition")

AND ("differential evolution" OR "swarm"

OR "chc" OR "evolutionary"

OR "genetic algorithm" OR "cma-es"

OR "PSO" OR "annealing" OR "tabu search"

OR "metaheuristic")

Finally, in order to know the volume of publications on evolutionary medical IS

using DMs, the same query was executed adding a reference to terms related to DM

(AND (”deformable model” OR ”template” OR ”topological” OR ”statistical shape”

OR ”active models” OR ”active nets”)). The result included 76 publications, and an

h-index of 14, related to this topic since 1995 (see Figure 4.2)1.

Looking at the data globally, one can say that both medical IS and MHs-based

medical IS are fields of growing interest, where publications and citations are dramat-

ically increasing. Given the extremely beneficial properties of MHs, a more intense

application to medical imaging problems seems inevitable, even more if the use of

1A careful revision of the literature showed the existence of, at least, 70 more papers (mainly
conference papers or publications in which ‘strange’ kinds of DMs were used, so they did not appear in
the results of the queries). The queries were also run in the ISI Web of Knowledge but the number of
resulting papers was even less.
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Figure 4.1: Scientific production related to medical IS (top) and medical IS using MHs
(down). The queries, run in Scopus on the 10th of July (2013), displayed 9942 and 269
papers with a growing tendency.
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Figure 4.2: Number of publications (top) and citations (down) related to medical IS
using DMs and MHs. The queries, run in Scopus on the 10th of July (2013), displayed
76 papers and 1429 citations also with a growing tendency.
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DMs is taken into account (a standard within the image processing). Also, it seems a

safe bet to explore the possibilities their combination offer, trying new evolutionary

approaches or improving the existing ones, reducing the execution time of algorithms

(progressively viable with the increase of CPU/GPU performances), and introducing

novel approaches to medical image analysis fully based on SC algorithms or in which

SC algorithms play an essential role [137].

Since the main kinds of DMs used in this thesis have been ASMs and LS, the

following two subsections summarize all publications related to image segmentation

using these two paradigms and MHs (including our own proposals published in different

journals and conferences).

4.1 Statistical Shape Models

One of the most populated categories is the one related to DMs that use some sort

of statistical information about the objects to segment (instead of using only generic

constraints, like in ACMs). Such DMs can be created by running some mathematical

transform (like PCA) over a number of training shapes or including more information

specific to the deformation shape limits. In this case, ASMs, AAMs, DTs and similar

approaches, even if the terminology used in the papers does not explicitly refer to such

categories, are here globally called Statistical Shape Models (SSMs).

The potentiality of this kind of DM was discovered rather early. In the ‘90s five

papers were already presented, of which two are journal publications. From the seminal

papers by Hill et al. [138, 139], GAs have been used several times, alone or in hybrid

approaches, as optimizer to overcome the problems of classic methods [123, 126, 140–

153]: DM initialization and existence of local optima.

In terms of applications, there is a broad variety of topics, ranging from face/body

recognition [141, 143–145, 154–157] and car/road-sign localization [3, 142, 158–160]

to medical image segmentation [123, 126, 138–140, 147–153, 157, 161–168], or mobile

robot navigation [146].



Chapter 4. Medical Image Segmentation using DMs and SC 68

Table 4.1: Statistical Shape Models (Active Shape Models, Active Appearance Models,
Deformable Templates). From left to right: author name, reference to the paper, DM
name, dimensions (2D/3D), type of metaheuristic, type of imaging technique, and year
of publication. ∗ refers to ISI indexed journals.

Author Reference DM Name Dims Metaheuristic Image Modality Year
Hill et al. [138] Flexible Templates 2D GA Medical (ultrasound) 1992

(like ASM) Heart Left Ventricle
20 and 25 images

[139] / ∗ GA vs SA
Jolly et al. [3] / ∗ DT 2D SA 393 image seq. 1996

(Metropolis alg.) moving vehicles
Rueckert [169] Geometrically DT 4D SA + ICM 1 MRI seq. 1996
& Burger [161, 162] 1997
Sum et al. [154] ASM 2D Greedy local search 1320 lip images 2001

Mignotte et al. [140] / ∗ DT / ASM 2D GA echographic seq. 2001
+ steepest ascent (50 frames)

& synthetic images
Pitiot et al. [163] / ∗ SSM 2D Evolutionary SA Medical (MRI) 2002

3 brain structures
T1-weighted

94 images
Lalonde [164] Geometrically DT 2D Variable Neighborhood optic disc in 2002

& Gagnon Search (VNS) using SA 2 ophthalmic images
as local search

Betrouni et al. [165] AAM 2D SA 30 abdominal 2004
ultrasound images

Karungaru et al. [141] DT 2D real-coded GA 54 faces 2004
Vavilin & Jo [142] DT 2D GA 95 images 2006

with 119 signs
Heimann et al. [166] SSM 3D ES Medical (CT) 2007

+ Deformable Surface liver in 54 CT volumes
Sattar et al. [143, 144] AAM 2D/3D GA vs face images 2008

[145] Nelder-mead simplex vs 32 subjects
NSGA-II 1405 images

Gradient-based GA real & synthetic images
Mata et al. [146] / ∗ DT 2D GA real-time video seq. 2008

Yin & Collins [158] DT/ASM 2D SA aerial video motorcycle 2009
zebrafish bladder MRI
human walking seq.

Chen et al. [147] ASM 2D GA 20 lateral knee 2009
X-ray images

Szilagyi et al. [148] AA motion M 4D multipopulation GA ultrasound seq. 2009
+ Nelder-Mead simplex Number not specified

Takahashi et al. [149] ASM 2D GA 5 CT images 2010
cardiac region

Colutto et al. [167] / ∗ 3-D medial axis shape 3D CMA-ES 1 3D MRI scan 2010
model (3-D-MReps) (vs PSO and DE) & synthetic data

Ben Fredj et al. [168] DT 2D/3D GA synthetic heart 2011
3D MRI

McIntosh et al. [126, 150] / ∗ Medial-based shape 2D GA Medical (MRI) 2010
corpus callosum 2012

50 images
Mussi et al. [155, 159] DT 2D PSO Road signs 2010

[156] human body pose 2012
Ugolotti et al. [160] DE vs PSO Road signs 2012

Liu te al. [151] AAM 2D GA 200 tongue images 2012
Mesejo et al. [123] / ∗ ASM 2D DE vs PSO vs Medical (histological) 2011

[152] LM vs SA vs brain (hippocampus) 2012
Ugolotti et al. [157] / ∗ SS vs GA 320 real images 2013

[153] + 20 synthetic images +
4 human video-seq.
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DM representation and encoding

In general, the parameters to be optimized by the metaheuristic are the coordinates

of the parametric DM [123] or the coefficients of a parameterized curve (like a B-

Spline) [163]. Such coordinates are usually described in a cartesian system but polar

coordinates can also be found [153].

In [138, 139], ten parameters control the shape and transformations of the model:

six shape parameters and four transformation parameters (translationX, translationY,

rotation and scale). In the former, a point in the search space is encoded as a binary

chromosome while, in the latter, gray-code binary integers are used. In [147, 149], a

similar approach is carried out in terms of representation/encoding.

An interesting aspect of [163] is that the number of control points dynamically

changes. The larger the number of control points in the deformable template, the

better the local fidelity of the match is likely to be and the higher the computational

cost (inducing many local minima and complicating the search space). The system

determines the segment (whose shape is parameterized by four control points) of the

B-spline that achieves the lowest match by computing the partial match of each segment

over the diffused edge image (to avoid generating a large number of null matches).

Then, that segment is locally refined, inserting new control points.

In [126, 150], medial-axis-based 2D shape representations describe the object’s

shapes in terms of an axis positioned in the middle of the object along with thickness

values assigned to each point on the axis that describe the shape of the boundary. Each of

the N medial nodes (being nodes 1 and N the terminal nodes) have associated 4 scalar

values (length, orientation, and left and right thickness profiles), and the anatomical

structure to be segmented is reconstructed from these 4 medial profiles and a set of

affine parameters that describe the objects pose and scale (position, scale and base

angle). Each shape is a chromosome with genes encoding affine and statistical shape

deformation parameters. The affine transformation parameters are those encoding the

global rotation, scale, and position of the shape, while the statistical shape deformation

parameters are those representing weights of the principal components, as obtained from
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the hierarchical regional principle component analysis, for a particular deformation,

location, and scale.

Also, a sort of medial-based representation can be found in [123, 152, 153, 155–

157, 159, 160] where, even comprising very different examples, the common factor is

the use of ‘skeleton’ representations, that are employed to compose a simple model of

the object to localize, segment or track. Obviously, this kind of minimal representation

has many advantages, like a low computational cost allowing for real-time execution,

the simplification of the operations with the coordinates and their constraints, or the

possibility of performing a fast initial coarse localization and, later, a fine segmentation.

In particular, in [123, 152, 153], the encoding includes lengths and angles from one

point in the model to another. In [155–157], an articulated 3D model of a human body

is matched against a set of images of a human performing some action, taken from

different perspectives, to estimate the subject’s posture in space. Given the significant

computational burden imposed by this approach, PSO and DE were implemented as

parallel algorithms within the nVIDIATMCUDA computing architecture. In all these

cases, real-valued encoding was used by the metaheuristic.

A classic representation of the model can be found in [165, 166], where the DM is

represented by a point distribution model (PDM), i.e. a dense collection of landmark

points on the surface of the object, and each training shape is described by a single

vector of concatenated landmark coordinates. In some approaches, the SSM is created

by means of PCA, but there are many examples where the limits for the deformation, i.e.

the feasible shape deformations, have been simply obtained by extracting the average

and standard deviation of the positions in the parametric examples in the training set

[123]. In fact, PCA can be applied to different image features, like in [143–145], where

PCA is applied not only to the shape but to the texture, to obtain shape and texture

parameters accounting for 95% of the variation to perform face alignment application

in embedded systems.

In [3], the authors define a polygonal template to characterize a general model of a

vehicle and derive a prior probability density function to constrain the template to be

deformed within a set of allowed shapes. They propose a bayesian formulation which
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combines motion information and edge directionality to ensure that the deformable

template is contained within the moving areas in the image and its boundary coincides

with strong edges with the same orientation in the image.

Another bayesian formulation is presented in [161, 162] and solved, as in the

previous case, using SA. The authors present an energy-minimization framework based

on geometrically deformable template (GDT) [170], whose degree of deformation,

from its equilibrium shape, is measured by a penalty function associated with the

mapping between the two images. A GDT consists of a set of vertices describing the

equilibrium shape (the undeformed prototype shape), a set of vertices representing the

deformed prototype shape (result of the external forces over the model), and a penalty

function which measures the amount of deformation of the template with respect to the

equilibrium shape. This penalty function is invariant to scaling, rotating, and translation

of the template. Such a model can incorporate not only information about the mean

shape and the variability of objects, but also information about the mean location,

orientation and size of objects, and their variability, being able to segment several

objects simultaneously. Therefore, to solve the segmentation problem it is necessary to

estimate the optimal values for the following parameters: translation, scaling, rotation,

and N parameters for the non-affine deformation. The affine ones are calculated by

an exhaustive search method (Iterated Conditional Modes). The non-affine ones are

estimated using SA. In [169], a multiscale approach to GDT to contour fitting is used:

the segmentation algorithm starts by constructing a linear scale-space of an image

through convolution of the original image with a Gaussian kernel at different scale

levels, where the scale corresponds to the standard deviation of the Gaussian kernel.

A cubic B-spline shape representation involving a binary encoding is used in [140].

To take into account the natural variability of the object under consideration, the authors

introduce a set of admissible affine transformations, ensuring a first crude registration

of the shape, and a set of non-affine local and global transformations. In [146], a

three-stage algorithm is used. First, regions of interest (ROIs) are extracted. Then, the

extracted ROIs are used to initialize a GA for the landmark search through the image.

Each individual of this GA encodes a deformable model, and the fitness of an individual
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Figure 4.3: (a) Instance of 3-D-MRep shape space, (b) its implied boundary, and (c)
initial interpolation mesh that is used to construct the surface. Note that the interpolation
mesh is an irregular quadrilateral mesh, since it has vertices with valence 3 at each of
the 4 corners of the figure.

is a measure of the matching between the deformed model it encodes and the landmark

searched for. Finally, if a landmark is found, symbols are extracted and identified with

a classic backpropagation neural network. Thus, a GA is used to confirm or reject the

ROI hypothesis. Each individual’s genome is made up of five variables: the deformed

model’s cartesian coordinates (x, y) in the image, its horizontal and vertical size in

pixels, and a measure of its vertical perspective distortion.

In [167], as a shape model, they use a parametric 3-D medial axis representation

(3-D-MRep). The parameter domain of 3-D-MReps constitutes a finite-dimensional

Riemannian manifold, and each element of this shape space defines a surface. 3-D-

MRep (see Figure 4.3) uses a discretization of the continuous medial axis of an object

instead of boundary representations.

Every instance of an MRep in three dimensions is represented by a regular n1 × n2

quadrilateral mesh, and the n1n2 atoms centered on the mesh vertices. The following

information is provided for every atom of a shape instance:

• the position x ∈ R3 of the atom,

• the radius r ∈ R+ of the atom,

• two boundary vectors b1, b2 ∈ S2, pointing to the two implied boundary points

of the surface. For border atoms (i.e., atoms on the boundary of the mesh), an
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Figure 4.4: Shape space of 3-D-MReps.

additional boundary vector b ∈ S2 is defined as the bisector of the two given

boundary vectors.

• a parameter for border atoms, called η ∈ R+ specifying the elongation factor

along the additional boundary vector.

Each of the components of M (see Figure 4.4) is a Riemannian manifold, and this

product space is called the shape space of 3-D-MReps.

Optimization procedure

In terms of genetic operators, it is important to highlight that, since these approaches

take advantage of a ‘preliminary statistical study’ of the objects to segment, in many

cases there are no special operators to manage the constraints of the models. In general

terms, this is because the SSMs are usually already constrained to a particular region

of the search space depending on a training stage. The evolutionary operators are not

usually designed ad-hoc and they do not present a great level of sophistication because

of this reason.

In [163], a Hybrid EA inspired by Guided Evolutionary Simulated Annealing

(GESA)[171] is used. The authors consider a population of individuals, each of which

consists of a pose and shape parameter (with scale, rotation and translation). The

population is made up of f families: each family F i consists of a parent P i and ci
children Ci,j . The pose parameter of each of the parents is selected at random to cover
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the entire input image, and is projected onto the shape space in order to adjust the pose

and shape parameters of the template to the required deformation while insuring that

the deformed template be a valid instance of the shape model (this seems to be the

way they implement the restrictions). To favor the children whose shapes are closer

to the first eigenmodes, the temperature of the Boltzman distribution that controls the

acceptance number is varied. At a local level, the children of the same family compete

with one another to generate the parent for the next generation. At a second level, there

is a competition between the families themselves since the number of children allocated

to each family depends on the combined fitness of all the children, and is biased toward

the first eigenmodes to favor the most likely shapes. The number of children actually

reflects the interest in a given area of the search space: the better candidate solutions in

a given area, the more attention we devote to it. Therefore, the entire algorithm can be

viewed as parallel SA with competition.

Even if a quite simple GA is used, in [138, 139], the authors compare SA with GA

in optimizing their models. As selection strategy they use the Remainder Stochastic

Independent Sampling (RSIS) algorithm, and the initial population from which the

search progresses is purely random. Firstly, preliminary experiments showed that GA

outperforms SA in all cases in terms of minimization error. Secondly, and applying only

GA, the results obtained by this method were compared with the manual segmentation

of an expert. Niching was also applied to avoid premature convergence to suboptimal

solutions: the fitness of an individual is weighted by the number of neighbours (the more

the neighbours of an individual the worse its fitness value), the size of the population

is increased to prevent extinction caused by sampling errors, and a restricted mating

strategy is implemented in order to promote speciation, i.e., prefering neighbours to

distant individuals for crossover. In [148], a robust solution of such an optimization

problem implies a multi-population GA approach, which creates subpopulations within

the niches defined by multiple potential optima. The employment of multiple groups

of individuals favours population diversity as subpopulations that occupy different

niches do not need to outperform each other in order to propagate, resulting in a

proper exploration of the search space. Subpopulations only interact by means of

a migration process, where the best individuals from one subpopulation are copied
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into another subpopulation, replacing the worst individuals in the destination search

niche. Intensification is achieved by allocating a separate portion of the search space to

each subpopulation. After convergence of the global search, a Nelder-Mead simplex

algorithm is further employed starting from the best solution.

In [123, 152, 153], the restrictions, in terms of deformation, are managed by the

polar representation and the limits for the deformation calculated from the training set,

thus the development of ad-hoc operators is not necessary, and the procedures used in

GA, SS, DE, SA and PSO are the conventional ones.

A global search based on an EA is employed in [166] to detect suitable initial

parameters for the model, which are subsequently optimized by a local search (ES is

run to find a rough initialization in a strongly down-sampled version of the image).

After that, a deformable mesh with the same topology as the SSM is used for the final

segmentation. The solutions are stored as real-valued vectors, there is no cross-over

operator, and solutions are modified by adding a random vector from a multivariate zero-

mean gaussian distribution (gaussian mutation). After initialization, the deformable

model used for the final segmentation is defined as a triangular mesh, having the same

topology as the SSM. Its evolution is controlled by the Lagrangian equation of motion,

using a directed graph and a min-cut/max-flow algorithm for energy minimization.

In [144], a GA searches faces globally whereas gradient descent helps GA to search

a face locally. In other words, the exploitation properties of gradient descent and the

exploration properties of GA are combined into an effective optimization system. For

this reason the authors propose a new gradient operator for the GA, which functions

in conjunction with the mutation operator already available in the GA. In [145], the

authors present a face alignment algorithm in multiple images based on AAMs and

Pareto multi-objective genetic optimization using NSGA-II. This multiobjective EA

is used to optimize the appearance and pose parameters. The target is to find the best

possible values of these parameters causing the minimum error pixelwise, between the

model and the query images of both cameras.

In [151], the shape model is adjusted to fit the image in an iterative procedure,

which starts from the mean shape. In each iteration, the position of the points is slightly
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modified by examining the region around each current model point to find the best

match. The model parameters are then updated, until convergence, to fit the shape

model to the new location of points. This procedure is useful in cases where the mean

shape is a good aproximation for the final segmentation, and a GA is used more as a

local optimizer than as a global-search method.

The energy function to segment moving vehicles [3] has many local minima, and

the authors have chosen a SA procedure based on the Metropolis algorithm to solve

the minimization problem. Such an algorithm is a SA procedure that, using a geomet-

ric temperature schedule, minimizes the energy function E(θ, Z) by constructing a

sequence of template deformations starting from a prototype template. In each epoch,

the Metropolis algorithm is started with an initial prototype template belonging to the

vehicle class being considered and it iterates while constraining the deformations to

remain in the same class. The authors examine the results of all five epochs, each epoch

corresponding to a particular vehicle class (sedan, pickup truck, hatchback, station

wagon, van), and pick the deformation parameters whose energy is smallest (see Figure

4.5). This approach has two advantages: 1) the five epochs can be executed in parallel,

and 2) in addition to segmenting the vehicle in the lane closest to the camera, the

algorithm is also able to classify the vehicle into one of five classes.

In [140], when segmenting ecographic sequences, 100 individuals (or 100 ellipses:

circle + affine transforms) are initially randomly generated in the image (first generation

or first step of the genetic search). Each individual represents a candidate solution (a

candidate contour) for the optimization problem. The genetic procedure then acts in a

iterative way by creating a new population with genetic operators. At each generation,

5% of the best individuals are selected for the hybridization with the local optimization

technique (gradient ascent).

The segmentation of MR images in [161, 162] requires the estimation of the op-

timal values for the following three parameters: translation, scaling, rotation, and N

parameters for the non-affine deformation. The affine parameters are calculated by an

exhaustive search method (Iterated Conditional Modes), while the non-affine ones are

estimated using SA.
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In [164] two modifications to the GDT model are proposed to perform the segmen-

tation of the optic disc in ophthalmic images. GDTs are based on the use of thin-plate

splines and have the appealing property of being invariant under affine transformations.

However, the proposed search method is computationally costly because it relies on SA.

As well, such an invariance to affine transformations may cause the search algorithm to

retain invalid solutions (e.g. ellipses when searching for circles). This paper addresses

these concerns by exploring the use of a metaheuristic called Variable Neighborhood

Search, that treats simulated annealing as a local search tool, and also by redefining the

shape energy so that affine transformations are taken into account to improve the serch

quality.

Finally, in [167], the main challenge of the segmentation of MR volumes using

CMA-ES is to determine the mean value (on the manifold M ) for the next iteration and

to transport the covariance to the new location on the manifold. For a fair comparison,

the authors tried to choose the parameters as recommended in the relevant literature

and modified them only if this led to a significant improvement of the results.

Target Function

The most common approach in these works is to maximize the overlap of the DM

with the object of interest, taking into account intensities, boundaries, or textures.

The prior knowledge about every particular case can be very easily included in the

fitness function, as happens, for example, in [123]: since the hippocampus is slightly

darker than the immediately surrounding area, this information is encoded in the fitness

function through the maximization of the difference in intensity between the inner

model points (ideally corresponding to the hippocampus) and the outer model points

(ideally corresponding to the external, and clearer, regions surronding the hippocampus).

Since the candidate polar coordinates are constrained within a preselected range of

values computed from the training set, the development of complex ad-hoc operators

and fitness functions is not necessary.

In [155–157], the body model consists of two layers, the skeleton and the skin.
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The skeleton layer is defined as a set of homogeneous transformation matrices which

encode the information about the position and orientation of every joint with respect

to its parent joint in a kinematic tree hierarchy. The matching function compares the

silhouettes extracted from the original images to the silhouettes generated by the model

in its candidate pose.

In [143–145], when tackling the face recognition problem, each chromosome corre-

sponds to a 3D AAM. Each shape is deformed, rotated and translated according to the

appearance, rotational and translational parameters in the chromosome, respectively.

This deformed shape is placed on the test image to warp the face into the mean frontal

shape. The error of the target function is then calculated pixelwise between this warped

image and the frontal view image of the database obtained by the appearance parameters

of each chromosome. The newly-born children are checked to verify wether they are

still inside any of the Gaussian clusters identified in the face space; if not, they are

initialized to the nearest gaussian distribution.

The cost function in [154] is defined following a region-based approach. The RGB

representation of a lip image is transformed into the uniform CIELAB and CIELUV

color spaces. Color feature vectors consisting of color features (a, b, u, v, hueab, hueuv,

chromauv) are then generated for each pixel. Applying fuzzy clustering to the color

feature vectors, a probability map is obtained, such that a pixel with higher probability

value is more likely to be within the lip region.

In [3], the segmentation problem is stated in a Bayesian framework (probabilistic

DM) and is reduced to an energy minimization problem: 1) a template defined by a

set of deformation parameters which denotes a prototype of the objects present in an

image, 2) a prior probability density function which specifies what deformations of the

prototype template are more likely to be present in the target image, 3) a probability

density function which discriminates between different hypothesized deformations in

terms of how “close” they are to the actual objects in the image, and 4) an algorithm

for finding the template which ”best” characterizes the objects in the target image (let

us call it Z); more specifically, the deformation parameters θ which maximizes the a

posteriori probability p(θ|Z). The probability density function is modeled by a Gibbs
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Figure 4.5: Deformable template defining a generic model of a vehicle from [3].

distribution whose exponent comprises two terms. The first term is a function which

derives from the motion of the vehicle of interest. It attains its maximum value when

the deformed template encompasses only pixels that are moving. The second term is a

directional edge-based function. It attains its maximum value when the contours of the

deformed template coincide with underlying image edges that have a strong gradient

magnitude and whose gradient orientation is perpendicular to the contour.

In [140] the main idea, as in other papers in this section, is to find the optimal

deformation parameter vector to fit the original prototype template to the image. The

fitness function in this case is composed by a likelihood energy term that is minimum

when the deformed template delimits exactly two homogeneous regions with gray level

distributions corresponding to blood and muscle, and a prior energy term that penalises

the deviation of the deformed template from the original prototype.

A model of the heart, in [161, 162], is composed of 3 different objects which are

represented by the endocardial contours of the left ventricle and right verticle as well

as the epicardium. Authors use GDT, whose deformation is controlled by an energy

penalty function that measures the degree of non-affine deformation of the template

from its equilibrium shape which represents the a-priori information. At the same time,

the penalty function does not penalize affine transformations. To do so, bending energy

of a thin-plate spline (TPS) mapping is used. The internal energy measures the amount

of non-affine transformation of the template with respect to the equilibrium shape. The

external energy is a form of potential that attracts the template towards image features

such as edges.

In [167], the authors investigate two appoaches to detecting objects in voxel images
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based on the 3-D-MRep shape models:

• A Simplified Mumford-Shah Functional: used to segment synthetic 3D images.

The authors search for sets of voxels representing volumes, which are charac-

terized by a significant difference between the mean image intensity inside the

volume and the mean intensity of the background. They want to include, in

the reconstruction energy, statistical information about the expected solution.

Assume training shapes p1, ..., pS ∈ M , being M a Riemannian manifold. The

approximated principal geodesic analysis (aPGA) of this data is given by its

mean µ ∈M and covariance Σ. After that, the authors derive the Mahalanobis

regularization dM,µ,Σ based on the aPGA. Combining this regularization with

the Simplified Mumford–Shah Functional leads to the definition of the regular-

ization functional: ISMS
α (p) = I(p) + αd2

M,µ,Sigma(µ, p), being I a mapping of

a shape p to the simplified Mumford-Shah energy of its boundary ψ(p), and

I(p) = I ′(ψ(p)).

• Edge-Based Segmentation: used to segment the cerebellum.

If the objects of interest have nearly the same intensity as the surrounding volume,

region-based segmentation cannot be applied. To overcome this problem, an

edge-based segmentation method is introduced. In this case, the first term of the

functional forces a Jordan submanifold to be at locations where the gradient of

the voxel data is high, and the second term penalizes the surface area of such

a submanifold. In this case, the functional for the 3-D-MReps shape model is

ISnakesβ (p) = I ′β(ψ(p))

Therefore, the main idea here is to minimize I (equivalent to ISMS
α when α = 0) or

ISnakesβ depending on the case.

Critical Discussion

There are a number of strengths and weaknesses in the works here presented. With

regard to the former, MHs give flexibility in the DM design, since it allows one to
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ignore the nature of the objective function (differentiability, convexity) and to use the

method as a black-box optimizer. Also, MHs are used to move the DM as well as

to optimize its parameters, although this last option is not too common in SSMs. In

relation to weaknesses, we could mention the following:

• In general terms, the papers published so far do not show a good justification of

the use of MHs, and it appears that, in some cases, a local optimizer or a classical

method would have been good enough.

• Comparisons with traditional methods are rare, even if they would be really

useful and illuminating: in relation to the previous point, those comparisons

could demonstrate the interest of introducing these sophisticated techniques

instead of using classic/traditional ones.

• Also, in the vast majority of the papers, there is not a detailed description and

presentation of the parameters and operators used, and no information about the

tuning procedure followed is provided.

Among the most interesting works of this section, we could cite the four Bayesian

approaches introducing probabilistic DMs [3, 140, 161, 162], the paper that presents

the DM online definition for mobile robot navigation [146]2, the approaches presented

in [163, 167] focused on the segmentation of objects using sophisticated MHs (a

generalization of the CMA-ES on vector spaces to Riemannian manifolds, and an

evolutionary version of SA), and the appropriate use of GAs and DMs in the resolution

of a difficult biomedical problem [126].

4.2 Level Set Methods

The first issue that should be noted in this section is the shortage of scientific works

where geometric/implicit approaches are used in conjunction with MHs. Only 16

2Instead of receiving the detailed model definition from the user, the algorithm extracts and learns the
information from each object automatically.
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papers have been found on this topic, four of which apply practically the same basic

design [4, 135, 172, 173] while, in other cases, the use of metaheuristics has not been

adequately justified or explained [174–176]. Generally, classic optimization methods

like gradient descent have been (and are being) used. However, in some cases, like GAC,

such techniques have been shown to be ineffective and likely to produce suboptimal

solutions. In any case, these approximate solutions are acceptable in certain scenarios,

where extreme accuracy is not required, while, on the other hand, many DMs are based

on partial differential equations, which can be solved by well-consolidated numerical

methods. However, MHs can be tremendously useful to learn the parameters of the

model [2, 5, 177–179], to refine the results obtained by the geometric approach [136],

to obtain the initial contour and/or the prior information to be used by the LS method

[2, 175, 180] or, directly, to guide the optimization process avoiding local minima

[4, 135, 173, 174, 181]. Also, an important advantage of using MHs is that they can

optimize the LS function without the need to compute derivatives, thereby permiting a

straightforward introduction of new curve-evolution terms [2].

Two of the most interesting and adventurous approaches can be found in [2] and

[181]. The former describes a hybrid geometric DM, combining region- and edge-based

information with the prior shape knowledge introduced using deformable registration.

Such an approach implies the learning of the LS parameters by means of a GA, and the

use of SS to derive the shape prior. In the latter, the computation of a global minimum

of the CV model (multiphase piecewise constant Mumford-Shah model) is performed

combining gradient-based steps with a stochastic optimization phase hopping from a

local minimum (basin) to another, while the computational cost is alleviated using a

multiresolution approach.

Another very interesting research work is presented in [182] (a continuation of the

work presented in [176]), where the authors take the viewpoint that region informa-

tion can be introduced as extra constraints within the contour energy-minimization

framework. With this in mind, the contour energy minimization problem is formulated

as a search for a minimum-energy contour with its interior satisfying a region-based

constraint. Such a constraint can be any function characterizing the contour interior
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structure, but in this particular case they use region homogeneity as criterion. The

introduction of the constraint is aimed at limiting the search space of contours, focusing

on the ones with desirable interior properties; and an ES is used to solve this constrained

contour energy minimization problem.

Table 4.2: Level Set Method. From left to right: author, reference to the paper under
study, dimensions (2D/3D) of the images segmented, type of MH, imaging technique,
and year of publication. ∗ refers to ISI indexed journals.

Author Reference Dims. Metaheuristic Image Modality Year
Wang et al. [176] 2D ES cell images 2002

MRI and CT
[182] / ∗ MRI, CT, ultrasound, 2004

histology
Xiao et al. [175] 2D GA Marrow Cells 2005

Mammograms
Ghosh et al. [4, 135] 2D-3D GA prostate CT and MRI 2006
Afifi et al. [172] 2D PSO liver in abdominal CT 2010

Mesejo et al. [173] 2D DE vs PSO vs Histological Images 2013
real-coded GA

Kan et al. [174] 2D PSO tree images 2007

Iakovidis et al. [177] / ∗ 2D GA Ultrasound images 2007
Law et al. [181] / ∗ 2D Basin Hopping Natural scenes 2008

vs Gradient Descent Brain MRI
vs SA Zebrafish Image

breast cancer cell image
Heydarian et al. [5] / ∗ 2D dynamic GA Medical (CT and MRI) 2009

CT: 2 kidney + 2 lung
MRI: 2 kidney

Oliveira et al. [178] 2D GA liver CT 2010
[179] / ∗ 2011

Feltell & Li [136] 3D swarm agents Medical (MRI) 2010
1 synth. brain seq. (181 img)

Mesejo et al. [2] / ∗ 2D SS and GA microscopy, MRI and CT 2013

Mesejo [180] 2D DE Histological Images 2013
& Cagnoni

DM representation and encoding

As usual in most of the papers reviewed here, GAs have been used in a large percentage

of works (9 out of 16). In some cases, they rely on a binary encoding [5, 177], when

the features of the problem may suggest using a real number representation, or they use

operators which are not particularly well-adapted to the nature of the chromosomes,

like in [4, 135] where, despite having a real-valued genome, the single-point crossover

is used (see Section 2.5).
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Figure 4.6: Two GA encoding examples using LS. In the upper row, an example of a
GA chromosome in an optimization problem [4]; in the lower, a GA chromosome used
in the parameter tuning approach [5] (in this case, the LS parameters to be learned are
derived from Li et al. [6]).

In the works of Ghosh et al. [4, 135], Afifi et al. [172], and Mesejo et al. [173] the

parameters to optimize are the coefficients of a linear combination of the eigenshapes

and, in [4, 135, 172], also the pose of the object to segment (i.e. the parameters

corresponding to an affine transformation). In other cases, for example, the parameters

represent the location (in polar coordinates) of the points of a parametric model that is

used later as initial boundary for the LS [180], the weights for the different terms in the

LS equation [2, 177], or the parameters needed to extract the prior knowledge [2, 175].

In [136], the segmentation problem is seen as a fuzzy voxel classification along the

LS interface, but the presence of anisotropic voxel intensities within the input image

causes an unacceptable number of incorrectly classified voxels. To solve this problem,

after the user identifies the area of interest, intelligent semiautonomous agents can move

across the zero-level surface modifying it: the LS representation allows the authors to

locate the surface in space and calculate the normal to the surface at any point very

easily. Therefore, the representation used by the swarms of intelligente agents is the

same as the one used by the LS: they inhabit the surface modifying the sparse field, and

update the values at all zero-level points within a given range r of the agent’s position

x by a value a, a = A(x), weighted by the distance from the agent, according to a

normalized Gaussian distribution.

In [182], individual contours are represented by states and an ES is used to deform

the actual contour according to the region-based constraints introduced. Figure 4.6

displays two paradigmatic examples of encoding.
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Optimization procedure

In general, the operators used with LS methods are quite classic and not too customized.

The model constraints are usually managed by all the underlying maths inherent to

the LS formulation: the curves are split and merged naturally adjusting the object

topology. Furthermore, in some cases, the existence of a training set already constraints

the possibilities of generating new shapes.

In [136], as explained before, agents inhabit the zero-level surface, sensing and

modifying it as necessary using straightforward interpolation routines, and are allowed

to modify the surface at their location effectively, whilst maintaining the structure of

the sparse field. Basically, every agent move independently using two rules/operators:

a) navigation across the surface, and b) modification of the sparse field. For the former,

we need to define a movement potential function P , while for the latter it is necessary a

surface update function A.

In [181], authors have designed a method based on two operations (hopping and

local optimization). In turn, the hopping phase consists of a stochastic split and a

deterministic merge, in which a large area of the image can be split and merged in a

single step, thus reducing the number of hops needed to search for a global minimum.

To split the selected segment into two subsegments, the ISODATA thresholding method

is used.

In [182], since the recombination of contours requires a much higher computational

complexity, only mutation by addition of a Gaussian perturbation is used. As selection

scheme, a modified (µ, λ) is applied. The notation (µ, λ) indicates that µ parents

create λ > µ offspring by means of mutation, and the best µ offspring individuals are

deterministically selected to replace the parents. However, the acceptance of temporary

deterioration might also make (µ, λ) selection drift away from the contour energy

minimum. To avoid this, they select the state with lowest energy from µ survivors

in (µ, λ) selection and compare it to the lowest energy state selected from previous

selections. The state with lowest energy found in all the selection processes when the

algorithm is over represents the output contour and the solution to the problem.
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Finally, in [6], a dynamic GA is used, that adaptively changes the probability of

crossover, the probability of mutation, and the number of crossover points.

Target Function

In [5], the main aim is to select the seven ideal parameters, introduced in [6] to

eliminate the need for a re-initialization, for different kinds of image modalities and

organs (CT and MRI in particular). To do so, authors developed an evaluation function

which includes four measures to calculate geometric differences between “the object

boundaries as determined by the level set method” and “the desired object boundaries”.

Something similar is used in [2], where a GA is in charge of tuning the weights and

the parameters of each term based on training data. In general, the quality of a solution

is defined as the average quality of the segmentations obtained using the parameters

values encoded by such a solution during the training phase.

In [182], the problem is to find a closed contour C(s, t) enclosing a region ΩC such

that

E(C(s, t)) =
1∮
C
ds
{
∮
C

1

1 + |∇G ∗ I(x(s), y(s))|p
ds} (4.1)

is minimized with the region characterizing constraint

D(x, y) =
1

1 + |∇G ∗ I|2
e−
|I(x,y)−I0|

σ ≥ TV (4.2)

for all (x, y) ∈ ΩC , and where p = 1 or 2, TV is the similarity threshold, and |∇G ∗ I|
is the absolute value of the gradient of the image intensity (I(x, y)) smoothed by a

Gaussian filter N(0, σ2
0). The solution to the constrained optimization problem is to use

ES to deform C(s, t) until an optimum C(s) is reached.

In the several papers using eigen-shapes, despite their differences (kind of textural

measures used and calculation of the affine transformation), the fitness function and

the general pipeline is essentially similar: all employ texture and shape information to

evolve the contour using a training and a test phase, and the fitness of an individual is
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Figure 4.7: Main workflow diagram for [5].
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measured by comparing the textural difference between the regions inside and outside

the contour. In other words, the fitness of a given shape is determined by the match

between the texture of its enclosed region and the mean texture of the target object

calculated in the training phase.

In [181], each point is attracted to a local minimum through a gradient descent

process to find local minima and, after that, basin hopping between local minima

(basins) simplifies the energy landscape. If the new local minimum corresponds to a

lower energy, then the new solution will be taken without reservation. Otherwise, a

coin may be flipped to determine if the new solution is accepted. In such a work, the

updates are global i.e., instead of each point on the LS function moving in its normal

direction at a speed related with the gradient descent, the hopping step is region-based,

allowing to escape from local minima effectively. In general terms, for a given image

u0, the piecewise constant Mumford-Shah model seeks for a set of curves C and a set

of constants c = (c1, c2, . . . , cn) which minimize an energy functional given by

FMS(C, c) =
n∑
i=1

∫
Ωi

|u0(x, y)− ci|2dxdy+

+ µ× Length(C)

(4.3)

In the previous equation, the curves in C partition the image into n mutually exclusive

segments Ωi for i = 1, 2, . . . , n. The idea is to partition the image so that the u0

intensity of each segment Ωi is approximated well by a constant ci. The goodness-of-fit

is measured by the fitting term
∫

Ωi
|u0(x, y)− ci|2dxdy.

In [136], the movement potential function P is defined as P (x) = ||v + γH(x) +

λ||u − x||||, where x is an agent’s R3 location, v is the previous velocity, H(x) is a

steering function (moving the agents automatically toward areas of interest, for example,

using the gradient H can lead the agents away from areas of high voxel intensity

gradient, i.e. toward more homogeneous areas), u is a user-specified location, and γ and

λ are constants. In this work, the agent behaviour algorithm is entirely deterministic.

When the agents are in an area that does not trigger any surface modifications (when the

occupied area of the image is such that it does not stimulate agents to modify the level
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set surface), all the agents simply move together, along a near-circular path orbiting the

user-specified point whilst being pulled toward the path of lowest image gradient.

Critical Discussion

When a set of training images is available, one interesting option would be to use an

approach similar to the one by Ghosh et al.[4, 135] and Mesejo et al.[173]. Nevertheless

it is noteworthy that these approaches are quite slow due to the need to compute the

average shape and the main forms of variation, as well as the evaluation of the texture

that characterizes the evolving contour for every iteration and individual.

The hybridization of LS with MH can generate interesting findings in the future.

First, because, not all the possibilities have been fully explored up to now. Second,

because the combination of two techniques with so many positive aspects, it cannot

be more than satisfactory. On the one hand, MHs provide learning and global search

capabilites, thus avoiding local minima, making the initialization of the initial contour

robust and the introduction of new evolution terms straightforward, as well as avoiding

the need of computing derivatives and speeding-up evolution. On the other hand, the

LS method provides easy management of topological changes and adaptation to solve

any dimensional problem, as well as the areas inside and outside the evolving contour

can be quickly determined3. In particular, interesting examples can be found when

trying to optimize the parameters of a LS model [2, 5], to include different terms in the

formulation [2], to use swarms of agents that refine the obtained results [136], to take

advantage of a training set of shapes to segment a difficult structure [4, 135, 173], as

well as to solve the Mumford-Shah functional [181] or to quickly initialize a LS [180].

3In fact, all papers under consideration but one are related to medical applications due to the
significance and importance the LS method has in the segmentation of biomedical images.
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The results presented in this PhD have as starting point a Multicentre Project funded by

the Compagnia di San Paolo (Torino, Italy), under the Neuroscience Programme. In that

project, we participate in an interdisciplinary consortium aimed to significantly extend

the current understanding of the complex signaling events occurring in dendritic spines

(DS)4, by integrating ‘state of the art’ computational and experimental approaches. We

proposed to dissect the function of DS by integrating high-throughput data generation

and mining, experimental validation and theoretical modeling in a coherent, unified

view.

Besides traditional statistical techniques which can be applied to real-world data

whose properties are not known or are affected by significant noise, a number of SC

techniques has also been deployed. Research results have shown that such techniques

can be particularly effective in image analysis. On this basis, we aim at developing new

recognition algorithms for brain anatomical structures, capable of automatically extract

two types of information:

1. the relative abundance of the mRNA of every gene in the main brain areas; and

2. the identity of mRNAs that are particularly enriched in dendrites, which are very

likely to be involved in DS biogenesis/functions.

4Spines are neuronal protrusions, each of which receives input typically from one excitatory synapse,
that contain neurotransmitter receptors, organelles, and signaling systems essential for synaptic function
and plasticity. Numerous brain disorders are associated with abnormal dendritic spines, and spine
formation, plasticity, and maintenance depend on synaptic activity and can be modulated by sensory
experience.
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The motivation for developing ‘intelligent’ computer vision approaches can be

found in the great interest that RNA molecules specifically enriched in the neuropil

of neuronal cells (and, in particular, in DS) have in neurobiology, in virtue of their

involvement in synaptic structure and plasticity. The systematic identification of such

molecules is therefore a very important task. In that regard, high resolution images of

RNA ISH experiments contained in the ABA represent a very rich resource to identify

them and have been so far exploited for this task based on human-expert analysis.

However, software tools that may automatically address the same objective are not very

well developed.

With this aim in mind, three different segmentation methods (that allow for the

accurate delineation of a particular anatomical region) have been designed, implemented

and tested, using the ABA as reference dataset for the development of new brain image

analysis algorithms.

The first method (section 5) uses a training set of ABA images to extract the limits

for the deformation and main modes of variation of a parametric DM, in order to

manage very simple templates that can be used as part of a fast approach to perform

genome-wide experiments. Such a method is divided into four different stages (DM

initialization, localization using DMs and metaheuristics, segmentation, and expansion

of the segmentation using ensemble classifiers), and can be seen as an intelligent manner

of localizing promising areas where a fast and well-established segmentation technique

is going to be applied. The main advantages of this approach are its execution time

and accuracy, while its main disadvantages are its ad-hoc nature (it needs a training set

of shapes and textures, as well as suitable parametric models of the object to locate),

the introduction of prior shape knowledge only in the localization step (and not in the

segmentation stage, allowing the existence of problems with very ambiguous regions),

the impossibility of managing topological changes, and the manual and tedious creation

of the templates of the object to find.

The second method (section 6) is introduced to investigate other uses of a training

set of shapes, and to try to overcome some of the disadvantages of the previous approach.

The LS method is used to allow topological changes, and the templates are created
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automatically using principal components analysis to derive texture, mean shape and

shape variability from the training set. After that, a metaheuristic is used to evolve the

segmentating contour optimizing the weights of a linear combination of the differente

eigenshapes and the mean shape, by means of an intensity- and texture-based fitness

function. This method obtained reasonably good results, but worse than the previous

approach and with a larger execution time, so it can be seen as an intermediate stage

that led us to the development of the third segmentation method.

The third method (section 7) tries to solve all the previous problems found, taking

into account the difficulty of developing a general and, at the same time, accurate method.

First of all, the LS method is used to manage possible topological changes. Secondly,

three different sources of information are taken into account (intensity, boundaries,

and shape). Thirdly, the automatic MH-based tuning procedure allows to use the same

method over different image modalities and anatomical structures, therefore making this

approach general. And finally, only a single previously segmented image is necessary

to perform the segmentation instead of, as in previous methods, a complete training

set. This is possible thanks to a deformable registration process in which the target

image is registered with an Atlas. In terms of generalization 5 and accuracy, this method

obtained the best results, but it also presents two drawbacks: it critically depends on the

underlying registration step, and it is slower than the first method with ABA images.

The following three chapters describe these methods in detail.

5Here, with ‘generalization’, we refer to the possibility of easily applying this approach to different im-
age modalities and/or anatomical structures of interest without a major and time-consuming modification
in the original pipeline.



Chapter 5

Hippocampus Segmentation in using
Active Shape Models and Random
Forests

5.1 Histological Images and Hippocampus

Among the different anatomical structures which make up the mammalian brain, the

hippocampal formation (HPF) (see Figure 5.1) is particularly interesting. From an

anatomical viewpoint, the HPF, composed by the Hippocampus and the Subiculum

(SUB), is located within the medial temporal lobe. In turn, the Hippocampus is com-

posed by the Dentate Gyrus (DG) and Ammon’s Horn (CA), which is further composed

by three different regions (CA1, CA2, and CA3).

The hippocampus has long been known for its crucial role in learning and memory

processes [189]. Moreover, it has recently been demonstrated that the volume of the

hippocampus is an early biomarker for Alzheimer’s disease. Therefore, there is a

great interest in understanding the cellular and molecular events that take place in

this structure, under both normal and abnormal conditions. From this point of view,

a precise gene expression map at the cellular and subcellular level within this region
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Figure 5.1: Regions in Hippocampal Formation (HPF)

can provide crucial information for understanding such biological mechanisms. A

very promising data source to derive this map has recently been provided by the Allen

Brain Atlas (ABA), a huge, publicly available database that contains high-resolution

images mapping the expression patterns of most genes contained in the genomes of the

analyzed organisms (see 3.2).

In this chapter, we describe a general model-based method for the automatic local-

ization of anatomical districts in histological images, which could be also applied to

other structures, as well as to different imaging modalities. In particular, we describe

an application in which such a method is used to locate the hippocampus in ISH images

from the ABA. This method allows us to automatically extract image parameters from

corresponding regions of a huge number of images, to cluster genes with similar ex-

pression patterns and subcellular mRNA distribution. It can be hypothesized that genes

whose expression is mapped in images with similar visual features are likely to be also

functionally similar.

In our method, the hippocampus is located by detecting, as landmarks, two re-

gions which are usually well distinguishable within the structure (see Figure 5.1): the

pyramidal (sp) and granule (sg) cell layers, which belong to the CA and DG regions,

respectively.

As in most medical imaging applications, the problems we have to solve are mainly

related with the characteristics of the images involved in the process. The main prob-

lematic features of these images in general, and of the hippocampus region in particular,
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related with biological features or with the image acquisition process, can be summa-

rized as follows:

• natural variability of brain structure shapes in different subjects;

• fuzziness of the hippocampus boundary;

• limited relevance of color for detecting anatomical structures: regions with similar

colors may represent different structures and vice versa, depending on the dye

used as well as on local image acquisition settings;

• contrast variability between structures: different genes are not expressed equally

in the same anatomical region, making it difficult to construct a consistent model

for each landmark in all images. Moreover, grained patterns with many irregular-

ities hamper the classification of individual pixels as belonging to the anatomical

structures under consideration;

• orientation issues: the imaged structures may be rotated or displaced on the slice

with respect to a “standard” alignment;

• lighting issues: within the same set of images, some are much brighter than

others.

• variable resolution even within the same image: high-resolution regions coexist

with low-resolution ones;

• presence of artifacts: tears, scraps, bubbles, streaks in tissues, partial cut-off of

regions;

• large image size (the typical resolution of ABA images is about 15,000 × 7,000

pixels, and the ROIs which we work with about 2,500 × 2,000 pixels).

These problems significantly hamper tasks like localization and segmentation of

structures in such images. More specifically, and from a low level point of view,

these ROIs have the following average histogram (Figure 5.2), where the darker parts

represent, among other things, the hippocampus.
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Figure 5.2: Average histogram of the images under study.

The fully-automatic 2D localization method we propose is based on atlas-based

registration and on the optimization of the parameters of a parametric deformable model.

Our method can be divided in two stages: (i) selection of the corresponding slice in the

reference atlas based on a two-step affine registration, and (ii) proper localization of

the hippocampus. We compare six real-parameter optimization techniques on the task

under consideration; in particular, we show that DE significantly outperforms the other

methods taken into consideration: Levenberg-Marquardt (LM) [190], SA, SS, GAs and

PSO. In our tests, we evaluate the localization of the hippocampus in real and synthetic

sagittal images, but this method could as well be applied to other subcortical structures,

image modalities or anatomical planes.

Despite the importance of histology, a branch of biology focused on the study

of the microscopic anatomy of cells and tissues, it is surprising to check that most

literature devoted to histological image processing and analysis is focused on registra-

tion and 3D reconstruction of the whole brain: 3D reconstruction from a sequence of

histological coronal 2D slices using a model built by non-linear transformations be-

tween the neighbouring slices [191]; image registration combining the high-frequency

components of slice-to-slice histology registration with the low-frequency compo-

nents of the histology-to-MRI registration [192]; a 2D to 3D nonlinear registration
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Figure 5.3: Hippocampus variability. Horizontal-wise: hippocampus sections taken at
different levels look different, and different genes can as well produce very different
visual features. Vertical-wise: corresponding sections from different brains maintain
some shape similarity.



Chapter 5. Hippocampus Segmentation using ASMs and RF 98

using a registration technique, based on partial differential equations, driven by a local

normalized-mutual-information similarity measure [193]; slice-by-slice segmentation

of anatomical structures where the successful segmentation of one section provides a

prior for the subsequent one [194] (they assume that the segmentation of few sparsely

sampled slices is done manually, so it is not a completely automatic method). In [195],

the segmentation is treated as a classification problem using RF and Markov Random

Fields, which refine the results at the pixel level, but the method requires previous

knowledge about the reference slice associated to that image. Therefore, one could

state that there is a lack of research about automatic segmentation of anatomical brain

structures in histological images.

5.2 DE-based hippocampus localization

Our automatic structure localization method consists of two phases:

1. Best Reference Slice Selection, implemented as a two-step affine registration

method which: (i) determines the position of the section displayed in the target

image according to a reference atlas, and (ii) extracts the region of interest (ROI)

where the hippocampus is more likely to be located. Hence, it represents the

initialization of the deformable model: it determines which template should be

used and where it should be applied.

2. Structure Localization, in which the point distribution model selected in the

previous step is adapted by a stochastic optimization procedure based on DE, to

fit the image region where the structure of interest (if any) is located.

Best Reference Slice Selection

The initialization of the Deformable Model, in terms of choosing a model and its

starting position, is obtained using an atlas-based affine registration with the reference

images of the ABA. The main idea is to find the sagittal reference slice of the atlas
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which best matches the target image. This phase produces two results: firstly, based on

the information contained in the corresponding reference atlas image, it allows one to

extract the ROI where the hippocampus is expected to be located. Secondly, it makes it

possible to determine the position, within the brain, of the section represented in the

target image. Consequently, one can select the corresponding point distribution model

of the hippocampus (derived empirically as described for the ASMs), which is to be

applied in the following step within the selected ROI.

To find the best reference slice, we use a two-step method (summarized in Figure 5.4)

that considers the similarity between the global shape of the brains and of the two

hippocampi. The only piece of a-priori knowledge we use is that the position of the

hippocampus is broadly the same in every brain and that all the hippocampi have

roughly the same shape.

Figure 5.4: Best Reference Slice Selection: Data Flow

The first step performs an affine registration between the target image and each of
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the Atlas references. Affine registration is a widely used technique for reconstructing

and matching medical images since it can usually reach a good trade-off between quality

and computational effort.

As explained before, in this stage, the intensity levels of the images are not very

useful; on the contrary, they can sometimes spoil the results of the registration because

the algorithm could try to match different anatomical parts of the brains just because they

accidentally have the same intensity level. For this reason, we ignore these differences

and do the affine registration based only on the shape of the two brains. This means

that the images involved in this registration process are not the ones downloaded from

the ABA, but the same images after a segmentation and binarization phase aimed at

obtaining an image that is white where the brain is visible (foreground) and black

elsewhere (background).

We base the affine registration only on the shape of the two brains. This means

that the images downloaded from the ABA are first segmented and binarized before

registration to obtain a binary image that is white where the brain is visible (foreground)

and black elsewhere (background).

After the global registration (in which Levenberg-Marquardt is used as optimizer),

we extract the region of the target image that falls within the coordinates of the ROI

which contains the reference hippocampus. We assume that, at this point, the hippocam-

pus of the target image is entirely or partially included in the extracted ROI, and that

SP and SG are among the brightest regions of the ROI. Then, an equalization process

is performed to reduce the differences between the images, and we start a local affine

registration process (whose optimization procedure is based on PSO), in which we

expect to match the two hippocampi.

After these two registration steps, we have two measures that represent the similarity

between the target image and each reference image:

• gk, is the squared difference1 between the binarized target and the binarization of

1The squared difference is a similarity metric calculated as follows: 1
N

∑N
i=1[S(i)−M(i))]2, where

N is the number of pixels in the scene (S) and model (M ) images.



Chapter 5. Hippocampus Segmentation using ASMs and RF 101

the kth reference brain slice;

• lk, is the squared difference between the hippocampus regions in the two images2.

The reference image that minimizes the following fitness function (see Figure 5.4)

is selected as best slice:

fk = (1− α) · gk + α · lk

where α ∈ (0, 1) is a parameter that depends on the “quality” of the extracted ROI.

A good quality ROI is an image where the anatomical parts of the hippocampus are

clearly visible. We observed that “good” images can be distinguished from “bad” ones

by simply looking at the standard deviation of the intensity levels of the image: bad

images usually have small standard deviations and vice versa. Accordingly, we set α to

be proportional to the standard deviation of the ROI. In this way images in which the

hippocampus is not clearly visible (and consequently may cause a bad local registration)

do not influence the results of slice selection.

The output of this phase consists of the region of the target image where the

hippocampus is expected to be found and the estimated position of the image within the

brain. This also indicates which are the best models to use for the localization, ranked

by similarity.

In order to evaluate the correctness of this two-step approach, we computed the

distance (in slices) between the slice selected by our system and the one suggested by

the ABA on a test set of 320 images. In 45% of cases the slice selected was exactly the

same, while in 43%, 10% and 2% of cases there was a difference of one, two, or three

or more slices, respectively. In those cases in which our system selected a reference

slice different from the one proposed by the ABA, we also compared the fitness values

obtained by the hippocampus localization algorithm. The results of these experiments

showed that there are no statistically significant differences between the two choices.

Therefore, these results demonstrate that our initialization method is effective and can

be used also in problems where no ground truth is available.
2It is fundamental to understand that, while gk is calculated using the complete brain image, lk is

calculated only taking into account the extracted ROIs.
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Hippocampus Localization

While in the standard ASMs external forces are driven by the contours in the image,

in our approach we parametrically deform the model shape to match as closely as

possible the shape of the hippocampus in the region we want to locate. The model is

moved and deformed, by altering its parametric representation using an optimization

heuristic which maximizes a function which measures the similarity between the model

and the object itself. Since, in our problem, color and shapes are greatly variable,

the only common information on which we can rely is that all hippocampi have two

substructures (sg and sp) whose shapes have more consistent features, besides being

usually characterized by lower intensity values and higher color saturation with respect

to the surrounding structures.

To enhance the contrast between sg, sp and the surrounding parts, we pre-process the

ROI containing the hippocampus by stretching its histogram. We invert pixel intensities,

to consistently use the convention by which, as for binarized images, the most relevant

regions in the image have higher intensities. These operations are not applied to the

original images of the ABA we show, to avoid altering their actual appearance.

Templates

Obviously, our main concern is to adapt a model that permits an efficient localization,

but we want, as well, to obtain this goal with the simplest possible model, i.e. having

the smallest possible number of points in each template. In this work, for every slice of

the reference atlas, two templates (one composed of 7 points for sg, one with 8 points

for sp) have been created by manually selecting significant corresponding landmarks in

all images in a training set.

A template aims at taking into account all possible positions and deformations with

respect to the prototypical shape of the structure it represents. The template we use does

not refer to the absolute positions of the points, but describes the relative positions (or

shifts) between consecutive points in polar coordinates. This is uncommon for a DM,

since the majority of the implementations use cartesian coordinates. Every template is
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composed of two parts:

• an “inner set” of points that lies on the anatomical part we want to locate;

• an “outer set” of points that lies just outside it, obtained by rigidly shifting the

previous set.

For a proper localization, the “outer set” is fundamental; otherwise, using only the

“inner set”, a completely dark and large area would always achieve the highest values

of the target function (see Figure 5.5). These sets of points are based on the follow-

ing observation: the hippocampus is always darker, if only slightly, to immediately

adjacent regions. Thus, a parametric model that seeks to maximize the difference, in

terms of intensity, between an internal/inner model (which supposedly overlaps the

hippocampus) and an external/outer model (which should be located in a more clear

region surrounding the hippocampus), can help decisively in finding the location of this

anatomical structure.

A template is fully described by four 2 × n matrices, where n is the number of

points in the template:

S =


ρm1 ϑm1

ρm2 ϑm2

...
...

ρmn ϑmn

 ∆ =


∆ρ1 ∆ϑ1

∆ρ2 ∆ϑ2

...
...

∆ρn ∆ϑn



L =


ρl1 ϑl1

ρl2 ϑl2
...

...

ρln ϑln

 U =


ρu1 ϑu1

ρu2 ϑu2

...
...

ρun ϑun


S is the “standard template” and represents the standard coordinates of the inner

set, ∆ is the displacement of the outer set with respect to the inner set, L and U are the

minimum and maximum values allowed for every parameter that describes the inner
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set. It should be noticed that ρ1 and ϑ1 represent the positions of the first point with

respect to the upper left corner of the image. After that point, proceeding row-wise,

every (ρ, ϑ) pair represents the shifts of the subsequent point in terms of distance and

angle with respect to the previous point, respectively. As a consequence, the number of

parameters to optimize for each model is twice the number of the points in the template

(14 parameters for sg and 16 for sp).

The matrices S, L and U have been computed by manually selecting the reference

points in a training set. The first one is the median of the selected shifts and the other

two are the minimum and the maximum values observed in the training set, respectively.

To improve the templates, a manual refinement of the parameters has been performed.

The matrix ∆ has been manually built based on the observation of several hippocampi.

From a computational point of view, a model is a vector of 2 × n elements that

ranges within the “boundary templates” L and U; its elements (coordinates) are evolved

by a metaheuristic which optimizes the target function described in section 5.2. The

aims with which the target function was defined are to match the model with the target

while keeping it as close as possible to the shape of the standard template S.

Target Function

As in classic deformable models, we consider the model to be subjected to external

forces (driven by the image features) and internal forces (driven by the model itself).

The target function F , which is to be maximized, has three components: external

energy E, internal energy I , and contraction factor C:

F = E − (I + C)

The external forces move (and deform) the model to maximize the intensity of

pixels in the inner set, while minimizing the intensity of pixels in the outer set. For both

sets, we evaluate the intensity of the image within a 3×3 neighborhood N3 of all points

in the model (Punctual Energy, PE) and in p intermediate points along the segment
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between two consecutive points (Continuous Energy, CE), i.e.

PE =
n∑
i=1

[T (N3(Ii))− T (N3(Oi))]

where n is the number of points in the model, Ii = {xi, yi} is the ith point of the

inner set (in cartesian coordinates), Oi = {xi + ∆xi, yi + ∆yi} is the ith point of the

outer set, T (P ) is the intensity of the image in P , if P is a point, or the average intensity,

if P is a neighborhood; ∆xi,∆yi are the elements of ∆ in cartesian coordinates. As

well,

CE =
n∑
i=2

p∑
j=1

T (Ii−1 +
j

p+ 1
(Ii − Ii−1))

−
n∑
i=2

p∑
j=1

T (Oi−1 +
j

p+ 1
(Oi −Oi−1))

where p is the number of points to evaluate in every segment. In our case we set

p = 20. The final external energy is computed as

E = γP · PE + γC · CE

where the weights γP and γC , that can be used to give more importance to the

punctual energy or to the continuous energy, have been empirically set to 5 and 1 for all

tests, respectively (see Figure 5.5).

The internal energy I , related with the forces that oppose the deformation of the

model, is computed as:

I = ξρ ·

√√√√ n∑
i=2

(ρi − ρmi)2 + ξϑ ·

√√√√ n∑
i=2

(ϑi − ϑmi)2

where ξρ and ξϑ are two positive weights that regulate the deformability of the
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Figure 5.5: Inner and outer models superimposed to a hippocampus image, showing
the components of the external energy.

model. The higher their values, the less the model deforms and the more it keeps the

shape of the standard template S. Please notice that the index i starts from 2. This way,

the first shift (which actually represents the starting position of the model) is not taken

into account and the model is independent of its position in the image.

Finally, the contraction factor C (Figure 5.6) also regulates the model’s deforma-

bility to avoid unfeasible situations (e.g. having the extremes of sg too close to each

other), and is defined as follows:

C = ξc · ‖In − I1‖

If ξc < 0 the two extremes of the model repel each other; if ξc > 0 they attract each

other. In our case we set ξc > 0 for the sp models and ξc < 0 for the sg models.
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Figure 5.6: Contraction factor tries to avoid unfeasible situations.

Experimental Results

To test the system we used both real and synthetic images. As for the former, we

randomly selected 320 images (corresponding to 320 different genes) from the ABA

within subsets of representative samples of all possible hippocampi, featuring high and

low levels of gene expression, good-quality and low-quality images, and so on. We

also created 20 synthetic images that represent simplified versions of the real ones. In

these images, representing all reference slices, the hippocampus is made up of small

circles having random radius and color; small and large ellipses were also added to

simulate cells and, finally, gaussian (µ ∈ [0.0, 0.2] and σ ∈ [0.01, 0.15]) and salt and

pepper noise (density ∈ [0.05, 0.25]) were introduced to add fuzziness to the images

(see Figure 5.7).

Tests were run on a computer equipped with a 64-bit Intel R© CoreTMi7 CPU running

at 2.67 GHz with 4 Gb of RAM.

We compared the results obtained by DE with those obtained by LM, a classic

combination of the gradient descent and the Gauss-Newton methods, and the following

stochastic optimization techniques: the previously presented variation of PSO (section

2.5); SS with local search based on the line search algorithm and the BLX-α crossover,

as described in [196]; GA and SA. In LM and SA we used, as initial value, the best
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Figure 5.7: Examples of synthetic images used in the experiments.

solution in a randomly generated set of the same size as the other methods’ populations.

The parameters (as well as the population topologies and the mutation and crossover

operators) set in the tests have been initially chosen based on the most commonly used,

and then refined during the development of the system. The values chosen for the

most relevant parameters are shown in Table 5.1. For all techniques, a limit of 20000

function evaluations has been set as the only termination criterion, and the limits for

the deformation were used as constraints in creating new solutions by crossover and

mutation.

Table 5.1: Parameters used in testing different optimization techniques.

DE PSO SS GA SA LM
Cr = 0.9 c1 = 2.05 b1 = 7 Pcrossover = 0.6 Tstart = 1.5 λ0 = 0.01
F = 0.7 c2 = 1.75 b2 = 8 Pmutation = 0.09 Tend = 1E − 9

Uniform Crossover wmax = 1.0 α = 0.5 Population Size = 80 exponential cooling
Mutation: wmin = 0.2 Iterations = 250 schedule: Tk+1 = 0.8·Tk

DE/target-to-best/1 Population Size = 80 Tournament of size 4
Population Size = 80 Iterations = 250 Uniform Crossover

Iterations = 250

For every image, we first performed the extraction of the ROI and the selection of

the best model, as described in Section 5.2. After this, for each optimization technique,

we ran 25 tests on every image, for a total of 8000 experiments on real images and 500

on synthetic images.
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Table 5.2: Comparative results of sp and sg localization for synthetic and real im-
ages (20000 function evaluations per experiment; the higher the values, the better the
localization).

Synthetic Images
sp localization

Method Average StdDev Avg. Worst Avg. Best Avg. Median Wilcoxon test
DE 120.41 5.49 106.30 126.37 121.68 -

PSO 105.86 8.67 84.86 118.61 107.71 <1.00E-16
SS 105.70 6.16 91.66 115.69 106.37 <1.00E-16
GA 105.93 15.64 54.93 120.40 110.11 <1.00E-16
SA 101.80 8.19 80.87 110.64 103.76 <1.00E-16
LM 35.43 30.86 19.96 94.24 34.11 <1.00E-16

sg localization
Method Average StdDev Avg. Worst Avg. Best Avg. Median Wilcoxon test

DE 128.91 2.92 121.18 132.99 129.49 -
PSO 118.29 5.85 105.55 127.63 119.05 <1.00E-16
SS 115.56 6.00 101.37 124.81 116.08 <1.00E-16
GA 115.03 9.67 87.86 127.20 116.49 <1.00E-16
SA 111.23 3.87 102.49 117.91 111.40 <1.00E-16
LM 64.76 19.58 33.79 103.34 61.42 <1.00E-16

Real Images
sp localization

Method Average StdDev Avg. Worst Avg. Best Avg. Median Wilcoxon test
DE 141.47 5.59 124.36 146.06 145.21 -

PSO 133.56 8.24 110.94 143.89 138.64 <1.00E-16
SS 131.06 6.04 118.54 141.66 135.81 <1.00E-16
GA 132.00 14.49 86.07 143.70 138.58 <1.00E-16
SA 131.00 3.05 123.83 137.71 134.91 <1.00E-16
LM 79.32 28.26 9.60 126.11 85.02 <1.00E-16

sg localization
Method Average StdDev Avg. Worst Avg. Best Avg. Median Wilcoxon test

DE 148.24 1.54 143.58 149.73 149.30 -
PSO 144.65 3.69 135.37 148.70 145.52 <1.00E-16
SS 140.07 4.27 129.10 146.23 140.69 <1.00E-16
GA 140.89 6.83 122.56 148.50 143.06 <1.00E-16
SA 138.31 1.70 134.60 141.51 139.28 <1.00E-16
LM 105.58 20.01 65.54 141.61 110.52 <1.00E-16
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Algorithm Comparison

Table 5.2 summarizes the results of our tests. In the upper part of the table we report

the results for the 20 synthetic images and, in the lower part, the ones related to the

320 real images. The second column reports the average fitness for all tests, while the

third reports the average standard deviation of fitness in the 25 experiments performed

on each image. The fourth and fifth columns report the average of the worst and best

results obtained for each image. Similarly, the sixth column reports the average of the

medians.

We focused our analysis on the comparison between the performance of DE and

of the other methods. DE achieved the best average fitness as well as the lowest

standard deviation, which indicates a more robust behavior, as it is able to produce

more consistent results over different trials; the performance of the other algorithms

is more dependent on their random initialization. To assess the significance of this

result, we performed a statistical test with confidence level of 0.01. We used non-

parametric tests because the assumption of normality was not met. The Kruskal-Wallis

test [197] was statistically significant in all cases (p-value < 1.00E-16) and proved the

existence of differences between the sets of results, where at least one sample median

was significantly different from the others. After that, the paired Wilcoxon signed-rank

test was performed [198], assuming as null hypothesis that the median of DE results is

less than or equal to the median of the other methods. This is a one-tailed test in which

the alternate hypothesis is that the median of any other method is less than the median

of DE. The corresponding p-values (shown in the last column of Table 5.2) reject, in

all cases, the null hypothesis, showing that significant differences exist between the

performance of DE and of the other methods. Moreover, the average worst values show

that DE avoids local minima and is able to get good results more consistently than the

other methods.

Figure 5.9 describes the behavior of the five metaheuristics and a gradient-based

local search method by plotting the average fitness value versus the number of function

evaluations. It can be seen how DE and GA start better than the other techniques but,

while the former continues to improve its performance, the latter is not able to refine
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the solution found. At the same time, the evolution of SS is more discontinuous due

to premature convergence of the reference set, followed, after each reconstruction, by

an abrupt improvement of the fitness values. The worst results were obtained by the

gradient-based local search method (LM), most probably because of the multimodality

and non-differentiability of the function to optimize, which justifies the choice of using

metaheuristics to solve this kind of problems In Figure 5.8, a visual justification of

the use of metaheuristics for segmenting the hippocampus in histological images can

be seen. Such a figure shows the highly-multimodal nature of the fitness function for

hippocampus detection [199]: even varying only two of the parameters that control the

model localization in the image, while fixing all the others, one can see that the fitness

landscape has many local optima in which a local search method could fall. Also, in

that figure one can see how higher values of the fitness function (in red) are associated

with better positions of the model in the image.

Overall System Performance

In a second test we evaluated the results of the entire localization method by dividing

the outcomes into three quality classes (see Figure 5.10):

1. Perfect Match: all points of the two models overlap the corresponding parts and

cover them almost entirely;

2. Good Localization: (i) all points of the two models belong to the regions which

must be detected, but they do not cover them entirely or (ii) at most two points

are slightly outside of them;

3. Error: all other possibilities, from three or more misplaced points to models

which are located in a completely different position of the brain.

If the results obtained by the model chosen in the Best Reference Slice Selection

phase were not good enough (using a threshold for the target function values), we

repeated the procedure using the model which ranked second in the previous phase, and

took the best result.
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Figure 5.8: Fitness landscape multimodality in the hippocampus localization problem,
and visual representation of how better values of the target function are associated
with higher fitness values and better hippocampus localizations. The outer models are
depicted in green.
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(a) sp

(b) sg

Figure 5.9: Evolution of the fitness values in localizing sp (above) and sg (below).
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Figure 5.10: Upper row: perfect matches; middle row: good results; lower row:
erroneous localizations.

Figure 5.11: Some localization results over spoiled images of hippocampi.
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Our method was able to perfectly localize the hippocampus in 58.0% of synthetic

images and in 47.8% of real images, and reached a good localization in 35% and 43.1%

of cases, respectively. This means that our method was able to localize the hippocampus

satisfactorily in 93.0% of the synthetic images (20 images and 25 runs per image) and

in 90.9% of real images (320 images and 1 run per image).

The most problematic situations that appear to drive the system to bad localizations

are substantially three:

• low quality of images (for instance, images that are damaged or have very low

contrast): this can affect the results of ROI extraction or of the Best Reference

Slice Selection phase;

• images where the hippocampus has low levels of gene expression and is sur-

rounded by other anatomical parts with higher expression levels;

• hippocampi having shapes which differ substantially from the typical cases

included in the training set.

Most of these errors could most probably be avoided by increasing the size of the

training set for the point distribution models, or improving the preprocessing phase of

the images.

On the other hand, the method we adopted shows very good performances when

dealing with corrupted images of hippocampi (see Figure 5.11).

With regard to time complexity, the localization task, implemented in C, employs on

average 2.88 seconds per image, applying the Best Reference Slice Selection process

on 10 reference slices.
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5.3 Segmentation using Iterative Otsu’s Thresholding

Method and Random Forests

Segmentation

It is well-known that one of the main problems of DM is their initialization. In this

work, the initialization, in terms of the choice of a model and its initial position, is

solved by an atlas-based affine registration using the ABA reference atlas. The main

idea, explained in the previous section, is to find the sagittal reference slice of the atlas

which best matches the target image. This phase produces two results: firstly, it makes

it possible to determine the position within the brain of the section represented in the

target image and, consequently, to choose the right model. Secondly, based on the

information contained in the corresponding reference atlas image, it allows us to extract

the Region of Interest (ROI) where the hippocampus is expected to be located. As

explained before, the parametric representation of the model is moved and deformed,

guided by a MH, according to an intensity-based similarity function between the model

and the object itself. The aim is to maximize the intensity difference between the

hippocampus and the surrounding structures while keeping feasible the shape of the

model.

The results of the localization, which represent the input to our segmentation method,

are the ROI (whose size is usually around 2.500×2.000 pixels) and the points of the

models which overlap the hippocampus. The segmentation, whose pipeline is shown in

Figure 5.12, is based on a combination of classic computer vision techniques.

1. Preprocessing: a Median Filter (with a 25×25 pixels mask) is applied to the ROI

in order to remove the noise that can affect the segmentation. The median filter in

constant time3 [200] was chosen since it offers a good trade-off between results

and complexity.
3The use of a median filter has long been hampered by its algorithmic complexity of O(r) (being r

the kernel radius). With the trend toward larger images and proportionally larger filter kernels, the need
for a more efficient median filtering algorithm becomes pressing. In [200], a new, simple yet much faster
algorithm exhibiting O(1) runtime complexity is described and analyzed.
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Figure 5.12: Segmentation pipeline. This pipeline starts from the localized image and
finishes with the hippocampus binarized.
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Figure 5.13: Iterative approach to Otsu’s thresholding method.

2. Mask Design: we create window masks around the located points, using them

as seeds. In this way, we can apply the thresholding technique at a local level,

without applying it to the whole image.

Using the located points as seeds, we can focus our interest on some image regions

excluding others. We create window masks where we apply the thresholding

technique at a local level, without applying it to the whole image.

3. Thresholding: We apply Otsu’s method [15] iteratively on every window mask

created from the seeds and, in every iteration, we keep only the largest segmented

component. Therefore, the localization process can be seen as an intelligent

technique for localizing areas where the segmentation method will be applied

(see Figure 5.13). If we applied directly Otsu’s on the ROI, or over all the masks

at the same time, the results would be clearly unsatisfactory (see Figure 5.14).

One of the main advantages of this method is that, since we are using windows and

evaluating a larger space (not only the located points), we can overcome the problem of

points lying outside the hippocampus: the points in the model are not necessarily part

of the final segmentation.

Expansion of the Segmentation

Two main problems may affect segmentation results: situations in which the located

points do not overlap with the hippocampus, and situations in which the hippocampus
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Figure 5.14: Original image (top left); result using only Otsu’s over the whole ROI
(bottom left); Otsu’s over all masks at the same time (bottom right); segmentation after
applying the proposed method (top right).
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is not completely covered by the final located model. Even if experiments on a test

set of 320 images yielded a perfect (all points over the hippocampus and covering it

completely) or good localization (the points do not cover it entirely or, at most, two

points are slightly outside it) in 90.9% of cases, we can still improve our results by

introducing a method to detect/classify which points belong to the hippocampus, in

order to extend and refine the segmentation to regions not yet included. Since we would

like to know if the point under examination belongs to the hippocampus or not, we are

talking about a classification problem.

In order to select the most adequate classifier we tried several of them: starting from

the simplest ones (like Naive Bayes, 1-Nearest Neighbour or DT) and following with

more advanced techniques (like RF, Support Vector Machines, Multi Layer Perceptrons

and Adaboost).

The training set was formed by 189 images from our database. For each image,

20 points over the hippocampus and 20 points outside the hippocampus were selected.

In total, 7560 patterns were used during the training process (employing a 5x2 cross-

validation). After training, the best models achieved were tested using 1200 patterns.

Such a test set was extracted from 30 completely different images, downloaded randomly

from the ABA, selecting, for each image, 20 points within the hippocampus and 20

points outside the hippocampus. All these patterns were encoded as a vector of 11

textural features (first order measures: mean, standard deviation, skewness, kurtosis,

entropy, coefficient of variation and energy; second order: contrast, correlation, energy

and homogeneity from the GLCM using (1,1) as spatial relationship) employing 5

window sizes (30×30, 90×90, 150×150, 210×210 and 300×300).

RF (with 500 trees and 7 variables randomly sampled as candidates at each split)

obtained better results than the other methods, achieving an accuracy and a false

positives rate of 97.75% and 1.75%, respectively. Once our classifier is trained we

can use it to extend the segmentation towards the parts that have not been taken into

consideration yet (top right of Figure 5.15). This expansion acts as a region growing

method, that first detects the intersection between the boundaries of the window masks

and the segmented region (bottom left of Figure 5.15). Then we create a new window
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Figure 5.15: Expansion of the segmentation.
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mask centered in each intersection. After that, this new window is segmented, and

several random points are selected and classified (bottom right of Figure 5.15) in the

new segmented part. If the majority of the points are classified as hippocampus, this

new segmentation is accepted. The expansion of the window mask will continue until

no further step is possible, i.e. there are no intersections between any window mask

and the segmented areas, or all new segmentations are discarded by the classifier. It is

important to notice that this refinement process is used only for including new segments

to an incomplete segmentation, and not for removing bad segments in the original

segmentation.

Synthetic Images Real Images
Segmentation Expansion Segmentation Expansion

Avg Median Std Avg Median Std Avg Median Std Avg Median Std
Results obtained using only one reference (recommended by the Atlas)

TP (%) 82.19 83.37 12.50 87.41 88.59 10.27 84.01 85.39 9.26 88.68 89.93 8.28
FP (%) 8.03 7.82 6.34 8.51 8.37 6.63 18.85 18.35 8.35 19.25 18.74 8.02

Time (sec) 5.85 5.82 0.69 8.24 7.90 3.64 13.05 13.01 3.47 16.17 15.52 7.64
Wilcoxon test p-value (TP): 9.48E-216, p-value (FP): 4.15E-135 p-value (TP): 7.90E-220, p-value (FP): 4.81E-078

Results obtained using all the references in the Atlas
TP (%) 88.38 89.17 6.31 92.11 92.38 5.13 88.57 89.33 7.30 92.25 93.46 6.98
FP (%) 11.01 10.64 5.88 11.08 10.82 6.09 22.12 22.02 9.51 22.29 21.85 9.70

Time (sec) 36.39 36.49 5.36 7.92 7.89 2.98 51.52 51.56 4.73 15.79 14.65 9.20
Wilcoxon test p-value (TP): 3.19E-033, p-value (FP): 7.42E-005 p-value (TP): 1.84E-022, p-value (FP): 2.37E-001

Table 5.3: Results of segmentation with synthetic and real images.

Experimental Results

Influence of the expansion process

In order to study the behavior of this method, tests over real and synthetic images

were run on an Intel R© CoreTM i5-2410M CPU @ 2.30GHz with 4.00 GB of RAM.

Table 5.3 reports the results obtained using synthetic and real images employing 25 runs

per image (375 independent executions). In the experiments, true positives (TP) refers

to the percentage of pixels correctly segmented and the false positives (FP) represent

the percentage of pixels that should have not been segmented.

The first two rows in Table 5.3 show statistical information about the results obtained

in terms of true positives (TP) and false positives (FP), respectively. Such statistics
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are the average on all runs, the mean of the medians computed on each image, and

the standard deviation on all runs. The third row reports the same statistics applied to

the execution time, while the last one shows the p-value obtained using the Wilcoxon

signed-rank test, with a level of confidence of 0.01, for the Null-Hypothesis “There

are no differences between the median TP/FP percentages obtained with and without

expansion”.

We firstly tested our approach on a synthetic version of the problem using 15 images,

to evaluate the performance of our system when dealing with noisy images with several

artifacts. In these images, the hippocampus is formed by small circles of random radius

and color. Small and big ellipses (between 1000 and 3000) were included trying to

simulate cells, and gaussian (mean ∈ [0.0, 0.2] and variance ∈ [0.01, 0.15]) and salt

and pepper noise (density ∈ [0.05, 0.25]) were added to introduce fuzziness into the

images.

The p-values obtained were less than the level of confidence, giving a statistical

proof that the results with the expansion were better than the ones obtained using only

segmentation, which supports the idea of introducing such a step in the segmentation

pipeline.

Regarding real images, a ground truth image was created by manually segmenting

the hippocampus in 15 significant images. In order to avoid erroneous or incomplete

manual segmentations, these were supervised by an expert in molecular biology. Every

image was manually segmented 5 times and, for each group of 5 manual segmenta-

tions, the intersection and union images were calculated. The difference between the

maximum (union) and minimum (intersection) area segmented in equally biologically

valid segmentations was computed and showed an average difference of 25.26% with a

standard deviation of 3.01%. Hence, two segmentations of the same image can differ in

around 25% of the segmented area while being both “correct”. In all these experiments,

the image considered as reference (ground truth) was the intersection of the five manual

segmentations.

As in the previous case, the best results were obtained including the expansion

phase. Although the percentage of FP may seem very high (around 20%), it is necessary
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to consider the intrinsic uncertainty mentioned in the previous paragraph and that the

ground truth used was the intersection image, that considers a smaller area as gold

standard. Furthermore, the best results were obtained giving freedom to the system to

choose the reference to use, instead of using the one indicated by the ABA, proving the

effectiveness of our method to localize the hippocampus and its ability to select the best

references and models to be used.

Comparison with other segmentation methods

A wide and representative image set was collected (see 5.16) to run experiments on the

hippocampus, and compare the segmentation performance of ASM+RF with respect to

other segmentation methods. Seven approaches, from deterministic to non-deterministic

ones, and from recent trends to classic computer vision techniques, were compared

using different standard metrics.

The methods included in the comparison were the following:

• Active Shape Models (and Iterative Otsu Thresholding Method) refined using

Random Forests (ASM+RF).

• Soft Thresholding (ST) [16]. This method, presented in 2010, is based on relating

each pixel in the image to the different regions via a membership function, rather

than through hard decisions, and such a membership function is derived from the

image histogram. As a consequence, each pixel will belong to different regions

with a different level of membership.

In a first stage, the normalized histogram of the image under study is calculated

(using the maximum grey level to bound the histogram to the interval [0, 1]).

Then, a sum of weighted known distributions is fit to the histogram, and each

probability distribution represents the probability for a pixel with a certain value

to belong to the corresponding region.

This segmentation technique has the following advantages: (1) it is totally au-

tomatic, and does not require human intervention, which makes it suitable for



Chapter 5. Hippocampus Segmentation using ASMs and RF 125

Figure 5.16: All images used in the experiments. From up to down, and from left to
right: Gad1, Camk2a, 0610010D24Rik, Gfap, Mbp, B230215L15Rik, 3830406C13Rik,
A030009H04Rik, Gapdh, 5430437P03Rik, Atp1b2, Tubb3, Azin1, 1300018I05Rik 94,
Trem1, Cd9, Wars, Slc17a7, Zim1, Atrx, 1300018I05Rik 86, Cutl2, Camk2g, Camk2b,
Wbp7, and Nmt1.
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automatic processes; (2) the hard decision is postponed to the final stage. So,

all the spatial operations are performed before taking into account the different

memberships and obtaining the thresholded image; and (3) the spatial operations

performed make the thresholding more robust to noise and artifacts.

Having been succesfully applied to CT, MRI and ultrasound, it seemed interesting

to apply it also to histological imaging, to check its performance with this image

modality.

• Otsu Thresholding Method (OTSU) [15]. This method, introduced in 1979, was

proposed from the viewpoint of discriminant analysis, and it automatically selects

an optimal threshold. Otsu’s thresholding method involves iterating through

all possible threshold values and calculating a measure of spread for the pixel

levels on each side of the threshold. The aim is to find the threshold value that

minimizes the sum of foreground and background spreads, i.e. it tries to minimize

the within-class-variance by maximizing the between-class-variance (which is

less computationally intensive to calculate).

The algorithm assumes that the image to be thresholded contains two classes

of pixels, or that its histogram is bi-modal (e.g. foreground and background),

and then calculates the optimum threshold separating those two classes so that

their combined spread (intra-class variance) is minimal. Since ASM+RF uses

Otsu in an iterative and local way, it also seemed interesting to test the proper

Otsu method directly over the whole ROI, in order to check the improvement

obtained by the ASM+RF method when including prior shape knowledge, as well

as texture information.

• Geodesic Active Contours (GAC). See 2.2 for a description of the method.

Two implementations of GAC have been tested. The first one uses as initial

contour the whole image, while the second one, called GAC+ASM, employs

the localization method of ASM+RF (i.e. an ASM using DE) to create the

initial contour of the geometric DM. Except the initial contour, all the remaining

parameters were exactly the same in both approaches.
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• Chan&Vese Level Set Model (CV). See 2.2 for a description of the method.

Also in this case, like in GAC, two implementations have been tested. The first

one uses the whole image as initial contour, and the second one employs the

localization results obtained by ASM to create the initial contour.

It is important to notice that all methods used in this experimentation, apart from

ASM+RF, and GAC and CV when using ASM to obtain the initial contour, are deter-

ministic techniques, i.e. given a particular input, they will always produce the same

output. This is not the case of the other three approaches, since stochastic methods, like

DE, are embedded in these algorithms, and can exhibit different behaviors on different

runs. Due to this, it is essential to run such algorithms several times to estimate and

compare their performances.

In order to evaluate the accuracy of all methods, tests on real images were run

on an Intel R© CoreTM i5-2410M CPU @ 2.30GHz with 4.00 GB of RAM, using

MATLAB as programming language. Table 5.5 reports the results obtained using 26

real images, employing 25 runs per image (for non-deterministic methods), for a total

of 2054 experiments. The results are organized per blocks of five rows each. Every

block corresponds to a different metric [201]: Dice Similarity Coefficient, Hausdorff

Distance, Jaccard Index, True Positive Rate, and False Positive Rate (see Appendix

II for more information). Inside every block, the average, median, standard deviation,

best value, and worst values are shown. These calculations are computed over 26 or

650 values depending on the nature of the method under consideration (deterministic or

non-deterministic, respectively).

A ground truth was created by manually segmenting the hippocampus in these 26

images. In order to avoid erroneous or incomplete manual segmentations, these were

supervised by an expert in molecular biology. Every image was manually segmented

5 times and the intersection and union images were calculated. Nevertheless, the dif-

ference between the maximum (union) and minimum (intersection) area segmented

in these (equally valid) segmentations showed an average difference of 28.44% with

a standard deviation of 5.61%. Simultaneous truth and performance level estimation
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(STAPLE) [202] was used to create a consensus ground truth, since it is considered one

of the state-of-the-art methods to create a ground truth from several manual segmenta-

tions [203].

Table 5.4: Parameters used in testing different segmentation techniques.

ST OTSU ASM+RF CV GAC
L = 2 regions No params. Cr = 0.9 num. iter. = 500 num. iter. = 500

Relative max norm. F = 0.7 µ = 0.1 (length term) β = -1
Uniform Crossover ν = 0 (area term) (expansion weight)
DE/target-to-best/1 λ1 = λ2 α = 3

Population Size = 80 (contour weight)
Iterations = 250

Median Filter [25×25]
RF with 500 trees

A post-processing phase was applied to remove isolated pixels: a median filtering

(15x15), only in the case of ST and Otsu, and the removal of connected components with

less than 5000 pixels in all methods, except ASM+RF. The manually tuned parameters

used on each method are shown in Table 5.4. For GAC, CV, GAC+ASM and CV+ASM,

a median filtering (10x10) was applied during pre-processing in order to regularize the

surface of the image.

The test set is composed of 26 representative genes downloaded from the ABA

database (see Figure 5.16). In particular, the images downloaded, and used for

the comparative study, were the ones associated with the following gene symbols:

Wbp7, 1300018I05Rik 86, 0610010D24Rik, 1300018I05Rik 94, 5430437P03Rik,

Atrx, B230215L15Rik, Nmt1, Wars, Tubb3, Trem1, 3830406C13Rik, A030009H04Rik,

Atp1b2, Azin1, Camk2a, Camk2b, Camk2g, Cd9, Cutl2, Gad1, Gapdh, Gfap, Mbp,

Slc17a7, and Zim1.

In order to check the statistical significance of the results obtained, a Kruskal-

Wallis test was performed with a level of confidence of 0.01. Since the normality

and homoscedasticity assumptions were not accomplished, as checked through the

application of Kolmogorov-Smirnov and Bartlett’s tests, non-parametric tests were

used. The p-value is near zero, suggesting that at least one sample median is significantly

different from the others.

Some conclusions can be extracted from the numerical data in Table 5.5 and from
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Table 5.5: Segmentation Results using 5 different metrics: Dice Similarity Coefficient
(DSC), Jaccard Index (JI), Hausdorff Distance (HD), True Positives (TP), and False
Positives (FP). The best results for every metric are shown in bold letters.

Methods
OTSU ST CV CV+ASM GAC GAC+ASM ASM+RF

DSC

Average 0.5755 0.6798 0.6164 0.6488 0.6373 0.7469 0.8882
Median 0.5788 0.7505 0.6906 0.7577 0.6985 0.7971 0.8975

Std 0.1820 0.2276 0.2432 0.2052 0.2723 0.1993 0.0347
Best 0.8341 0.9084 0.9120 0.8909 0.9189 0.9198 0.9350

Worst 0.2868 0.0687 0.2183 0.2358 0.0000 0.0214 0.7422

JI

Average 0.4263 0.5531 0.4869 0.5121 0.5205 0.6283 0.8006
Median 0.4090 0.6007 0.5274 0.6099 0.5367 0.6626 0.8141

Std 0.1823 0.2330 0.2465 0.2117 0.2782 0.2080 0.0541
Best 0.7154 0.8321 0.8382 0.8033 0.8500 0.8514 0.8779

Worst 0.1674 0.0356 0.1225 0.1336 0.0000 0.0108 0.5901

HD

Average 936.2499 660.4281 566.7963 397.8478 543.2649 247.6652 110.8424
Median 988.7435 723.4520 602.9961 378.8250 565.7718 212.2499 93.9415

Std 220.5734 354.8354 340.3507 253.4867 392.5249 174.1109 47.6210
Best 506.7790 57.0088 33.5410 40 67.0820 30 44.7214

Worst 1.3837e+003 1.3911e+003 1.1942e+003 1.0330e+003 1.3067e+003 721.9591 296.0152

TP

Average 89.4691 80.0974 95.6464 97.2764 85.1330 82.4358 87.3440
Median 95.4543 90.2218 98.5369 99.2808 97.4342 95.2620 87.7858

Std 15.5791 23.5970 9.0898 6.8649 25.9801 25.5602 4.6220
Best 99.9584 99.9659 100 100 99.9364 99.9364 94.9942

Worst 35.8155 5.7835 64.1182 64.1182 0.0000 1.3607 60.5404

FP

Average 54.7366 34.2408 50.3108 47.9808 41.3426 28.1579 9.2846
Median 58.7041 26.9258 46.5393 38.9488 27.4716 22.1582 7.8321

Std 19.3433 26.0209 25.0742 21.5470 30.7668 19.4360 5.5229
Best 25.6864 1.5257 11.6259 16.0377 7.8152 3.6460 3.0877

Worst 81.2674 91.5339 87.7290 86.5843 100 95.0183 32.4049

Figure 5.17: Box-plot representing the DSC for all methods. The best results are
obtained by ASM+RF.
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Figure 5.18: Results for some images (from up to down: Zim1, Gfap, Camk2a, and
Atp1b2). The order of methods is (from left to right): OTSU, ST, CV, CV+ASM, GAC,
GAC+ASM and ASM+RF. True Positives are represented in white, False Positives in
green and False Negatives in red.

some of the representative results included in Figure 5.18. The first conclusion could be

the difficulty of tackling satisfactorily these images, since established and well-known

segmentation methods, like CV and GAC, did not obtain as good results as one could

expect. In particular, GAC presents problems with images that have small variations

of their gradient values, i.e. when the difference, in terms of intensity, between the

hippocampus and the background is low.

According to Table 5.5, the best results were obtained by ASM+RF, being the best

in all metrics but in TP rate, where CV, CV+ASM and Otsu achieved better results. This

is explained by the tendency of these three methods to oversegment the images and,

therefore, to segment the hippocampus and many other regions in the image. In general

terms, the best methods to segment these images have been ASM+RF, CV+ASM,

GAC+ASM, and ST.

From the values of HD interesting conclusions can also be drawn. This metric

represents the largest of all the distances from a point in one set (the ground truth) to the

closest point in the other set (the result of the automatic segmentation). It is interesting
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to check how ST has a higher (worst) HD with respect to CV, even if it obtained better

DSC results than the latter. This could be justified by the absence in the former of

any kind of shape restrictions or regularization terms, that makes that the pixels are

segmented only taken into account their grey level values.

On the other hand, Otsu and ST are the fastest methods since they work only, and

directly, on the histogram. The difference in performance between Otsu and ASM+RF

demonstrate the great improvement obtained with the introduction of prior knowledge.

Geometric DMs have shown a good ability of changing topology and evolving

naturally the contour, but on the other hand, they are very sensitive to initialization, pre-

processing stages4, and parameter selection. GAC and CV suffer with bad initializations

(the use of a better initial contour favors a fast convergence to the contour and better

results), but this affects specially to GAC (as can be cheked in the improvement obtained

when using the localization method based on ASM). If the initial contour is located

partially inside and outside of the structure of interest (as sometimes happens due to a

bad localization), only the boundaries will be segmented and not the internal part of the

hippocampus, because the high gradient values are located on the boundary and not in

the internal part of the structure.

Regarding both geometric approaches (CV and GAC, with and without localization

stage), the results would improve in great manner if statistical shape priors for level

sets were used (thickness, length, statistical information about the image to segment,...).

The only piece of prior knowledge that GAC and CV are using now is the existence of

high gradient values in the boundary of the objects to segment, and the prior knowledge

included in the parameter selection (weighting the different components of the energy).

Another aspect to take into account is that, sometimes, the inner part of sg is completely

segmented without separating the two extremes of this region. This owes to the fact that

the regularization factor does not allow the evolving contour to “pass” through small

narrow regions and, therefore, it fills completely the empty space of sg. Furthermore,

4A brief example to show the influence of the type of pre-processing applied. If the size of the median
filter were 20x20 instead of 10x10 the results would get worse for CV (DSC Mean: 0.586159 — DSC
Median: 0.639210 — DSC Std: 0.256346) and they would improve for GAC (DSC Mean: 0.668008 —
DSC Median: 0.841995 — DSC Std: 0.344408)
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the problem with GAC and CV in noisy images is that, if the images are smoothed too

much, it will be impossible for the method to stop at the gradients, but if they are not

smoothed, the noise would provoke the segmentation of many noisy parts in the image.

As previously said, ASM+RF obtained the best results, but it is fair to underline its

ad-hoc nature. It needs a training set of shapes to create the template and its possible

deformations, and it also needs a training set of textural patterns for the expansion

phase. Also it is not able to manage topological changes in a natural way, as geometric

DMs can do. So, it is a very accurate method but it sacrifices its general applicability to

segment other shapes.

5.4 Real-world application

The image analysis pipeline described in previous sections was tested in a real-world

application for the identification of synapse-enriched RNAs from brain ISH data. Such

application, developed in collaboration with the Molecular Biotechnology Center of

Torino (www.mbcunito.it), after bioinformatics validation, showed to be very

effective in the identification of RNAs that are known to be enriched in spines and to

play a role in synaptic function and potentiation. In addition, experts from the same

research center experimentally validated the approach by identifying two non-coding

transcripts enriched in mouse synaptosomes.

The DM control points were used to locate different areas of interest within the

hippocampus containing both cell bodies and neuropil. They were approximately

centered on the region of maximum curvature of the CA1 region and of the CA3 region

in the Stratum Pyramidale (sp) of the Ammon’s horn (AH), and in the medial half of

the Stratum Granulosum (sg) for what concerns the dentate gyrus (DG) (see Figure

5.19). Afterwards, such areas were segmented using the approach previously explained

(see Section 5.3).

After segmenting the different regions, 220 textural features of first and second

order (using GLCM) were extracted by each region. The size of the windows for each

www.mbcunito.it
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Figure 5.19: Graphical illustration of the localization and segmentation steps. (A)
The deformable model of the Ammon’s horn (AH) and of the dentate gyrus (DG) are
represented by a yellow line connecting red stars and by a red line connecting yellow
stars, respectively. Selection of the regions of interest is represented by green boxes.
(B) The different regions of interest are explicitly indicated.

region, as well as the textural features used, are reported in Table 5.6. After that, a

small dataset composed of 20 genes was used to train the system. The idea was to

select a feature subset able both to represent well the dendrite-enriched mRNAs and to

successfully distinguish them from negative examples. To do so, we used as positive

examples (prototypes) three genes which are well known for the dendrite and spine

enrichment of their mRNA, namely Camk2a (ID=12322), Map2 (ID=17756) and Arc

(ID=11838). 17 genes were selected as negative examples with different characteristics:

• Three genes whose mRNA is specifically expressed in neurons but is not trans-

ported in dendrites: CaMKIIb (ID=12323), Tubb3 (ID=22152) and Grin1 (ID=14810);

• Three ubiquitous metabolic enzymes whose mRNA is strongly expressed in

neurons but is not transported in dendrites: Gapdh (ID=14433), Pgk1 (ID=18655)

and Pfkm (ID=18642);

• Two genes expressed in glial cells, particularly in astrocytes: Gfap (ID=14580)

and Slc1A2 (ID=20511);
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• Three genes genes expressed in oligodendrocytes: Mag (ID=17136), Mog (ID=17441)

and Mbp (ID=17196);

• Two genes expressed in GABA-ergic interneurons: Gad1 (ID=14415) and Slc6A1

(ID=232333);

• Three genes expressed in glutamatergic neurons: Slc1A1 (ID=20510), Slc1A3

(ID=20512) and Slc17A7 (ID=72961);

• A gene producing a non-coding RNA localized in the nucleus: Sox2OT (320478).

The images chosen for the above genes were reviewed by an expert, that confirmed

the correspondence of the expected expression pattern with the pattern revealed by the

ABA in situ hybridizations. Features that, in this small dataset, showed a very high

correlation between each other (> 0.99) were considered as being the same, and one

of them was removed. After this, a binary GA (population size 50, 300 generations,

crossover rate 0.8, mutation rate 0.06, tournament selection with size 4) was used.

Every subset of features was encoded in an individual of the genetic algorithm, and

the silhouette index [204] was used to evaluate its goodness. This index is computed

using the selected subset of features and considering the positive examples in one group

and the negative examples in another. The silhouette index is a measure of an object’s

similarity to the others of the same group and dissimilarity from the elements in the

other groups.

Since a GA is a stochastic MH, which may produce different solutions each time it

runs, this procedure was repeated 15 times and the features selected in at least 50% of

the runs were chosen. This led us to select a subset of 52 features (see Table 5.7), which

were used to process all genes in the ABA and compute the Pearson coefficient between

their feature vector and the prototype one, generated by averaging the features of three

prototype genes. The results using the 220 features were 0.5066, 0.4302, 0.8150, while

using only the selected features were 0.8610, 0.8796, 0.9441; proving the ability of the

proposed feature-selection method to facilitate the detection of correlations between

genes. It is important to underscore that this pipeline has general applicability and
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would be able to rank genes according to their similarity to any kind of features, only

by providing it with a training set including positive and negative examples.

This pipeline was used to scan the sagittal images contained in the ABA and detect

similarities with the texture vectors of the prototype neuropil-enriched genes that we

used for training, i.e. Camk2a, Arc and Map2. To avoid scoring genes expressed

at negligible levels in adult mouse hippocampus, we only considered image series

in which the expression level or the expression density reported for the hippocampal

region of for the hippocampal formation was above 20, a background level determined

on the basis of cell cycle genes which are known to be silent in brain after the end

of development. For all the remaining genes (more than 9000), we selected para-

sagittal sections corresponding to levels from 117 to 175 of the ABA reference atlas.

In particular, we selected as default the level 145, which we consider as ‘center’ of

the hemisphere, and moved towards the two boundaries if we were not able to get

results with the selected slice. For each section we identified the different hippocampal

regions and determined the values for the corresponding texture parameters, obtaining

vectors of texture features. We then calculated the Pearson correlation coefficients of

these vectors with a prototype, or reference vector, obtained by averaging the vectors

of the prototype genes. Importantly, vectors obtained from sections corresponding to

slightly different levels were very similar. In particular genes showing a high Pearson

correlation coefficient, that provides a measure of the strength of linear association

between two variables, with the prototype vector displayed a very stable behavior (some

examples are shown in Figure 5.20).

Finally, coding, non-coding and ambiguous transcripts, as defined on the basis

of the ABA annotation, were ranked by decreasing Pearson correlation coefficient.

To evaluate the effectiveness of the ranking procedure, we first analyzed the 20 top

scoring probes and, as expected, a Gene Ontology analysis performed with the DAVID

software [205] revealed that the most significant common keyword associated to the

corresponding genes is “dendrite” (p-value = 0.004). In particular, a manual inspection

revealed that this list contains some of the best known examples of transcripts localized

to dendrites and/or associated with dendritic functions: Dendrin (Dnd), Psd (also known
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Figure 5.20: Boxplot of the correlation values of the feature vectors obtained from 6
slices of 8 randomly selected genes, as compared to the prototype vector. Note the very
stable behavior of genes characterized by a high Pearson coefficient.

as Efa6a), microtubule-associated protein 2 (Mtpa2), Git1 and Spinophilin (Ppp1r9b).

Accordingly, visual inspection of the corresponding ABA images confirmed a significant

signal enrichment in neuropil for many of the probes, as is the case for the Rnf10 gene

(Figure 5.21).

Table 5.6: Complete set of features used for the texture analysis. “Energy2” stands for
second order feature Energy.

CA1a CA1b CA1c CA1d CA3a CA3b CA3c CA3d DGa DGb DGc DGd DGe
18,36 24 24 14,28 18,36 24 24 14,28 18,36 24 24 14,28 18,36

First Order Mean, Standard Deviation, Coefficient of Variation, Skewness, Kurtosis, Energy, Entropy
Second Order Contrast, Correlation, Energy2, Homogeneity

5.5 Conclusions

In this chapter, we have presented a three-step algorithm, or four-step if segmentation

and refinement are considered separately, aimed at automatically segmenting the hip-

pocampus in histological images. The first phase, described in section 5.2, roughly
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Figure 5.21: In situ hybridization pattern of the indicated protein-coding genes, obtained
from the ABA.

Table 5.7: Features used to perform the ranking procedure. The number in brackets
represents the size of the window on which the feature was calculated, when more than
one window size was used for the region under consideration.

CA1 C Mean CA1 C StdDev CA1 C Skewness CA1 C Kurtosis
CA1 C Energy CA1 C Contrast CA1 C Correlation CA1 C Energy2

CA1 C Homogeneity CA1 B Mean CA1 B Skewness CA1 B Kurtosis
CA1 B Energy CA1 B Contrast CA1 B Correlation CA1 B Energy2

CA1 B Homogeneity CA1 D Mean CA1 D StdDev CA1 D Entropy (14)
CA1 D Contrast (14) CA1 D Energy2 (14) CA1 D Homogeneity (14) CA1 D Energy (28)
CA1 D Contrast (28) CA1 D Homogeneity (28) CA1 A Mean (18) CA1 A Energy (18)
CA1 A Entropy (18) CA1 A Correlation (18) CA1 A Energy2 (18) CA1 A Homogeneity (18)
CA1 A StdDev (36) CA1 A Energy (36) CA1 A Entropy (36) CA1 A Correlation (36)
CA1 A Energy2 (36) CA3 B StdDev CA3 B Contrast CA3 B Homogeneity
CA3 D Energy2 (28) CA3 A Correlation (18) DG C Kurtosis DG B StdDev

DG B cv DG B Entropy DG B Contrast DG B Correlation
DG E Mean (18) DG E Mean (36) DG A Correlation (18) DG A Correlation (36)
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locates the anatomical structure by comparing the image under consideration with

images taken from the ABA reference atlas. In the second phase, the structure is more

precisely localized using a DE-based parametric deformable model that adapts its shape

to match the anatomical structure of interest. The method is able to deal with imprecise

and incomplete images, and, in our tests on actual images from the ABA, has been

successful in 90.9% of cases. Finally, in the third stage, the hippocampus is segmented

from the located points using Otsu’s thresholding method and the segmentation is

refined by means of RFs.

Since classic gradient-based local search methods (like LM) are not able to solve this

problem satisfactorily, due to its multimodality and high dimensionality, we have applied

and studied different metaheuristics: DE, SA, GA, PSO, and SS. DE achieved the best

results, as concerns both average and standard deviation. This result can be explained by

a better balance between exploration/diversification and exploitation/intensification and

upholds the results obtained in other cases by DE on benchmarks containing multimodal

non-separable functions [98]. Moreover, DE has shown greater robustness: it is able to

reproduce good results more consistently over many trials, whereas the performance

of other algorithms, like GA or SS, is more dependent on the stochastic initialization

of individuals and parameters. DE is also, together with GA, the metaheuristic that

converges faster to good solutions.

The segmenting method, together with the refinement approach, was applied to

real and synthetic images, obtaining an average accuracy of 92.25% in the first case,

and 92.11% in the second one. For achieving this goal, the method only needs an

anatomical atlas and a parametric model, associated to the atlas, representing the

structure of interest. It automatically selects the most suitable reference slice, localizes

the hippocampus using a parametric deformable model, and segments this anatomical

structure using an iterative version of Otsu’s thresholding method. For the expansion of

the segmentation, when the localization was not perfect, an ensemble classifier (Random

Forest) has been used. The use of the expansion increases the TP rate, keeping almost

constant the FP percentage and the standard deviation. Therefore, the segmentation

with expansion is a better method for tackling these images.
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Figure 5.22: General overview of the gene-ranking method developed for the visual
search of neuropil-enriched RNAs from brain ISH data.

Also, seven approaches, from deterministic to non-deterministic ones, and from

recent trends to classic computer vision techniques, have been compared using different

standard metrics (Dice Similariry Coefficient, Jaccard Index, Hausdorff Distance, True

Positive Rate and False Positive Rate). Proper statistical tests have been performed to

draw accurate conclusions about the results, and the best performance was obtained by

our proposal (yielding an average Dice Similarity Coefficient of 0.89 with a standard

deviation of 0.03).

Finally, a bioinformatics problem, whose aim was to find genes having features

similar to those of a paradigmatic subset of genes, was effectively solved using this

segmentation pipeline, feature selection using GA, and textural features ranking from

ISH images using Pearson coefficient. Figures 5.23 and 5.22 give a general overview of

the segmentation and clustering pipelines presented in this chapter, respectively.

In conclusion, the localization/segmentation method presented in this chapter is

divided into four different stages (DM initialization, localization using DMs and meta-

heuristics, segmentation, and expansion of the segmentation using ensemble classifiers),

and can be seen as an intelligent manner of localizing promising areas where a fast and

well-established segmentation technique is going to be applied. The main advantages of

this approach are its execution time and accuracy, while its main disadvantages are its

ad-hoc nature (it needs a training set of shapes/textures, as well as suitable parametric

models of the object to locate), the introduction of prior shape knowledge only in the

localization step (and not in the segmentation stage, allowing the existence of problems

with very ambiguous regions), the impossibility of managing easily topological changes,

and the manual and tedious creation of the templates of the object to find.
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Figure 5.23: Complete pipeline of the segmentation approach including localization
using ASMs and metaheuristics, segmentation using Otsu’s thresholding method, and
refinement by means of Ensemble Classifiers.



Chapter 6

Hippocampus Segmentation in
Histological Images using a
Metaheuristic-based Level Set
Approach

6.1 Previous Approach

The procedure based on Active Shape Models and Random Forests (ASM+RF) [123,

152], as introduced in the previous chapter to accurately segment ABA images, obtained

very promising results in comparison with many other segmentation techniques [180]

but, despite its good performance, some drawbacks were also highlighted:

• impossibility to deal with topological changes in a natural manner;

• ad hoc nature, since the procedure needs a training set of shapes to manually

create the parametric template and its possible deformations, as well as a training

set of textural patterns for the ensemble classifier used to refine the results of the

segmentation; and

141
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• long and complex pipeline of four independent stages (initialization of the de-

formable model, localization of the anatomical structure of interest, segmentation,

and refinement of the segmentation using classifiers). Therefore, a more inte-

grated and compact approach would be desiderable.

The main idea now was to overcome some of these problems using another kind of

deformable model (the LS method) that can: a) easily handle topological changes of

the contours, b) be adapted to solve large dimensional problems without great effort,

and c) easily determine the areas inside and outside an active contour.

The work developed is based on the one by Ghosh et al in [4, 135] which, in turn,

was inspired by [206]. It is important to underline that this research represents one of

the very few cases in which metaheuristics have been used to optimize a geometric

deformable model, let alone their application to histological images, and that the current

work also presents significant differences with respect to the papers mentioned above,

such as:

• an intensity-based term from Chan and Vese’s approach [45] has been included

in the fitness function, trying to combine a region-based approach with prior

knowledge about texture and shape;

• in order to adapt this approach to the particular nature of histological images,

the textural part has also been critically modified: we do not use Laws’ textural

measures or Gabor wavelet transform-based features, like in the original paper,

but textural features extracted from the Gray Level Co-occurrence Matrix, as

explained in chapter 5.3;

• in relation to the genetic operators used, the single-point crossover used in [4]

has been replaced by a real-coded one like the BLX-α, due to the nature of the

GA chromosomes; and

• the comparison has been extended to Particle Swarm Optimization (PSO) and

Differential Evolution (DE), which makes this approach one of the few examples

of application of these two stochastic techniques to geometric deformable models,
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and the approach has been tested on histological images (instead of usual MRI

and CT).

6.2 Proposed Method

As explained before, the work developed in this chapter essentially adapts the ideas

introduced by Ghosh and Mitchell in [4] to the segmentation of the hippocampus in

histological images. Such an adaptation solves some of the problems of the original

method and takes into account the specificities of the case under study.

On the one hand, we introduce a real-valued crossover operator conforming to

the nature of our chromosomes (see Section 2.5). On the other hand, we use textural

features that differ from the ones use in [4], since we have shown that the Gray-level

Co-occurrence Matrix provide very good results with the same image modality [152].

Finally, the structure orientation (pose) is not taken into account during optimization

because it increases the temporal and computational cost of optimization, adding a

burden that is not justified by the results obtained.

The method consists of two phases: training and proper segmentation (see Figure

6.1). In the first one, from a set of manually segmented training images we compute

the average shape, the main modes of variation, and the median texture, trying to

characterize an “ideal” hippocampus. An implicit representation of the segmenting

curve is created by applying the principal component analysis to a collection of signed

distance representations of the training data. During segmentation, the MH searches the

best weights to linearly combine the mean shape and shape variabilities, and the texture

enclosed by the evolving contour is compared with the “representative” texture.
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Figure 6.1: General Overview of the Hippocampus Segmentation System

Training Phase

Shape

First of all, the shape priors are derived from the training set. To do so, each contour

from the training data is represented as the zero LS of the signed distance function

ψi(x, y) =


−d(x, y) if (x, y) ∈ insideEvolvingContour

0 if (x, y) ∈ EvolvingContour

d(x, y) if (x, y) ∈ outsideEvolvingContour

where i = 1 . . . n, (x,y) are the pixel coordinates, n is the number of training

contours used to assess shape variability, and d(x, y) is the eucliden distance from the

(x, y) point to the closest point in the evolving contour. The signed distance function is

the shape representation: the boundaries of each shape are embedded as the zero LS of

a signed distance function with negative distances assigned to the inside and positive

distances assigned to the outside of the object.

The mean LS function is defined as:

Φ(x, y) = 1
n

∑n
i=1 ψi(x, y)

Mean offset functions are then derived by subtracting the mean from the signed
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distance representations of the training contours:

ψ̃i = ψi − Φ

Assume that the images are of size N = N1 × N2. Given the huge size of the

images under consideration, all images have been resized to N1 × N2 = 500 × 500

pixels. The columns of the mean offset functions (|N | = N1 × N2) are then serially

stacked to form one column vector βi of size 1×N . The shape variability matrix S (of

size N × n) is obtained from these n column vectors:

S = [β1, β2, β3, . . . , βn]

The shape variance is then computed by an eigenvalue decomposition on this shape

variability matrix:
1
n
SST = UΣUT

where U is an N × n matrix whose columns represent n orthogonal modes of

shape variation, Σ is an n × n diagonal matrix of eigenvalues, and the columns of

U = [ui] are the corresponding eigenvectors. In this paper, instead of computing

the eigenvectors of such a large matrix, we have considered the smaller one, 1
n
STS,

because it is more computationally efficient [207] to obtain the n different eigenshapes

{Φ1,Φ2,Φ3, . . . ,Φn}.

After this procedure, introduced in [206], the mean shape and shape variability

derived as described are used to define a LS function that implicitly represents the

segmenting curve:

Φ[w] = Φ +
∑k

i=1wjΦj

Thus, the task of the metaheuristic will be to find the values of w that minimize a

fitness function to be defined in the test phase.

Texture

The textural priors used here are the same described in chapter 5.3, which yielded very

good performance. The training patterns, as well as the test values calculated during
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the segmentation, were encoded as a vector of 11 textural features:

• first order measures: mean, standard deviation, skewness, kurtosis, entropy,

coefficient of variation and energy;

• second order measures: contrast, correlation, energy and homogeneity from

the GLCM, using (1,1) as spatial relationship (i.e. θ = 315◦ and d=1 pixel),

employing a window of size 30×30 pixels.

The main idea is to capture the textural essence of the hippocampus and compare,

during the segmentation phase, the texture enclosed by the evolving surface of our DM

with the “ideal” texture of the training set. To create this median texture, p points per

image in the training set were randomly selected inside the hippocampus, and t textural

patterns were extracted using those points as pixels of interest. This procedure creates a

(t · p)×n matrix, n being the number of training images, and t · p the number of textural

features multiplied by the number of selected points. In this case, t = 11 and p = 100.

From this matrix, the median is calculated to obtain a “general representation” of the

texture in the hippocampus: all points which are closer to these values are assumed to

belong to the hippocampus.

Test Phase

The test phase corresponds with the actual segmentation of the object of interest. The

implicit representation of the contour is deformed guided by a metaheuristic which tries

to fit the boundaries of the hippocampus. To do so, such a metaheuristic stochastically

generates weights to combine the mean and the variability to create new shapes.

The fitness function combines region- and texture-based terms. The former repre-

sents the CV model [45], while the latter is the euclidean distance between the texture

enclosed by our contour and the median texture found in our training set.

The energy functional to minimize is the following:

F (i1, i2, C) = α · (µ · Length(C) + ν · Area(inside(C))
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+λ1

∫
inside(C)

|u0(x, y)− i1|2dxdy
+λ2

∫
outside(C)

|u0(x, y)− i2|2dxdy)

+β · (d(t(C), T ))

where u0 is the image to segment, formed by two regions (internal and external), C

is the evolving curve, i1 and i2 are constants depending on C (pixel intensity averages of

u0 inside and outside C, respectively), and d(t(C), T ) the euclidean distance between

the median texture extracted from the training set (T ) and the actual texture enclosed

by the evolving contour (t(C)). Using this functional, our model simultaneously takes

into account intensity and texture criteria. In this case, both terms have been weighted

equally (α = β = 1).

Finally, a fast refinement step is applied. This refinement sequentially applies 50

iterations of a local implementation of the CV algorithm [208], that takes into account

only a neighbourhood of the boundary, and the removal of connected components

whose area is smaller than a threshold (in this case 500 pixels).

6.3 Experimental Results

To check the performance of the new method, 25 and 10 manually segmented images

were used as training and test set, respectively. The 10 images selected as test are

representative of the problem and include different scenarios (see Figure 6.2). Every

segmentation method was run 15 times per image (excluding CV and GAC because they

are deterministic methods and always produce the same result). The performance of GA

(LS-GA), PSO (LS-PSO) and DE (LS-DE) was compared with the one obtained by two

classic geometric DMs: a region-based method (CV) and an edge-based one (GAC).

With respect to the population and the number of iterations used in the metaheuristic,

the same configuration as the original paper was used (50 individuals, 100 iterations),

and the images were resized to 500× 500 pixels.

In particular, we have used the PSO version described in chapter 2.5, where the

inertia factor w adapts its value to the fitness function of each particle and a particle is



Chapter 6. Hippocampus Segmentation using a MH-based LS Approach 148

Figure 6.2: Test set used in experiments and boxplots of the Dice Similarity Coefficient
results obtained per image by the stochastic methods under study. Each plot refers to
the image having the corresponding position in the upper row.
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re-initialized in case of stagnation.

Standard segmentation metrics, like the Jaccard similarity index (JI), the Dice

similarity coefficient (DSC), and the Hausdorff distance (HD), were used to evaluate

performance, and the results were analyzed using proper statistical tests. See Appen-

dices for more information.

In order to perform a fair comparison with the deterministic/classic methods, the

latter have been intensively tuned using an exhaustive search among the most commonly

used parameter values over the complete dataset (training and test sets). Also, for these

two methods, the input images were pre-processed using a median filter (5 × 5 in

CV and 10× 10 in GAC) while, as a post-processing stage, the removal of connected

components smaller than 500 pixels was also applied.

Since the normality and homoscedasticity assumptions were not satisfied, as checked

through the application of Kolmogorov-Smirnov and Bartlett’s tests, non-parametric

tests were used. To check the statistical significance of the results obtained, a Friedman

test was performed with a level of confidence of 0.01 for the null hypothesis that all

samples are drawn from distributions with the same median. Since the p-value was

near zero, the statistical test suggested that at least one sample median is significantly

different from the others. Pairwise statistical differences were studied using Friedman

test with the Tukey-Kramer correction, and real-coded GA was found to be the best

method among the ones in the comparison.

Some conclusions can be derived from the numerical data in Table 6.2 and the

visual information contained in Figure 6.3. The first conclusion could be the difficulty

of tackling these images satisfactorily, since established and well-known segmentation

methods, like CV and GAC, did not obtain as good results as one could expect. In

particular, GAC presents problems when the difference, in terms of gradient values,

between the hippocampus and the background is small. In fact, between the two classic

methods, the region-based approach (CV) obtained better results than the one relying on

edge information. This can be justified by the fuzzy boundaries of the hippocampus that

may have hampered the performance of GAC. Also, the dissatisfactory results obtained

by CV can be explained by the complex background of these images, since it is well-
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known that the performance of CV is better when dealing with images where foreground

and background determine two regions with clearly different average intensity levels.

Considering the stochastic approaches, the best results were obtained by LS-GA,

which appeared to be the best in all metrics. RCGA obtained the best results in all

images but in one, while the worst results were obtained by DE. This might be quite

surprising if one considers the results reported in the previous chapters. Nevertheless,

this is only a preliminary study, so the convergence problems of DE and PSO with

some images should be investigated more deeply. For example, the PSO topology

used here has been the global best; tests with other topologies should be performed

to check if there is some improvement in the results. Also, in the case of DE, tests

with other crossover operators could be run to study the influence of this factor in the

general performance of the segmentation algorithm. Finally, experiments with a larger

population size or a larger number of iterations should be tested, considering the huge

search space these techniques have to explore.

From the values of HD, interesting conclusions can also be drawn. It is interesting

to check how our shape-based approach has a smaller (best) average and median HD

with respect to CV and GAC. This could be justified by the absence in the latter of any

kind of shape restriction, that impose that the pixels are segmented only taking into

account intensity and boundary information, respectively.

Table 6.1: Parameters used in testing the different algorithms. The values for LS-GA, LS-DE
and LS-PSO were based on the literature and on a brief empirical study about the suitability
of different combinations of parameters.

LS-DE LS-PSO LS-GA CV GAC
Cr = 0.9 wmin = 0.2 Cr = 0.9 number of iterations = 500 number of iterations = 500
F = 0.7 wmax = 1.0 BLX − 0.3 µ = 0.01 (length term) β = -1 (expansion weight)

Uniform Crossover c1 = 2.05 Mut = 0.09 ν = 0 (area term) α = 3 (contour weight)
DE/target-to-best/1 c2 = 1.75 Tournament(4) λ1 = λ2 = 1
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Table 6.2: Segmentation results using three different metrics: Dice Similarity Coefficient
(DSC), Jaccard Index (JI), and Hausdorff Distance (HD).

Methods
LS-GA LS-DE LS-PSO CV GAC

DSC

Average 0.7204 0.4145 0.5383 0.5044 0.3966
Median 0.7695 0.3446 0.6622 0.5294 0.2758

Std 0.1672 0.2842 0.2614 0.1546 0.2151
Best 0.8806 0.8716 0.8711 0.6648 0.7950

Worst 0.2363 0.0059 0.0015 0.1107 0.2404

JI

Average 0.5871 0.3058 0.4120 0.3485 0.2710
Median 0.6271 0.2081 0.4950 0.3600 0.1601

Std 0.1745 0.2515 0.2378 0.1212 0.1962
Best 0.7867 0.7725 0.7717 0.4979 0.6597

Worst 0.1340 0.0029 0.0007 0.0586 0.1366

HD

Average 420.8674 617.6873 549.0358 762.4849 622.4544
Median 176.0064 372.8288 338.5550 553.3118 507.1295

Std 518.0279 549.3174 541.2218 354.1919 242.5857
Best 28.3456 45.0627 45.0627 403.6087 395.1266

Worst 1.7878e+003 2.1191e+003 1.7196e+003 1.4290e+003 1.0341e+003

Figure 6.3: Box-plots representing the global DSC results obtained by the five methods
compared over the whole dataset.
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6.4 Conclusions

This chapter has investigated hybridizations between metaheuristics and the level set

method, and represents a first approach to the segmentation of histological images using

eigenshapes, whose linear combination is optimized using PSO, DE and real-coded GA.

On the one hand, metaheuristics can optimize the energy function of the deformable

model or find the most suitable parameters for such a model. On the other hand, the

level set method represents an elegant solution to the main drawbacks of parametric

deformable models, like the possibility of managing topological changes in a natural

manner. With these concepts in mind, we have studied ways of using a training set

of shapes and textures to solve a difficult problem, like segmenting the hippocampus

in histological images, and compare different global search optimization techniques.

Finally, this work represents one of the very few cases in which PSO and DE have been

used to optimize the level set method, and also one of the few examples of application

of geometric DMs to the segmentation of histological images.

It is important to remark that the work presented here is an initial approach that

should be refined (using a broader training set, improving the extraction of textural

features, or testing a different fitness function) and optimized (maybe using GPGPU

programming). First, it is slow compared to classic approaches based on only one

feature (intensity, edge), mainly due to the calculation of the textural features per

individual and iteration1. Obviously, if someone is looking for a fast method this

would not be the best option: what this method can offer is accuracy. For instance,

segmentations obtained by LS-GA have a median Dice coefficient which is three times

better than GAC. Also, a more sophisticated use of texture could be taken into account

(for example, differentiating the two structures of the hippocampus), or including more

prior information and restrictions (for instance, the relative position of the hippocampus

with respect to other organs). In any case, this initial approximation has shown good

performance using three different standard metrics. The results obtained have been

1In order to give some reference in this regard, the average time to perform one run with our
metaheuristic-based approach on a MacBook Pro i7 dual core @ 2,7GHz with 8GB of RAM, and using
MATLAB as programming environment, it is around 10 times slower than CV and GAC, that take
approximately 5 minutes.
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better than the ones yielded by very well-established segmentation algorithms, but

worse than the previous approach (see chapter 5.3) and with a larger execution time.

Thus, it can be seen as an intermediate stage that will lead us to the development of the

next segmentation method.



Chapter 7

Biomedical Image Segmentation using
Geometric Deformable Models and
Metaheuristics

As explained in the Theoretical Background (section 2), a single source of prior knowl-

edge is usually not enough to satisfactorily tackle medical image segmentation problems.

Therefore, the development of hybrid approaches combining different sources of infor-

mation has been a major focus in the field of image segmentation [209–211]. In this

chapter, the search/learning abilities of metaheuristics and the capability of geometric

deformable models to handle topological changes are combined. Three sources of

information (a region term, a shape prior, and an edge term) are used to accurately

segment the organs of interest in different medical image modalities: microscopy, X-ray

computed tomography, and magnetic resonance imaging. In our proposal, metaheuris-

tics [212] have capital importance in two stages. First, during the training process of

the new model, the tuning of the parameters is carried out by a Genetic Algorithm [88].

Second, in the proper segmentation stage, the shape prior is obtained by a deformable

registration process guided by Scatter Search [102].

Every image modality has its own peculiarities, thus the training phase allows our

model to learn the most suitable parameters for a specific modality/anatomical district

154
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using few images as paradigmatic examples. In turn, the segmentation phase uses only

one manually segmented reference image to generate the prior shape knowledge that

will guide, together with the region- and edge-based terms, the evolution of the moving

contour.

To assess the quality of the new approach, we developed an experimental comparison

between seven state-of-the-art segmentation methods. The study was carried out on

four different datasets, for a total of 22 microscopy, 11 MR, and 5 CT images.

This chapter is structured as follows: in section 7.1, a general overview of the method

is presented, providing details about the different terms used in our deformable model.

Finally, section 7.2 presents the results and the statistical analysis of the experimental

comparison, followed, in section 7.3, by some final remarks and a discussion about

possible future developments.

7.1 Proposed Method

In this section, we present a novel segmentation approach based on the LS method,

called HybridLS, that combines edge, region and prior shape knowledge of the target

object to guide the LS evolution. Moreover, we take advantage of the characteristics

of metaheuristics to automatically learn the inherent parameters of a specific type of

object using training data (a set of already segmented images).

In its first stage, using an atlas of the target object, HybridLS performs an atlas-

based segmentation of the image under consideration, as in section 2.3. This requires

the availability of a single image of a similar target object, along with its segmentation.

The initial registration-based step provides a prior segmentation that will allow the LS

to start its evolution near the area to be segmented. This benefits both the speed and

the accuracy of the segmentation since, with a default initialization over the whole

image, features located far from the target area are more likely to negatively influence

the evolution of the LS.

The LS moves under the influence of three force terms, each providing information
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(a) input image (b) atlas-based prior (c) vector field convolution

(d) region term (e) prior term (f) edge term

Figure 7.1: A visualization of the different force terms. In the bottom row, the input
image is overlapped with the current contour, which is colored according to the force.
Green means the force is close to zero, while blue and red colors mark inward and
outward forces, respectively. In this example, the region term (d) is correctly attracting
the contour towards the lungs boundaries, as they define two very homogeneous areas.
The prior term (e) is just pulling towards the prior segmentation (b). Finally, the edge
term (f) is moving the level set towards the closest edges, whether these belongs to the
lungs boundaries or not.

about a different characteristic of the current contour. There are a region, an edge and

a prior term. The region term minimizes the inhomogeneity of the intensity values

inside and outside the surface enclosed by the evolving contour, while the edge term

attracts the curve towards natural boundaries and other image edges. Finally, the

prior term attracts the LS towards the prior segmentation obtained by the registration,

incorporating the information gathered in the first stage of the method in the subsequent

segmentation process. Note that this is rather different than just using the prior as initial

contour for the LS. Indeed, the prior term, rather than its initial location, influences

the evolution of the contour, and can balance the other forces when they are small or

inconsistent, leading to a more “conservative” segmentation with respect to using the

initial contour. In practice, we have a function combining three components (region,

edge and shape information) whose result is a value, not a vector, calculated for each
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point in the LS contour, and the sign of such a value gives us the orientation of the

movement (towards the inside or the outside of the evolving contour) since the direction

is always perpendicular.

Figure 7.2 provides an overview of HybridLS, while Figure 7.1 shows a visual

example of the effect of three force terms on the segmentation of a lung CT. The total

force acting on the LS is a linear combination of the force terms

Ftot = wrFr(C) + weFe(C) + wpFp(C,P ) (7.1)

where C is the current contour and P is the prior segmentation. Along with the specific

parameters for each term, the use of weights provides flexibility to our approach,

allowing it to be adapted to the features and particularities of the objects to be segmented.

In HybridLS, a GA is in charge of tuning the weights and the parameters of each term

based on training data.

In what follows, we describe the components of HybridLS, starting with the compu-

tation of the registration-based prior. Then, we define the three force terms and show

how to compute them. Finally, we provide details about the GA and the parameter

learning phase.

Registration-based prior

For registration we used a recent algorithm [213] called SS+. The optimization proce-

dure, at the core of the registration process, is based on the Scatter Search metaheuristic

(section 2.5), which has been successfully used in a number of works in image registra-

tion [214]. In its original study on brain MRI, SS+ provided better results compared to

other well-established techniques. Moreover, SS+ delivered the best performance in a

preliminary study on the registration of histological images.

In this work, the applications of SS+ are extended to histological and CT images.

The registration is performed in two steps, beginning with affine registration. Being a

composition of translation, rotation, scaling and shearing operations, an affine transform
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can remove large misalignments between the images. Then, a deformable B-Spline-

based registration takes care of adjusting the overlap locally, to match the finer details.

To compute a prior, one of the training images plays the role of the atlas. In

cases where the target object has a large anatomical variability, a single atlas cannot

express the whole distribution of possible shapes the object can assume, leading to poor

registration results. This can be improved by using multiple atlases and selecting the

most similar atlas for the registration to the target.

In HybridLS, the prior is obtained considering multiple images to be used as atlas.

To select the actual atlas, all candidate images are registered to the target image using

affine registration. Then, the candidate atlas having the highest similarity metric value

is selected for the further B-Spline registration step.

Force terms

Region term

Our region term is borrowed from the classic “Active Contours Without Edges” [45]

method by Chan and Vese (see Section 2.2).

In HybridLS, we are interested in a pure region-based term without area or length

restrictions, therefore we just use the two homogeneity terms. Therefore, in terms of

force acting on the LS, we get

Fr(IC , IΩ\C , C) =

 λ1 |I(x, y)− IC |2 (x, y) ∈ C

λ2 |I(x, y)− IΩ\C |2 (x, y) 6∈ C
(7.2)

where Ω is the image domain, C the boundary of an open subset w of Ω, I is the

pixel intensity value of the image to be segmented, and IC and IΩ\C are the average

values inside and outside C, respectively.
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Edge term

The edge term incorporates the information about the boundaries in the image. Basically,

the edge term pulls each point of the contour towards the closest edge. Our edge term is

based on Vector Field Convolution (VFC) [215]. Compared to other edge-based forces

such as Gradient Vector Flow [216], VFC has a lower computational cost and shows

greater robustness to noise and initialization. In addition, it showed good performance

as external force for DMs [134, 215].

The VFC is static, in the sense that it does not depend on the current LS but only on

the target image, therefore the field is calculated only once. The computation of the

force occurs in two independent steps. First, an edge map of the target image is obtained

applying Gaussian smoothing followed by the Sobel edge detector [217]. Then, the

edge map is convolved with a vector field kernel K in which each vector points to the

origin, as in Figure 7.3. The magnitude of the vectors decreases with the distance d, in

such a way that distant edges produce a smaller force than close edges (the actual value

is 1/d γ+1 with γ > 0). For a point c of contour C, the edge term is simply the normal

component of the VFC with respect to C.

Prior term

The aim of the prior term is to move the LS towards the prior segmentation. Also, we

want the module of every force vector to be proportional to the overlap between the

current evolving curve and the prior segmentation. The idea about how to compute the

actual force comes from the region term. If one considers the prior segmentation as a

binary image, having an intensity value inside the object and another one outside, this

image has two regions that are perfectly homogeneous. This is exactly the kind of result

our region-based term was designed to deliver. Therefore, to compute the prior term we

simply calculate the region term on the prior image, rather than on the target image.
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Fp(PC , PΩ\C , C) =

 |P (x, y)− PC |2 (x, y) ∈ C

|P (x, y)− PΩ\C |2 (x, y) 6∈ C
(7.3)

In this case, λ1 and λ2 have been set to 1, since the images used to calculate the prior

term force are binary, which means they present perfectly homogeneous foreground

and background, and it is not necessary to weigh one region more heavily.

Implementation

In HybridLS, the contour C evolves according to

dC

dt
= Ftot · ~N (7.4)

were Ftot is the weighted sum of the three force terms (Equation 7.1) and ~N is the

normal direction of C. We used Shi and Karl’s Fast-Two-Cycle (FTC) algorithm [218],

a fast LS implementation which does not need to solve partial differential equations

(PDE). It is a narrow band technique that restricts the calculations of the LS to a much

smaller region than the whole grid, and significantly speed up the curve evolution

process. This method also separates the evolution process into two different cycles: one

cycle for the data-dependent term and a second cycle to regularize smoothness.

Parameter learning using metaheuristics

HybridLS has the ability to learn optimal parameter settings for every specific dataset.

Provided a training set of already segmented images of the same class, the parameters

are learned using a classic machine learning approach: configurations of parameters

are tested on the training data, and the results are compared with the ground truth to

assess their quality. In the most basic approach, all combinations of parameters need

to be tested, but this exhaustive search is very time consuming, if not even impossible

when a large number of parameters are involved. Fortunately, we can overcome this
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problem by using metaheuristics, since a properly designed metaheuristic has the ability

of learning optimal parameter values faster than an exhaustive search.

In this work, we developed a GA to learn the weights of the force terms (wr, we,

wp) and their corresponding parameters (λ1, λ2 for the region term and γ for the edge

term). A solution of the problem, or an individual in GA terms, is a string of real values

encoding the parameters values. The quality of a solution s (its fitness) is defined as the

average quality of the segmentations obtained using the parameters values in s. In this

case, we measured the average Dice coefficient obtained segmenting the images in the

training set.

The GA starts by creating a set of random solutions (a population) of fixed size.

Then, individuals are selected and variation operators are applied to create a new

generation of solutions. The current population is then entirely replaced by a new one

except for the best individual, that is never discarded (elitism). The individuals are

selected using a tournament: k individuals are drawn at random, and the best individual

of the group (the winner of the tournament) is selected. The variation operators,

responsible for combining and altering solutions, are blend crossover (BLX-α) [219]

and random mutation [220]. The random mutation operator picks randomly one of the

individual parameters and replaces it with a random value in the parameter’s range, both

times using uniform probability. The blend crossover operator is more complex: given

two individuals x and y, called “parents”, for each position i of the parents’ coding, the

algorithm computes the value d = |xi − yi| and then randomly generates two values

a, b in the interval [min(xi, yi)− αd, max(xi, yi) + αd] with uniform probability. The

values a and b are assigned to the i-th positions of the two offspring, and α is a positive

value controlling the width of the ranges in which the new parameters’ values are drawn.

It is important to notice that, when testing combinations of parameter values, not all

segmentation steps need all parameters. For instance, the VFC of an image depends

only on γ. Having this in mind, and in order to speed up the learning process, we saved

in a cache all the information that are shared between different configurations. This is

especially important for the prior, which is the most computationally demanding step

in the segmentation process by far. The prior does not use any of the parameters in
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the learning process, therefore only one per image is needed but, since the registration

algorithm is non-deterministic, we represented its variability by creating a pool of 30

priors for each image. The priors used in tuning the segmentation parameters were

drawn at random from the pool. This approach led to an impressive speedup of the

training process. Once the priors and the VFC of each training image have been

computed, a single parameter configuration could be tested in less than a second.

7.2 Experimental Setup

One of the main aims of this research is to develop a method that, combining the

advantages of geometric DMs, metaheuristics and prior shape knowledge, can achieve

remarkable results with different medical image modalities and anatomical structures of

interest. To accomplish this purpose, three image modalities with completely different

characteristics and different structures have been tested. In this section, these datasets

will be described, as well as the anatomical structures to be segmented. Then, we will

present the different methods included in the comparison, and devote two separate

sections to the atlas registration and the tuning of the parameters (given their critical

importance in our pipeline). Finally the final results of segmentation will be presented

and analyzed.

Datasets

Three kinds of biomedical image modalities were used to verify the global performance

of the different methods over different datasets. We focused our interest on microscopy

histological images derived using In Situ Hybridization, X-Ray computed tomography

images, and magnetic resonance images.

• In Situ Hybridization-derived images (ISH). 26 microscopy histological images

were downloaded from the Allen Brain Atlas (ABA) [184]. The anatomical

structure to segment was the hippocampus, and the ground truth was created man-
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ually by an expert in molecular biology: every image was manually segmented 5

times and, for each group of 5 manual segmentations, the consensus image was

calculated and used as ground truth. The typical resolution of ABA images is

about 15,000 × 7,000 pixels, and the ROIs taken into consideration about 2,500

× 2,000 pixels.

• Magnetic Resonance Imaging (MRI). A set of 17 T1-weighted brain MRI were

retrieved from a NMR database with their associated manual segmentations [188].

The deep brain structures to segment were: caudate, putamen, globus pallidus,

and thalamus. All MR images used in training and test having a resolution of 256

× 256 pixels.

• X-Ray Computed Tomography (CT). A set of 10 CT images were used in the

experiments [134]. Four of them correspond to a human knee and the other six to

human lungs. The bone and the lungs are among the darkest objects in the image.

Knee images have an average size of 410 × 435 pixels, while Lung images have

a size of 510 × 350 pixels.

All four datasets, considering lungs and knee as different image sets, were divided

in training and test data. The training images were used by HybridLS for the learning

of the parameters, while the test images were the ones used in the final experiments to

check the performance of the methods.

In ISH, 22 images were used for testing and 4 as a training set. As reference atlas

for the registration, the actual references in the ABA were employed to obtain the shape

prior. With respect to MRI, 3 images were used as training set, 3 other were used as

atlas, and the remaining 11 as test set. Finally, in relation to CT, one image of every

organ was used as training and as atlas for the registration, leaving 3 lung and 2 knee

images for testing the system.
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Methods included in the comparison

In our comparisons we have included both deterministic and non-deterministic methods,

as well as classic and very recent proposals. The stress has been focused on DMs and

their hybridization with metaheuristics, but other kinds of approaches have also been

taken into account.

• Active Shape Models (and Iterative Otsu Thresholding Method) refined using

Random Forests (ASM + RF) [123, 152]. This method, explained in chapter 5 and

published in 2012, uses a medial-based shape representation in polar coordinates,

with the objective of creating simple models that can be managed in an easy and

fast manner. Such a parametric model is moved and deformed by a metaheuristic

(Differential Evolution (DE) [99]) according to an intensity-based similarity

function between the model and the object itself. After that, Otsu’s thresholding

method [15] is iteratively applied on every region identified by the located control

points. Finally, Random Forests [121] are applied to expand the segmented area

to the regions that were not properly localized. This segmentation algorithm has

shown very good performance in histological images, but needs a training set of

shapes to manually create the parametric template and its possible deformations,

as well as a training set of textural patterns for the expansion phase. Due to these

restrictions it was only applied to ISH images.

• Soft Thresholding (ST) [16]. This deterministic method, presented in 2010, is

based on relating each pixel in the image to the different regions via a membership

function, rather than through hard decisions, and such a membership function

is derived from the image histogram. In a first stage, the normalized histogram

of the image is calculated and a sum of weighted known distributions is fit to it.

Each probability distribution represents the probability for a pixel with a certain

value to belong to the corresponding region. This segmentation technique is

totally automatic, and the spatial operations make thresholding more robust to

noise and artifacts. Having been successfully applied to CT, MRI and ultrasound

images, it seemed interesting to apply it also to microscopy histological images
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and compare its performance with other state-of-the-art methods.

• Atlas-based deformable segmentation (DS) [213]. This method refers to the

atlas-based segmentation procedure used in HybridLS to compute the prior

(section 7.1). This is actually a stand-alone segmentation method, therefore it

is included in the experimental study as a representative of registration-based

segmentation algorithms. Moreover, comparing DS’s and HybridLS’s results will

assess the influence of the prior term on the performance of the second method.

During the whole study, the setup and the atlas selection mechanism of DS

(section 7.1) are always the same both when the method is used as a stand-alone

tool and when it is embedded in another segmentation technique.

• Geodesic Active Contours (GAC) [47]. This technique, introduced in 1997,

connects ‘snakes’ based on energy minimization and geometric active contours

based on the theory of curve evolution (see section 2.2). It is based on active

contours that evolve in time according to intrinsic geometric measures of the

image: the evolving contours naturally split and merge, allowing the simultaneous

detection of several objects and both interior and exterior boundaries.

In this chapter, two implementations of GAC have been tested. The first one

uses as initial contour the whole image, while the second one, called DSGAC,

employs the segmentation obtained using DS to create the initial contour of the

geometric DM.

• Chan&Vese Level Set Model (CV) [45]. This implicit DM, presented in 2001,

was also included in the comparison to check its performance in comparison

with the other approaches (see section 2.2). Also in this case, like in GAC, two

implementations have been tested. The first one uses the whole image as initial

contour, and the second one employs the segmentation results obtained by DS as

the LS initial contour.
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Parameter settings

As HybridLS has an automatic parameter learning phase, it would be unfair to compare

it against other methods that do not include some kind of parameter tuning. Manual

parameter tuning is time consuming and error-prone, while using the GA to tune all

methods could introduce a bias, as the behavior of the GA could vary with each method.

In general, we want the competitors to deliver their best performance, regardless of

their parameter sensitivity or their ability to be tuned. Therefore, we decided to tune the

competitors with an exhaustive search using the test data, rather than the training set.

This means that the results reported for all methods but HybridLS are actually the best

average results they can obtain on these datasets. This gives them a clear advantage

over HybridLS, as for the latter the parameters are learned using only the training data.

For CV, GAC, DSGAC and DSCV, all the possible combinations of the values in

Table 7.1 were tested. Also, a pre-processing and a post-processing stages were included

to improve the results obtained. The post-processing stage refines the results removing

the connected components that are smaller than a certain number of pixels, while pre-

processing is performed using a median filter to remove the salt-and-pepper-like noise

present in some of the images. Moreover, for DSGAC and DSCV, 10 different initial

masks were created using DS and the best one was used in the tuning. The number of

iterations for GAC and CV was set to 500 to ensure the process reached convergence.

In a few cases, on the ISH dataset, CV failed to converge within the limit due to poor

parameter values. This occurred only while producing very low quality, degenerate

segmentations, therefore the early stopping did not affect the tuning process.

After tuning these methods, the minimum allowed size in pixels of the connected

components was set to 75, 200 and 25000 for MRI, CT and ISH, respectively. For

ASM+RF, the parameters used (Table 7.3) were those suggested in our previous experi-

ments with the ISH dataset (see section 5).

For HybridLS, the parameters settings were learned by the GA using the training

data. The size of the population was set to 50 individuals, and the evolution lasted

50 generations. The probability of crossover and mutation was set to 0.7 and 0.1,
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respectively, and the size of the tournament was 3. The range of λ1, λ2 was restricted to

{1, 2, 5} to match the settings used with the other methods.

The final parameters configurations are reported in Table 7.2. It is interesting to

remark how the GA detected a different level of importance for each term in different

datasets. For instance, in MRI the edge term is not used (we = 0) since our machine

learning system determines that, for a good segmentation, the region term and prior

shape knowledge are enough. When segmenting CT-imaged lungs the only term used

is the region-based one. In this case, λ1 and λ2 were set to 5 and 2, respectively. This

means that our final segmentation will have a more uniform foreground region (since

the energy contributed by the “variance” in the foreground region has a larger weight),

at the expense of allowing more variation in the background.

Table 7.1: Combination of parameters tested for CV, GAC, DSCV and DSGAC.

Parameter Values

α contour weight {1, 2, 3}
β expansion weight {-1, -0.5}
µ weightLengthTerm {0.01, 0.1, 0.25, 0.5, 0.75}

λ1 { 1, 2, 5}
λ2 { 1, 2, 5}

size median filter {1, 3, 5, 10}
minimum size allowed {1, 50, 75, 100, 200, 5000, 25000}

Experimental results

To evaluate the performance of the segmentation methods, we employed three standard

segmentation metrics: the Dice coefficient (DSC), the Jaccard similarity index (JI) and

the Hausdorff distance (HD). See Appendix II for more information in this regard.

It is important to remark that ASM+RF, DS, DSCV, DSGAC and HybridLS are non-

deterministic, since stochastic methods, like Differential Evolution or Scatter Search,

are embedded in these algorithms. It is essential to execute such algorithms several

times to estimate and compare their performances. In this case, 20 repetitions per image

were run and the mean, median and standard deviation values were calculated over the

whole set of results (see Table 7.5). For instance, in ISH the mean Dice value of DS
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Table 7.2: Parameters obtained after tuning ST, GAC, CV, DS+GAC, DS+CV, and
training HybridLS.

CV GAC CV+DS GAC+DS HybridLS

Magnetic Resonance Imaging

500 iterations 500 iterations 500 iterations 500 iterations λ1 = 5
ν = 0 β = -1 ν = 0 β = -0.5 λ2 = 1
µ = 0.01 α = 3 µ = 0.01 α = 3 wr = 5.1
λ1 = λ2 = 1 medFiltSize = 3 λ1 = 1 medFiltSize = 1 wp = 1.1
medFiltSize = 1 λ2 =1 we = 0

medFiltSize = 5 γ = 1.5

Computerized Tomography - Knee

500 iterations 500 iterations 500 iterations 500 iterations λ1 = 2
ν = 0 α = 1 ν = 0 α = 3 λ2 = 5
µ = 0.01 β = -0.5 µ = 0.01 β = -0.5 wr = 4.8
λ1 = 5 medFiltSize = 1 λ1 = 1 medFiltSize = 1 wp = 0.9
λ2 = 2 λ2 = 1 we = 2
medFiltSize = 3 medFiltSize = 1 γ = 1.5

Computerized Tomography - Lungs

500 iterations 500 iterations 500 iterations 500 iterations λ1 = 5
ν = 0 β = -1 ν = 0 β = -1 λ2 = 2
µ = 0.01 α = 2 µ = 0.01 α = 3 wr = 1.5
λ1 = 5 medFiltSize = 3 λ1 =1 medFiltSize = 3 wp = 0
λ2 = 2 λ2 = 5 we = 0
medFiltSize = 3 medFiltSize = 3 γ = 1.5

In Situ Hybridization-derived images

500 iterations 500 iterations 500 iterations 500 iterations λ1 = 1
ν = 0 β = -1 ν = 0 β = -1 λ2 = 1
µ = 0.01 α = 3 µ = 0.01 α = 3 wr = 1.9
λ1 = λ2 = 1 medFiltSize = 10 λ1 = 1 medFiltSize = 10 wp = 2.2
medFiltSize = 5 λ2 = 1 we = 1

medFiltSize = 5 γ = 2

Table 7.3: Parameters used in ST, DS and ASM+RF. All parameters were taken from
the original proposals.

ST ASM+RF DS

L = 2 regions Cr = 0.9 Metric = AdvancedNormalizedCorrelation
Relative max F = 0.7 Optimizer = ScatterSearch
normalization Uniform Crossover SSb = 12

DE/target-to-best/1 PSize = 32
Population Size = 80 BLX-α = 0.3
Iterations = 250 LS-iterations = 25
Median Filter [25×25] NumberOfIterations = 15
RF with 500 trees NumberOfResolutions = 3

NumberOfSpatialSamples = 2000 5000 10000
Restarts = 3
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is 0.876, and represents the average of 440 experiments performed (20 repetitions per

image and 22 images).

We also performed a statistical analysis of the results. When comparing two

methods, we used Wilcoxon rank-sum test [221], a non-parametric statistical test that

checks whether one of two independent samples tends to have larger values than the

other. When multiple comparisons were performed, Holm correction [222] was applied

to the p-values to control the family-wise error rate. Note that, in the Lungs and Knee

datasets, the number of images is not large enough for comparing the deterministic

methods (ST, CV and GAC), therefore these methods have been excluded from the test.

In Table 7.4, some concise information about the running time of each algorithm is

provided with an illustrative purpose. The fastest method is ST with MRI, which takes

only 1 second per image, while the slowest are the applications of DS to ISH, employing

up to 10 minutes to process an image. Nevertheless, several factors affect the accuracy

of a comparison in terms of execution time. First, some of the methods have been

developed in MATLAB and others in C++. Moreover, the size of the images differs

from one image modality to another, as well as some of the pre- and post-processing

stages we used. Finally, the nature of the algorithms is completely different, making

them hard to compare1.

Table 7.4: Average execution time per method and kind of image. All values are in
seconds, and were obtained running the experiments in an Intel Core i5-2410M @
2.3GHz with 4.00 GB of RAM. Also the programming environment has been included
between brackets.

ASM+RF ST CV GAC DSCV DSGAC DS HybridLS
(MATLAB, C++) (MATLAB) (MATLAB) (MATLAB, C++) (MATLAB, C++) (MATLAB, C++) (C++) (C++)

ISH 35 39 87 32 582 493 471 545
Lungs - 1.7 36 15 384 342 326 331
Knee - 2.5 67 16 310 265 245 252
MRI - 1 11 1.5 429 407 404 405

1For instance, ST is only based on the image histogram, while others have a registration step that
imposes a notable computational overhead.



Chapter 7. Biomedical IS using Geometric DMs and MHs 170

Analysis

The experimental results are reported in Table 7.5. Visual examples of two segmenta-

tions obtained by the methods on each dataset are provided in Figure 7.5. For simplicity,

our discussion focuses on the results in terms of mean DSC, but note that this choice

does not really affect the outcome of the comparison, as there is an almost perfect

agreement with the other validation measures we considered.

The performance of the segmentation methods varies greatly across the four datasets.

The easiest problem to be solved has been the segmentation of Lungs in CT images,

with all methods but GAC and DS scoring higher than 0.95. The most complex task has

shown to be the segmentation of deep anatomical structures in brain MRI, where four

of the compared methods have obtained an average DSC of 0.2 or less).

The per-dataset results are shown in Figure 7.4 using boxplots and in Table 7.6

through the average rankings. Obviously, the performance of every method depends on

the nature of the image to be segmented. For instance, techniques based on the intensity

level (such as CV and ST) yielded worse results in image modalities, like MRI, having

less contrast and small differences in terms of pixel intensity.

HybridLS has obtained the best results in all biomedical image datasets. It achieved

the best values for the mean DSC and JI metrics, and it was ranked as the best method

in every image modality. The Wilcoxon test (Table 7.6) showed, with really high

confidence, that the difference between HybridLS and the other methods is statistically

significant in all but one case (DS on MRI). This behavior is also robust, as shown by

the low standard deviation values. We can then conclude that our proposal is the best

segmentation method in the comparison.

The DS method has been one of the best-performing algorithms, ranking second

or third over three datasets. More in general, all methods using the registration-based

initialization scored better than those using a standard one. This applies also to CV and

GAC: in all but one case, both DSCV and DSGAC ranked better than their counterpart,

with a statistically significant difference (Table 7.7).

Overall, DSGAC delivered an acceptable performance, ranking above average in
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three datasets out of four. This is remarkable, as the regular GAC ranked constantly in

the last three positions, and it can be explained by the high sensitivity of GAC to its

initialization.

DSCV reached an average ranking in all datasets, performing slightly worse, al-

though more consistently, than DSGAC. The plain CV method achieved a bad per-

formance, ranking last or second to last in three datasets. Only on the Lungs dataset,

where the gray value is enough to segment the target quite accurately, CV delivered

good results.

ST results showed a similar pattern to CV. It performed better than CV, but since

ST is based on the image histogram it showed limited ability to cope with complex

scenarios. On the other hand, ST is the fastest method among the ones taken into

consideration and it has virtually no parameters to be set.

ASM+RF obtained some of the best results with ISH images, being also one of

the fastest techniques, but it is fair to underline its ad-hoc nature. It needs a training

set of shapes to create the template and its possible deformations, and it also needs a

training set of textural patterns for the expansion phase. Also, it is not able to manage

topological changes in a natural way, as geometric DMs can do.

Finally, regarding the values of HD, it is interesting to notice how methods without

shape deformation restrictions, like ST, CV and GAC, have a higher (worse) HD with

respect to others introducing prior shape knowledge, like ASM+RF, DS and HybridLS.

7.3 Conclusions

It is crucial to highlight the main features of HybridLS:

• it is an accurate and also general segmentation method (it obtains very good results

with all the medical image modalities tested, even overcoming well-consolidated

techniques);

• its overall standard deviation is the lowest among the different methods we
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Table 7.5: Segmentation Results using 3 different metrics: Dice Similarity Coefficient
(DSC), Jaccard Index (JI), and Hausdorff Distance (HD). Values are sorted in descending
order using their average DSC value as criterion. The best results for every metric are
shown in bold.

Dataset Method Dice Coefficient Jaccard Index Hausdorff Distance
mean median stdev mean median stdev mean median stdev

ISH

HybridLS 0.888 0.918 0.079 0.806 0.849 0.109 103.614 70.109 100.115
ASM+RF 0.885 0.896 0.040 0.797 0.812 0.061 114.906 94.736 52.785

DS 0.876 0.907 0.078 0.787 0.829 0.108 101.437 75.166 79.779
DSGAC 0.791 0.830 0.143 0.674 0.709 0.172 215.237 150.727 196.908

ST 0.728 0.775 0.175 0.597 0.632 0.192 578.876 665.301 303.314
DSCV 0.673 0.764 0.203 0.538 0.618 0.203 263.345 176.706 234.192
GAC 0.670 0.722 0.181 0.528 0.564 0.192 693.257 707.560 265.589
CV 0.589 0.723 0.257 0.460 0.567 0.242 839.800 844.773 331.804

Knee

HybridLS 0.868 0.872 0.087 0.777 0.782 0.136 13.690 13.618 1.735
DSGAC 0.810 0.811 0.142 0.705 0.705 0.204 84.611 84.611 4.040

DS 0.687 0.685 0.227 0.569 0.563 0.271 45.015 45.308 25.303
DSCV 0.528 0.527 0.079 0.363 0.361 0.073 69.642 76.261 16.468
GAC 0.486 0.486 0.310 0.349 0.349 0.276 187.087 187.087 29.528
ST 0.398 0.398 0.088 0.250 0.250 0.069 144.864 144.864 36.792
CV 0.230 0.230 0.072 0.131 0.131 0.046 179.680 179.680 30.499

Lungs

HybridLS 0.996 0.997 0.001 0.992 0.994 0.003 2.949 3.606 1.415
ST 0.979 0.990 0.023 0.960 0.981 0.044 51.550 60.208 42.882
CV 0.973 0.992 0.034 0.949 0.983 0.063 52.903 60.208 38.592

DSCV 0.966 0.985 0.034 0.935 0.971 0.062 26.512 25.495 9.321
DSGAC 0.950 0.952 0.027 0.906 0.908 0.049 37.828 29.155 27.197

DS 0.896 0.897 0.062 0.818 0.814 0.102 39.378 51.478 18.023
GAC 0.670 0.627 0.251 0.542 0.457 0.309 143.938 137.568 34.430

MRI

HybridLS 0.758 0.780 0.048 0.612 0.639 0.062 7.819 6.708 2.874
DS 0.752 0.783 0.056 0.606 0.643 0.071 10.838 10.000 3.192

DSGAC 0.585 0.613 0.087 0.418 0.442 0.084 25.113 25.495 2.414
DSCV 0.204 0.213 0.054 0.115 0.119 0.033 76.792 76.322 5.955

CV 0.155 0.171 0.042 0.084 0.093 0.024 93.727 93.408 4.670
ST 0.175 0.181 0.053 0.097 0.100 0.032 84.936 85.586 6.289

GAC 0.124 0.139 0.035 0.066 0.074 0.020 90.856 90.139 5.459
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Table 7.6: Average rank achieved per image modality and adjusted p-value of Wilcoxon
test comparing each algorithm against HybridLS.

Dataset Method Mean Rank p-value

ISH

HybridLS 1.82
DS 2.50 0.000

ASM+RF 2.64 0.000
DSGAC 4.14 0.000

ST 5.68 0.000
DSCV 6.23 0.000
GAC 6.36 0.000
CV 6.64 0.000

Knee

HybridLS 1.50
DSGAC 2.00 0.000

DS 3.00 0.000
DSCV 4.50 0.000
GAC 5.00 -
ST 5.50 -
CV 6.50 -

Lungs

HybridLS 1.00
ST 2.33 -
CV 3.00 -

DSCV 3.67 0.000
DSGAC 5.33 0.000

DS 5.67 0.000
GAC 7.00 -

MRI

HybridLS 1.27
DS 1.73 0.46

DSGAC 3.00 0.000
DSCV 4.18 0.000

ST 5.09 0.000
CV 5.73 0.000

GAC 7.00 0.000
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Table 7.7: Pairwise comparison of all the methods but HybridLS. Each cell of the table
reports the p-value of Wilcoxon test comparing the method on the corresponding row
with the method associated with the column.

ISH
ASM+RF CV DS DSCV DSGAC GAC

CV 0.00
DS 0.01 0.00

DSCV 0.00 0.38 0.00
DSGAC 0.00 0.00 0.00 0.00

GAC 0.00 0.92 0.00 0.92 0.00
ST 0.00 0.32 0.00 0.61 0.26 0.61

Knee
DS DSCV

DSCV 0.00
DSGAC 0.00 0.00

Lungs
DS DSCV

DSCV 0.00
DSGAC 0.00 0.00

MRI
CV DS DSCV DSGAC GAC

DS 0.00
DSCV 0.02 0.00

DSGAC 0.00 0.00 0.00
GAC 0.10 0.00 0.00 0.00

ST 0.79 0.00 0.26 0.00 0.08
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compared, therefore we can affirm that the developed approach is consistent and

stable in terms of performance;

• it does not need a training set of textures or shapes to segment the object of

interest (it needs only one reference image to obtain the shape prior);

• it performs self-adaptation of its own parameters depending on the medical image

modality to segment;

• it uses metaheuristics to generate the shape prior and to perform the previously

mentioned learning of parameters.

Thanks to the automatic learning of the model parameters, our hybrid proposal is

able to perform an effective segmentation with very different medical image modalities,

adapting the importance of every term to each image modality and anatomical structure.

The main drawback of HybridLS is that it is not as fast as ST or even ASM+RF. This

is obvious since it can be as fast as its components and, obviously, DS is a deformable

registration process that can take several minutes on a general purpose computer. More

sophisticated implementations, like GPGPU programming, can be tested to speed-up

the computations. Finally, the introduction of a textural term could be taken into

consideration if the benefits obtained with its use justify it.
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Figure 7.2: The schematic view of the interaction among the components of HybridLS.
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Figure 7.3: Vector field kernel used to compute the VFC term.
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Figure 7.4: Box-plot representing the DSC for all methods.
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Figure 7.5: Some visual examples of the results obtained. Two images per image
modality and per structure to segment have been selected: the first two rows correspond
to ISH, the next two rows to CT-Knee, and the last four to CT-Lungs and MRI. White
represents true positives, red false negatives, and green false positives.



Part III: Final Remarks

The last part of this PhD dissertation is focused on the summary and conclusions of

the activity performed, and on the introduction of potential future research work which

may extend the results described in this dissertation.

180



Chapter 8

Further Work

There are several ways in which the research work described in this dissertation can be

further developed. The first of these could be a 3D extension of the 2D segmentation

methods that have been developed so far, in order to be also used to segment volumes.

Another interesting future development could be the optimization of computation

efficiency of the algorithms by means of GPGPU (General Purpose Graphics Processing

Unit) programming. In particular, CUDATM (Compute Unified Distributed Architecture)

is a parallel computing environment by nVIDIATM which exploits the massively parallel

computation capabilities of its GPUs (containing up to several hundreds of execution

cores that can execute the same code on different data). A possible further study could

be focused on the parallelization possibilities and consequent increase in execution

speed that these techniques can offer.

In medical IS, sometimes it is possible to define multiple criteria that need to be

optimized simultaneously. Hence, another major issue in this regard is the application

of multiobjective optimization (MOO) techniques [223, 224] that can be effectively

utilized to yield a set of Pareto optimal solutions that the domain expert can then analyze.

Moreover, hybridizations of MOO techniques with other computational intelligence

techniques, like fuzzy sets or neural networks, are interesting directions of future

research in this field. In fact, all challenging and realistic problems can be considered

fuzzy and multiobjective, in the sense that they present different conflicting objectives,
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for which it is necessary to find a trade-off, and, on the other hand, they present some

degree of uncertainty that could be processed using fuzzy logic/systems.



Chapter 9

Summary and Conclusions

¿Ves aquel señor graduado,

roja borla, blanco guante,

que némine discrepante

fue en Salamanca aprobado?

Pues con su borla, su grado,

cátedra, renta y dinero,

es un grande majadero.

José Iglesias de la Casa

With all things being equal, the simplest explanation tends to be the right one.

The explanation requiring the fewest assumptions is most likely to be correct.

William of Ockham - Ockham’s razor (in Latin lex parsimoniae)

Imagination is more important than knowledge.

Knowledge is limited. Imagination encircles the world.

Albert Einstein, quoted in interview by G.S. Viereck, October 26,1929.

Reprinted in “Glimpses of the Great”(1930)

This research has been focused on studying how hybridizations between soft/bio-
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inspired computing and computer vision techniques could help in biomedical image

processing tasks. Within the complete pipeline of medical imaging (acquisition, restora-

tion, registration, reconstruction, tracking,...), the topic selected has been the automatic

segmentation of anatomical structures. Image segmentation is the partition of an image

into meaningful and non-overlapping regions following some criterion, and it repre-

sents an essential step in many important biomedical activities (detection of lessions,

quantitative tissue analysis, computer-integrated surgery,...).

Three different methods have been presented, analyzing their corresponding ad-

vantages and disadvantages, in which soft computing approaches (metaheuristics and

ensemble classifiers) are combined with deformable models (both parametric and geo-

metric) to segment anatomical structures. Chapter 5 describes a parametric approach,

based on active shape models, metaheuristics and ensemble classifiers, for segmenting

the hippocampus in histological mouse brain images, comparing different optimization

techniques and segmentation methods on this task. It also introduces a real-world

application in which this parametric segmentation algorithm was successfully applied

to the identification of RNAs in gene-expression images. In chapter 6, a geometric

method using eigenshapes, which combines texture and intensity information, is used

to segment the same anatomical structure. Finally, in chapter 7, a level set approach

including three different terms (intensity, boundaries and prior shape knowledge) is

applied to segment knee and lungs in CT images, the hippocampus in histological mouse

brain images, and caudate, putamen, globus pallidus, and thalamus in T1-weighted brain

MRI.

Throughout this work, metaheuristics have been used to tune an algorithm (i.e., to

learn its working parameters), to perform feature selection, and to optimize a target

function that determines the proper segmentation (or registration) of the structure under

consideration. Finally, an ensemble classifier has been used to refine the segmentation

performed in histological brain images.

There are some lessons learned that can be used to provide recommendations for

future researchers in this field:
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• There are few publications (around ten in total) about automatic tuning of the

deformable model parameters. Metaheuristics, or automatic tuners like irace,

should be used to automatically configure computer vision algorithms in order

to overcome the problems related to manual tuning (tedious, error-prone, time-

consuming).

• There are also few approaches dealing with local deformations. Usually the

deformable model is adapted globally using metaheuristics, when maybe the

subdivision of the DM in sections to be optimized locally could be an interesting

approach to take into account in the future.

• The use of the level set method and prior shape knowledge using metaheuristics

can be one of the most interesting future trends, due to its potentiality and to

the current lack of publications on the topic. In fact, a very good starting point

when segmenting anatomical structures is to include as much prior information as

possible (shape, texture, intensity, boundaries), since this can speed the execution

time and increase the accuracy of the results obtained. In this PhD thesis, sections

6 and 7 provide an example of how this can be accomplished.

• It is important to consider the trade-off between generality and accuracy. This

doctoral thesis has confirmed that a general method tends to be less accurate than

an ad-hoc approach to a certain problem. In fact, the generalization ability of a

method can be increased by automatically tuning its parameters, since such a tuner

can perform the parameter configuration to effectively work with a particular type

of structure to segment and/or a particular medical imaging modality.

• The application of standard metrics and statistical tests (absent in many scien-

tific reports) should be considered from now on as an obligation for a rigurous

investigation. Also, the size of the test sets should be increased to allow a better

interpretation of the results, avoiding methods and scenarios that lead to very

specific solutions. In direct relation to this aspect, the datasets used should be

made public and shared by the scientific community, in order to facilitate the

comparison of results between researchers, as well as the development and testing
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of new algorithms thanks to the existence of ground truth for every dataset.

• The use of novel metaheuristics like Differential Evolution, Particle Swarm

Optimization or Scatter Search is strongly recommended, since Simulated An-

nealing and similar approaches are obsolete and unable to efficiently solve

real-world problems. Obviously, the usually multimodal, non-convex and high-

dimensional nature of segmentation problems makes it useless to apply gradient-

based/classical approaches (Gauss-Newton, Levenberg-Marquardt,...). A possible

alternative would be finding a suitable transformation (convexization) of the

objective function in order to use such classical approaches, but the use of meta-

heuristics appears to be faster and even easier.

• With reference to the previous point, when using an evolutionary algorithm, it

is fundamental to apply operators which fit the nature of the problem and the

characteristics of the chromosomes under consideration. For instance, if one

is using real-coded genomes, the best option is to use SBX, PBX or BLX-α

to perform recombination. Also, since fitness computation is the most time-

consuming component of an evolutionary algorithm, its effective design is crucial

for a successful application of metaheuristics.

• Finally, deformable models still seem to be the most natural manner of including

prior shape knowledge into a computer vision technique, and are extensively

used in the medical field, to name just a single example. So, the use of these

methods is a safe bet and a good starting point when designing a new medical

image segmentation algorithm.



Appendix I: Statistical tests for
analyzing Soft Computing techniques
behaviour

He uses statistics as a drunken man uses lamp-posts...

for support rather than illumination.

Andrew Lang

The use of statistical tests is the only way to rigorously compare the performance

of computational intelligence methods [225–227]. Usually, they are employed based

on the experimental results they have obtained to decide if one algorithm should be

considered better than another. This task is compulsory to confirm whether a newly

proposed method offers a significant improvement, or not, over the existing methods

for a given problem.

Statistical tests measure the probability of obtaining the experimental resultsD if the

hypothesis H is correct, computing P (D|H), and can be categorized into two classes:

parametric and non-parametric procedures. Parametric tests have been commonly used

in the analysis of experiments in computational intelligence. Unfortunately, they are

usually based on assumptions (independence, normality, and homoscedasticity) which

are most probably violated when analyzing the performance of stochastic algorithms

[228].

To introduce these methods, it is necessary to define essential concepts in statistical
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inference as null hypothesis, p-value or type I/II Errors. The null hypothesis H0 refers

to a general or default statement of a scientific experiment. It is presumed to be true

until statistical evidence nullifies it for an alternative hypothesis, and it assumes that any

kind of difference or significance one sees in a set of data is due to chance. For example,

in a clinical trial of a new drug, the null hypothesis might be that the new drug is no

better, on average, than the current drug. A type I error is the incorrect rejection of a

true null hypothesis and represents a false positive, while a type II error is the failure

to reject a false null hypothesis, thus representing a false negative (see Table 9.1).

Another fundamental concept to be defined is the p-value, i.e., the estimated prob-

ability of rejecting H0 when it is true. In other words, the p-value is the probability

of obtaining a test statistic, at least, as extreme as the one that was actually observed,

assuming that the null hypothesis is true. If the p-value is less than the chosen level of

significance α then the null hypothesis is rejected, thus α tells us how extreme observed

results must be in order to reject the null hypothesis (giving us the probability of a

type I error)1. Finally, the statistical power of a test is the probability of rejecting H0

when it is false (i.e., the probability of not committing a type II error). As the power

increases, the chances of a type II error occurrence decrease. Note that the statistical

power determines the probability of finding a difference that does exist, as opposed to

the likelihood of detecting a difference that does not exist (which is known as a type I

error, or “false positive”).

Table 9.1: Type I and type II errors.

Null hypothesis (H0) is true Null hypothesis (H0) is false
Reject null hypothesis Type I error / False positive True positive

Fail to reject null hypothesis True negative Type II error / False negative

Furthermore, in order to perfectly understand the following explanations, it is fun-

damental to know that an independent variable (IV), sometimes called an experimental

or predictor variable, is a variable that is being manipulated in an experiment in order to

observe the effect on a dependent variable (DV), sometimes called outcome variable. So,
1For instance, if the p-value is less than the predetermined significance level (usually 0.05 or 0.01), it

indicates that the observed result would be highly unlikely under H0 or, in other words, the observed
result is highly unlikely to be the result of random chance).
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if the IVs change, the DV will change. In other words, in an experiment, the factor (also

called IV) is an explanatory variable manipulated by the experimenter. Each factor has

two or more levels, i.e., different values of the factor. Combinations of factor levels are

called treatments. For instance, a doctor can treat a patient with two drugs (factors) to

see which is more effective, and every drug can be provided in three different amounts

(5mg, 10 mg, 15 mg). Therefore, for this particular example, the experiment has six

treatments.

The next sections explain some of the tests useful for the analysis of the algorithms

behaviour in the experimental parts of this PhD dissertation (sections 5.2, 5.3, 6.3 and

7.2).

Student’s t-test

A t-test is a parametric statistical test that checks the null hypothesis that the means

of two normally distributed populations are equal, assuming the variances of the two

populations to be equal. Welch’s t test is an adaptation of Student’s t-test intended for

use with two samples having possibly unequal variances.

In computational intelligence, a common way to test whether the difference between

two classifiers’ results over various data sets is non-random has been to compute a paired

t-test, which checks whether the average difference in their performance over the data

sets is significantly different from zero. Nevertheless, this approach suffers from three

weaknesses [225]: commensurability (it only makes sense when the differences over

the data sets are commensurate), sample size (unless the sample size is large enough,

the paired t-test requires that the differences between the two random variables being

compared are distributed normally2), and outliers (it is affected by outliers which skew

the test statistics and decrease the test’s power by increasing the estimated standard

error).
2Also, usually, the statistical tests to check the normality of a distribution have little power on small

samples, that is, they are unlikely to detect abnormalities and warn against using the t-test.
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Mann-Whitney U test

The Mann-Whitney U test (also called Wilcoxon rank-sum test) [221] is a non-parametric

test for checking the equality of population medians of two independent samples. Al-

though a Mann-Whitney’s U test can be considered as a non-parametric version of the

t-test, it compares the medians of the two groups, not the means, and it treats the data as

ordinal data, calculating the rank for each value instead of using the values themselves.

Wilcoxon signed-rank test

The Wilcoxon signed-rank test [198] is a non-parametric statistical hypothesis test

used when comparing two related samples to assess whether their population mean

ranks differ (i.e., it is a paired difference test). It can be used as an alternative to the

paired Student’s t-test, t-test for matched pairs3, when the population cannot be assumed

to be normally distributed. Therefore, the case where one wants to use a Wilcoxon

Signed-rank test is the same as a Mann-Whitney’s U test but having the paired data.

Analysis of Variance

Analysis of variance (ANOVA) is a collection of statistical models used to analyze the

differences between group means and their associated procedures (such as ”variation”

among and between groups), in which the observed variance of a particular variable is

partitioned into components attributable to different sources of variation. In its simplest

form, ANOVA provides a statistical test of whether or not the means of several groups

are all equal, and therefore generalizes the t-test to more than two groups. Doing

multiple two-sample t-tests would result in an increased chance of committing a type I

error. For this reason, ANOVAs are useful in comparing three or more means (groups

or variables) for statistical significance. If we compare three or more unmatched groups,

we will use the one-way ANOVA test but, while the one-way ANOVA measures the

significant effect of one IV, the two-way ANOVA is used when there are more than one

3Two data samples are matched/paired if they come from repeated observations of the same subject.
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IVs and multiple observations for each IV.

Friedman test

The Friedman test [229] is a non-parametric statistical test developed by the economist

Milton Friedman. Similar to the parametric repeated measures ANOVA, it is used to

detect differences in treatments across multiple test attempts. The procedure involves

ranking each row (or block) together, then considering the values of ranks by columns.

Kruskal-Wallis test

The Kruskal-Wallis test [197] is a non-parametric version of the classic one-way

ANOVA, and an extension of the Wilcoxon rank-sum test to more than two groups. It

is used for comparing more than two samples that are independent, and it is used to

test the null hypothesis assuming that the samples are from identical populations or, in

other words, samples from possibly different populations actually originate from similar

populations, at least as far as their central tendencies, or medians, are concerned.

Post-hoc procedures

Statistical tests can perform two kinds of analysis: pairwise comparisons and multiple

comparisons. Pairwise statistical procedures perform individual comparisons between

two algorithms, obtaining in each application a p-value independent from another one.

Therefore, in order to carry out a comparison which involves more than two algorithms,

multiple comparisons tests should be used. In 1×N comparisons, a control method is

highlighted (the best performing algorithm) through the application of the test. Then,

all hypotheses of equality between the control method and the rest can be tested by

the application of a set of post-hoc procedures. N×N comparisons, considering the

hypotheses of equality between all existing pairs of algorithms, are also possible, with

the inclusion of specific post-hoc procedures for this task.
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In pairwise analysis, if we try to draw a conclusion involving more than one pairwise

comparison, we will obtain an accumulated error coming from its combination. In

statistical terms, we are losing control on the Family-Wise Error Rate (FWER), defined

as the probability of making one or more false discoveries (type I errors) among all the

hypotheses when performing multiple pairwise tests. Examples of post-hoc procedures,

used to control the FWER, are Bonferroni-Dunn [230], Holm [222], Hochberg [231],

Hommel [232], Holland [233], Rom [234], or Nemenyi [235].

According to [228], Holm’s procedure can always be considered better than Bonferroni-

Dunn’s procedure, because it appropriately controls the FWER and it is more powerful

than Bonferroni-Dunn’s procedure. In relation to the post-hoc procedures, the dif-

ferences of power between many methods are rather small, with some exceptions:

Bonferroni-Dunn test should not be used in spite of its simplicity, because it is a very

conservative test and many differences may not be detected, but procedures like Holm,

Hochberg, Hommel, Holland, or Rom have a similar power (although the Hommel and

Rom procedures are the most difficult to apply and understand). In any case, the use of

the most powerful statistical procedures does not imply that the results obtained will be

better: the choice of a statistical technique is ruled by a trade-off between its power and

its complexity, taking into account the fulfillment of the assumptions to use every test

(normality, homoscedasticity, statistically independent) as well as the nature of the data

under study (nominal, ordinal, quantitative) and the kind of question we want to answer

(with respect to means, medians, variances, proportions).

Implementation

In particular, many of these statistical tests were included in a tool implemented in

collaboration with Prof. Ottmar Beucher of the University of Applied Sciences of

Karlsruhe, taking advantage of the features offered by the MATLAB Statistic Toolbox,

and a software developed in JAVA by the “Soft Computing and Intelligent Information

Systems” research group at the University of Granada (http://sci2s.ugr.es/

sicidm/). In Figure 9.1, the main pipeline of the statistical framework used to check

the results obtained in the experiments is shown. First, after checking the normality and

http://sci2s.ugr.es/sicidm/
http://sci2s.ugr.es/sicidm/
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homoscedasticity assumptions, we decide between using parametric or non-parametric

approaches. After that, depending on the number of methods under study (two or more

than two), the particular kind of statistical test is chosen. It is important to note that,

usually, we do not use two-way ANOVA because, for such a test, the data in different

columns represent changes in one factor and the data in different rows represent changes

in the other factor. But, in our data, not all rows indicate a possible influence factor in

the results, i.e. a group of rows (a function/dataset/problem) can be a factor, but not

every single row (we are not using averages, we are usually using all the results). In

this scenario, what we are testing with ANOVA is the existence of general differences

between the different methods omitting any reference to every single function or dataset.

Figure 9.1: General overview of the statistical procedures used.



Appendix II: Standard Segmentation
Metrics

Throughout this PhD dissertation, standard segmentation metrics were used to evaluate

the performance of the different segmentation methods compared. The five metrics

most commonly used in this PhD are introduced and described in this appendix.

The Jaccard Index (JI) and the Dice Similarity Coefficient (DSC) measure set

agreement: a value of 0 indicates no overlap with the ground truth, and a value of 1

indicates perfect agreement. Both can be calculated applying the following formulas:

DSC =
2 ∗ |GT ∩ segmentation|

|GT ∩ segmentation|+ |GT ∪ segmentation|
(9.1)

=
2 ∗ |GT ∩ segmentation|
|GT |+ |segmentation|

(9.2)

=
2 ∗ TP

TP + FP + TP + FN
(9.3)

JI =
|GT ∩ segmentation|
|GT ∪ segmentation|

(9.4)

=
DSC

2−DSC
(9.5)

where TP , FN and FP are, respectively, the number of true positive, false negative,

and false positive pixels with respect to the whole image; GT is the ground truth used to

calculate the metric, and segmentation is the actual result obtained using the automatic

segmentation method under consideration. This formula represents the size of the union

of 2 sets divided by the average size of the two sets.
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In turn, the Hausdorff Distance (HD) represents a measure of the spatial distance

between two sets of points: it is the largest of all distances from any point in the

resulting segmentation to the closest point in the ground truth. HD gives an inter-

esting measure of the mutual proximity of two images, by indicating the maximal

distance between any point of one image to the other image. HD can be calculated

as HD(GT, segmentation) = max(h(GT, segmentation), h(segmentation,GT ))

where h(GT, segmentation) = maxgt∈GT{mins∈segmentation{d(gt, s)}}, and d(gt, s)

is any metric between these points (gt and s) 4.

Finally, the True Positive (TP) and False Positive (FP) rates 5, used in Tables 5.3

and 5.5, refer to the percentage of pixels belonging to the object of interest correctly

segmented, and the percentage of pixels erroneously segmented (i.e., pixels that should

have not been segmented), respectively.

4The following web page is a good reference with respect to the HD: http://cgm.cs.mcgill.
ca/˜godfried/teaching/cg-projects/98/normand/main.html

5False Negatives (FN) are not taken into consideration since they can be easily calculated from TP as
FN = 100 - TP.

http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/98/normand/main.html
http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/98/normand/main.html
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Appendix IV: List of Abbreviations

AAM Active Appearance Model

ABA Allen Brain Atlas

ACM Active Contour Model

ACO Ant Colony Optimization

AI Artificial Intelligence

AL Artificial Life

ANN Artificial Neural Network

ASM Active Shape Model

ASM+RF Active Shape Model (and Iterative Otsu’s Thresholding Method) refined

using Random Forests

CA Cornu Ammonis (Ammon’s Horn)

CT Computed Tomography

CV Chan and Vese segmentation method

DCO Discrete Crossover Operators

DE Differential Evolution

DG Dentate Gyrus
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DM Deformable Model

DSC Dice Similarity Coefficient

DT Deformable Template

DTr Decision Tree

EA Evolutionary Algorithm

EC Evolutionary Computation

ECL Ensemble Classifier

EP Evolutionary Programming

ES Evolution Strategies

ESR Early Stage Researcher

FP False Positives

FS Fuzzy Systems

GA Genetic Algorithm

GAC Geodesic Active Contours

GDT Geometrically Deformable Template

GLCM Gray Level Co-Occurrence Matrix

GP Genetic Programming

GPGPU General Purpose Graphics Processing Unit

HD Hausdorff Distance

HPF Hippocampal Formation

ICM Iterated Conditional Modes
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IR Image Registration

IS Image Segmentation

ISH In Situ Hybridization

JI Jaccard Index

LM Levenberg-Marquardt

LS Level Set

MA Memetic Algorithm

MH Metaheuristic

MI Medical Imaging

MIBISOC Medical Imaging using Bio-Inspired and Soft Computing

ML Machine Learning

PBR Probabilistic Reasoning

PCA Principal Component Analysis

PDM Point Distribution Model

PET Positron-Emission Tomography

PR Pattern Recognition

PSO Particle Swarm Optimization

RCGA Real-coded Genetic Algorithm

RF Random Forests

ROI Region of Interest

SA Simulated Annealing
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SC Soft Computing

sg Stratum Granulosum (granule cell layer)

SI Swarm Intelligence

sp Stratum Pyramidale (pyramidal cell layer)

SPECT Single-Photon Emission Computed Tomography

SS Scatter Search

SSM Statistical Shape Model

ST Soft Thresholding

SUB Subiculum

SVM Support Vector Machines

TAN Topological Active Net

TP True Positives

US Ultrasound

VFC Vector Field Convolution
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[225] Janez Demšar. Statistical comparisons of classifiers over multiple data sets.

Journal of Machine Learning Research, 7:1–30, 2006.

[226] Salvador Garcı́a, Francisco Herrera, and John Shawe-taylor. An extension on

“statistical comparisons of classifiers over multiple data sets” for all pairwise

comparisons. Journal of Machine Learning Research, 9:2677–2694, 2008.

[227] Salvador Garcı́a, Daniel Molina, Manuel Lozano, and Francisco Herrera. A study

on the use of non-parametric tests for analyzing the evolutionary algorithms’

behaviour: a case study on the CEC’2005 Special Session on Real Parameter

Optimization. Journal of Heuristics, 15(6):617–644, 2009.

[228] Joaquı́n Derrac, Salvador Garcı́a, Daniel Molina, and Francisco Herrera. A

practical tutorial on the use of nonparametric statistical tests as a methodology

for comparing evolutionary and swarm intelligence algorithms. Swarm and

Evolutionary Computation, 1(1):3–18, 2011.

[229] Milton Friedman. A comparison of alternative tests of significance for the

problem of m rankings. The Annals of Mathematical Statistics, 11(1):86–92,

1940.

[230] O. J. Dunn. Multiple comparisons among means. Journal of the American

Statistical Association, 56:52–64, 1961.

[231] Yosef Hochberg. A Sharper Bonferroni Procedure for Multiple Tests of Signifi-

cance. Biometrika, 75(4):800–802, 1988.

[232] G. Hommel. A stagewise rejective multiple test procedure based on a modified

Bonferroni test. Biometrika, 75(2):383–386, 1988.

[233] BS Holland. An improved sequentially rejective Bonferroni test procedure.

Biometrics, 43:417–423, 1987.

[234] D Rom. A sequentially rejective test procedure based on a modified Bonferroni

inequality. Biometrika, 77:663–665, 1990.



BIBLIOGRAPHY 229

[235] Peter Nemenyi. Distribution-free multiple comparisons. PhD thesis, Princeton

University, 1963.


	Abstract
	Introduction
	Part I: Fundamentals
	Theoretical Background
	Medical Image Segmentation
	Deformable Models
	Parametric Deformable Models
	Geometric Deformable Models

	Medical Image Registration
	Texture and Gray Level Co-Occurrence Matrix
	Soft Computing
	Metaheuristics
	Classification problems


	Datasets
	Medical Imaging
	Microscopy Images
	Computed Tomography Images
	Magnetic Resonance Images

	Medical Image Segmentation using DMs and SC
	Statistical Shape Models
	Level Set Methods

	Part II: Proposed Methods
	Hippocampus Segmentation using ASMs and RF
	Histological Images and Hippocampus
	DE-based hippocampus localization
	Best Reference Slice Selection
	Hippocampus Localization
	Target Function
	Experimental Results

	Segmentation using Iterative Otsu's Thresholding Method and RF
	Segmentation
	Expansion of the Segmentation
	Experimental Results

	Real-world application
	Conclusions

	Hippocampus Segmentation using a MH-based LS Approach
	Previous Approach
	Proposed Method
	Training Phase
	Test Phase

	Experimental Results
	Conclusions

	Biomedical IS using Geometric DMs and MHs
	Proposed Method
	Registration-based prior
	Force terms
	Parameter learning using metaheuristics

	Experimental Setup
	Datasets
	Methods included in the comparison
	Parameter settings
	Experimental results

	Conclusions

	Part III: Final Remarks
	Further Work
	Summary and Conclusions
	Appendix I: Statistical tests for analyzing SC techniques behaviour
	Appendix II: Standard Segmentation Metrics
	Appendix III: Publications July 2010-July 2013
	Appendix IV: List of Abbreviations
	Bibliography

