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Résumé

Cette thèse s'inscrit dans la problématique de l'indexation et la recherche d'images
par le contenu dans des bases d'images volumineuses. Les systèmes traditionnels
de recherche d'images par le contenu se composent généralement de trois étapes :
l'indexation, la structuration et la recherche. Dans le cadre de cette thèse, nous nous
intéressons plus particulièrement à l'étape de structuration qui vise à organiser, dans
une structure de données, les signatures visuelles des images extraites dans la phase
d'indexation a�n de faciliter, d'accélérer et d'améliorer les résultats de la recherche
ultérieure. A la place des méthodes traditionnelles de structuration, nous étudions
les méthodes de regroupement des données (clustering) qui ont pour but d'organiser
les signatures en groupes d'objets homogènes (clusters), sans aucune contrainte sur
la taille des clusters, en se basant sur la similarité entre eux.

A�n de combler le fossé sémantique entre les concepts de haut niveau séman-
tique exprimés par l'utilisateur et les signatures de bas niveau sémantique extraites
automatiquement dans la phase d'indexation, nous proposons d'impliquer l'utili-
sateur dans la phase de clustering pour qu'il puisse interagir avec le système a�n
d'améliorer les résultats du clustering, et donc améliorer les résultats de la recherche
ultérieure.

En vue d'impliquer l'utilisateur dans la phase de clustering, nous proposons un
nouveau modèle de clustering semi-supervisé interactif en utilisant les contraintes
par paires (must-link et cannot-link) entre les groupes d'images. Tout d'abord,
les images sont regroupées par le clustering non supervisé BIRCH (Zhang et al.,
1996). Ensuite, l'utilisateur est impliqué dans la boucle d'interaction a�n d'aider le
clustering. Pour chaque itération interactive, l'utilisateur visualise les résultats de
clustering et fournit des retours au système via notre interface interactive. Par des
simples cliques, l'utilisateur peut spéci�er les images positives ainsi que les images
négatives pour chaque cluster. Il peut aussi glisser les images entre les clusters
pour demander de changer l'a�ectation aux clusters des images. Les contraintes
par paires sont ensuite déduites en se basant sur les retours de l'utilisateur ainsi
que les informations de voisinage. En tenant compte de ces contraintes, le système
réorganise les clusters en utilisant la méthode de clustering semi-supervisé proposée
dans cette thèse. La boucle d'interaction peut être répétée jusqu'à ce que le résultat
du clustering satisfasse l'utilisateur.

Di�érentes stratégies pour déduire les contraintes par paires entre les images
sont proposées. Ces stratégies sont analysées théoriquement et expérimentalement.
A�n d'éviter que les résultats expérimentaux dépendent subjectivement de l'utili-
sateur humain, un agent logiciel simulant le comportement de l'utilisateur humain
pour donner des retours est utilisé pour nos expérimentations. En comparant notre
méthode avec la méthode de clustering semi-supervisé la plus populaire HMRF-
kmeans (Basu et al., 2004), notre méthode donne de meilleurs résultats.
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Abstract

This thesis deals with the problem of Content-Based Image Retrieval (CBIR) on
large image databases. Traditional CBIR systems generally rely on three phases:
feature extraction, feature space structuring and retrieval. In this thesis, we are
particularly interested in the structuring phase, which aims at organizing the visual
feature descriptors of all images into an e�cient data structure in order to facilitate,
accelerate and improve further retrieval. The visual feature descriptor of each image
is extracted from the feature extraction phase. Instead of traditional structuring
methods, clustering methods which aim at organizing image descriptors into groups
of similar objects (clusters), without any constraint on the cluster size, are studied.

In order to reduce the �semantic gap� between high-level semantic concepts
expressed by the user and the low-level features automatically extracted from the
images, we propose to involve the user in the clustering phase so that he/she can
interact with the system so as to improve the clustering results, and thus improve
the results of further retrieval.

With the aim of involving the user in the clustering phase, we propose a new
interactive semi-supervised clustering model based on pairwise constraints between
groups of images. Firstly, images are organized into clusters by using the unsuper-
vised clustering method BIRCH (Zhang et al., 1996). Then the user is involved
into the interaction loop in order to guide the clustering process. In each interac-
tive iteration, the user visualizes the clustering results and provide feedback to the
system via our interactive interface. With some simple clicks, the user can specify
the positive and/or negative images for each cluster. The user can also drag and
drop images between clusters in order to change the cluster assignment of some
images. Pairwise constraints are then deduced based on the user feedback as well
as the neighbourhood information. By taking into account these constraints, the
system re-organizes the data set, using the semi-supervised clustering proposed in
this thesis. The interaction loop can be iterated until the clustering result satis�es
the user.

Di�erent strategies for deducing pairwise constraints are proposed. These strate-
gies are theoretically and experimentally analyzed. In order to avoid the subjective
dependence of the clustering results on the human user, a software agent simulating
the behaviour of the human user for providing feedback to the system is used in
our experiments. By comparing our method with the most popular semi-supervised
clustering HMRF-kmeans (Basu et al., 2004), our method gives better results.
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Chapter 1

Introduction

In recent years, the expansion of acquisition devices such as digital cameras, the
development of storage and transmission techniques of multimedia documents and
the development of tablet computers facilitate the development of many large image
databases as well as the interactions with the users. This increases the need for
e�cient and robust methods for �nding information in these huge masses of data.

Content-Based Image Retrieval (CBIR) refers to the techniques for solving the
image retrieval problem, by using the visual contents of images rather than the
other metadata associated with the images. Figure 1.1 presents the schema of a
traditional CBIR system which generally relies on three principal phases. The �rst
phase, feature extraction (generally performed o�ine), extracts the visual feature
descriptors from all the images in the database. Visual features are usually low-level
descriptors of the contents of the image, describing its color, shape, texture, etc.
The second phase, feature space structuring (generally performed o�ine), aims at
organizing the feature descriptors of all images into an e�cient index data structure
used for further retrieval. Feature space structuring methods are normally called
indexing methods. Therefore, in this thesis, the term indexing and feature space
structuring are interchangeable and are used to refer to the second phase. The third
phase, retrieval (generally performed online), uses a similarity measure for searching
the images which are the most similar to the query image in the index data structure.
With the development of many large image database, the second phase of feature
space structuring is required for facilitating, accelerating and improving the further
retrieval phase.

In this thesis, we are particularly interested in the structuring phase while con-
sidering that the feature extraction phase is previously completed and the image
feature descriptors are available. Feature space structuring methods which are cur-
rently used in traditional CBIR systems can be classi�ed into space partitioning
methods and data partitioning methods.

For space partitioning methods (Quadtree [28, 116], K-D-tree [14], K-D-B-tree
[112], grid �le [98], LSD tree [48], etc.), the feature space is generally partitioned
into disjoint cells of fairly similar cardinality (in terms of number of objects per cell)
or into regular disjoint cells (in terms of size of cell) by di�erent hyperplanes. As the
data classes may be unbalanced or the data distribution may not be homogeneous
among the di�erent classes, the resulting index may include dissimilar points in
a same cell and similar points in di�erent cells. In the retrieval phase, the user
generally wants to retrieve images which are similar to the query image, and the
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Figure 1.1 � Traditional CBIR system.

indexed structure produced by space partitioning methods may be not optimal for
retrieval. Moreover, the partition of the whole feature space into cells may result
in many empty or almost empty cells, especially in the case of high dimensionality
which is generally the case of image feature descriptors, therefore leading to poor
storage utilization of the resulting indexed structure.

For data partitioning methods (R-tree family [13, 42, 117], SS-tree [139], SR-
tree [60], X-tree [16], etc.), data objects are partitioned into regions based on their
distribution in the feature space. Contrary to space partitioning methods, these
regions can be overlapping. No empty cells are produced, and therefore, the storage
utilization is improved. However, the limitations on the cardinality of the cells
remain. It is di�cult to tune the cardinality parameters, especially when groups of
similar objects are unbalanced, i.e. composed of very di�erent numbers of objects.
Therefore, the resulting index is generally non-optimal for retrieval.

Clustering, a part of machine learning techniques, can also be used for the
structuring phase of the CBIR systems. In fact, clustering methods aim at splitting
an object data set into groups (clusters) of objects which are similar in the feature
space, with no constraint on the cluster size. Our claim is that using clustering
methods instead of methods which are currently used in the structuring phase may
result in indexed structure more adapted to the retrieval of high dimensional and
unbalanced data. Indeed, when using clustering in the structuring phase, data
objects are organized in a ��at� or a �hierarchical� structure of clusters. Therefore,
in the retrieval phase, we only have to navigate to the clusters which are similar to
the input feature descriptor and compare the input descriptor with a small number
of feature descriptors included in these clusters. Clustering is thus suitable for
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indexing large databases. Moreover, as there is no limitation on the cardinality of
the clusters, clustering can be used for indexing both balanced or unbalanced data.
Furthermore, when using clustering methods, the empty cell problem is avoided.
Based on these advantages of clustering methods compared to structuring methods
which are currently used in CBIR systems, in our work, the clustering methods are
used for structuring objects in the feature space.

As feature descriptors generally capture low-level information of the image such
as color, shape or texture, there is a �semantic gap� between high-level semantic
concepts expressed by the user and these low-level features. The clustering results
and therefore the retrieval results are generally di�erent from the wishes of the user.
For example, in Figure 1.1, the user submits a query image of a car toy with the
hope of receiving all the images of toys (car and doll). But the system, based only
on low-level features, returns a tea box image before the image of the doll. In this
thesis, we propose to involve the user in the clustering phase so that the user can
interact with the system in order to improve the clustering results, and therefore
improve the performance of the retrieval phase. The idea of the proposed approach
is presented in Figure 1.2. The user, after observing the clustering results, gives
feedback to the system in order to guide the re-clustering phase. The system then
re-organizes the data set by using not only the similarity between objects, but also
the feedback given by the user in order to reduce the e�ect of the semantic gap
problem. The interaction loop can be iterated until the clustering result satis�es
the user.

Figure 1.2 � CBIR system involving the user's interaction in the structuring phase.
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In the case of large image database indexing, we may be interested in unsu-
pervised clustering or semi-supervised clustering. While no information about the
ground truth is provided in the case of unsupervised clustering, a limited amount
of supervised information is provided in the case of semi-supervised clustering. The
provided supervised information may consist of class labels (for some objects) or
pairwise constraints (must-link or cannot-link) between objects.

In this thesis, we assume that the user has no prior knowledge about the image
database. Instead, the user observes the clustering results during each interactive
iteration and gives feedback in order to guide the re-clustering phase. Therefore,
an unsupervised clustering method is suitable to be used for the initial clustering,
when no supervised information is available yet. Then, after receiving the user
feedback in each interactive iteration, a semi-supervised clustering can be used for
the re-clustering process.

Based on a deep study of the state of the art of di�erent unsupervised clustering
methods as well as semi-supervised clustering approaches, in this thesis we propose
a new interactive semi-supervised clustering model involving the user in the cluster-
ing phase in order to improve the clustering results. From the analysis of di�erent
unsupervised clustering methods, we chose to experiment some methods which ap-
pear to be the most suitable to be used in an incremental context involving the
user in the clustering stage. The hierarchical BIRCH unsupervised clustering [145]
which gives the best performance from these experiments is then chosen to be used
as the initial clustering. Then, an interactive loop in which the user provides the
feedback to the system and the system re-organizes the image database using our
semi-supervised clustering is iterated until the clustering results satis�es the user.
As the user has no prior knowledge about the image database, it is di�cult for
him/her to label the clusters or the images in the clusters using classes. Therefore,
we provide to the user an interactive interface allowing him/her to give feedback
to the system. Using this interface, the user can click for identifying relevant or
non-relevant images for each cluster, as well as drag and drop images from a cluster
to another. Pairwise constraints between groups of similar images are then de-
duced from the user feedback in order to be used as supervised information for the
semi-supervised clustering method proposed in this thesis. Di�erent strategies for
deducing pairwise constraints from the user feedback are proposed and experimen-
tally compared in this thesis. In order to avoid the subjective dependence of the
experimental results on the human user and in order to automatize the interactive
experiments, we propose a software agent simulating the behaviour of the human
user when interacting with the system. Experimental results show that our pro-
posed semi-supervised clustering outperforms the semi-supervised HMRF-kmeans
clustering, which gives the best performance in our experimental comparison of
di�erent semi-supervised clustering methods.

This dissertation is organized in two parts: general state-of-the-art (Chapters
2 and 3) and interaction (Chapters 4 and 5). The contents of these chapters is as
follows:

Chapter 2 presents a brief state of the art of di�erent techniques used in a
traditional content-based image retrieval system.
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Chapter 3 proposes a survey of unsupervised clustering methods and analyzes
the advantages and disadvantages of di�erent methods in the incremental context
involving the user in the clustering of huge masses of data. An experimental com-
parison of di�erent unsupervised clustering methods using di�erent image databases
of increasing sizes (Wang, PascalVoc2006, Caltech101, Corel30k) is also studied in
this chapter.

Chapter 4 presents and analyzes di�erent semi-supervised clustering methods.
We propose in this chapter a framework to implement any semi-supervised method
in the interactive context. An experimental comparison of some well known semi-
supervised methods using a software agent simulating the behaviour of the human
user for giving feedback is also presented.

Chapter 5 proposes a new interactive semi-supervised clustering model using
pairwise constraints deduced from the user feedback as supervised information.
Di�erent strategies for deducing pairwise constraints from the user feedback are pro-
posed and experimentally compared in this chapter. This chapter also presents an
experimental comparison of our proposed semi-supervised clustering method with
the HMRF-kmeans semi-supervised clustering which gives the best performance
from the experiments in Chapter 4.

Chapter 6 gives some conclusions and future directions for this thesis.
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Part I

State of the art





Chapter 2

Traditional Content-based image

retrieval

2.1 Introduction

The term Content-Based Image Retrieval (CBIR) seems to be used the �rst time in
the literature in 1992 by Kato [61] in order to describe his experiments of an image
retrieval system based on color and shape features. CBIR is used to refer to the
process which uses visual contents to search images from the database according to
the user's queries. Visual contents, normally called features, usually describe color,
shape, texture or any other kind of information corresponding to the properties
of the images. These properties are usually encoded into feature vectors and can
be automatically extracted from the images themselves. In recent years, with the
development of many large image databases, the main challenge of a CBIR system
is how to locate an image in these huge masses of data. Many CBIR systems have
been developed, such as QBIC [30], Photobook [102], Visualseek [122], Netra [83],
etc. See [23,132] for more complete surveys of CBIR systems.

Traditional CBIR systems generally rely on three phases: the �rst phase consists
in extracting the feature vectors from all the images in the database, the second
phase consists in structuring them into an e�cient index data structure, while the
last phase is to e�ciently search in the indexed feature space in order to �nd the
most similar images to the query image. Methods which are used to extract the
characteristics of each image in the database are called feature extraction methods.
The characteristics of the images are in general presented in the form of feature vec-
tors. They are usually low-level features commonly based on shape, texture, color
properties of images. Feature space structuring methods (normally called indexing
methods) aim at organizing the feature vectors of all images in the database into
an e�cient index data structure that facilitates further retrieval. In the retrieval
phase, the user �rst submits a query image to the system. The system then com-
putes the feature vector of the query image and uses a similarity measure for �nding
and returning to the user the images which are most similar to the query image in
the structured feature space. These images are usually returned in decreasing order
of similarity.

In the present chapter, we present a brief state of the art of di�erent techniques
used in content-based image retrieval. In Section 2.2, we analyze current feature
extraction approaches. Section 2.3 presents an overview of di�erent indexing meth-
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ods. And the retrieval strategy is described in Section 2.4. Finally, a discussion is
given in Section 2.5.

2.2 Feature extraction

In content-based image retrieval, feature extraction is intended to transform each
input image into a set of features (normally in the form of feature vector) describing
the image content. In general, these are low-level features automatically extracted
based on di�erent properties (color, texture, shape, etc.) of the image itself. Before
calculating features, images could be preprocessed (color space conversion, denois-
ing, quantization, etc.). Good features should carry enough information about the
image and should well relate to the user perception. Finding relevant features rep-
resenting visual content of images in a large database is still a challenging task. It
depends on the image database, on the application and also on the user's wishes.
Many research focuses on this problem. We can divide feature extraction approaches
into three main types: global approaches, local approaches and spatial approaches.

• With regard to global approaches, each image is characterized by a signature
calculated on the entire image. The construction of the signature is generally
based on color, texture and/or shape.

• Instead of calculating a signature on the entire image, local approaches com-
pute color, texture and/or shape features for segmented regions or for region
around interest points of each image. Thus, each image is characterized by a
set of local signatures (one signature for each interest point, for instance).

• Regarding to the spatial approaches, each image is considered as a set of
visual objects. Spatial relationships between these objects will be captured
and characterized by a graph of spatial relations, in which nodes often rep-
resent regions and edges represent spatial relations between regions. Thus,
the signature of an image contains descriptions of visual objects and spatial
relationships between them.

2.2.1 Global approaches

Global approaches aim at extracting features over the entire image instead of seg-
mented regions. Global features are generally calculated based on color, texture or
shape properties of the image. These three kinds of features can be either calcu-
lated separately or combined to get a more complete signature. We present in the
next three paragraphs some basic global features representing the visual contents
of image.

2.2.1.1 Color

Color features are among the most widely used features in content-based image
retrieval. The color of an image could be represented by color histograms [130],
color moments [92], color correlograms [54], etc.
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Color histogram Color histograms are the most widely used representation of
color features; they are used in many content-based image retrieval systems such as
QBIC [133], MARS [133], PicToSeek [133], etc. A color histogram is in general a
n-dimensional vector [h1, ..., hn] in which hj is the number of pixels having the color
j in the image and n is the number of color values. A color histogram represents
thus the distribution of colors in an image. As an image can be represented in
many color spaces (RGB, HSV, L*a*b*, L*u*v*,...) [105] which are related to each
other by mathematical formulas, the color histogram can be built for any color
space [130]. In the case of gray scale images, the term intensity histogram may
be used instead of color histogram for representing the frequencies of occurrence of
each gray level. In the case of color images, the histogram can be calculated on a
speci�c channel or on each channel of the selected color space. The histogram of
an image in a speci�c color space could also capture the joint probabilities of the
intensities of two or three color channels (R and/or G and/or B of the RGB color
space and similarity for other color spaces). A quantization is often used to divide
each channel of the color space into a number of ranges of similar intensity values
(called bins) for reducing the dimension of the histogram and also the computational
cost.

We present here some most popular color histograms based on di�erent color
spaces:

• RGB color space: The RBG histogram is the most commonly used. In [130],
Van de Sande et al. de�ne the RBG histogram as a combination of three sep-
arate histograms on each color channels R, G and B. In [58], Jeong quantizes
each channel R, G and B into 8 ranges and computes the RGB histogram
having 8x8x8=512 bins.

• Normalized RGB color space: The normalized RGB color space [130] is trans-
formed from the RGB space as in Equation (2.1):rg

b

 =

 R
R+G+B

G
R+G+B

B
R+G+B

 (2.1)

As r + g + b = 1, only two components (r and g) are used to combine the
rghistogram [130] of this color space. By using the normalized RGB space,
the feature vectors are less sensible to the luminance changes.

• Opponent color space: In [130], the opponent histogram is the combination of
three histograms on each channel of the opponent color space:O1

O2

O3

 =


R−G√

2
R+G−2B√

6
R+G+B√

3

 (2.2)

The opponent color space has three components in which O3 represents the
luminance information, O1 is the red-green channel and O2 is the blue-yellow
channel.
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• HSV color space: The HSV color space [105] consists of three channels: (1)
Hue represents the color in its pure form varying from red through yellow,
green, cyan, blue, magenta and back to red; (2) Saturation de�nes if the color
is grey or pure; (3) Value represents the brightness of the color.

H = cos−1

{
1
2
[(R−G) + (R−B)]√

(R−G)2 + (R−B)(G−B)

}

S =
max(R,G,B)−min(R,G,B)

max(R,G,B)
(2.3)

V =
max(R,G,B)

255

In this color space, hue represents most of the information about the color.
Therefore, in [58], the H channel is quantized into 18 bins while S and V are
quantized into 3 bins to create a HSV histogram having 18x3x3=162 bins.
Van de Sande et al., in their article [130], use only the Hue histogram.

Color moments Under the assumption that the color in an image may follow
a certain probability distribution, the moments of the color distribution could be
used as color features of the image.

Stricker and Orengo [124] de�ne di�erent color moments for each color channel
in an image.

• The �rst color moment (mean) of the ith color channel is de�ned as follows:

M1
i =

1

N

N∑
j=1

Ii,j (2.4)

where Ii,j is the value of the ith color channel of the jth pixel and N is the
total number of pixel in the image.

• Then, the hth moment of the ith color channel is de�ned as:

Mh
i =

(
1

N

N∑
j=1

(Ii,j −M1
i )h

) 1
h

(2.5)

Since most of the information is concentrated in the low-order moments, Stricker
and Orengo [124] only use the �rst moment (mean), the second moment (standard
deviation) and the third moment (skewness) as features. Since 3 moments are
used for each color channel, an image is thus characterized by a feature vector of 9
moments.

Note that color histograms and color moments described above do not contain
any information about the spatial layout of the color in an image. Mindru et al. [92]
de�ne generalized color moments including spatial information as follows:

Mabc
pq =

∫∫
xpyq[R(x, y)]a[G(x, y)]b[B(x, y)]cdxdy (2.6)
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where Mabc
pq is the generalized color moment of order p + q and degree a + b + c.

R(x, y), G(x, y) and B(x, y) are respectively the R, G, B values of the pixel at
the position (x,y) of the image. Note that in Equation (2.6), the generalized color
moments are de�ned in the RGB color space. Color moments of any other space
could be computed in a similar way. We can see that generalized color moments of
degree 0 (M000

pq ) do not contain any photometric information while the generalized
color moments of order 0 (Mabc

00 ) do not contain any spatial information. The
generalized color moments of higher order and higher degree contain simultaneously
color and spatial information.

With di�erent values of order and degree, we can create a large number of
generalized color moments. In general, generalized color moments up to the �rst
order and the second degree are used. There are nine possible combinations of
the degree ((a, b, c) ∈ {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1), (1, 0, 1),
(2, 0, 0), (0, 2, 0), (0, 0, 2)}) and three possible combinations of the order ((p, q) ∈
{(0, 0), (1, 0), (0, 1)}). The color moment feature vector has thus 27 dimensions.

By properly combining di�erent moments, Mindru et al. [92] computed di�erent
color moment invariants which are robust towards photometric changes (or illumi-
nance changes) in one, two or three color channels of the color space. A feature
vector could be created by using di�erent color moment invariants.

Color correlogram The color correlograms [54] were proposed to include the
spatial correlation of pairs of colors in an image. Like color histograms and color
moments, the color correlograms could be used for any kind of color space.

Assume that the colors in an image I are quantized into m colors c1,...,cm. The
distance between two pixels p1 = (x1, y1) and p2 = (x2, y2) of the image I is de�ned
as:

|p1 − p2| = max{|x1 − x2|, |y1 − y2|} (2.7)

Let Ici = {p ∈ I | I(p) = ci} represent the set of pixels of the image I having
the color ci. The color correlogram is de�ned for a pair of colors ci, cj ∈ {c1, ..., cm}
and a distance k ∈ {1, ..., d} (d is �xed a priori) as:

γ(k)
ci,cj

(I) = Pr
p1∈Ici ,p2∈I

[
p2 ∈ Icj/|p1 − p2| = k

]
(2.8)

Given any pixel of color ci, γ
(k)
ci,cj(I) speci�es the probability of �nding a pixel of color

cj at a distance k from the given pixel. By considering all possible combinations
of color pairs in {c1, ..., cm} and all distances k ∈ {1, ..., d}, the color correlogram
feature vector has a large size of O(m2d). The autocorrelogram, a simple version
of the correlogram, is instead often used for reducing the dimension of the feature
vector. Instead of capturing the spatial correlation between each pair of colors, the
color autocorrelogram characterizes only the spatial correlation between identical
colors (γ

(k)
ci,ci , ci ∈ {c1, ..., cm}). The dimension of the color autocorrelogram is

therefore O(md).

2.2.1.2 Texture

Texture is a concept that is closely related to the human perception. We can
de�ne a textured region as a non-uniform intensity region which can be perceived
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(a) Regular texture (b) Irregular texture (c) Stochastic texture

Figure 2.1 � Examples of textures (Source: http: // www. cgtextures. com )

as homogeneous at some large spatial scale. Texture features are also important
visual features of images. For instance, tigers and cheetahs cannot be distinguished
only by color or shape, texture features are needed in this case.

Textures can be arranged from regular to stochastic textures. In the regular
case, a texture can be interpreted as a repetition of some basic patterns. In the
stochastic case, there is no basic pattern, the pixels are randomly organized. Some
examples of regular, irregular and stochastic textures are respectively shown in
Figures 2.1a, 2.1b, 2.1c.

Many texture representation methods are presented in the literature [44, 52,
87, 129]. We can divide them into structural and statistical methods. Structural
methods characterize texture by identifying primitives or basic patterns (such as
circles, hexagons, ...) and their placement rules to form the texture. These methods
are more e�ective for regular textures (e.g. brick wall image). Some methods of
this kind are described in [44,88,128,134]. Statistical methods characterize texture
by a set of statistical feature vectors, based on properties such as contrast, entropy,
etc. Some methods of this kind are described in [44,45]. We describe in this section
some of the most frequently used methods.

Gray-Level Co-occurrence matrices [45] One of the most famous and widely
used texture features are gray-level co-occurrence matrices. Before computing co-
occurrence matrices, a texture image of size nxm is quantized into G gray-levels. A
co-occurrence matrix Pd,θ of size GxG is computed for representing the frequency
of transition between pairs of gray-level according to a distance d and a direction θ.
The entry Pd,θ(i, j) of this matrix represents the number of occurrences of a pixel
of gray-level gj which is at a distance d and a direction θ from a pixel of gray-level
gi. Figure 2.2 represents a transition from the gray-level gi to the gray-level gj with
a distance d = 2 and a direction θ = π/4.

Many co-occurrence matrices can be computed for each image according to
di�erent distances (d = 1,2,3,...) and di�erent directions (θ = 0, π/4, π/2, 3π/4,
...). These matrices represent certain information about the spatial distribution
of di�erent gray-levels of the texture. For each co-occurrence matrix, Haralick
[45] proposed 14 statistical features characterizing texture properties. Some main
features extracted from the Pd,θ co-occurrence matrix are described in Table 2.1.

where:

http://www.cgtextures.com
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Figure 2.2 � Transition from gray-level gi to gray-level gj with a distance d = 2 and
a direction θ = π/4.

Energy
∑

i

∑
j p

2
d,θ(i, j)

Entropy −
∑

i

∑
j pd,θ(i, j) log(pd,θ(i, j))

Contrast (Inertia)
∑

i

∑
j(i− j)2pd,θ(i, j)

Di�erence moment
∑

i

∑
j

1
1+(i−j)2pd,θ(i, j)

Variance
∑

i

∑
j(i− µ)2pd,θ(i, j)

Maximum probability max
i,j

pd,θ(i, j)

Correlation
∑

i

∑
j
ijpd,θ(i,j)−µxµy

σxσy

Table 2.1 � Some features extracted from Haralick's gray-level co-occurrence matri-
ces.

• pd,θ(i, j) is the normalized value corresponding to the Pd,θ(i, j) value of the
matrix.

• µ is the mean of the matrix.

• µx, µy, σx, σy are the means and standard deviations of the row and column
sums of the matrix.

Gabor �lters [67, 74] Based on the principle that a texture is a repetition of
primitives with a certain frequency, the idea of this method is to use a set of Gabor
�lters to analyze the structure of the texture at di�erent scales (frequencies) and
orientations.

A Gabor �lter is the product of a Gaussian kernel function and a complex
sinusoid. The Gabor function is de�ned as follows:

• Complex:

g(x, y) = e−
(x′2+γ2y′2)

2σ2 × ei(
2πx′
λ

+ϕ) (2.9)

x′ = x cos θ + y sin θ (2.10)

y′ = −x sin θ + y cos θ (2.11)

• Real part:

gr(x, y) = e−
(x′2+γ2y′2)

2σ2 × cos(
2πx′

λ
+ ϕ) (2.12)
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• Imaginary part:

gi(x, y) = e−
(x′2+γ2y′2)

2σ2 × sin(
2πx′

λ
+ ϕ) (2.13)

Where:

• σ is the standard deviation of the Gaussian factor and γ is the spatial aspect
ratio specifying the ellipticity of the Gabor function.

• λ represents the wavelength and 1
λ
represents the spatial frequency of the

sinusoidal factor.

• θ speci�es the orientation of the Gabor �lter.

• ϕ is the phase o�set.

To analyze the texture features, the input image is convolved with a set of Gabor
�lters with di�erent frequencies and orientations. An input image I(x, y), where
(x, y) ∈ Ω (Ω is the set of pixels in the image) is convolved with a Gabor function
g(x, y) to obtain two Gabor feature images (rr(x, y) as real part and ri(x, y) as
imaginary part) as follows:

rr(x, y) = (I ∗ gr)(x, y) =

∫∫
Ω

I(ξ, η)gr(x− ξ, y − η)dξdη (2.14)

ri(x, y) = (I ∗ gi)(x, y) =

∫∫
Ω

I(ξ, η)gi(x− ξ, y − η)dξdη (2.15)

Figure 2.3 � Filtered images using Gabor �lters according to 4 frequencies (vertical
axis, the frequencies increase from top to bottom) and 3 orientations (horizontal
axis, from left to right θ = 0, θ = π/3, θ = 2π/3).
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Thus, for each texture image, we obtain a set of Gabor feature images in real
part and imaginary part. Figure 2.3 shows the response images of an input texture
according to 3 frequencies and 4 orientations; in total we have 24 response images
(3×4 = 12 images in real part and 3×4 = 12 image in imaginary part). The feature
vector of the input image is then created by combining the statistics such as mean
and standard deviation [144] calculated for each response image. For example, we
calculate the mean µ and the standard deviation σ for each response image in Figure
2.3, the feature vector has thus 24× 2 = 48 dimensions f = (µ0, σ0, ..., µ23, σ23).

2.2.1.3 Shape

(a) A ball (b) A box

Figure 2.4 � Examples of objects with similar color and texture but having di�erent
shapes.

Shape features have widely been used in many CBIR systems [133]. This kind of
features is useful for object and region description. Figures 2.4a and 2.4b show two
images containing two objects having similar colors and textures but their shapes
are very di�erent. In this case, the color or texture criteria do not allow us to
distinguish these two images. Shape features are useful in this kind of situation.

Shape descriptors are often extracted after segmenting the images into objects
and regions. As image segmentation is also a di�cult task, shape features are in
general less developed than color and texture features. Many shape feature de-
scriptors are presented in the literature [93]. We can divide them into two groups:
contour-based descriptors and region based descriptors. While contour-based de-
scriptors (such as Fourier-based shape descriptor [31, 141, 143], ...) represent an
object or region by its outer boundary, the region-based descriptors (such as Hu
moments [53], Zernike moments [125], medial axis [75], ...) represent the properties
of entire region. A good shape feature should be invariant to translation, rotation
and scale. In this section, we describe the shape descriptors that are most widely
used in content-based image retrieval systems.
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Fourier descriptors [31, 141, 143] Fourier descriptor is the most widely used
among contour-based descriptors for describing shape information of images. In
general, a shape signature is a one-dimensional function representing the boundary
coordinates of a shape. By applying a Fourier transform on a shape signature, we
obtain the Fourier descriptors.

Let us assume that the shape boundary coordinates are (x(t), y(t)), t = 0, 1, ..., N−
1 where N is the number of sampled points in the boundary of the shape. Boundary
coordinates can be represented by di�erent shape signatures:

• Complex coordinates function:

s(t) = z(t) = x(t) + iy(t) (2.16)

• Shifted complex coordinates function:

s(t) = z(t) = [x(t)− xc] + i[y(t)− yc] (2.17)

where (xc, yc) is the centroid of the shape:

xc =
1

L

L−1∑
t=0

x(t)

yc =
1

L

L−1∑
t=0

y(t) (2.18)

• Centroid distance function:

s(t) = r(t) =
√

[x(t)− xc]2 + [y(t)− yc]2 (2.19)

The discrete Fourier transform of a given shape signature s(t) is given by:

an =
1

N

N−1∑
t=0

s(t)exp(
−i2πnt
N

), n = 0, 1, ..., N − 1 (2.20)

The coe�cients an, n = 0, 1, ..., N − 1 form the Fourier descriptors of the shape.
Fourier descriptors are simple to implement but require a pre-processing step to
extract the contour from the images. Their main drawback is the lack of description
of occlusions in the shape.

Hu moments [53] Hu [53] proposed seven moments which are useful to capture
the shape characteristics. These moments are invariant to translation, rotation and
scaling. These 7 moment are calculated as follows:

I1 = η20 + η02 (2.21)

I2 = (η20 − η02)2 + 4η2
11 (2.22)

I3 = (η30 − 3η12)2 + (3η21 − η03)2 (2.23)

I4 = (η30 + η12)2 + (η21 + η03)2 (2.24)

I5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]

+(3η21 − η03)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)2] (2.25)
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I6 = (η20 − η02)[(η30 + η12)2 − (η21 + η03)2]

+4η11(η30 + η12)(η21 + η03) (2.26)

I7 = (3η21 − η03)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]

−(η30 − 3η12)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)2] (2.27)

Where ηij is the normalized central moment calculated based on the central
moment µij as follows:

ηij =
µij

µ
(1+ i+j

2
)

00

(2.28)

µij =
∑
x

∑
y

I(x, y)(x− x0)i(y − y0)j (2.29)

Where:

• (x0, y0) is the centroid of the image.

• I(x, y) represents the gray level of the image at the position (x, y).

Zernike moments [125] To compute the Zernike moments [125], the Cartesian
coordinates (x, y) of the image are �rst transformed into polar coordinates (ρ, θ)
inside a unit disk (the centre of the image is the origin of the unit disk, x2 +y2 ≤ 1)
as follows:

ρ =
√
x2 + y2 (2.30)

θ = arctan
(y
x

)
(2.31)

The complex Zernike moments Amn of an image I(x, y) are built based on the set
of complex Zernike polynomials Vmn(x, y) as follows:

Amn =
m+ 1

π

∑
x

∑
y

I(x, y)[Vmn(x, y)]∗ where x2 + y2 ≤ 1 (2.32)

where:

• m ≥ 0 de�nes the order of the moment, n is an integer, |n| ≤ m and m− |n|
is even.

• I(x, y) represents the gray level of the image at the position (x, y).

• [Vmn(x, y)]∗ is the conjugate of the complex Zernike polynomial Vmn(x, y).

The complex Zernike polynomial Vmn(x, y) is calculated as:

Vmn(x, y) = Vmn(ρ cos θ, ρ sin θ) = Rmn(ρ)einθ (2.33)

where i2 = −1, and Rmn(ρ) is the orthogonal radial polynomial:

Rmn(ρ) =

m−|n|
2∑

s=0

(−1)s
(m− s)!

s!
(
m+|n|

2
− s
)

!
(
m−|n|

2
− s
)

!
ρm−2s (2.34)

We can easily see that Rmn(ρ) = Rm,−n(ρ) and therefore [Vmn(x, y)]∗ = Vm,−n(x, y).
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2.2.2 Local approaches

Local descriptors are nowadays widely used in content-based image retrieval. In-
stead of calculating a signature on the entire image, local approaches characterize
the local properties of the image region around �xed grid points or detected inter-
est points. Thus, each image is characterized by a set of local feature vectors (one
vector for each point).

Figure 2.5 � Output interest points of the Harris detector.

Di�erent detectors for identifying the interest points are proposed in the litera-
ture such as the Harris detector [46], the Harris-Laplace detector [90], the Di�erence
of Gaussian (DoG) detector [81], the Laplacian of Gaussian (LoG) detector [78], etc.
Figure 2.5 represents an example of the output interest points detected by the Harris
detector.

For representing the local characteristics of the image around each point, various
descriptors are proposed such as the local color histogram [130], Scale-Invariant
Feature Transform (SIFT) [81], Speeded Up Robust Features (SURF) [11], color
SIFT descriptors [1, 17, 130], etc. Among these descriptors, SIFT descriptors are
very popular because of their very good performance.

SIFT (Scale-Invariant Feature Transform) [81] SIFT was proposed by Lowe
[81]. The feature descriptor representing the characteristics of the region around
each interest point (keypoint) is calculated based on the gradient distribution of
this region. Figure 2.6 illustrates the computation of the SIFT descriptor around a
detected interest point. The feature descriptor of each interest point is calculated
on the Gaussian-smoothed image L(x, y, σ) at the scale σ where the interest point
is detected:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (2.35)

where ∗ is the convolution operation, I(x, y) is the original image and G(x, y, σ) is
the 2D Gaussian kernel at scale σ:

G(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 (2.36)
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Each image sample point L(x, y) in a region around the interest point location is
assigned a gradient magnitude m(x, y) and an orientation θ(x, y) computed using
pixel di�erences (see Figure 2.6(a)).

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (2.37)

θ(x, y) = tan−1 ((L(x, y + 1)− L(x, y − 1))/(L(x+ 1, y)− L(x− 1, y))) (2.38)

Figure 2.6 � Computation of a SIFT descriptor in a region of size 8x8 around an
interest point. (Lowe, 2004)

The gradient magnitudes of the sample points in the region around the interest
point are weighted by a Gaussian window, indicated by the circle in Figure 2.6(a),
with a σ of 1.5 times the scale of the interest point. The feature descriptor of each
interest point is concatenated from orientation histograms computed in a region
around the interest point such that each histogram is computed from points of a
4 × 4 subregion. Each orientation histogram created on a 4 × 4 subregion has 8
bins corresponding to 8 orientations, as shown in Figure 2.6(b). The length of each
arrow (bin) corresponds to the sum of the gradient magnitudes of the sample points
within this 4 × 4 subregion having a similar orientation to this arrow. Figure 2.6
illustrates the computation of the SIFT descriptor concatenated from 2 × 2 = 4
histograms computed from a 8 × 8 region of sample points. In his work Lowe [81]
used a region of size 16×16 for calculating the 4×4 orientation histograms, therefore
the feature descriptor has 8× 4× 4 = 128 elements.

Color SIFT descriptors As the SIFT descriptor of Lowe [81] is applied only
on the intensity channel, the color information may be lost. Therefore, some color
SIFT descriptors are proposed for being used in di�erent color spaces:

• RGB-SIFT [130]: The local RGB-SIFT descriptor for each interest point is
created by independently computing the SIFT descriptors for every channel of
the RGB color space. The local feature descriptor has thus 3× 128 elements.

• HSV-SIFT [17]: Same as RGB-SIFT, the HSV-SIFT descriptor for each
interest point is the concatenation of the three SIFT descriptors computed
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for each component of the HSV model. The HSV-SIFT descriptor for each
interest point has 3× 128 dimensions.

• Hue-SIFT [130]: The Hue-SIFT descriptor for each interest point is the con-
catenation of the Hue histogram and the original SIFT descriptor computed
on the region around this interest point.

• OpponentSIFT [130]: OpponentSIFT of each interest point is computed
as the concatenation of SIFT descriptors describing all the channels in the
opponent color space (see Equation (2.2)).

• rgSIFT [130]: For the rgSIFT descriptor, the SIFT descriptors which are
computed for the r and g components of the normalized RGB color space
(see Equation (2.1)) are concatenated with the original SIFT descriptor in
the intensity channel.

• CSIFT (Colored SIFT) [1]: For the CSIFT descriptor of each interest
point, Abdel-Hakim and Farag [1] compute the SIFT descriptors for all color
invariants of the color invariance model described in Equation (2.39) E

Eλ
Eλλ

 =

0.06 0.63 0.27
0.3 0.04 −0.35
0.34 −0.6 0.17

RG
B

 (2.39)

As local approaches represent each image by a set of local descriptors and con-
sidering the fact that the number of interest points may vary from one image to
another, the calculation of the distance between two images is not straightforward.
We present hereafter two among the most widely used and very di�erent methods
for calculating the distance between two images:

• In the �rst method, the distance between two images is calculated based on
the number of matches between them [5]. For each interest point P of the
query image, we consider, among all the interest points detected from the
image database, the two points P1 and P2 which are the closest to P (P1
being closer than P2). A match between P and P1 is accepted if D(P, P1) ≤
distRatio×D(P, P2), where D is the Euclidean distance between two points
(computed using their n-dimensional feature vectors) and distRatio is a �xed
threshold, distRatio ∈ (0, 1). By de�ning a match in this way, we can reject
the ambiguity cases where the distances between P to the closest and the
second closest interest points are similar. Note that, for two images Ai and
Aj, the matching of Ai against Aj (further denoted as (Ai, Aj)) does not
produce the same matches as the matching of Aj against Ai (denoted as
(Aj, Ai)). The distance between two images Ai and Aj is computed using the
following formula:

Di,j = Dj,i = 100 ∗
(

1− Mij

min{KAi , KAj}

)
(2.40)

whereKAi , KAj are respectively the numbers of interest points found in Ai, Aj
andMij is the maximum number of matches found between the pairs (Ai, Aj)
and (Aj, Ai).
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• The second approach is based on the use of the �bag of words� method [121] [7]
which calculates, from a set of local descriptors, a global feature vector for
each image. Figure 2.7 shows the �bag of words� approach used in an object
recognition problem. First, we extract local descriptors of all the images
in the database and learn to aggregate these local descriptors into groups
in order to create a dictionary (also called codebook). The centre of each
group is considered as a visual word in the dictionary. Unsupervised learning
methods (generally k-means) are mostly used for constructing the dictionary,
some other works learned the codebook by using supervised learning [18] [86].
Then, a "bag of words" is constructed for each image via two steps: coding
and pooling. The coding step projects each local descriptor of the image onto
the visual words of the codebook, and the pooling step combines the projected
codes of all the local descriptors of the image into a vector. The projected code
of a local descriptor xj is a vector αj = (α1,j, ..., αn,j), where n is the number of
visual words in the dictionary (i.e. the number of groups of local descriptors)
and αm,j is the m

th component of the encoded vector corresponding to the
mth visual word in the dictionary. Traditionally, the coding step activates
αm,j = 1 only for the word which is closest to the descriptor xj, and assigns
zero to all other components. Another possibility for the coding step is the soft
coding [131]. Many visual words in the codebook can be assigned to a same
local descriptor, but with di�erent weights corresponding to the distances
between these visual words and the descriptor. The pooling step aggregates
all encoded vectors of each image into a single vector z = (z1, ..., zn). The sum
pooling or the max pooling operators are usually used. For the sum pooling
operator, each component zm of the vector z is computed as zm =

∑M
j=1 αm,j

(where M is the number of local descriptors of the image), while the sum
pooling operator computes each component as zm = max

j∈1..M
αm,j. The tf-idf

weighting method [123] is also used alternatively for the pooling step. By using
the �bag of words� method, each image is characterized by a feature vector
of size n and the distance between any two images can be easily calculated
using the Euclidean distance or the χ2 distance.

2.2.3 Spatial approaches

In spatial approaches, each image is considered as a set of visual objects which are
often obtained by a preliminary stage of image segmentation. Objects/Regions and
spatial relationships among objects/regions are then characterized for representing
the content of the image. This kind of approaches is less used than the global and the
local approaches because it requires the preliminary stage of image segmentation
which is not straightforward, especially in the context of huge image databases
where the contents may be very heterogeneous. The most widely used spatial
feature descriptors are the 2D string [20] and its variants [19,55,59,73].

2D String [20] Spatial representation by the 2D string was presented by Chang
et al. [20]. The signi�cant objects in an image are �rst segmented and recognized.
The idea of the 2D string approach is to represent each image by a symbolic picture
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Figure 2.7 � Bags of words approach in an object recognition system (Source: http:
//sensblogs.wordpress.com/page/2/)

http://sensblogs.wordpress.com/page/2/
http://sensblogs.wordpress.com/page/2/
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where each symbol represents an object in the image. A symbolic picture over a
set V of symbols is an m × n matrix, where each symbol in V is assigned to a
slot of the matrix corresponding to the position in the image of the centroid of the
object represented by this symbol. Figure 2.8b shows an example of the symbolic
picture corresponding to the image containing four segmented objects represented in
Figure 2.8a. The spatial relationships among the symbols in a symbolic picture are
expressed by using di�erent spatial operators de�ned in the set A = {<,=, :}. The
operator �<� speci�es the left-right or below-above spatial relationship, the operator
�=� signi�es �at the same spatial location as� and the operator � :� denotes the
relation �in the same set as�. By orthogonally projecting the symbols in a symbolic
picture by columns and by rows, the 2D string representing the corresponding image
is de�ned as a pair of strings:

(u, v) = (o1x1o2x2...xn−1on, op(1)y1op(2)y2...yn−1op(n)) (2.41)

where o1o2...on is a 1D string over the set of symbols V (oi ∈ V ), op(1)op(2)...op(n) is
a permutation of o1o2...on, x1x2...xn−1 and y1y2...yn−1 are 1D strings over the set of
spatial operators A. The �rst string o1x1o2x2...xn−1on represents the spatial informa-
tion of n objects along the x-axis, while the second string op(1)y1op(2)y2...yn−1op(n)

represents the spatial information of these objects along the y-axis. For exam-
ple, the symbolic picture in Figure 2.8b can be represented using the 2D string
{a = b : c < d, a < b : c < d}.

(a) Segmented objects in an image.
(b) Symbolic picture represent-
ing the image.

Figure 2.8 � Examples of image representation using 2D string.

The similarity between two images represented by 2D strings can be determined
by using exact or approximate matching techniques [20, 103]. In the case of exact
matching, two images are similar if every object in the �rst image has at least
one similar object (object of the same class) in the second image and the matched
objects of these two images have exactly the same spatial relationships. In the
case of approximate matching techniques, the similarity between two 2D strings
represented two images can be determined based on the longest subsequence that
the two 2D strings have in common.
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2D string variants The 2D string approach gives a natural way for representing
spatial relationships in 2D pictures. However, for images with large number of
overlapping objects having complex shapes, the spatial operators {<,=, :} are not
su�cient for representing the spatial relationships among objects. Therefore, many
variants of the 2D string approach have been proposed.

• Jungert [59] proposed an extended version of the 2D string approach which
allows a more precise description of the spatial relationships among objects
by using a new set of operators {=, <, \, /, |=,=|,%, |} representing di�erent
relations as shown in Table 2.2.

Notation Relation Condition
A = B equal centroid(A)=centroid(B)
A < B less than max(A) < min(B)
B/A overlap max(B) < max(A) and length(B) ≥ length(A)
A\B overlap inverse min(A) < min(B) and length(A) ≤ length(B)
A |= B begin min(A) = min(B) and length(A) < length(B)
B =| A end max(B) = max(A) and length(B) > length(A)
B%A contain min(B) < min(A) and max(B) > max(A)

Table 2.2 � Spatial operators of the extended 2D string approach.

Figure 2.9 � Example of cutting mechanism in the 2D G-string.

• The generalized 2D string (2D G-string) was introduced by Chang et al. [19]
with the cutting mechanism. The vertical and horizontal cutting lines are
drawn through all the extremal points of all objects in the image as in Figure
2.9. By projecting the objects along the x-axis and the y-axis, the generalized
2D string corresponding to the example in Figure 2.9 is as follows:

u : a|ab|acb|ab|a|ad|d
v : a|c|bc|b < d

where �<� is the less than operation as in Table 2.2, and �|� is the edge-to-edge
operator representing two objects touching together.
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• The 2D C-string was proposed by Lee and Hsu [73] to reduce the number of
cutting objects. The 2D C-string approach uses a set of seven spatial operators
de�ned in Table 2.3. Instead of drawing cutting lines through all extremal
points of all objects, the 2D C-string approach uses only cutting lines through
partly overlapping objects. For a pair of overlapping objects, the cutting line
is drawn through the end point of the �rst ending object. Therefore, one of
the overlapping objects is split into two parts, the object that is not split
is the dominating object. In Figure 2.10, a horizontal cutting line is drawn
through the end point of object (c) and divides object (b) into two parts, and
the vertical cutting line at the end of object (a) divides object (d) into two
parts. The 2D C-string corresponding to the example in Figure 2.10 is as
follows:

u : (a%b%c)]d | d
v : a|c]b | b < d

Notation Meaning Condition
A < B A disjoint B end(A) < begin(B)
A = B A equals B begin(A) = begin(B) and end(A) = end(B)
A | B A edge-to-edge B end(A) = begin(B)
A%B A contains B begin(A) < begin(B) and end(A) > end(B)
A[B A contains B with

same begin
begin(A) = begin(B) and end(A) > end(B)

A]B A contains B with
same end

begin(A) < begin(B) and end(A) = end(B)

A/B A partly-overlap B begin(A) < begin(B) and end(A) < end(B)

Table 2.3 � Spatial operators of the 2D C-string approach.

Figure 2.10 � Example of cutting mechanism in the 2D C-string. Object (a) domi-
nates (d) along the x-axis while (c) dominates (b) along the y-axis.
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2.3 Indexing

By using the feature extraction methods presented in the previous section, the
visual characteristics of the images in the database are extracted in the form of
feature vectors. With the development of many large image databases, indexing
methods are needed to organize the feature vectors in an index structure that sup-
ports a fast and e�cient retrieval in the feature database. Index structures can
be created based on one or more features of the feature vector. Indexing methods
can support point databases in which data are points in an N-dimensional space
and/or spatial databases where data are lines, rectangles or other geometric objects
in N-dimensional space [34]. In this section, we present successively two main types
of traditional indexing methods: space partitioning methods and data partitioning
methods.

2.3.1 Space partitioning methods

Space partitioning approaches generally partition the feature space into disjoint (or
non-overlapping) cells (sometimes also called �buckets�) by one or more hyperplanes.
Each point of the database lies in only one of the cells. Some techniques of this kind
are Quadtree [28, 116], k-d-tree [14], k-d-b-tree [112], grid �le [98], LSD tree [48],
etc.

Quadtree [28,116] One of the most famous space partitioning structures is the
quadtree [28,116]. The quadtree is usually used to organize two dimensional data in
a tree structure by recursively subdividing the space into 22 = 4 quadrants or cells,
each of which corresponding to a rectangle. Each internal node has therefore four
children which are respectively the NW (north-west), NE (north-east), SW (south-
west) and SE (south-east) quadrants. The decomposition of the tree is continued
until the number of objects in each leaf node is below a given threshold, or until the
similarity of the points in di�erent quadrants is greater than a given threshold, etc.
Note that the basic idea of the quadtree can be easily generalized to an arbitrary
dimension d in which each internal node has 2d descendants.

Figure 2.11 � Point quadtree.

Two main variants of the quadtree are the point quadtree [28] and the region
quadtree [116]. The point quadtree is constructed by successively inserting each
point in the database into the tree. For each point, we �rst go down from the root
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Figure 2.12 � Region quadtree.

to �nd the leaf at which the point should be added. Then, the point is added into
the leaf and the region of the corresponding leaf is divided into 2d subregions with
the new point at the centre. Figure 2.11 shows on the right-hand side an example of
a 2-dimensional point quadtree corresponding to the space decomposition described
on the left-hand side. The region quadtree decomposes successively the space cor-
responding to each node into 2d subspaces of equal size until the number of objects
in each cell is below or equal a given threshold. Figure 2.12 shows an example of a
region quadtree with threshold=1. We can see that the point quadtree is sensitive
to the order in which the points are inserted while the region quadtree is not. The
quadtree allows point queries, nearest neighbour queries and range queries.

k-d-tree [14] Another widely known space partitioning structures is the multidi-
mensional binary search tree (k-d-tree) proposed by Bentley, in 1975 [14]. A k-d-tree
is a binary tree which aims at organizing points in a k-dimensional space by recur-
sively subdividing the space into two subspaces by a (k-1)-dimensional hyperplane
at each non-leaf node. Each node of the k-d-tree contains a k-dimensional point
(d1, d2, ..., dk), two pointers referring to the left and right sons, and a discriminator
which is an integer varying from 1 to k specifying one of the k-dimensions. At each
non-leaf node, the space is divided into two subspaces by an implicitly associated
hyperplane passing through the point speci�ed in this node and perpendicular to
the axis of the dimension speci�ed by the discriminator of this node. So, for any
non-leaf node x which discriminator speci�es dimension j, all points in the left sub-
tree of x have their dj values less than the dj value of x, and all points having greater
dj values will appear in the right subtree. The original algorithm to construct the
k-d-tree selects the splitting hyperplanes by cycling through the d dimensions. For
example, in a (d = 3)-dimensional space, when moving down the tree, the splitting
hyperplanes are �rst perpendicular to the x-axis, then y-axis and z-axis before cy-
cling back to the x-axis. According to the selected dimension, the splitting plane
can cross through the median point of all points included in the current node or
through the median point of some randomly selected points. Figure 2.13b shows a
k-d-tree constructed in a 2-dimensional space corresponding to the space decompo-
sition in Figure 2.13a. The �rst splitting plane is the vertical line crossing p5. The
splitting planes in the next level are horizontal lines crossing p3 for the left subtree
and p7 for the right subtree, and so on. In this k-d-tree structure, data points are
scattered all over the tree and the directions of the splitting hyperplanes have to be
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alternating in a �xed order which is not always the best choice. Bentley and Fried-
man [15] proposed an extension of the k-d-tree which stores data points only in the
leaves. Each non-leaf node contains the discriminator specifying the dimension and
the split value corresponding to this dimension; points in the left subtree are less or
equal to the split value while points having greater values are in the right subtree.
In this extension, the splitting hyperplane directions do not need to be chosen in
a �xed order. At each internal node, the attribute j is chosen as discriminator if
it maximizes the spread of attribute values (variance or distance from minimum to
maximum) of points contained in this node. The k-d-tree structure is used for point
data, it allows point queries, nearest neighbour queries and range queries, but it is
sensitive to the order in which the points are inserted.

(a) Space decomposition by the k-d-tree. (b) The resulting k-d-tree.

Figure 2.13 � Examples of the k-d-tree.

k-d-b tree [112] The k-d-b-tree structure [112] combines the properties of the
B-tree [12] and the k-d-tree [14] structures to organize k-dimensional data points
in a balanced tree. Each node in the k-d-b-tree corresponds to a page. There are
two kinds of pages in a k-d-b-tree: point pages corresponding to leaf nodes and
region pages corresponding to internal nodes. Data points are located in point
pages. Region pages contain entries in the form of (region, childID), where chil-
dID is the pointer pointing to a child page of this page, region in the form of
((min1,max1), ..., (mini,maxi), ..., (mink,maxk)) describing the region of the cor-
responding child node. If the child node is a point page, all the points in the child
page must be in region. If the child node is a region page, the union of the regions
in the child page is region. Note that the regions in a region page are disjoint and
their union is a region. The region corresponding to the root page covers all the
space. As the k-d-b-tree is a balanced tree, the path length from root page to leaf
page is the same for all leaf pages. Figure 2.14 shows an example of a 2-d-b-tree
in which page 0, page 1, page 2, page 3 are region pages while page 4, page 5 and
page 6 are point pages.

The k-d-b-tree is constructed by successively adding each point in the database
into the tree. When inserting a new point into the tree, it goes down from the
root until it reaches the point page it should be added to. The disjunction between
nodes of the same level in the tree involves a single path in the search, and therefore
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Figure 2.14 � Example of a 2-d-b-tree.

only one point page can be reached. Then, the point is added to that point page if
the page is not full. Otherwise, a dimension di and an element xi in this dimension
are picked; and the point page is split by a hyperplane perpendicular to di at the
position xi. Like in a B-tree, the father node is updated by replacing the entry
corresponding to the old point page by two new entries corresponding to the two
new point pages. A new split of the father page may be needed if it over�ows. As
in the case of k-d-tree, the cyclic method can be used to choose the dimension di
and the medoid value along this dimension can be chosen as xi. Note that when
we split a region of an internal node along an axis, we must also split the regions
of the sub-nodes along this axis. Therefore, empty or almost empty nodes can be
created. This may cause a degradation in the performances of the k-d-b-tree in the
case of nearest neighbour queries and range queries.

Grid �le [98] The grid �le [98] is a space partitioning method based on hashing
technique. A grid �le uses a d-dimensional orthogonal grid to partition the d-
dimensional space into a non-periodic grid of cells. The grid �le does not contain
any data, but data points are stored in data buckets which are associated with one
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or more cells of the grid. Each data bucket is stored on one disk page and has
a capacity of c records. Each cell refers to only one bucket, while a bucket may
contain points of several adjacent cells.

The Grid directory is the data structure representing the grid �le. A grid direc-
tory consists of two parts: d one-dimensional arrays called linear scales representing
the partition of the space along each of d dimensions and a d-dimensional array
called grid array whose elements point to data buckets and correspond to grid cells
of this partition. Since the directory may grow large, the grid array is usually kept
on secondary storage while the linear scales are kept in main memory.

Figure 2.15 shows an example of a grid �le partitioning a 2-dimensional space
into cells associated with buckets of capacity c = 4. We can see for instance that
bucket C stores data points corresponding to four di�erent cells in the upper right
part of the grid.

Figure 2.15 � Example of a grid �le in 2-dimensional space.

To insert a new point in a grid �le, the cell and the corresponding data bucket pi
where the point should be inserted are �rst located. If the bucket pi is not full, then
the new point is inserted in pi. If pi is full, then pi is split into two data buckets
by an existing hyperplane of the grid if it is possible (in the case that there are
several grid cells that point to pi) or by a new hyperplane H perpendicular to the
axis of a chosen dimension di (all corresponding cells being also split according to
H). There are several splitting policies that are compatible with the grid �le. The
simplest policy is to choose cyclically the dimension for splitting. Another policy
is to choose dimensions corresponding to some favoured attributes more often than
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others. The location of a split can be chosen at the midpoint of the corresponding
linear scale range, or at any point around the midpoint. As all corresponding cells
are split when splitting a data bucket by a new hyperplane, the grid can therefore
considerably grow by having many empty cells, which makes it not very adapted to
nearest neighbour queries or range queries.

2.3.2 Data partitioning methods

While space partitioning methods partition the space into disjoint cells, data par-
titioning methods partition the data objects into regions which may overlap, based
on the distribution of the descriptors and their relative proximity in space. Similar
points are generally enclosed by a bounding region (normally in the form of mini-
mum bounding rectangle or minimum bounding sphere). Popular index structures
of this kind are the R-tree family [13,42,117], SS-tree [139], SR-tree [60], X-tree [16],
etc.

R-tree family [13,42,117] R-tree (Rectangle Tree) family consists of three index
structures: R-tree [42], R+-tree [117] and R*-tree [13]. The basic idea of these
approaches is to group data objects using multidimensional minimum bounding
rectangles. These rectangles are organized in a height-balanced tree corresponding
to the data distribution, where data objects are stored in the leaves and all leaves
are at the same level. Each node of the tree corresponds to a disk page and a
bounding rectangle representing the region of this node. The bounding rectangle
of a leaf is the minimum bounding rectangle of the objects (point objects and/or
spatial objects) stored in this leaf. The bounding rectangle of an internal node
covers the bounding rectangles of its children. And the rectangle of the root node
therefore covers all objects in the database. Note that every node contains at least
m and at most M entries, unless it is the root. The lower bound m ensures an
e�cient storage utilization, while the upper bound M ensures that each node does
not exceed one disk page size. Figure 2.16 shows an example of an R-tree with
2-dimensional point data objects. In the case of spatial data objects, each object
can be represented by a minimum bounding rectangle.

Figure 2.16 � Example of an R-tree in 2-dimensional space.

The R-tree can be built under repeated insertions of points in the databases.
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To insert a new object o, we go down from the root by selecting, at each level, the
child node that requires the least enlargement of its bounding rectangle to enclose
the new object until a leaf L is reached. If the leaf L is not full, then the new
object is inserted into L. If L is full, then L must be divided into two new leaves
by minimizing the total volume of the two corresponding bounding boxes. After
inserting the new object, the bounding rectangles of the corresponding nodes are
adjusted; the change and also the split are propagated upward.

For searching by point query or range query in the R-tree, we have to go down
from the root and visit, at each level, all child nodes having the bounding rectangles
which contain the input point or intersect with the input interval. As the bounding
rectangles in each level may overlap, we might have to visit many child nodes.
The rectangle overlapping probability increases when the number of dimensions is
high. In the worst case, we may have to visit every nodes of the tree. In this case,
sequential scan may be more e�ective.

As the overlap between nodes is generally important in R-tree, the R+-tree [117]
and R*-tree [13] structures have been developed with the aim of minimizing the
overlap of bounding rectangles, in order to optimize the search in the tree. The R+-
tree structure avoids the overlap of bounding rectangles by dividing each overlapping
rectangle into smaller rectangles, until they no longer overlap. This may increase the
height of the tree, but we can save time during retrieval by reducing the number
of sub-trees to visit. The R*-tree structure tries to minimize the overlap among
rectangles and also their volume by using the reinsertion mechanism. When a new
entry is inserted into a full node Ri, we try to reinsert some entries of this node, and
hopefully �nd better positions for these entries. If all these entries are reinserted
in the same location, then Ri is split into two nodes as in R-tree. Experiments
in [13] show that R*-tree is the best structure of the R-tree family for indexing
multidimensional data. The structures in the R-tree family are all sensitive to the
insertion order of the objects. On the other hand, since there is no empty cell, the
R-tree family is more suitable for the nearest neighbour search.

SS-tree [139] The SS-tree (Similarity Search Tree) [139] is a similarity indexing
structure which groups the objects based on their similarity in the space. The
SS-tree structure is similar to that of the R-tree, but bounding spheres are used
instead of bounding rectangles to enclose the entries of each node. This allows to
o�er an isotropic analysis of the feature space. Data objects are stored in the leaves.
Each bounding sphere is represented by a centre and a radius. The centre of the
bounding sphere of a node is the gravity centre of all the elements in the sub-tree of
this node. The radius of a leaf bounding sphere is the distance between the centre
and the farthest point in this leaf. The radius of an internal node bounding sphere
is computed as maxni=0(D(c, ci)+Ri) where n is the number of children of this node,
D(c, ci) is the distance between the centre c of this node and the centre ci of the
child node i, and Ri is the radius of the corresponding child node. An example of
an SS-tree in a 2-dimensional space is shown in Figure 2.17.

An SS-tree can also be constructed by successively inserting each data object
into the tree. When a new entry goes down from the root, at each step the new
element moves to the node whose centre is closest to the new element. The SS-tree
also uses the reinsertion mechanism of the R*-tree in order to minimize the overlap
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Figure 2.17 � Example of an SS-tree in 2-dimensional space.

among bounding spheres, as well as their volume. In comparison to the R*-tree,
SS-tree has been shown to have better performance [60]. But the SS-tree structure
is sensitive to the insertion order of the objects and the overlap between nodes is
still high, when indexing high dimensional data.

SR-tree [60] SR-tree (Sphere/Rectangle Tree) [60] combines R*-tree and SS-tree
by identifying the region of each node as the intersection of the bounding rectangle
and the bounding sphere. The bounding rectangle and the bounding sphere of
a leaf node are respectively the minimum bounding rectangle and the minimum
bounding sphere containing all the data objects of this leaf. The bounding rectangle
of an internal node covers all the bounding rectangles of its child nodes, while the
bounding sphere covers all the bounding spheres of its child nodes. Figure 2.18
shows an SR-tree organizing 2-dimensional point data.

Figure 2.18 � Example of an SR-tree in 2-dimensional space.

In high dimensional space, bounding rectangles tend to have smaller volumes
than bounding spheres, while bounding spheres have in general shorter diameters
than bounding rectangles [60]. By combining the bounding rectangle and the
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bounding sphere, SR-tree allows to create regions with small volumes and small
diameters. This allows to reduce the overlap between nodes and thus enhances the
performance of nearest neighbour search with high dimensional data. But SR-tree
is still sensitive to the processing order of the data.

2.4 Retrieval

In the retrieval phase of a traditional CBIR system, the user is required to submit
a query image to the CBIR system. The query image may be an existing image
or a sketch made by the user providing a rough approximation of the image he is
interested in. The CBIR system has to return result images which share common
characteristics with the query image. Depending on the application, they may be
the k images which are most similar to the query image, all the images within a
given �xed distance ε from the query image or images containing similar objects
to the query image. For searching suitable images, the system extracts the fea-
ture vector of the query image and then measures the similarity with the feature
vectors previously extracted from the images in the database. The performance of
the retrieval phase strongly depends on the chosen similarity measure; the choice of
this measure plays therefore a crucial role. In practice, dissimilarity measures are
usually used instead of similarity measures for comparing di�erent images in the
database. Moreover, as the feature vectors only capture low-level information such
as color/texture or shape, there may be a �semantic gap� between high-level seman-
tic concepts expressed by the user and these low-level features. Thus, the retrieval
based on the similarities between those low-level features may produce images which
do not �t the intent of the user. In this section, we present �rst the retrieval strat-
egy, then di�erent dissimilarity measures, and �nally di�erent strategies for solving
the �semantic gap� problem.

2.4.1 Retrieval strategy

There are di�erent kinds of queries which are used in CBIR, such as point query,
range query, k nearest neighbour query, etc. Point query requires to �nd a vector
(image) in the database. Range query requires to �nd all vectors in the database
which are located in a pre-de�ned region (normally in the form of a rectangle).
While k nearest neighbour query requires to �nd the k vectors which are most
similar to the input vector among all the vectors of the database.

The simplest solution for retrieval is to use linear search or sequential search
by comparing successively the feature vector of the query image with the feature
vector of every other image in the database. Images in the database are then sorted
in descending order of similarity and returned to the user. Linear search is very
simple to implement, and is useful when the database has only few images. But it
is not suitable for large databases due to the high number of comparisons needed.

The most frequently used solution in the case of large databases is to organize
data objects by an indexing method (space partitioning method or data partitioning
method (see Section 2.3)) and to navigate in the structured feature space for �nding
suitable images.

For �nding a vector in an indexed structure, we have to locate the cells or
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regions containing the input vector in this structure. For grid-based structure such
as grid �le, the cell containing the input vector is determined by scanning the linear
scales. For tree-based structure such as k-tree, k-d-tree, k-d-b-tree, R-tree, SS-tree,
SR-tree, we go down from the root and select at each level the nodes whose region
contains the vector. As space partitioning methods divide the space into disjoint
cells, only one cell has to be checked at each step of the retrieval phase, while many
cells may be suitable in the case of data partitioning methods due to the overlapping
between cells. The search ends when the vector is found or when there are no more
cell or node to check.

The retrieval by range query is similar to the retrieval by point query, but we
have to �nd the results in the cells or regions which overlaps with the region de�ned
in the input query.

Searching for a k-nearest neighbour query in an indexed structure can proceed
as follows:

1. Randomly select k points as the current k-nearest neighbours.

2. Repeat :

(a) Compute the distance Dist between the input point and the farthest
point among the current k-nearest neighbour points; and de�ne the �re-
sult region� as the hyper-sphere of radius Dist around the search point.

(b) The algorithm checks whether there could be any points in the indexed
structure that are closer to the input point than the current k-nearest
neighbours. Conceptually, these points may be found in the cells over-
lapping with the �result region�. The algorithm locates in the indexed
structure the �current cell� as the nearest cell which is not visited and
overlaps with the �result region�.

(c) If there are any points in the �current cell� which are closer to any points
in the current k-nearest neighbours → update the list of the current
k-nearest neighbours.

until there is no more cell to check.

Note that for tree-based structure, by going down from the root, the algorithm �rst
locates the �current cell� as the leaf node which is nearest to the input point and
set the �current node� as the father node of this leaf. Then, it �nds the �current
cell� among the leaves of the �current node� before walking up the tree to �nd in
the other branch.

We can see that by organizing feature vectors in an indexed structure, we do
not have to compare the input vector with every other vectors in the database, but
in general only with the vectors in a small number of cells. Therefore, this strategy
is more suitable to large databases than linear search.

2.4.2 Dissimilarity measures

The performance of the dissimilarity measure depends on the extracted features and
may di�er among di�erent databases. Di�erent dissimilarity measures have been
presented in the literature [79, 107]. They are divided into geometric measures,
information theory measures and statistical measures.



40 Chapter 2. Traditional Content-based image retrieval

Geometric measures Geometric measures are among the most widely used in
CBIR systems. They consider images as n-dimensional feature vectors and com-
pute the dissimilarity between two images by successively measuring the di�erence
between the two corresponding vectors in each dimension.

Having two vectors X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn), the dissimilarity
between them can be calculated by di�erent geometric measures:

• Minkowski distance [79]: the Minkowski distance of order p (or Lp norm)
between X and Y is de�ned as:

Dp(X, Y ) = (
n∑
i=1

|xi − yi|p)
1
p (2.42)

The Minkowski distance can be considered as a general form of the Manhattan
distance (L1), the Euclidean distance (L2) and the Chebyshev distance (L∞).

• Canberra distance (dcan) [71]: the Canberra distance is a normalized variant
of the Manhattan distance where the absolute di�erence between two vectors
in each dimension is divided by the sum of the absolute values of two vectors
in this dimension. The Canberra distance is computed as follows:

dcan(X, Y ) =
n∑
i=1

|xi − yi|
|xi|+ |yi|

(2.43)

• Cosine based dissimilarity (dcos) [79]: the Cosine similarity (scos) measure the
similarity between X and Y by calculating the cosine of the angle between
them, which determines whether two vectors point in the same direction.

scos(X, Y ) = cos θ =
X.Y

|X|.|Y |
=

∑n
i=1 xi × yi√∑n

i=1(xi)2 ×
√∑n

i=1(yi)2
(2.44)

and the corresponding dissimilarity is computed as:

dcos(X, Y ) = 1− cos θ = 1−
∑n

i=1 xi × yi√∑n
i=1(xi)2 ×

√∑n
i=1(yi)2

(2.45)

Information theory measures Information theory measures consider images
as probabilistic distributions and use di�erent divergence measures for calculating
the dissimilarity between images. Thus, these measures can not be used with fea-
tures having negative values. Moreover, for each probabilistic distribution X =
(x1, x2, ..., xn), we have

∑n
i=1 xi = 1.

• Kullback-Leibler (K-L) divergence (dkl) [99]: the K-L divergence is a non-
symetric measure which is used to measure the dissimilarity between two
probability distributions as follows:

dkl(X, Y ) =
n∑
i=1

xi log
xi
yi

(2.46)
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• Je�rey divergence (djd) [79]: the Je�rey divergence is the symmetric form
of the Kullback-Leibler divergence, it measures the di�erence between two
probability distribution as follows:

djd(X, Y ) =
n∑
i=1

(xi log
xi
mi

+ yi log
yi
mi

) (2.47)

where mi = xi+yi
2

.

Statistical measures Statistical measures consider image feature vectors as sam-
ples and compare them on the basis of distribution analysis.

• χ2 statistics [108]: the χ2 statistic measure computes the dissimilarity between
two vectors based on the di�erence between one vector and the mean of both
vectors as follows:

dχ2(X, Y ) =
n∑
i=1

(xi −mi)
2

mi

(2.48)

where mi = xi+yi
2

.

• Kolmogorov-Smirnov distance (dks) [36]: the Kolmogorov-Smirnov distance
measures the dissimilarity between two probability distributions as the max-
imal absolute di�erence between two distribution functions:

dks(X, Y ) =
∑

1≤i≤n

|FX(i)− FY (i)| (2.49)

where FX and FY are respectively the probability distribution functions of the
�rst and the second sample. This measure is de�ned only for one-dimensional
probability distributions.

2.4.3 Semantic gap problem

The term �semantic gap� is used to characterize the di�erence between two levels of
description of an object/image. The �rst description is done in CBIR using feature
vectors which only capture low-level information of the image (color, texture, shape,
etc.). The second description is done by the human user which uses high-level
semantic concepts to retrieve images. As the retrieval in a traditional CBIR system
is in general based on the similarities between the low-level features, the result
images may not �t the intent of the user.

An approach to overcome the �semantic gap� problem is to combine the vi-
sual content information (low-level feature vectors) with other semantic informa-
tion (high-level information) during the retrieval phase [72,77,97,126]. In his thesis,
Nguyen [97] uses the multimodal search combining visual content information with
textual information in the form of user annotations representing some semantic
descriptions of the images. Combining these information allows to search images
which are similar to the query image in both visual content aspect and semantic
aspect.

Another approach which is most widely used for the �semantic gap� problem
is the relevance feedback approach. This is an interactive technique which is used



42 Chapter 2. Traditional Content-based image retrieval

to improve the result of a retrieval system according to the interactions between
the user and the machine. In a CBIR system, the user is proposed to indicate the
relevance of each image in the results to the query image (such as �very relevant�,
�relevant�, �not relevant� or �neutral�). Based on the user feedback, the search is
repeated by modifying, for example, the query vector or by updating the similarity
measure in order to give results which are more suitable to the user's perception.
Among the existing techniques for relevance feedback, we can cite:

• Query point movement : This kind of techniques tries to improve the retrieval
performance by reformulating the query vector so that the query is moved
toward the relevant images and at the same time away from the non-relevant
images. The Rocchio's technique [113] is the most widely used for modifying
the query vector:

qm = αqo +
β

|Sr|
∑
xi∈Sr

xi −
γ

|Snr|
∑
xi∈Snr

xi (2.50)

where qo is the original query vector, qm is the modi�ed query vector, Sr is
the set of relevant points and Snr is the set of non relevant points. α, β and
γ are successively the weights corresponding to the original query vector, the
relevant points and the non relevant points. Typically α = 1 and 0 < β, γ < 1.
In general, the weight of relevant feedback is usually greater than the weight
of non-relevant feedback (β > γ).

• Distance function modi�cation: This kind of technique considers that certain
elements of the feature vector may be more important to the user than others.
Therefore, a weight is provided for each dimension in the distance metric and
this technique is used to modify these weights according to the user's feedback.
Ortega-Binderberger and Mehrotra [100] used in their work the weighted Lp
metric to compute the distance between vectors:

Lp(X, Y ) = p

√∑
i

ωi(xi − yi)p (2.51)

where
∑

i ωi = 1. Then, they tried to change the weights ωi according to the
user's feedback as follows:

◦ Estimate the new weights wi as the inverse of the standard deviation
of dimension i of all relevant vectors given by user. The idea is that a
large variation of the relevant vectors in a dimension means that this
dimension poorly captures the user's need and should as a consequence
have a smaller weight; and vice versa.

ωesti =
1

σ(dj[i]|dj ∈ Dr)
(2.52)

where Dr is the set of relevant vectors.

◦ Normalize the weights so that
∑

i ω
est
i = 1.
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◦ Combine the estimated weights with the original weights:

ωnewi = αωi + βωesti (2.53)

where α + β = 1.

• Machine learning techniques : The retrieval task of a CBIR system can be
considered as a machine learning problem [22]. The aim is to classify the
database into two classes: the relevant class containing images which are
similar to the query image and the irrelevant class represents the class of
images which are not relevant to the query image. The most relevant images,
according to the learned classi�er, are returned to the user. The user can
annotate the resulted images as relevant or irrelevant images. The annotated
images can then be added in the training set for the learning process in the
next iteration. The learning process aims at estimating the parameters of the
classi�er in order to reduce the di�erent between the user's labels and the
classi�er's labels, and thus reduce the �semantic gap�. The learning process
assigns also a degree of relevance to each image in the database in order to
provide the most relevant images to the user. Supervised learning [118] [51]
or semi-supervised learning [82] [50] techniques can be used for the learning
process. While supervised learning used only labeled data for the training
process, semi-supervised learning incorporate also unlabeled data into the
training set. Nowadays, active learning techniques [104] [38] [50] [56] [21]
[127] [39] are increasingly used for content-based image retrieval problem. In
each interactive iteration, the active learning model returns to the user not
only the list of the most relevant images, but also the pool query set containing
unlabelled images which seem to be the most informative images that should
be annotated by the user to improve the most the classi�cation process. For
instance, images in the pool query set can be the ones about which the system
is most unsure (e.g. images which are close to the class boundary).

2.5 Discussion

With the aim of manipulating large image databases, feature space structuring
methods are necessary for facilitating and accelerating further retrieval. Indeed,
the complexity for searching similar images in the indexed structured is generally
much less than in the case of the linear search as we do not have to compare the input
vector with every other vectors in the database, but only with the vectors in a small
number of cells of the indexed structured. As described in Section 2.3, traditional
indexing methods can be divided into two categories: space partitioning methods
and data partitioning methods. Space partitioning methods partition the feature
space into disjoint cells of restricted cardinality (in terms of number of objects per
cell) or into regular disjoint cells (in terms of size of cell) by di�erent hyperplanes.
Therefore, dissimilar points may be included in a same cell while similar points may
end up in di�erent cells. The resulting index is therefore not optimal for retrieval,
as the user generally wants to retrieve similar images to the query image. Moreover,
by dividing the whole space into cells, there may have many empty or almost empty
cells, especially in the case of large dimensionality, which is generally the case of
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image feature vectors that commonly count hundreds of elements. That leads to
poor storage utilization of these indexed structures. Data partitioning methods
partition the data objects into overlapping regions. There are no empty cells, and
therefore, that helps to improve the storage utilization. However, the limitations
on the cardinality of the cells remain; their parameters are di�cult to tune causing
the resulting index to be generally non-optimal for retrieval, especially in the case
where di�erent groups of similar objects are unbalanced, i.e. composed of very
di�erent numbers of images.

As the traditional indexing methods generally provide non-optimal indexed
structured for retrieval due to the limitations on the cardinality of the cells, es-
pecially in the case where the database contains unbalanced groups of similar ob-
jects, this restricts the use of indexing methods in many applications. Our claim is
that using clustering methods instead of traditional indexing methods to organize
feature vectors results in indexed structures which may be more adapted to high
dimensional and unbalanced data. Indeed, clustering aims at splitting a collection
of data into groups (clusters) so that similar objects belong to the same group and
dissimilar objects are distributed in di�erent groups, without any constraint on the
cluster size. As in traditional indexing, clustering methods also group objects into
groups based on the similarity between them, therefore, during the retrieval phase,
we do not have to compare the input vector with every other vectors in the database,
but only with vectors in a small number of groups which are similar to the input
vector. Clustering is thus suitable for indexing large databases. Moreover, while
in traditional indexing methods it might be di�cult to �x the number of objects
in each bucket (especially in the case of unbalanced data), clustering methods have
no limitation on the cardinality of the clusters, since objects in the database can
be grouped into clusters of very di�erent sizes. Therefore, clustering can be used
for indexing both balanced or unbalanced data. Furthermore, by using clustering,
we can avoid the empty cell problem of the space partitioning methods in the case
of high dimensional data, which leads to poor storage utilization of the indexed
structures. With these advantages of clustering methods compared to traditional
indexing methods, in this thesis we have decided to use the clustering instead of
traditional indexing for indexing database objects.

Because of the �semantic gap� between high-level semantic concepts expressed by
the user and the low-level features extracted from the images, the clustering results
and also the resulting images of the retrieval phase may therefore generally be quite
di�erent from the intent of the user. While existing CBIR systems allow the user to
give relevance feedback about resulting images, in this work, we try to involve the
user sooner in the clustering phase so that the user could interact with the system in
order to improve the clustering results. The idea is that a good clustering structure
may lead to high performance of the retrieval phase. Moreover, involving the user
in the clustering phase requires less user's e�ort than involving the user later in
the retrieval process, as the user might interact with a small number of cluster
prototypes rather than with numerous single images. Therefore, the next chapter
presents di�erent unsupervised clustering methods and analyzes their possibilities
to be used in an interactive context.
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2.6 Summary of the chapter

This chapter presents a structured survey of the Content-Based Image Retrieval
(CBIR) approaches. It presents the general model for a CBIR system, consisting
of the three principal phases: feature extraction, feature space structuring and
retrieval. The principal techniques used in di�erent phases of a CBIR system are
also presented in detail, especially the feature space structuring techniques. We also
present in this chapter the �semantic gap� problem, which explains the di�erence
between the retrieval results and the wishes of the user. We propose an overview
of the existing approaches, generally used in the retrieval phase, for solving this
semantic gap problem.

Our contribution in this chapter is an analysis of the advantages of using cluster-
ing methods instead of traditional feature space structuring methods in the struc-
turing phase of large image databases. The aim is to obtain an indexed structure
more adapted to the retrieval of high dimensional and unbalanced data. For re-
ducing the semantic gap between the high-level semantic concepts expressed by the
user and the low-level features extracted automatically from the images, we propose
to involve the user, not in the retrieval phase, but in the clustering (indexing) phase
so that he could interact with the system in order to obtain an indexed structure
closer to the user wishes.
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Chapter 3

Unsupervised clustering

3.1 Introduction

Clustering is one of the most popular techniques in data mining. The objective
of the data mining process is to analyze a mass of data and to extract the hidden
information in these data which is useful for further use. For the clustering problem,
the hidden information is the groups of data objects. Clustering aims at splitting
a collection of data into groups (clusters) so that similar objects belong to the
same group and dissimilar objects are in di�erent groups, without any constraint
on the cluster size. As analyzed in Chapter 2, we aim at using clustering instead of
traditional indexing to organize feature vectors; our objective is also to involve the
user in the clustering phase in order to improve the clustering results according to
the intent of the user. In our context where the user is involved in the clustering
of large image database, we are interested by the following criteria of the clustering
methods:

• Hierarchical structure: The clustering methods should produce a hierarchical
cluster structure where the initial clusters may be easily merged or split.

• Suitability for large image databases : the system must be able to tackle large
image databases.

• Incrementality : We are also interested by clustering methods which can be
incrementally built in order to facilitate the insertion or deletion of images by
the user. It can be noted that incrementality is also very important in the
context of huge image databases, when the whole data set cannot be stored
in the main memory.

• Complexity : The computational complexity is another very important point
of the clustering algorithm, especially in an interactive context where the user
is involved in the clustering of large databases.

In the context of large image database indexing, we may be interested by tradi-
tional clustering (unsupervised) [57,140] or semi-supervised clustering [9,10,26,136].
While no information about the ground truth is provided in the case of unsupervised
clustering, a limited amount of knowledge is available in the case of semi-supervised
clustering. In our interactive clustering loop, the objects in the database are �rst
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organized into groups by an initial unsupervised clustering during which no infor-
mation about any ground truth is provided. After receiving the feedbacks of the
user, another semi-supervised clustering may be used to re-organize the objects
according to the intent of the user.

In this chapter, we present a survey of unsupervised clustering techniques and
analyze the advantages and drawbacks of di�erent unsupervised clustering methods
in the context of huge masses of data where incrementality and hierarchical struc-
turing are needed; semi-supervised clustering techniques are studied in the next
chapter. This chapter is organized as follows. Section 3.2 analyzes di�erent clus-
tering methods. A formal comparison of these methods is presented in Section 3.3.
Section 3.4 presents some measures which are generally used for evaluating cluster-
ing results. An experimental comparison of some unsupervised clustering methods
are analyzed in Section 3.5. Finally, a conclusion and some discussions are given in
Section 3.6.

3.2 Major existing unsupervised clustering meth-

ods

There are currently many unsupervised clustering methods that allow us to aggre-
gate data into groups based on the proximity between points (vectors) in the feature
space. Unsupervised clustering can be divided in hard clustering and fuzzy clus-
tering. Hard clustering methods assign each object to only one cluster, while with
fuzzy clustering methods, an object can belong to one or more clusters with di�er-
ent degrees of membership. In this thesis, we are interested in only hard clustering
methods. Indeed, as a �rst attempt to involve the user in the clustering process,
we consider that the user assigns some well-chosen images to one cluster only, and
therefore hard clustering is more adapted in that context. Fuzzy clustering might
be studied in further work. Di�erent kinds of hard clustering methods have been
proposed in the literature:

• Partitioning methods partition the data set based on the proximities between
the images in the feature space. These methods give in general a ��at� (i.e.
non hierarchical) organization of clusters.

• Grid-based methods a priori partition the space into cells without consider-
ing the distribution of the data and then group neighbouring cells to create
clusters. The cells may be organized in a hierarchical structure or not.

• Density-based methods aim at partitioning a set of points based on their
local densities. These methods may give a ��at� or hierarchical organization
of clusters.

• Hierarchical methods organize the points in a hierarchical structure of clusters.

The most famous methods of each of these categories are presented in this section.
For being used in our interactive context, each method is analyzed according to the
criteria presented in Section 3.1. We use the following notations:
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• X = {xi|i = 1, ..., N}: the set of input feature vectors for clustering, where
N is the number of vectors.

• K = {Kj|j = 1, ..., k}: the set of clusters, where k is the number of clusters.

3.2.1 Partitioning methods

Partitioning methods are intended to partition the data set into k partitions corre-
sponding to k clusters, where k is usually prede�ned. In general, these methods give
a ��at� organization of clusters (no hierarchical structure). Some methods of this
kind are: k-means [85], k-medoids [63], CLARA [62], CLARANS [96], ISODATA [8],
SOM [66].

K-means [85] K-means is an iterative method that partitions the data set into k
clusters so that each point belongs to the cluster with the nearest mean (according
to the Euclidean distance). The idea is to minimize an objective function which is
the within-cluster sum of squares computed as:

Jobj =
k∑
j=1

∑
xi∈Kj

‖xi − µj‖2 (3.1)

where µj is the mean of points in cluster Kj:

µj =
1

|Kj|
∑
xi∈Kj

xi (3.2)

where |Kj| is the number of points assigned to the cluster Kj.
The k-means algorithm has the following steps:

1. Initialize k means µj of clusters (e.g. by randomly choosing k points in the
data set).

2. Repeat :

• Assign each point xi to the cluster with the nearest mean µj.

• Recalculate the means µj of the k clusters using Equation (3.2).

until there is no change in any mean, or until a prede�ned number of iterations
has been reached.

K-means is very simple to implement. It works well for compact and hyper-
spherical clusters (partly because of the Euclidean distance being used) and it does
not depend on the processing order of the data. Moreover, it has a relatively low
time complexity of O(Nkl) (note that it does not include the complexity of the
distance) and space complexity of O(N + k), where l is the number of iterations
and N is the number of feature vectors used for clustering. And the complexity for
�nding the cluster to which a new point should be assigned is O(k). In practice, l
and k are usually very small compared to N , so that k-means can be considered as
linear to the number of elements. K-means is therefore e�ective for large databases.
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On the other hand, k-means does not work well when clusters have non-globular
shapes and/or when data points of di�erent clusters are overlapping. It can pro-
duce almost empty clusters when outliers are chosen as initial means. Furthermore,
k-means is not incremental, does not produce any hierarchical structure, and it is
very sensitive to the initial means and to the outliers; it can converge to a local
optimum and its results depend on the value of k.

There are several variants of k-means such as k-harmonic means [142], global
k-means [76], etc. Global k-means is an iterative approach where a new cluster is
added at each iteration. In other words, to partition the data into k clusters, we
realize the k-means successively with the number of clusters i = 1, ..., k. In step i,
we set the i initial centroids of clusters as follows:

• i-1 centroids returned by the k-means algorithm in step i-1 are considered as
the �rst i-1 initial centroids in step i.

• The position of the ith centroid is initialized at the point xh of the database
that maximizes bn:

bn =
N∑
j=1

max(dji−1 − ‖xn − xj‖2, 0) (3.3)

h = argmax
n

bn (3.4)

where dji−1 is the minimum squared distance between xj and one of the i-
1 centroids found in the previous iteration. Thus, bn measures the possible
reduction of the error obtained by inserting a new centroid at position xn.

After having i initial centroids, the traditional k-means algorithm is executed to
obtain the solution with i clusters.

Global k-means is not sensitive to initial conditions, it is more e�ective than
k-means [76], but its computational complexity is higher. The number of clusters k
may not be determined a priori by the user, it could be selected automatically by
stopping the algorithm at the value of k having acceptable results following some
internal measures (see Section 3.4).

K-medoids [63] The k-medoids method is similar to the k-means method, but
instead of using centroids as representatives of clusters, the k-medoids uses well-
chosen data points (usually referred as to medoids1 or exemplars) to avoid excessive
sensitivity towards noise and outliers. The k-medoids algorithm can be used with an
arbitrary distance, most commonly Euclidean distance or Manhattan distance. This
method and other methods using medoids are expensive because the calculation
phase of medoids has a quadratic complexity. Thus, it is not compatible in the
context of large image databases. The current variants of the k-medoids method
are not suitable to the incremental context because when new points are added to
the system, we have to compute all of the k medoids again.

Partitioning Around Medoids (PAM) [63] is the most common realisation of k-
medoids clustering. Starting with an initial set of medoids, we iteratively replace

1The medoid of a cluster is de�ned as the object in the cluster which has the minimal average
distance with the other objects in the cluster.



3.2. Major existing unsupervised clustering methods 51

one medoid by a non-medoid point if that operation decreases the overall distance,
i.e. the sum of distances between each point in the database and the medoid of the
cluster to which it belongs. PAM therefore contains the following steps:

1. Randomly select k points as k initial medoids.

2. Repeat:

(a) Associate each point to its nearest medoid.

(b) For each pair {m, o} (m is a medoid, o is a point in the database which
is not a medoid):

• Exchange the role of m and o and calculate the overall distance of
the new con�guration when m is a non-medoid and o is a medoid.

(c) Select the con�guration with the minimum overall distance.

until there is no change in the medoids.

The results of PAM do not depend on the processing order of the data. But because
of its high complexity O(k(N − k)2l), where l is the number of iterations, PAM is
not suitable to the context of large image databases. Similar to k-means, PAM has
a low complexity of O(k) for �nding the cluster to which a new point is assigned.
Like every variant of the k-medoids algorithm, PAM is not compatible with the
incremental context either, and provides �at clustering (i.e. no hierarchical struc-
ture). Its results depend on the value of k. Outliers in a cluster can be de�ned
as points having the distance from the medoid greater than 1.5 times the average
distance between the medoid and each point of the cluster [95].

CLARA [62] The idea of Clustering LARge Applications (CLARA) is to apply
the PAM algorithm with only a small sample of the data set instead of with the
entire data set to avoid the high complexity of PAM. The objects in the sample
are randomly chosen. After applying PAM for �nding optimal medoids for the
sample, the other points which are not in this sample will be assigned to the cluster
with the closest medoid. The idea is that, when the sample is chosen randomly,
the medoids of this sample would approximate the medoids of the entire data set.
PAM is applied several times, each time with a di�erent part of the data set, to
avoid the dependence of the algorithm on the selected part. The set of medoids
with the lowest overall distance computed from the whole database is chosen as the
�nal clustering result. Assume NS to be the number of objects in a sample and q
to be the number of samplings. The CLARA algorithm is as follows:

1. For i from 1 to q, do:

(a) Create a sample S by choosing NS objects randomly from the data set.

(b) Apply PAM on the sample S.

(c) Assign each point in the database to the cluster with the closest medoid.

(d) Compute the overall distance of the current solution.

2. Select the partition with the lowest average distance.
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Due to its lower complexity of O(q(kN2
s l+ k(N − k))), where l is the number of

iterations when applying PAM on the sample S, CLARA is more suitable than PAM
in the context of large image databases. The complexity for �nding the cluster for
assigning a new point is also O(k). Its result is dependent on the randomly selected
samples, the number of iterations q and the value of k. Moreover, it may converge to
a local minimum. Similar to other partitioning methods, CLARA does not produce
any hierarchical structure. It is more suitable to the incremental context because
when there are new points added to the system, these points can be directly assigned
to the cluster with the closest medoid, considering they are outside of the sample
S. The results of CLARA do not depend on the processing order of the data and
outliers can be detected by the same strategy used for PAM.

CLARANS [96] Clustering Large Application based upon RANdomize Search
(CLARANS) is based on the search through a graph GN,k for �nding k medoids.
In this graph, each node corresponds to a set of k objects (Om1 ,Om2 ,...,Omk) of
the data set representing k selected medoids. Each node is associated with a cost
representing the average distance (between all points in the database and their
closest medoids) corresponding to the partition where the k points of this node
are selected as k medoids. Two nodes are neighbours if they di�er by only one
medoid, each node has therefore k(N − k) neighbours. The whole set of nodes of
the graph represents the set of all possible choices of k points in the database as k
medoids. Similar to CLARA, CLARANS does not search on the entire graph, but
in the neighbourhood of some chosen nodes. Beginning from a randomly selected
node, CLARANS checks at most maxneighbour randomly selected neighbours of
this node, and if a better neighbour (neighbour with lower cost) is found, it moves
to this neighbour. The process continues until �nding a local minimum which is the
node having the lowest cost among its selected neighbours. Then, the algorithm
continues to search for another local minimum from a new randomly selected node.
After �nding a number of local minimums, the local minimum having the lowest
cost will be returned as the clustering result.

Assume numlocal to be the number of local minimums to consider andmaxneigh-
bour the maximum number of neighbours to be checked of each node. The CLARANS
algorithm is as follows:

1. Initialize mincost =∞.

2. For i=1 to numlocal do:

(a) Randomly set current to a node in GN,k.

(b) Set j=1

(c) While j < maxneighbour do

i. Randomly choose a neighbour S of current.

ii. If S has a lower cost than current then

• current = S

• j=1

else j = j + 1

(d) If the cost of current is less than mincost then
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• mincost = cost(current)

• bestNode = current

3. Return bestNode as result.

We can see that steps 2.a to 2.c search a local minimum from a randomly selected
node, while step 2.d compares the cost of the current local minimum with the best
cost obtained so far.

CLARANS has been shown to be more e�ective than both PAM and CLARA
[96]. It is also more robust for outlier detection than PAM and CLARA [95]. Its
complexity for �nding a cluster for assigning a new object is O(k). However, its
time complexity is O(N2). Therefore, it is not quite e�ective in very large data set.
Furthermore, the clustering result depends on the randomly selected neighbours,
the value of k, and the other parameters (numlocal and maxneighbour). CLARANS
is sensitive to the processing order of the data. It is not suitable to the incremental
context because the graph changes when new elements are added. As a partitioning
method, CLARANS produces a ��at� structure of clusters.

ISODATA [8] The Iterative Self-Organizing Data Analysis Techniques (ISO-
DATA) is an iterative clustering method which is an extension of the k-means
method with some heuristics to revise the number of clusters. At �rst, it randomly
selects k initial cluster centres and assigns all the points in the database to the
nearest centre using the k-means method. Then, it can eliminate clusters with too
few items, split clusters whose points are su�ciently dissimilar or merge clusters
which are su�ciently close. Further iterations can be performed with new cluster
centres.

Assume NminEx to be the minimum number of points per cluster, NC to be the
desired number of clusters, Dmerge to be the threshold for merging cluster and σsplit
to be the threshold for splitting. The ISODATA algorithm is as follows:

1. Initialize the number of clusters k (normally less or equal to the desired num-
ber of clusters NC speci�ed by the user) and randomly select k points as
cluster centres µj, j = 1, ..., k.

2. Assign points to clusters using the k-means algorithm.

3. Eliminate clusters containing less than NminEx points, either consider their
points as outliers or assign their points to the closest cluster among the re-
maining clusters and decrease k accordingly.

4. Compute, for each cluster j:

• The mean µj

• The average distance davgj between points in cluster j and µj.

• The standard deviation of each axis (attribute in the feature space), and
d∗ is the axis with the maximum deviation σj(d

∗).

and compute the overall average distance davg between all objects in the
database and the mean of their clusters.
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5. Split each cluster j having the maximum standard deviation (σj(d
∗)) greater

than the threshold σsplit if (a) or (b) is true and update k accordingly.

(a) there are too few clusters (k < NC/2).

(b) the number of objects in cluster j exceeds (2NminEx+1) and the average
distance between its centre and its objects is greater than the overall
average distance between all objects in the database and their cluster
centres (davgj > davg).

6. Merge the closest clusters if the distance between them is less than the thresh-
old Dmerge and update k accordingly. Note that the merge cannot be done if
there are two few clusters (k < NC/2).

7. Go to 2.

The algorithm stops when the maximum number of iterations is reached or when
the average distance between cluster centres does not signi�cantly change between
iterations.

The advantage of ISODATA is that it is not necessary to permanently set the
number of clusters. Similar to k-means, ISODATA has a low storage (space) com-
plexity of O(N + k) and a low computational (time) complexity of O(Nkl), where
N is the number of objects and l is the number of iterations. The complexity for
�nding the cluster for a new point is O(k). It is therefore compatible with large
databases. Furthermore, the clustering result does not depend on the processing
order of the data. ISODATA can also detect outliers as points in clusters with too
few items. But its drawback is that it relies on numerous thresholds which are
highly dependent on the size of the database and the data distribution and which
are therefore di�cult to settle. As other partitioning methods, ISODATA does not
produce any hierarchical structure.

SOM [66] In Self-Organizing Map (SOM) (also called Kohonen map), similar
points are grouped by a mono-layer neural network the output layer of which con-
tains nodes (neurons) representing the clusters. The neurons are connected to each
other via a neighbourhood topology (or structure) of the map. Usually, these neu-
rons are organized in the form of rectangular or hexagonal topology. Each output
neuron is associated with a weight vector of the same dimension as the input data,
representing the centroid of a cluster, and a position in the map space. SOM aims
at mapping from high dimensional input data space to the map space of lower
dimensional by �nding, for each input data, the output node associated with the
closest weight vector.

The SOM clustering algorithm is as follows:

1. Randomly initialize the weight vectors of all the output neurons.

2. Repeat until the weight vectors stop changing:

(a) Randomly choose an input vector in the database and compute the dis-
tances between the input vector and all the nodes in the output layer, the
node associated with the nearest weight vector being called the winner
(or Best Matching Unit (BMU)).
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(b) Update the weight vectors of the BMU and the neurons in its neighbour-
hood to move them towards the input vector. The weight vector wi of
the neuron i is updated as follows:

wi(t+ 1) = wi(t) + α(t)φci(t)[x(t)− wi(t)] (3.5)

where t is the step index, c is the index of the BMU for the input vector
x(t), α(t) is the learning coe�cient which monotonically decreases with
time and φci(t) is the neighbourhood function.

The neighbourhood function φci(t) decreases with the distance on the map between
the BMU c and the neuron i so that weight vectors of the neurons which are distant
from the BMU are less moved than the neurons which are near to the BMU. The
neighbourhood function also shrinks with time so as to re-estimate the weight of the
neurons in a large neighbourhood at the beginning and in a small neighbourhood
in further learning iterations.

SOM is incremental, as the weight vectors can be updated when new data arrive.
But for this method, we have to a priori �x the number of neurons, and the rules
of in�uence of a neuron on its neighbours. The result depends on the initialization
values and also the rules of evolution concerning the size of the neighbourhood of
the BMU. It is suitable only for detecting hyperspherical clusters. Moreover, SOM
is sensitive to outliers and to the processing order of the data. The time complexity
of SOM is O(Nkl), and its complexity for �nding a cluster for a new point is
O(k), where k is the number of neurons (or clusters), l is the number of training
iterations and N is the number of objects. As l and k are usually much smaller
than the number of objects, SOM can be considered as linear with the number of
objects, and therefore is adapted to large databases. But, it does not provide any
hierarchical structure and the clustering result depends on the value of k.

Conclusion for the partitioning methods The partitioning clustering meth-
ods described above are generally not incremental by nature (except SOM), they do
not produce any hierarchical structure. Almost all of them are independent of the
processing order of the data (except CLARANS and SOM). K-means, CLARA, ISO-
DATA and SOM are adapted to large databases, while PAM, CLARA, CLARANS
and ISODATA are able to detect the outliers. Among these methods, k-means is
the most famous and the most used because of its simplicity and its e�ectiveness
for the large databases.

3.2.2 Grid-based methods

Grid-based clustering partitions the space into cells which form a grid structure
and then groups neighbouring cells to form clusters. In some case clusters may be
organized in a hierarchical structure. Some methods of this kind are: STING [137],
CLIQUE [3], WaveCluster [120], etc.

STING [137] STING (STatistical INformation Grid) is a grid-based clustering
technique. It divides the feature space into rectangular cells and organizes them
according to a hierarchical structure, where each cell (except the leaves) is divided
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into a �xed number of cells. For instance, for two-dimensional data, each cell at
a higher level is partitioned into 4 smaller cells at the lower level (see Figure 3.1).
The root cell corresponds to the whole portion of the feature space containing data,
while data objects are stored in leaf cells. The size of the leaf level cells and also
the number of layers depend on the density of objects. In general, the size of the
leaf cell is determined such that the average number of objects in each leaf is in a
range determined by the user.

Figure 3.1 � Hierarchical structure in STING clustering.

The idea of STING is to pre-compute and to store statistical information as-
sociated with each grid cell in order to further answer data mining queries and
clustering problems without recourse to the individual objects. For the clustering
problem, an independent parameter n which is the number of objects in each grid
cell is needed to be stored. In each grid cell, STING could also capture, for each
attribute, some attribute-dependent parameters describing this attribute (such as
mean, standard deviation, maximum and minimum values, etc.) for answering data
mining queries.

The statical information (parameters) of the grid cells is computed when loading
the objects from the database. For the cells at the lowest level (leaves), we directly
calculate the parameters from the data. Parameters of the cells at higher level can
be derived from parameters of lower level cells as in [137].

With the hierarchical structure of grid cells, a top-down approach can be used
to answer the data mining queries or to detect dense cells which form clusters.
Starting with a high level layer (normally the root), we examine if each cell of the
current layer is relevant or not. For the clustering problem, STING uses a density
parameter dent, and labels each cell as relevant (dense) if n ≥ S × dent, where
n and S are, respectively, the number of points in this cell and the area of a leaf
cell. After �nishing the current layer, we go down to the next lower layer and
repeat the same process, but only for cells which are children of the cells labelled
as relevant in the previous step. This procedure continues until the bottom layer is
examined. Then, regions are formed based on the relevant (dense) leaf cells and are
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returned as clusters as follows. For each relevant leaf cell which is not examined,
STING examines cells in an area within a certain distance from the current relevant
cell. If the average density within this area is greater than the density dent, this
area is marked and all non-examined relevant cells within this area are put into a
queue. Then, STING takes each relevant cell from the queue and repeat the same
procedure. When the queue is empty, we obtain a region which forms a cluster.

The distance used above is calculated as d = max(l,
√

f
dent×π ), where l and f are

respectively the side length of the leaf cell, and a small constant number �xed by
STING.

Since STING goes through the data set once to compute the statistical param-
eters of the cells, the time complexity of STING for generating clusters is O(N);
STING is thus suitable for large databases. Wang et al. [137] demonstrated that
STING outperforms the partitioning method CLARANS (see page 52) as well as the
density-based method DBSCAN (see page 59) when the number of points is large.
As the grid can cover the whole feature space, points could be inserted or deleted by
updating the parameters of the corresponding cells in the tree and STING can be
used in an incremental context. The complexity for �nding the cluster for assigning
a new point is O(B) where B is the number of cells at the bottom level. STING
does not depend on the processing order of the data and it is able to detect outliers
based on the number of objects in each cell. The result of STING does not depend
on the value of k, but on the density parameter dent, the size of the leaf cell and
also the constant f which are di�cult to �x.

CLIQUE [3] CLustering In QUEst (CLIQUE) is dedicated to high dimensional
databases. In this algorithm, the d-dimensional feature space is partitioned into
cells of the same size by a grid, each dimension is partitioned into ξ intervals of
equal lengths, where ξ is a constant and corresponds to an input parameter. Then
clusters are determined by maximal sets of connected dense cells in d-dimensions.
A cell is dense if the number of points in this cell is greater than a density threshold
τ which is another input parameter. Two cells c1 and c2 are connected if they have
a common face, or if there is another cell c3 such that c1 is connected to c3 and c2

is connected to c3.
CLIQUE uses a bottom-up algorithm for determining dense cells in d-dimensional

space. The idea of this algorithm is as follows: a cell that is dense in a k-dimensional
space should also be dense in any subspace of k-1 dimensions. Therefore, to de-
termine dense cells in the original space, we �rst determine all 1-dimensional dense
cells and then all 2-dimensional dense cells, etc., as follows. Having obtained (k-
1 )-dimensional dense cells, the set Ck of k-dimensional candidate dense cells are
determined by joining the (k-1 )-dimensional dense cells. Then, this algorithm dis-
cards from Ck the cells which have a projection in (k-1 )-dimensions which is not
included in Ck−1. Finally, by parsing all data, only those candidates that are re-
ally dense are kept in Ck. In Figure 3.2, the two dimensional space (x,y) has been
partitioned by a 6 × 6 grid. Assuming τ = 8, if the points are projected on the
x dimension, there are two 1-dimensional dense cells X1 = (0.2 ≤ x < 0.3) and
X2 = (0.4 ≤ x < 0.5). And if the points are projected on the y dimension, there are
also two 1-dimensional dense cells Y 1 = (0.1 ≤ y < 0.2) and Y 2 = (0.4 ≤ y < 0.5).
By joining the 1-dimensional dense cells, we obtain four 2-dimensional candidate
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Figure 3.2 � CLIQUE clustering example.

dense cells A = (0.2 ≤ x < 0.3, 0.4 ≤ y < 0.5), B = (0.4 ≤ x < 0.5, 0.4 ≤ y < 0.5),
C = (0.2 ≤ x < 0.3, 0.1 ≤ y < 0.2) and D = (0.4 ≤ x < 0.5, 0.1 ≤ y < 0.2). By
parsing all data for verifying the four 2-dimensional candidate dense cells, only the
cell C which is really dense is kept.

CLIQUE is not sensitive to the order of the input data. When new points are
added, we only have to verify if the cells containing these points are dense or not.
If they are dense, we try to connect these cells with existing clusters or create new
cluster if they correspond to isolate dense cells. Therefore, CLIQUE could be used
in an incremental context. Its computational complexity is O(Nd+ kd), where d is
the number of dimensions. It is thus suitable for large databases but not suitable
for very high dimensional data. The complexity for �nding cluster for a new point
is O(1). The outliers may be detected by determining the cells which are not dense.
However, CLIQUE does not produce any hierarchical structure of clusters. The
result of CLIQUE does not depend on the value of k but depends on the interval
length ξ, which highly depends on the data distribution.

Conclusion for the grid-based methods The grid-based methods are in gen-
eral adapted to large databases. They are able to be used in an incremental context
and to detect outliers. However, in high dimensional context, data is generally
extremely sparse, and therefore it is di�cult to specify the density parameter for
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determining dense cells. In this case, the hierarchical methods are better than
grid-based methods.

3.2.3 Density-based methods

Density-based clustering methods aim at partitioning a set of vectors based on the
local density of these vectors. Each vector group which is locally dense is considered
as a cluster. Points in sparse areas are normally considered as noise points or border
points. Some methods of this kind are DBSCAN [27], OPTICS [4], DENCLUE [49]
and EM [89].

DBSCAN [27] Density Based Spatial Clustering of Applications with Noise (DB-
SCAN) is the most popular density-based clustering method. DBSCAN is based
on the local density of vectors to identify subsets of dense vectors that will be
considered as clusters. For describing the algorithm, we use the following terms:

• ε-neighbourhood of a point p, denoted as Nε(p), contains all the points q,
whose distance D(p, q) < ε.

• MinPts is a constant value used for determining the core points in a cluster.
A point is considered as a core point if there are at least MinPts points in
its ε-neighbourhood.

• Directly density-reachable: a point p is directly density-reachable from a point
q if q is a core point and p ∈ Nε(q).

• Density-reachable: a point p is density-reachable from a core point q if there
is a chain of points p1,...,pn such that p1 = q, pn = p and for ∀i = 1, ..., n− 1,
pi+1 is directly density-reachable from pi.

• Density-connected : two point p and q are density-connected if there is a point
o such that p and q are both density-reachable from o.

Intuitively, a cluster is de�ned to be a set of density-connected points. The
DBSCAN algorithm is as follows:

1. Label all points in the database as unclassi�ed.

2. For each unclassi�ed point xi:

(a) If xi is a core point:

i. Assign xi to a new cluster.

ii. Expand the new cluster of xi so that it contains all points which are
density-reachable from xi.

(b) If xi is not a core point, we label xi as NOISE.

We can see that a point which has been marked as NOISE may be assigned later
to a cluster if it becomes density-reachable to a point in this cluster.

Di�ering from k-means for instance, DBSCAN allows to �nd clusters with com-
plex shapes. The number of clusters does not have to be �xed a priori and no
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assumption is made on the distribution of the features. It is robust to outliers.
The computational complexity of this method being low: O(NlogN), DBSCAN is
suitable to large data sets. The complexity for �nding a cluster for assigning a new
point is O(logN). But on the other hand, the parameters ε andMinPts are di�cult
to adjust and this method does not generate clusters of di�erent levels of scatter
because of the parameters being �xed. The points which are on the edge of two
clusters may change their cluster membership depending on the processing order
of the points. Moreover, the DBSCAN fails for identifying clusters if the density
varies inside the cluster or if the data set is too sparse. This method is therefore
not adapted to high dimensional data. DBSCAN does not produce any hierarchi-
cal structure of clusters. And it is di�cult to used this method in an incremental
context, because when we insert or delete some points in the database, the local
density of vectors is changed, and some non-core points could become core points
and vice versa.

OPTICS [4] Ordering Points To Identify the Clustering Structure (OPTICS) is
an extension of the DBSCAN algorithm. As DBSCAN, OPTICS has two parameters
ε andMinPts, but instead of working with a single value ε, it works with an in�nite
number of distance parameters εi (0 ≤ εi ≤ ε), which allows to obtain clusters with
di�erent scatters (densities). We �rst introduce two de�nitions:

• Core_distance: the core_distance of a point p is the minimum distance ε′ ≤ ε
such that p would be a core point with respect to ε′.

core_distance(p) =

{
UnDefined, if |Nε(p)| < MinPts
MinPts_distance(p), otherwise

where |Nε(p)| is the cardinality of Nε(p) and MinPts_distance(p) is the
distance from p to its MinPtsth nearest neighbour.

• Reachability_distance: the reachability_distance of a point p with respect
to another point o is the minimum distance ε′ ≤ ε such that p is directly
density-reachable from o with respect to ε′. In this case, the reachabil-
ity_distance cannot be smaller than the core_distance of o because for ε′ <
core_distance(o), o is not a core point with respect to ε′ and no point is
directly density-reachable from o.

reachability_distance(p, o) =

{
Undefined, if |Nε(o)| < MinPts
max(core_distance(o), D(o, p)), otherwise

where D(o, p) is the distance between o and p.

The idea of the OPTICS algorithm is to create an ordering of the database
objects according to their smallest reachability_distance such that the closest points
in the feature space are neighbours in the output ordered list. In this ordered list,
each object is stored with the core_distance and the smallest reachability_distance
to its predecessors in the ordered list.
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The OPTICS algorithm is as follows:
OPTICS(DB, ε, MinPts, OrderedF ile)

1. For each point p ∈ DB: p.reachability_distance← UNDEFINED

2. For each unprocessed point p ∈ DB:

(a) ListNeighbours← list of points in the ε-neighbourhood of p.

(b) Mark p as processed.

(c) Compute the core_distance of p.

(d) Write p to the OrderedF ile.

(e) Initialize OrderedSeeds← empty queue.

(f) If p.core_distance 6= UNDEFINED then // if p is a core point

i. Update(ListNeighbours, p, OrderedSeeds)

ii. While OrderedSeeds is not empty do:

• q ← OrderedSeeds.next()

• newListNeighbours← list of points in the ε-neighbourhood
of q.

• Mark q as processed.

• Compute the core_distance of q.

• Write q to the OrderedF ile.

• If q.core_distance 6= UNDEFINED then
Update(newListNeighbours, q, OrderedSeeds)

For each unprocessed object p, if p is a core object, all points which are directly
density-reachable from p are collected and inserted into the list OrderedSeeds for
further expansion. Objects in the OrderedSeeds are ascendantly sorted by their
reachability_distance to the closest processed core object from which they are di-
rectly density-reachable. In each step of the WHILE loop, OPTICS chooses to
process an object q having the smallest reachability_distance in the OrderedSeeds
list. If q is also a core object, its directly density-reachable points are also col-
lected and inserted into the list OrderedSeeds. Each time a point is processed,
it is written into the output OrderedF ile. Note that the object with the lowest
reachability_distance in the OrderedSeeds list is always selected for processing in
order to ensure that clusters of higher density are �nished �rst.

Insertion of all points in the ε-neighbourhood of a core point into the seed-list
OrderedSeeds is managed by the method Update(listNeighbours, coreObject,
OrderedSeeds) described below. For each unprocessed point o in the ε-neighbourhood
of the coreObject, its reachability_distance from the coreObject is �rst determined.
o is inserted into the OrderedSeeds list with its reachability_distance if it is not yet
in the list. Otherwise, if o is already in the list and its new reachability_distance is
smaller than the previous reachability_distance, it is moved up to the the suitable
position in the list.
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Update(listNeighbours, coreObject, OrderedSeeds)

1. core_dist← coreObject.core_distance.

2. For each unprocessed point o ∈ listNeighbours:

(a) new_reachability_dist← max(core_dist,D(coreObject, o))

(b) if o.reachability_distance = UNDEFINED // o is not in the
OrderedSeeds

i. o.reachability_distance← new_reachability_dist

ii. OrderedSeeds.insert(o, new_reachability_dist)

else if new_reachability_dist < o.reachability_distance then

i. o.reachability_distance← new_reachability_dist

ii. OrderedSeeds.move_up(o, new_reachability_dist)

The ordered list produced by the OPTICS algorithm can then be used to detect
the cluster memberships of objects. A ��at� or hierarchical clustering structure
can be extracted from this ordered list depending on the algorithm used. The
ExtractDBSCAN-Clustering algorithm described in [4] allows to determine a ��at�
clustering structure with respect to MinPts and a distance parameter ε′ ≤ ε by
scanning the ordered list and assigning the cluster-memberships for the objects de-
pending on their reachability_distance and core_distance. For each current object
o, if its reachability_distance is smaller than ε′, o is inserted into the current clus-
ter because it is directly density-reachable with respect to MinPts and ε′ from a
preceding core object in the ordered list. Otherwise, it is not density-reachable
from any of the preceding objects, and we start a new cluster if o is a core object,
or assign o as a NOISE point if o is not a core object. Another way to identify
the clustering structure is to use the reachability-plot which is a 2D plot with the
ordering of the point on the x-axis and the corresponding reachability_distance
on the y-axis as shown in Figure 3.3. As points having low reachability_distance
should be in the same cluster with precedent points in the ordered list, the clusters
can be detected as valleys in the reachability-plot. By using the reachability-plot,
we can detect clusters in the form of ��at� or hierarchical structures.

As DBSCAN, the number of clusters does not have to be �xed a priori. OPTICS
is robust to outliers, but may not be applied to high-dimensional data or in an
incremental context. The time complexity of this method is about O(NlogN), it is
thus suitable to large data sets. The cluster for assigning a new point can be found
in O(logN) time. The clustering result also depends on the processing order of the
data and on the parameters ε and MinPts.

EM [89] For the Expectation Maximization (EM) algorithm, we assume that the
vectors of the data set are independent and identically distributed according to a
mixture of k Gaussians, the jth Gaussian generates the points from the jth cluster.
The Gaussian distribution of a cluster Kj is characterized by the mean µj and the
covariance matrix Σj. EM algorithm aims at estimating the optimal parameters of
the mixture of Gaussians by iteratively assigning the data points to clusters (soft
assignment) and updating the Gaussian parameters to maximize the likelihood of
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Figure 3.3 � Reachability-plot example [4].

these parameters, given the cluster assignment of the points.
The EM algorithm consists of the two following steps:

1. Randomly initialize the parameters of the Gaussian mixture model. Assume
that we have k Gaussian components, the parameters of the model are:

θ(0) = {µ(0)
1 , µ

(0)
2 , ..., µ

(0)
k ,Σ

(0)
1 ,Σ

(0)
2 , ...,Σ

(0)
k , α

(0)
1 , α

(0)
2 , ..., α

(0)
k } (3.6)

where αj represents the occurrence probability of each cluster.

2. t← 0;

3. Repeat until convergence:

(a) E-step: Having the parameters of the Gaussian mixture model, we com-
pute, for each object xi and each cluster Kj, the probability that xi
belongs to Kj:

P (xi ∈ Kj|xi, θ(t)) =
P (xi|xi ∈ Kj, θ

(t)).P (Kj|θ(t))

P (xi|θ(t))

=
P (xi|xi ∈ Kj, µ

(t)
j ,Σ

(t)
j )α

(t)
j∑k

j=1 P (xi|xi ∈ Kj, µ
(t)
j ,Σ

(t)
j )α

(t)
j

(3.7)

(b) M-step: Given the cluster assignment of the points, we update the pa-
rameters of the mixture of Gaussians so that it maximizes the likelihood
of the parameters.

α
(t+1)
j = P (Kj) =

1

N

N∑
i=1

P (xi ∈ Kj|xi, θ(t)) (3.8)

µ
(t+1)
j =

∑N
i=1 P (xi ∈ Kj|xi, θ(t))xi∑N
i=1 P (xi ∈ Kj|xi, θ(t))

(3.9)
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Σ
(t+1)
j =

∑N
i=1 P (xi ∈ Kj|xi, θ(t))(xi − µ(t+1)

j )(xi − µ(t+1)
j )T∑N

i=1 P (xi ∈ Kj|xi, θ(t))
(3.10)

After setting all the parameters of the Gaussian mixture model, EM assigns
each data point xi to the most likely cluster Kj (associated with the maximum
probability P (xi ∈ Kj|xi, θ)). EM is simple to apply and does not depend on the
processing order of the data. It allows to identify outliers (e.g. objects for which
all the membership probabilities are below a given threshold). The computational
complexity of EM is about O(Nk2l), where l is the number of iterations. And the
complexity for �nding a cluster for assigning a new point is about O(k2). EM is
thus suitable to large databases when k is small enough. However, if the data is not
distributed according to a mixture of Gaussian distributions, the results are often
poor, while it is very di�cult to determine the distribution of high dimensional
data. Moreover, the clustering result depends on the value of k, EM may converge
to a local optimum, and it is sensitive to the initial parameters. Additionally,
it is di�cult to use EM in an incremental context, and it does not produce any
hierarchical structure.

Conclusion on the density-based methods The density-based clustering meth-
ods are in general suitable to large databases and are able to detect outliers. But
they are not adapted to high dimensional (sparse) data and to an incremental con-
text.

3.2.4 Hierarchical methods

Hierarchical methods decompose hierarchically the database vectors. They provide
a hierarchical decomposition of the clusters into sub-clusters while the partitioning
methods lead to a ��at� organization of clusters. Some methods of this kind are:
AGNES [62], DIANA [62], AHC [70], BIRCH [145], CURE [41].

DIANA [62] DIvisive ANAlysis (DIANA) is a divisive (or top-down) approach
which constructs the hierarchy by successively dividing clusters into smaller clusters.
It starts with an initial cluster containing all the vectors in the database, then at
each step the cluster with the maximum diameter is split into two smaller clusters,
until all clusters contain only one singleton. Once the whole hierarchy is built, we
can choose the clustering solution based on the desired number of clusters. The
diameter of a cluster is the largest distance between any two objects of this cluster.
It is easy to see that DIANA builds the hierarchy of N objects in N − 1 steps.

A cluster K is split into two as follows:

1. Identify, in cluster K, the object x∗ which has the largest average dissimilarity
with all the other objects of cluster K, then x∗ initializes a new cluster K∗.

2. For each object xi ∈ K \K∗, compute:

di = average
xj∈K\K∗

[D(xi, xj)]− average
xj∈K∗

[D(xi, xj)] (3.11)

where D(xi, xj) is the dissimilarity between xi and xj.
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3. Choose xk for which dk is the largest. If dk > 0 then add xk into K
∗.

4. Repeat steps 2 and 3 until dk < 0.

The dissimilarity between objects can be measured by di�erent distance or dis-
similarity measures (see Section 2.4.2). The hierarchical structure of DIANA does
not depend on the processing order of the data or on any parameter. But it is
sensitive to outliers and is not compatible with an incremental context. Indeed, if
we want to insert a new element x into a cluster K that is divided into two clusters
K1 and K2, the distribution of the elements of the cluster K into two new clusters
K ′1 and K ′2 after inserting the element x may be very di�erent from K1 and K2.
In that case, it is di�cult to reorganize the hierarchical structure. Moreover, the
execution time to split a cluster into two new clusters is also high (at least quadratic
with the number of elements in the cluster to be split), the overall computational
complexity is thus at least O(N2). DIANA is therefore not suitable for a large
database. At each node of the hierarchy, for determining the child node to which
a new point should be assigned, we have to calculate the average distance between
the new point and every points of each child node. Therefore, the complexity for
assigning a new point to the tree is at least O(N).

Minimum Spanning Tree based clustering [57] Minimum Spanning Tree
based clustering is a simple divisive algorithm. It starts by constructing a Minimum
Spanning Tree (MST) [35]. Assume GN is a complete graph in which each vertex
represents a point in the database and every pair of vertices is connected by an edge
having the weight corresponding to the dissimilarity between the two corresponding
points. A spanning tree for GN is a sub-graph which connects all vertices of GN

either by an edge or by a path, but no cycles are formed. A minimum spanning
tree for GN is the spanning tree with the lowest total weight. A MST can be
constructed using di�erent algorithms, among which Kruskal's algorithm [68] and
Prim's algorithm [106] for instance. For clustering, the algorithm removes, at each
iteration, the longest edge of the MST to obtain the clusters. The process continues
until k clusters are found or until there is no more edge to eliminate. Figure 3.4
represents a MST corresponding to a set of 9 points A, ..., I. The longest edge
of weight 6 is removed �rst for having two clusters K1 = {A,B,C} and K2 =
{D,E, F,G,H, I}. The process continues by removing the edge of weight 3.8 for
dividing the cluster K2 into two smaller clusters K3 = {D,E, F,G} and K4 =
{H, I}.

The MST based clustering does not depend on the processing order of the data.
There is no parameter to be �xed. When new elements are added into the database,
the minimum spanning tree has to be reconstructed, therefore it may be di�cult to
use this method in an incremental context. Moreover, this method is very sensitive
to outliers and it has a high computational complexity of O(N2), it is therefore not
compatible for clustering large databases. For simply assigning a new point for the
existing clusters without reconstructing the minimum spanning tree, we can assign
this point to the cluster containing the point which is nearest to the new point.
Therefore, the complexity for �nding a cluster for a new point is O(N).
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Figure 3.4 � Example of minimum spanning tree based clustering.

Agglomerative Hierarchical Clustering (AHC) [70] AHC is a bottom-up
clustering method. It starts by assigning each object to a separate cluster. Then,
it merges at each iteration the two closest clusters, until it remains only one cluster
containing all data objects. The algorithm consists of the following steps:

1. Assign each object to a single cluster. Thus, we obtain N clusters correspond-
ing to N objects of the database.

2. Compute the distance matrix containing distances between all pairs of clus-
ters.

3. Merge the two closest clusters.

4. Compute the distances from the new cluster to all other clusters and update
the matrix.

5. Repeat steps 3 and 4 until there is only one cluster left.

The distance between two objects D(x, x′) can be computed by di�erent mea-
sures described in Section 2.4.2, Chapter 2. For evaluating the distance between
any two clusters Ki and Kj, di�erent approaches are proposed:

• Single-linkage: the distance between two clusters Ki and Kj is the minimum
distance between an object in cluster Ki and another object in cluster Kj:

D(Ki, Kj) = min
x∈Ki,x′∈Kj

D(x, x′) (3.12)

• Complete-linkage: the distance between two clusters Ki and Kj is the maxi-
mum distance between an object in cluster Ki and another object in cluster
Kj:

D(Ki, Kj) = max
x∈Ki,x′∈Kj

D(x, x′) (3.13)
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• Average-linkage: the distance between two clusters Ki and Kj is the average
distance between an object in cluster Ki and another object in cluster Kj:

D(Ki, Kj) =
1

|Ki||Kj|
∑

x∈Ki,x′∈Kj

D(x, x′) (3.14)

• Centroid-linkage: the distance between two clusters Ki and Kj is the distance
between the centroids µi, µj of these two clusters:

D(Ki, Kj) = D(µi, µj) (3.15)

• Ward's distance [138]: the distance between two clusters Ki and Kj measures
how much the total sum of squares would increase if we merged these two
clusters:

D(Ki, Kj) =
∑

x∈Ki∪Kj

(x− µKi∪Kj)2 −
∑
x∈Ki

(x− µKi)2 −
∑
x∈Kj

(x− µKj)2

=
|Ki||Kj|
|Ki|+ |Kj|

(
µKi − µKj

)2
(3.16)

where µi, µj, µKi∪Kj are respectively the centres of clusters Ki, Kj, Ki ∪Kj,
and |Ki|, |Kj| are respectively the numbers of points in clusters Ki and Kj.

Figure 3.5 � Cluster tree constructed by the AHC clustering.

Figure 3.5 shows a cluster tree (dendrogram) constructed using the AHC ap-
proach. Data points are at the bottom row. Higher nodes represent clusters which
are formed by joining individual points or existing clusters. The height of each
cluster node corresponds to the distance value between the two sub-clusters. The



68 Chapter 3. Unsupervised clustering

higher the height value is, the greater the distance. A partition can be constructed
by cutting horizontally the tree. For example, the partition shown in Figure 3.5
gives three clusters {A,B,C}, {D,E, F,G} and {H, I}. The dendrogram can be
cut either at a prespeci�ed distance, or at the position where the gap between two
successive distances for merging clusters is largest, or at the cutting point that
produces k clusters when the number of clusters k is prede�ned.

Using AHC clustering, the tree constructed is deterministic, since it involves no
initialization step. But it is not capable to correct possible previous misclassi�ca-
tion. The clustering result does not depend on the processing order of the data or
on any parameter, but on the measure chosen for calculating the distance between
clusters. The other disadvantages of this method is that it has a high computa-
tional complexity of O(N2logN) and a storage complexity for the distance matrix
of O(N2), and therefore AHC is not really adapted to large databases. It is also
sensitive to noise and outliers. For assigning a new point to the existing clusters
without reconstructing the hierarchical structure, we go down from the root and
assign the new point to the nearest child node. Depending on the distance measure
between clusters, the complexity for �nding cluster for a new point may be O(k)
(in the case of centroid-linkage) or O(N) (for other measures).

An incremental variant of the AHC method was proposed in [110]. When there
is a new element NE, it determines its location in the tree by going down from the
root. At each node R which has two children C1 and C2, the new element NE will
be merged with R if D(C1, C2) < D(NE,R); otherwise, it goes down to the child
whose region of in�uence contains NE. The new element NE belongs to the region
of in�uence of C1 if D(NE,C1) ≤ D(C1, C2) and D(NE,C1) < D(NE,C2). For
calculating D, any of the distances between clusters (3.12) to (3.16) may be used.

BIRCH [145] Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)
is developed to partition very large databases that can not be stored in the main
memory. The idea is to scan the database and organize points in a Clustering
Feature Tree (CF-tree).

A Clustering Feature (CF) vector summarizes information of a cluster including
M data points {xi|i = 1, ...,M}. It is de�ned as a triplet CF = (M,LS, SS)
where LS and SS are respectively the linear sum and the square sum of M data
points in this cluster (LS =

∑M
i=1 xi; SS =

∑M
i=1 xi.xi). From the CF vector of

a cluster, we can simply compute the mean, the average radius (average distance
from a point to the mean of the cluster) and the average diameter (average distance
between two points of the cluster) of a cluster, and also some distance between two
clusters (e.g. the Euclidean distance between their means). The CF vector of a
cluster which is formed by merging two disjoint clusters respectively represented by
CF1 = (M1, LS1, SS1) and CF2 = (M2, LS2, SS2) can be simply computed as:

CF1 + CF2 = (M1 +M2, LS1 + LS2, SS1 + SS2) (3.17)

A CF-tree is a balanced tree having three parameters B, L and T :

• Each internal node contains at most B elements [CFi, childi], where CFi sum-
marizes the information of the sub-cluster represented by its ith child pointed
by the pointer childi.
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• Each leaf node contains at most L elements [CFi]; it also contains two pointers
prev and next to link all leaf nodes together.

• Threshold condition: each element CFi of a leaf must have a diameter (or
radius depending on the version of the algorithm) lower than a threshold
value T .

So, each node in the CF-tree represents a cluster which is formed by merging all
the sub-clusters represented by its entries. An example of a CF-tree with B = 5
and L = 4 is shown in Figure 3.6.

Figure 3.6 � Example of a CF-tree with B=5, L=4.

The CF-tree can be created by inserting successively points into the tree. To
insert a new entry Ent, we go down in the tree from the root by selecting, at each
level, the closest child. When a leaf L∗ is reached, we �nd the closest leaf entry of
L∗, say CF ∗. If CF ∗ can absorb the new entry Ent without violating the threshold
condition, then CF ∗ is updated to take into account the insertion of Ent into this
entry. Otherwise, a new entry CFnew is created for Ent. If the leaf L∗ is not full,
then CFnew is inserted into L∗. If L∗ is full, then L∗ must be split into two new
leaves. The change of CF information is then propagated upwards in the concerned
branch nodes; nodes in higher levels should also be split if needed.

The size of the tree depends on the threshold T . The smaller T is, the larger
the tree. At �rst, we create the tree with a small value of T , then if it exceeds the
maximum allowed size of the memory, T is increased and the tree is reconstructed.
This process is iterated until the tree can be stored in the main memory. During
reconstruction, vectors that are already inserted will not be reinserted because they
are already represented by CF vectors. Only these CF vectors will be reinserted.
We must increase T so that the two closest micro-clusters (leaf node entries) could
be merged. After creating the CF-tree, we can use any clustering method (AHC,
k-means, etc.) for clustering the CF entries of the leaf nodes.

The CF-tree captures the important information of the data while reducing the
required storage. And by increasing T , we can reduce the size of the CF-tree.
Moreover, it has a low complexity of O(N) for constructing the CF-tree with a
speci�ed value of T . When we have to reconstruct the CF-tree with a higher value
of T , the complexity is about O(L) where L is the number of CF entries at the leaf
level. In general, L << N . And the complexity for �nding a cluster for assigning
a new point is about O(k). BIRCH can be applied to large databases. BIRCH is
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incremental; the CF-tree can be updated easily when new points are inserted into
the system. Outliers can be eliminated by identifying the objects that are sparsely
distributed in isolated CF entries. But, it is sensitive to the data processing order,
and it depends on the choice of its three parameters.

CURE [41] Similar to the AHC clustering, CURE (Clustering Using REpresen-
tative) initializes each object as a separate cluster, and successively merges the two
closest clusters at each step. But, the distance between two clusters is computed
based on some representative objects of these two clusters instead of using all their
objects, which leads to a lower computational complexity.

For each cluster Ki, CURE stores a set of c representative objects. For deter-
mining the representative set of Ki, we �rstly select a set tmpSet of c well scattered
points withinKi (more details are given in the next paragraph), and then each point
p ∈ tmpSet is shrank toward the mean of the cluster by a fraction α (0 ≤ α ≤ 1)
before being added into the representative set of Ki as in Equation (3.18):

Ki.rep = Ki.rep ∪ {p+ α ∗ (Ki.mean− p)} (3.18)

where Ki.mean and Ki.rep store respectively the mean of all objects in Ki and the
set of representative points of Ki. By shrinking selected points towards the mean,
we can reduce the e�ects of outliers, as outliers are typically moved more towards
the centre.

The set tmpSet of c well scattered points within Ki is formed as follows: the
farthest point from the mean µi is chosen as the �rst scattered point, and then
each new scattered point is de�ned as the farthest point from the previously chosen
scattered points. Similar to the AHC clustering, the distance between a point and
the previously chosen scattered points can be calculated using Equations (3.12) to
(3.16).

The time complexity of CURE is O(N2logN), so that CURE cannot be directly
applied to large databases. For a large database, a random sampling strategy is
used to select a random subset of the database, then CURE is applied with this
subset rather than the entire database. The modi�ed version of CURE clustering
for large database is as follows:

1. Randomly select a sample set containing NS points of the database.

2. Partition this subset into p partitions of size NS/p and partially realize CURE
clustering for each partition, until having NS

pq
clusters in each partition (where

q is a constant, q > 1), or the distance between two closest clusters is greater
than a given threshold.

3. Perform another CURE clustering where input data are all clusters of all
partitions resulting from the previous step.

4. Associate each point which is not in the sample set with the cluster having
the closest representative points.

Outliers can be �ltered by identifying clusters which contain only a few points.
CURE does not depend on the processing order of the data. Any new point can
be directly associated with the clustering having closest representative points in
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O(k.c) time (where c is the number of representative objects of each cluster). The
execution time of this modi�ed version of CURE is relatively low: O(N2

S logNS).
So, it can be applied on a large image database. However, it is di�cult to �x the
input parameters (shrink factor α, number of representative points c, number of
partitions p, sample size NS). CURE relies on a trade-o� between the e�ectiveness
and the complexity of the overall method. Selecting too few samples may reduce
the e�ectiveness, while the complexity increases with the number of samples. This
trade-o� may be di�cult to �nd when considering huge databases. Moreover, the
number of clusters k has to be �xed in order to associate points which are not
selected as samples with the cluster having the closest representative points. If the
number of clusters is changed, the points have to be reassigned. CURE is thus not
suitable to the context where users are involved.

R-tree family [13, 42, 117], SS-tree [139], SR-tree [60] These index struc-
tures aim at grouping data vectors in a balanced tree corresponding to the data
distribution. The region of each node in the R-tree family, SS-tree and SR-tree
are, respectively, a bounding rectangle, a bounding sphere and a region which is
the intersection of a bounding rectangle and a bounding sphere in the feature space
(see Chapter 2). The data objects are stored in the leaves, and all leaves are at
the same level. The region of a leaf covers the objects belonging to it. The re-
gion of an internal node covers the union of the regions of its descendant nodes.
And the root node therefore covers all objects in the database. Note that every
node contains at least m and at most M entries, unless it is the root. The lower
bound m ensures an e�cient storage utilization, while the upper bound M ensures
that each node does not exceed one disk page size. As in BIRCH clustering, after
creating the tree, we can use any existing clustering algorithms (AHC, k-means,
etc.) for clustering the leaf nodes or the nodes at any level of the tree. These tree
structures are incrementally constructed by inserting iteratively the objects into
the corresponding leaves. They are sensitive to the insertion order of the objects
and to the outliers. Moreover, the resulting trees of these methods depend on their
parameters m and M , and the clustering results depend on the input number of
clusters k. The computational complexity of these method is about O(NlogN),
thus they are suitable to large databases. The cluster for assigning a new point
can be found in O(k). Among these structures, SR-tree is reported to give the best
results [60] as it allows to create regions with small volumes and small diameters,
by combining the bounding rectangle and the bounding sphere, thus reducing the
overlap between nodes.

Conclusion for the hierarchical methods The advantage of hierarchical meth-
ods is that they organize data in a hierarchical structure. Therefore, by considering
the structure at di�erent levels, we can obtain di�erent numbers of clusters. DI-
ANA, MST and AHC are not adapted to large databases, while the others are
suitable. In BIRCH, the CF-tree is built by incrementally adding the records; it
is by nature incremental. But because of this incremental construction, it depends
on the processing order of the input data. CURE is able to add new points, but
all the records have to be reassigned whenever the number of clusters k is changed.
CURE is therefore not suitable to the context where users are involved. Similar to
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BIRCH, R-tree, SS-tree and SR-tree are also by nature incremental, but depend on
the processing order of the input data.

3.3 Formal comparison of unsupervised clustering

methods

Table 3.1 formally compares the di�erent clustering methods presented in the last
section (partitioning methods (P), hierarchical methods (H), grid-based methods
(G) and density-based methods (D)) based on di�erent criteria (complexity, adapted
to large databases, incrementality, hierarchical structure, data order dependence,
sensitivity to outliers and parameters dependence). Where:

• N : the number of objects in the data set.

• k: the number of clusters.

• l: the number of iterations.

• NS: the number of the sample set (if any).

• d: the number of dimensions size of the feature vector.

The partitioning methods (k-means, k-medoids (PAM), CLARA, CLARANS,
ISODATA, SOM) are generally not incremental (except SOM); they do not produce
any hierarchical structure. Most of them are independent of the processing order of
the data (except CLARANS and SOM). K-means, CLARA, ISODATA and SOM
are suitable to large databases, while PAM, CLARA, CLARANS and ISODATA are
able to detect the outliers. Among di�erent partitioning methods, k-means is the
baseline method because of its simplicity and its e�ectiveness for large databases.

The grid-based methods (STING, CLIQUE) are in general adapted to large
databases. They are able to be used in incremental context and to detect outliers.
STING produces hierarchical structure, but it is not suitable to high dimensional
data such as feature image space. Moreover, in high dimensional context, data is
generally extremely sparse, so it is di�cult to specify the density parameter for
determining dense cells. In this case, the hierarchical methods are better than
grid-based methods.

The density-based methods (DBSCAN, OPTICS, EM) are in general suitable
to large databases and are able to detect outliers. But they are dependent on their
parameters and on the processing order of data (except EM). Moreover, they do
not produce any hierarchical structure, are not adapted to high dimensional data
and are not incremental.

The hierarchical methods (DIANA, MST, AHC, BIRCH, CURE, R-tree, SS-
tree, SR-tree) organize data in a hierarchical structure. Therefore, by considering
the structure at di�erent levels, we can obtain di�erent numbers of clusters, which
are useful in the context where users are involved and can change the number of
clusters by merging or splitting clusters. DIANA, MST and AHC are not suitable
to the incremental context and are not adapted to large databases because of their
high complexities. BIRCH, R-tree, SS-tree and SR-tree are by nature incremental,
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because they are built incrementally by adding the records; but because of this
incremental construction, they depend on the processing order of the input data.
BIRCH, R-tree, SS-tree and SR-tree are also adapted to large databases because
of their relatively low computational complexity. CURE realizes the hierarchical
clustering using only a random subset containing NS points of the database, the
other points being associated to the closest cluster. Its computational complexity is
thus relatively low and CURE is adapted to large databases. It is able to add new
points but the results of CURE clustering strongly depend on the samples chosen
and the records have to be reassigned whenever the number of clusters k is changed.
CURE is thus not suitable to the context where users are involved.

Based on the advantages and the disadvantages of di�erent clustering methods,
we can see that the hierarchical methods (BIRCH, R-tree, SS-tree and SR-tree) are
the most suitable to our context.

We choose to present, in Section 3.5, an experimental comparison of �ve dif-
ferent clustering methods: global k-means [76], AHC [70], R-tree [42], SR-tree [60]
and BIRCH [145]. Global k-means is a variant of the famous and the most used
clustering method (k-means) which is partition based. The advantage of the global
k-means is that we can automatically select the number of clusters k by stopping
the algorithm at the value of k providing acceptable results. The other methods
provide hierarchical clusters. AHC is chosen because it is the most popular method
in the hierarchical family and there exists an incremental version of this method.
R-tree, SR-tree and BIRCH are dedicated to large databases and they are by nature
incremental.
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3.4 Clustering evaluation measures

Figure 3.7 � Clustering result vs. Ground truth.

As it has been discussed in previous parts, the clustering methods use the low-
level features extracted from the images to group images into clusters while the
images in the ground truth are classi�ed by the user using high-level semantic
concepts. There may be a �semantic gap� between high-level semantic concepts and
low-level features, and therefore, the clusters given by the clustering algorithm are
often di�erent from the classes of images in the ground truth, as shown in Figure
3.7.

In order to evaluate the clustering results, there are currently two main kinds
of measures:

• Internal measures : Internal measures are low-level measures which are essen-
tially numerical. The quality of the clustering is evaluated based on intrinsic
information of the data set. They consider mainly the distribution of the
vectors into clusters and the balance of these clusters. For these measures, we
ignore if the clusters are semantically meaningful or not (�meaning� of each
cluster and validity of a point belonging to a cluster). Therefore, internal
measures may be considered as unsupervised measures.

• External measures : External measures evaluate the clustering by comparing
it to the distribution of data in the ground truth, which is often created by
humans or by a source of knowledge �validated� by humans. The ground truth
provides the semantic meaning and therefore, external measures are high-level
measures that evaluate the clustering results compared to the wishes of the
user. Thus, we can consider external measures as supervised.

3.4.1 Internal measures

Internal measures are numerical (unsupervised) measures which do not consider the
semantic point of view while evaluating the clustering results, but consider only the
distribution of the points in the clusters and the balance of these clusters.
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As the goal of clustering is to split a collection of data into groups (clusters)
so that similar objects belong to the same cluster and dissimilar objects are in
di�erent clusters, internal measures often evaluate the clustering results based on
two criteria: compactness and separation. While the compactness measures how
closely the objects in a cluster are, the separation measures how separate di�erent
clusters are.

We present in this section some widely used internal clustering evaluation mea-
sures. For this, we use the following notations:

• X = {xi|i = 1, ..., N}: the set of points in the database, where N is the
number of points.

• K = {Ki|i = 1, ..., k}: the set of clusters, where k is the number of clusters.

• |Ki|: the number of points in cluster Ki.

• K(xi): the cluster containing the point xi.

• µi: the centre of cluster Ki.

• µ(xi): the centre of the cluster containing the point xi.

• D(xi, xj): the distance between two points xi and xj.

• M = N(N − 1)/2: the maximum number of pairs of points in the database.

Compactness or homogeneity Shamir and Sharan [119] evaluates the compact-
ness (or homogeneity) of the clustering results by computing the average distance
between each point and the centre of the corresponding cluster:

H =
1

N

∑
xi∈X

D(xi, µ(xi)) (3.19)

The smaller the values of this measure are, the higher the average compactness of
the clusters, and the better the clustering results.

Another measure to compute the compactness is presented in [47]. We �rst
de�ne the variance of a data set as:

v(X) =

√√√√ 1

N

N∑
i=1

D2(xi, x) (3.20)

where x = 1
N

∑
i xi is the mean of the set X. The compactness of the clustering

results is de�ned as:

C =
1

k

k∑
i

v(Ki)

v(X)
(3.21)

where v(Ki) is the variance of the cluster Ki and v(X) is the variance of the data set
X. A smaller value of this measure indicates a higher compactness of the clustering
results.
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Separation For measuring how separate di�erent clusters are, Shamir and Sha-
ran [119] compute the separation as the weighted average distance between cluster
centres. The higher the values of this measure, the better the clustering results.

S =
1∑

i 6=j |Ki||Kj|
∑
i 6=j

|Ki||Kj|D(µi, µi) (3.22)

He et al. [47] compute the separation of the clustering results as follows:

S =
1

k(k − 1)

k∑
i=1

k∑
j=1,j 6=i

exp(−D
2(µi, µj)

2σ2
) (3.23)

where σ is the standard deviation of a Gaussian. In [47], He et al. �x 2σ2 = 0.25 for
the ease of evaluation. A smaller value of separation indicates a larger dissimilarity
between clusters, and a better clustering result.

Overall cluster quality [47] He et al. [47] combine the compactness in Equation
3.21 and the separation in Equation 3.23 into one measure called overall cluster
quality as follows:

Ocq = β.C + (1− β).S (3.24)

where β ∈ [0, 1] is the weight controlling the trade-o� between the compactness
and the separation. The smaller the overall cluster quality values, the better the
clustering result.

Silhouette Width [115] The Silhouette Width evaluates the clustering results
by measuring at the same time the compactness and the separation. The silhouette
width for each point xi measures how much xi belong to its cluster; it is computed
as follows:

SW (xi) =
b(xi)− a(xi)

max{a(xi), b(xi)}
(3.25)

where:

• a(xi): the average distance between xi and the other points in the same
cluster. a(xi) represents thus the compactness between xi and the other points
in the same cluster.

a(xi) =
1

|K(xi)| − 1

∑
xj∈K(xi),xj 6=xi

D(xi, xj) (3.26)

• b(xi): the average distance between xi and the points in the cluster 6= K(xi)
which is the closest to xi. b(xi) represents thus the separation between xi and
the closest cluster.

D(xi, Kl) =
1

Nl

∑
xj∈Kl

D(xi, xj) (3.27)

b(xi) = minKl 6=K(xi){D(xi, Kl)} (3.28)

The average Silhouette Width of all the points in the data set represents the
quality of the clustering result. The higher the values are, the better the results.

SW =
1

N

∑
xi∈X

SW (xi) (3.29)
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Hubert Γ statistic [43] The Hubert Γ statistic measures the similarity between
two matrices P and Q as follows:

Γ =
1

M

N−1∑
i=1

N∑
j=i+1

P (i, j)Q(i, j) (3.30)

In order to use the Hubert Γ statistic for evaluating the clustering result, P is the
proximity matrix of the points in the data set and Q is an N × N matrix whose
element Q(i, j) is the distance between the centres of clusters K(xi) and K(xj).
The higher the value of this measure is, the better the clustering results.

Normalized Hubert Γ statistic The normalized Hubert Γ statistic measures
also the similarity between two matrices P and Q as follows:

Γ̄ =
1
M

∑N−1
i=1

∑N
j=i+1(P (i, j)− µP )(Q(i, j)− µQ)

σPσQ
(3.31)

where µP , µQ, σP , σQ are respectively the means and the variances of P and Q.
For evaluating the clustering result, the two matrices P and Q are de�ned as in the
case of the Hubert Γ statistic. The value of the normalized Hubert Γ statistic is
between −1 and 1. The higher the value is, the better the clustering result.

3.4.2 External measures

External measures are semantic-based (supervised) measures which evaluate the
clustering result by comparing it to the distribution of the data in the ground truth
(classes), which is often created by humans or by a source of knowledge �validated�
by humans. External measures often compare the clustering result and the classes
in the ground truth based on two criteria:

• Homogeneity : a clustering solution satis�es the homogeneity criteria if all
clusters contain only points of a single class.

• Completeness : a clustering solution satis�es the completeness criteria if all
the points that are members of a single class are assigned to a single cluster.

In this section, we present some widely known external measures. We use the
following notations:

• N : the number of points in the data set.

• C = {Ci|i = 1, ..., c}: the set of classes in the ground truth, where c is the
number of classes.

• K = {Kj|j = 1, ..., k}: the set of clusters produced by the clustering algo-
rithm, where k is the number of clusters.

• nij: the number of points of the class Ci which are assigned to the cluster Kj.

• M = N(N − 1)/2: the maximum number of pairs of points in the database.
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Purity [146] The purity measure evaluate the homogeneity of the clustering re-
sult. The purity of each cluster Kj is de�ned as the most represented class among
the points assigned to this cluster:

P (Kj) =
1

|Kj|
max
Ci∈C
{nij} (3.32)

The overall purity of the clustering result is computed as the weighted sum of the
purities of all clusters. Higher values of the overall purity indicate better clustering
results.

Purity =
k∑
j=1

|Kj|
N

P (Kj) (3.33)

Entropy [146] Entropy measures also the homogeneity of the clustering result
by evaluating the distribution of di�erent classes of points within each cluster. The
entropy of each cluster Kj is de�ned as:

Entropy(Kj) = − 1

log c

c∑
i=1

nij
|Kj|

log
nij
|Kj|

(3.34)

The overall entropy of the clustering solution is then computed as the weighted sum
of the entropies of all clusters. The smaller the value of the overall entropy is, the
better the clustering result.

Entropy =
k∑
j=1

|Kj|
N

Entropy(Kj) (3.35)

Overall entropy [47] Overall entropy measure evaluates both the homogeneity
and the completeness criteria based on the cluster entropy and the class entropy.

The cluster entropy measures the homogeneity of the data points in each indi-
vidual cluster. The cluster entropy E(Kj) is de�ned for each cluster Kj as follows:

E(Kj) = −
c∑
i=1

nij
|Kj|

log
nij
|Kj|

(3.36)

The smaller the value of E(Kj), the higher the homogeneity of cluster Kj. The
overall cluster entropy is de�ned as the weighted sum of the entropies of all clusters:

EK =
1

N

k∑
j=1

|Kj|E(Kj) (3.37)

The class entropy measures how the data points of a same class are represented
by di�erent clusters, it thus measures the completeness criteria. The class entropy
E(Ci) of each class Ci is de�ned as follows:

E(Ci) = −
k∑
j=1

nij
|Ci|

log
nij
|Ci|

(3.38)
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Similar to the overall cluster entropy, the overall class entropy EC is de�ned as the
weighted sum of the individual class entropies. The smaller the value of the overall
class entropy, the higher the completeness of the clustering solution.

EC =
1

N

c∑
i=1

|Ci|E(Ci) (3.39)

The overall entropy combines the cluster entropy and the class entropy as follows:

ECK = β ∗ EK + (1− β) ∗ EC (3.40)

where β is the weight de�ning the importance of these two entropies. The smaller
the value of ECK , the better the clustering solution.

F-measure [33] The F-measure evaluates both the homogeneity and the com-
pleteness criteria of the clustering solution. The Recall and Precision for a class
Ci and a cluster Kj are de�ned as:

Recall(Ci, Kj) =
nij
|Kj|

(3.41)

Precision(Ci, Kj) =
nij
|Ci|

(3.42)

The Recall(Ci, Kj) is computed as the proportion of the points of the class Ci in
cluster Kj, it thus measures the homogeneity of the cluster Kj regarding to the
class Ci. The Precision(Ci, Kj) is computed as the proportion of the points of the
class Ci which are assigned to the cluster Kj, it thus measures the completeness of
the class Ci regarding to the cluster Kj. F-measure for a class Ci and a cluster Kj

is computed as the harmonic mean of the corresponding Recall and Precision:

F (Ci, Kj) =
2 ∗Recall(Ci, Kj) ∗ Precision(Ci, Kj)

Recall(Ci, Kj) + Precision(Ci, Kj)
(3.43)

F (Ci, Kj) evaluates the quality of clusterKj for describing the class Ci. The success
of a clustering solution for describing a class Ci is measured by the max value of
F (Ci, Kj) among clusters Kj, j = 1, ..., k. The overall F-measure for evaluating the
clustering solution is measured by the weighted sum of the maximum F-measures
for all the classes:

F-measure =
∑
Ci∈C

|Ci|
N

max
Kj∈K

{F (Ci, Kj)} (3.44)

The value of the overall F-measure is in the range [0, 1]. The higher the value is,
the higher the accuracy of the clustering result.

More generally, Fβ(Ci, Kj) measures can be computed as in [111]:

Fβ(Ci, Kj) =
(1 + β2) ∗Recall(Ci, Kj) ∗ Precision(Ci, Kj)

Recall(Ci, Kj) + β2 ∗ Precision(Ci, Kj)
(3.45)

where β de�nes the importance of Recall and Precision in the calculation. Equa-
tion (3.43) therefore gives the F1 measure.
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V-measure [114] V-measure is an entropy-based measure which evaluates both
the homogeneity and the completeness criteria of the clustering solution. The higher
the value of the V-measure is, the better the clustering solution. V-measure is
de�ned as follows:

V-measure =
(1 + β) ∗ homogeneity ∗ completeness
β ∗ homogeneity + completeness

(3.46)

where:

• homogeneity measures the homogeneity of the clustering solution (see Equa-
tion (3.47) hereafter).

• completeness measures the completeness of the clustering solution (see Equa-
tion (3.50) hereafter).

• β is a variable which controls the contributions of homogeneity and complete-
ness.

The homogeneity is de�ned as:

homogeneity = 1− H(C|K)

H(C)
(3.47)

whereH(C|K) is the conditional entropy of the class distribution given the proposed
clustering:

H(C|K) = −
k∑
j=1

c∑
i=1

nij
N

log
nij∑c
i=1 nij

(3.48)

and H(C) is the entropy of the classes and is de�ned as:

H(C) = −
c∑
i=1

∑k
j=1 nij

N
log

∑k
j=1 nij

N
(3.49)

Symmetrically, the completeness is de�ned as:

completeness = 1− H(K|C)

H(K)
(3.50)

where H(K|C) is the conditional entropy of the cluster distribution given the
classes:

H(K|C) = −
c∑
i=1

k∑
j=1

nij
N

log
nij∑k
j=1 nij

(3.51)

and H(K) is the entropy of the clusters:

H(K) = −
k∑
j=1

∑c
i=1 nij
N

log

∑c
i=1 nij
N

(3.52)
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Γ statistic [6] For evaluating the clustering result, the Γ statistic measures the
correlation between the produced clustering and the classi�cation (classes) given by
the ground truth. Γ statistic is computed as follows:

Γ =
M.a−m1.m2

[m1.m2.(M −m1).(M −m2)]
1
2

(3.53)

where:

a =
1

2

k∑
j=1

c∑
i=1

n2
ij −

N

2
(3.54)

b =
1

2

c∑
i=1

|Ci|2 −
1

2

k∑
j=1

c∑
i=1

n2
ij (3.55)

d =
1

2

k∑
j=1

|Kj|2 −
1

2

k∑
j=1

c∑
i=1

n2
ij (3.56)

m1 = a+ b (3.57)

m2 = a+ d (3.58)

The value of the Γ statistic measure ranges between −1 and 1. The higher the value
is, the better the clustering result.

Combinatorial approaches Combinatorial approaches evaluate the clustering
result by examining the number of pairs of data points which are clustered similarly
or di�erently in the clustering solution and in the ground truth. We de�ne:

• N11: the number of pairs of points which are clustered together in the clus-
tering solution and in the ground truth.

• N00: the number of pairs of points which are clustered separately in the
clustering solution and in the ground truth.

• N01: the number of pairs of points which are clustered together in the ground
truth but not in the clustering solution.

• N10: the number of pairs of points which are clustered together in the clus-
tering solution but not in the ground truth.

Some measures of this kind are:

• Rand Index [109]: The Rand Index measures the similarity between the
produced clustering and the target clustering determined by the ground truth
by examining the ratio of agreements between these two clusterings (i.e. the
ratio of the pairs of points that are clustered similarly together or separately
in the two clusterings). The value of Rand Index ranges between [0,1]. The
higher the value is, the higher the similarity between the clustering and the
ground truth, and the better the clustering result.

Rand(C,K) =
N00 +N11

N00 +N11 +N10 +N01

=
N00 +N11

N(N − 1)/2
(3.59)
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• Jaccard Index [91]: Similar to the Rand Index, the Jaccard Index measures
the similarity between two clusterings by examining the agreements between
these two clusterings, but it ignores the pairs of points which are grouped
separately in both the clustering and the ground truth.

Jaccard(C,K) =
N11

N11 +N10 +N01

(3.60)

• Fowlkes-Mallows Index [32]: Let P (C,K) = N11

N11+N01
be the probability

that a pair of points of the same class are also in the same cluster, and
P (K,C) = N11

N11+N10
be the probability that a pair of point which are clustered

in the same cluster belongs to a same class. The Fowlkes-Mallows Index
measures the similarity between two clusterings by the geometric mean of
P (C,K) and P (K,C):

Fowlkes-Mallows(C,K) =

√
N11

N11 +N01

.
N11

N11 +N10

(3.61)

• Mirkin metric [94]: The Mirkin metric evaluates the clustering result by
measuring the number of disagreements between the clustering solution and
the ground truth (i.e. the number of pairs of points which are clustered
together in the clustering solution but separately in the ground truth or vice
versa).

Mirkin(C,K) = 2(N01 +N10) = N(N − 1)(1−Rand(C,K)) (3.62)

Discussion about clustering evaluation measures Internal measures do not
consider the semantic point of view, they can therefore be applied automatically by
the machine, but they only represent a numerical evaluation. External measures
force the human to provide a ground truth. They are therefore more di�cult to be
done automatically, but this evaluation protocol is closer to the wishes of the user.
It is thus a semantic evaluation.

3.5 Experimental comparison of unsupervised clus-

tering methods

Following our theoretical analysis (Section 3.2) and formal comparison (Section
3.3) of unsupervised clustering methods, we present in this section an experimental
comparison of �ve di�erent methods: global k-means [76], AHC [70], R-tree [42],
SR-tree [60] and BIRCH [145]. Global k-means is a variant of the well known and
the most used clustering method (k-means). The advantage of the global k-means is
that we can automatically select the number of clusters k by stopping the algorithm
at the value of k providing acceptable results (see page 50). The other methods
provide hierarchical clusters. AHC is chosen because it is the most popular method
in the hierarchical family and there exists an incremental version of this method.
R-tree, SR-tree and BIRCH are dedicated to large databases and they are by nature
incremental.
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3.5.1 Experiment protocol

In order to compare the �ve selected clustering methods, we use di�erent im-
age databases of increasing sizes (Wang2, PascalVoc20063, Caltech1014, Corel30k).
Some examples of these databases are shown in Figures 3.8, 3.9, 3.10 and 3.11.
Small databases are intended to verify the performance of di�erent feature descrip-
tors and also di�erent clustering methods. Large databases are used to evaluate the
clustering methods for structuring large amount of data.

• The Wang database (Figure 3.8) is a small and simple database which contains
1000 images of 10 di�erent classes (100 images per class).

• The PascalVoc2006 database (Figure 3.9) contains 5304 images of 10 di�erent
classes, each image containing one or more objects of di�erent classes. In this
thesis, we analyze only hard clustering methods in which an image is assigned
to only one cluster. Therefore, in PascalVoc2006, we choose only the images
that belong to only one class for the tests (3885 images in total).

• The Caltech101 database (Figure 3.10) contains 9144 images of 101 classes,
with 40 up to 800 images per class.

• The Corel30k database (Figure 3.11) is the largest database used, it contains
31695 images of 320 classes. In fact, Wang is a subset of Corel30k.

Note that we use for the experimental tests the same number of clusters k as the
number of classes c in the ground truth.

Figure 3.8 � Example of Wang image database.

Concerning the image descriptors, we implement one global and �ve local de-
scriptors. Because our study focuses on the clustering methods and not on the
features (descriptors), we choose some descriptors that are widely used in the liter-
ature for our experiments (see Chapter 2).

• As a global descriptor, we use a descriptor of size 103 which is built as the
concatenation of three di�erent global descriptors:

◦ RGB histobin: we quantize each channel of the RGB color space into 16
ranges (bins) for having, for each image, a histobin of size 3× 16 = 48.

2http://wang.ist.psu.edu/docs/related/.
3http://pascallin.ecs.soton.ac.uk/challenges/VOC/.
4http://www.vision.caltech.edu/Image_Datasets/Caltech101/

http://wang.ist.psu.edu/docs/related/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
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Figure 3.9 � Example of PascalVoc2006 image database.

Figure 3.10 � Example of Caltech101 image database.

Figure 3.11 � Example of Corel30k image database.

◦ Gabor �lters : we use 24 Gabor �lters on 4 orientations and 6 frequencies.
The statistical measure associated with each output image is the mean
and standard deviation. We obtain thus a vector of size 24× 2 = 48 for
the texture.

◦ Hu's moments : we implement the 7 invariant moments of Hu for de-
scribing the shape of the image.

• For local descriptors, we use the SIFT and some color SIFT (CSIFT, rgSIFT,
RGBSIFT, OpponentSIFT) descriptors. These descriptors are widely used
nowadays for their high performance. We use the SIFT descriptor code of
David Lowe5 and the color SIFT descriptors codes of Koen van de Sande6.
The �Bag of words� approach is chosen to group local features into a single
vector representing the frequency of occurrence of the visual words in the
dictionary (see Section 2.2.2).

As mentioned above, we implement �ve di�erent clustering methods: global
k-means [76], AHC [70], R-tree [42], SR-tree [60] and BIRCH [145]. For the Ag-
glomerative Hierarchical Clustering (AHC), we have tested the �ve distances de-
scribed in Section 3.2.4 and Equations (3.12) to (3.16) (single-linkage, complete-
linkage, average-linkage, centroid-linkage and Ward's method) in our experiments.

5http://www.cs.ubc.ca/*lowe/keypoints/.
6http://koen.me/research/colordescriptors/.

http://www.cs.ubc.ca/*lowe/keypoints/ 
http://koen.me/research/colordescriptors/
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We found that the Ward's distance gives the best results among the �ve. There-
fore, to simplify the presentation of results in this section, we present only AHC
clustering with the Ward's method for measuring distance between clusters.

In order to evaluate our clustering results, we use both internal and external
measures. As external measures compare the results of the clustering to what the
human wants, they are more suitable to evaluate the clustering results in our inter-
active context where the user is involved. Therefore, external measures are mostly
used in our evaluations. Internal measures are also used for evaluating the dif-
ferences between numerical evaluation and semantic evaluation. Among internal
measures, there are simple measures which evaluate only one aspect (homogeneity,
separation or completeness) of the clustering solution, and also more complex mea-
sures which evaluate simultaneously many aspects of the clustering results. In this
thesis, we do not study how to evaluate the di�erent clustering evaluation measures,
but we choose here �ve di�erent complex measures that seem representative and
that are widely used nowadays: Silhouette Width (SW) [115] as internal measure
and V-measure [114], Rand Index [109], Jaccard Index [91] and Fowlkes-Mallows
Index [32] as external measures. Higher values of these measures indicate better
clustering results.

3.5.2 Experimental results

3.5.2.1 Clustering methods and feature descriptors analysis

The �rst set of experiments evaluates the performances of di�erent clustering meth-
ods and di�erent feature descriptors. Another objective is to evaluate the stability
of each method depending on di�erent parameters, such as the threshold T in the
case of the BIRCH method, or the number of children in the cases of R-tree and
SR-tree. The Wang image database is chosen for these tests because of its simplic-
ity and its popularity in the �eld of image analysis. We �x the number of clusters
k = 10 for all the following tests with the Wang image database (because its ground
truth contains c = 10 classes).

Method analysis Figure 3.12 shows the results of �ve di�erent clustering meth-
ods (global k-means, AHC, R-tree, SR-tree and BIRCH) using the global feature
descriptor on the Wang image database. The global feature descriptor is used be-
cause of its simplicity. We can see that, for this image database, the global k-means
and the BIRCH methods give in general the best results, while R-tree, SR-tree
and AHC give similar results. Moreover, the internal measure SW appreciates the
global k-means more than the BIRCH method, while external measures appreciate
BIRCH more than the global k-means.

We analyze the stability of these methods towards their parameters (when
needed). AHC and global k-means are parameter-free. In the case of BIRCH,
the threshold T is an important parameter. As stated in Section 3.2.4, BIRCH
includes two main steps. The �rst step is to organize all points in a CF-tree so that
each leaf entry contains all points within a radius smaller than T . The second step
considers each leaf entry as a point and realizes the clustering for all the leaf entries.
The value of the threshold T , has an in�uence on the number of points in each leaf
entry, and thus on the results of the clustering. Figure 3.13 shows the in�uence of
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SW V−measure Rand Index Jaccard Fowlkes Mallows
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Figure 3.12 � Clustering methods (global k-means, SR-tree, R-tree, AHC, BIRCH)
comparison using global feature descriptor on the Wang image database. Five mea-
sures (Silhouette Width, V-measure, Rand Index, Jaccard Index, Fowlkes�Mallows
Index) are used. The vertical axis represents the values of the measures. The higher
the values of these measures are, the better the results.
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Figure 3.13 � In�uence of the threshold T (T = 1,...,7) on the BIRCH clustering
results using the Wang image database and global features. Five measures (Silhou-
ette Width, V-measure, Rand Index, Jaccard Index, Fowlkes�Mallows Index) are
used. The vertical axis represents the values of the measures.

T on the results of BIRCH clustering. Note that for the second stage of BIRCH,
we use k-means for clustering the leaf entries because of its simplicity; the k �rst
leaf entries are used as k initial means so that the result is not in�uenced by the
initialization. We can see that for the Wang image database and for the value of
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T in our experiments, the results are very stable when the values of T are varying,
even though T = 1 gives slightly better result. For the R-tree and the SR-tree
clustering methods, the minimum and maximum number of children of each node
are the parameters that we have to �x. We can add more points in a branch node
if the number of children is high enough. Figure 3.14 shows the in�uence of these
parameters to the result of these two methods. We can see that these parameters
have a large in�uence on both the R-tree and the SR-tree clustering results. For
instance, the result of the R-tree clustering when a node has at least 5 children and
at most 15 children is much worse than when the minimum and maximum numbers
of children are respectively 4 and 10 (according to the Rand Index measure). Se-
lecting the best values for these parameters is crucial, especially for the tree based
methods which are not stable. However, it may be di�cult to choose a convenient
value for these parameters, as it depends on the feature vector and on the image
database used. In the following tests, we try di�erent values of these parameters
and choose the best compromise on all the measures.
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Figure 3.14 � In�uence of minimum and maximum numbers of children on R-tree
and SR-tree results, using the Wang image database and global features. Five mea-
sures (Silhouette Width, V-measure, Rand Index, Jaccard Index, Fowlkes�Mallows
Index) are used. The vertical axis represents the values of the measures.

Feature descriptor analysis Figure 3.15 shows the results of global k-means
and BIRCH, which gave previously the best results, on the Wang image database
using di�erent feature descriptors (global feature descriptor, SIFT, rgSIFT, CSIFT,
RGBSIFT and OpponentSIFT). Note that the dictionary size of the �Bag of words�
approach used jointly with the local descriptors is 500. We can see that the global
feature descriptor provides good results in general. Among local descriptors, SIFT
gives the worst results while rgSIFT gives the best results. This may be explained by
the fact that in the Wang database, color is very important. Van de Sande et al. [130]
show, in their evaluation of di�erent local color descriptors, the high performance
of the rgSIFT and CSIFT descriptors. Thus, in the remaining experiments, we use
three feature descriptors (global feature descriptor, CSIFT and rgSIFT).
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Figure 3.15 � Feature descriptor (global feature descriptor, local feature descriptors
(SIFT, CSIFT, rgSIFT, RGBSIFT, OpponentSIFT)) comparison using the global k-
means and BIRCH clustering methods on the Wang image database. Five measures
(Silhouette Width, V-measure, Rand Index, Jaccard Index, Fowlkes�Mallows Index)
are used. The vertical axis represents the values of the measures.
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Figure 3.16 � Clustering method (global k-means, R-tree, SR-tree, BIRCH and
AHC) and feature descriptor (global k-means, CSIFT and rgSIFT) comparisons
using V-measure on the Wang image database. The dictionary size of the �Bag of
Words� approach used jointly with the local descriptors is from 50 to 600. The
vertical axis represents the values of the V-measure.

Method and feature descriptor comparisons As stated in Section 2.2.2, the
dictionary size determines the size of the feature vector of each image. Given the
problems and di�culties related to large dimension spaces, we prefer to choose a
relatively small size of dictionary in order to reduce the number of dimensions of
the feature vectors. Working with a small dictionary can also reduce the execution
time, which is an important criterion in our case, where we aim at involving the
user in the clustering phase. But, a too small dictionary may not be su�cient to
accurately describe the database. Therefore, we must �nd the best trade-o� between
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Figure 3.17 � Clustering method (global k-means, R-tree, SR-tree, BIRCH and
AHC) and feature descriptor (global k-means, CSIFT and rgSIFT) comparisons
using Rand Index on the Wang image database. The dictionary size of the �Bag
of Words� approach used jointly with the local descriptors is from 50 to 600. The
vertical axis represents the values of the Rand Index.
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Figure 3.18 � Clustering method (global k-means, R-tree, SR-tree, BIRCH and
AHC) and feature descriptor (global k-means, CSIFT and rgSIFT) comparisons
using Fowlkes-Mallows Index on the Wang image database. The dictionary size of
the �Bag of Words� approach used jointly with the local descriptors is from 50 to
600. The vertical axis represents the values of the Fowlkes-Mallows Index.

the performance and the size of the dictionary. Figures 3.16, 3.17, 3.18, 3.19 analyze
the results of global k-means, R-tree, SR-tree, BIRCH and AHC on the Wang image
database with di�erent feature descriptors (global descriptor, CSIFT and rgSIFT,
when varying the dictionary size from 50 to 600). The measures used for evaluation
are respectively the V-measure, Rand Index, Fowlkes-Mallows Index and Silhouette
Width measures. The Jaccard Index is not used for these analysis because it is
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Figure 3.19 � Clustering method (global k-means, R-tree, SR-tree, BIRCH and
AHC) and feature descriptor (global k-means, CSIFT and rgSIFT) comparisons
using Silhouette Width on the Wang image database. The dictionary size of the
�Bag of Words� approach used jointly with the local descriptors is from 50 to 600.
The vertical axis represents the values of the Silhouette Width measure.

very similar with the Fowlkes-Mallows Index (we can see that they logically give
similar evaluations in the previous results). Note that LocalDes means the local
descriptor (CSIFT on the left-hand side of the �gures or rgSIFT on the right-hand
side of the �gures). And GlobalDes means the global descriptor, which is not
in�uenced by any size of the dictionary, but we choose to represent its results on
the same graphics using a straight line for comparison and presentation matters.
We can see that di�erent feature descriptors give di�erent results, and the size of the
dictionary has also an important in�uence on the clustering results, especially for R-
tree and SR-tree methods. When using external measures (V-measure, Rand Index
and Fowlkes-Mallows Index), BIRCH using rgSIFT with a dictionary of 400 to 600
visual words always give the best results. On the contrary, when using the internal
measure Silhouette Width, the global descriptor is always the best descriptor. We
have to remind that the internal and external measures do not evaluate the same
aspects. The internal measure used here evaluates, without any supervision, the
compactness and the separation of clusters based on the Euclidean distance between
elements in a same cluster and in di�erent clusters (which favors k-means), while
the external measures compare the distributions of points in the clustering result
and in the ground truth. We choose the value 200 for the dictionary size in the
case of CSIFT and rgSIFT for further experiments in this chapter because it is a
good trade-o� between the size of the feature vector and the performance (for both
internal and external measures). The value 500 for the dictionary size which give
in general the best results is also used for further experiments. Concerning the
di�erent methods, we can see that global k-means, BIRCH and AHC are in general
more e�ective and stable than R-tree and SR-tree. BIRCH is the best method when
we use external measures but the global k-means is better according to the internal
measure.
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3.5.2.2 Scalability study

Because the Wang image database is very simple and small, the results of clustering
obtained on it may not be representative of what happens with huge masses of
data. Thus, in the following experiments, we analyze the clustering results with
larger image databases (PascalVoc2006, Caltech101 and Corel30k). Global k-means,
BIRCH and AHC are used because of their high performance and stability. In the
case of the Corel30k image database, the AHC method is not used because of the
lack of the RAM memory. In fact, the AHC clustering requires a large amount of
memory when processing more than 10000 elements, while the Corel30k contains
more than 30000 images. This problem could be solved by using the incremental
version [110] of AHC which allows to process databases containing about 7 times
more data than the classical AHC. The global feature descriptor, CSIFT and rgSIFT
are tested. Note that the size of the dictionary used for both local descriptors is
200 and 500.
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Figure 3.20 � Global k-means, BIRCH and AHC clustering methods and fea-
tures descriptor (global descriptor, CSIFT, rgSIFT) comparisons using Silhouette
Width (SW), V-measure, Rand Index and Fowlkes�Mallows measures on the Pas-
calVoc2006 image database. The vertical axis represents the values of the Fowlkes-
Mallows Index.

Figures 3.20 and 3.21 show the results of the global k-means, BIRCH and
AHC clustering methods respectively on the PascalVoc2006 and Caltech101 im-
age databases. The corresponding processing time for these experiments are shown
in Table 3.2. Internal measures (Silhouette Width (SW)) and external measures (V-
measure, Rand Index and Fowlkes-Mallows Index) are used for these experiments.
We can see that the numerical evaluation (internal measure) always appreciates the
global descriptor but the semantic evaluations (external measures) appreciate the
local descriptors in almost all cases. Concerning di�erent clustering methods, we
can see that the AHC clustering gives the worst results. And in general, the global
k-means and the BIRCH clustering methods give similar results. Concerning the
size of the dictionary in the case of the local descriptors, we can see that the dictio-
nary of size 200 give slightly better results than the dictionary of size 500. Moreover,
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Figure 3.21 � Global k-means, BIRCH and AHC clustering methods and features
descriptor (global descriptor, CSIFT, rgSIFT) comparisons using Silhouette Width
(SW), V-measure, Rand Index and Fowlkes�Mallows measures on the Caltech101
image database. The vertical axis represents the values of the Fowlkes-Mallows
Index.
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Figure 3.22 � Global k-means and BIRCH clustering methods and features descrip-
tor (global descriptor, CSIFT, rgSIFT) comparisons using Silhouette Width (SW),
V-measure, Rand Index and Fowlkes�Mallows measures using the Corel30k image
database. The vertical axis represents the values of the Fowlkes-Mallows Index.

lower dictionary can improve the execution time. Therefore, the dictionary the size
of which is 200 is used for the experiments on the Corel30k image database shown
in Figure 3.22. We can see that for the Corel30k image database, the rgSIFT gives
better results than the CSIFT. Moreover, BIRCH using rgSIFT gives in general the
best result. Concerning the execution time, we notice that the clustering using the
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Table 3.2 � Processing time of the Global k-means, BIRCH and AHC clustering
methods on the PascalVoc2006, Caltech101 and Corel30k image databases corre-
sponding to experiments shown in Figures 3.20 and 3.21

Global k-means BIRCH AHC
PascalVoc2006 GlobalDes 23'52" 0'20" 27'06"

CSIFT200 30'12" 0'26" 28'49"
CSIFT500 49'59" 0'55" 31'47s
rgSIFT200 29'53" 0'25" 28'47"
rgSIFT500 49'42" 0'50" 31'38"

Caltech101 GlobalDes 52h06' 9'07" 5h59'
CSIFT200 62h26' 12'09" 6h09'
CSIFT500 95h31' 17'58" 6h24'
rgSIFT200 62h10' 11'53" 6h08'
rgSIFT500 95h19' 17'04" 6h22'

global descriptor is faster than that using the local descriptors. This is due to the
fact that the global feature descriptor has a dimension of 103 while the dimension
of the local descriptors is 200 and 500. The higher the size of the dictionary, the
higher the processing time. Moreover, among the local descriptors, the clustering
using rgSIFT is faster. And in comparison with global k-means and AHC, BIRCH
is much faster.

3.5.3 Discussion on the experimental comparison

Concerning the di�erent feature descriptors, the global descriptor is appreciated by
the internal measure (numerical evaluation) but the external measures (semantic
evaluations) appreciate more the local descriptors (CSIFT and rgSIFT). Thus, we
can say that CSIFT and rgSIFT descriptors are more compatible with the semantic
point of view than the global descriptor, at least in our experiments. This might
come from the fact that global features are computed based on the color, shape
and/or texture which may have no concern with the semantic point of view, while
local features are computed by detecting, in the image, the interest points which
may be more related to the user perception.

Concerning the stability of the di�erent clustering methods, global k-means and
AHC are parameter-free (provided the number k of desired clusters). On the other
hand, the results of R-tree, SR-tree and BIRCH vary depending on the value of their
input parameters (the maximum and minimum child numbers of each node for R-
tree and SR-tree or the threshold T determining the density of each leaf entry for
BIRCH). Therefore, if we want to embed human in the clustering to put semantics
on, it is more di�cult in the case of k-means and AHC because there is no parameter
to tune according to the interaction of the user, while in the case of R-tree, SR-
tree and BIRCH, if the results are not good from the point of view of the user, we
can modify the value of the input parameters in order to improve the �nal results.
R-tree and SR-tree have a very unstable behaviour when varying their parameters
or the number of visual words (in the case of the local descriptor) compared to
BIRCH. AHC is also much more sensitive than BIRCH to the number of visual
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words of the local descriptor. Therefore, we consider here that BIRCH is the most
interesting method from the stability point of view, especially in our case where the
best values of the parameters highly depend on the database characteristics.

The previous results show a high performance of global k-means, AHC and
BIRCH compared to the other methods. BIRCH is slightly better than global
k-means and AHC according to external measures. Moreover, with BIRCH, we
have to pass over the data only one time for creating the CF-tree, while with
global k-means, we have to parse the data many times (one time for each iteration).
Therefore, global k-means clustering is much more computationally complex than
BIRCH, especially when the number of clusters k is high, because we have to execute
the k-means clustering k times (with the number of clusters varying from 1 to k),
while in BIRCH, we have to execute the k-means (if it is used) only one time
for clustering all CF entries of the leaf nodes. Additionally, the AHC clustering
costs much time and memory when the number of images is high, because of its
time complexity O(N2 logN) and its space complexity O(N2). The incremental
version [110] of the AHC could save memory, but its computational requirements
are still very important.

Therefore, in the context of large image databases, BIRCH is more e�cient
than global k-means and AHC. And because the CF-tree is incrementally built
by adding one image at each time, BIRCH may be more promising to be used
in an incremental context than global k-means. R-tree and SR-tree give worse
results than global k-means, BIRCH and AHC, and are much more unstable when
varying their parameters than BIRCH. For all these reasons, we consider that
BIRCH+rgSIFT is the best choice in our context.

3.6 Discussion

Regarding clustering evaluation measures, while internal measures are numerical
evaluations which do not consider the semantic point of view, but which can be
computed automatically, external measures require the ground truth provided by
the user in order to provide the evaluation which is closer to the wishes of the
user. In the context of interactive clustering, internal measures can be used for
evaluating the results of the initial unsupervised clustering, but external measures
may be more suitable for measuring the performance of the clustering involving the
interactions of the user.

This chapter compares both formally and experimentally di�erent unsupervised
clustering methods in the context of multi-dimensional data with image databases of
large size. As the �nal objective of this thesis is to allow the user to interact with the
system in order to improve the results of the clustering, it is therefore important
that a clustering method is incremental and that the clusters are hierarchically
structured (so that it is easy to merge or split clusters according to the wishes of
the users). Formally, the hierarchical methods (BIRCH, R-tree, SS-tree and SR-
tree) are the most suitable to our context because they give hierarchical structures
of clusters, and they are by nature incremental and adapted to large databases.
Experimentally, we compare some hierarchical clustering methods (AHC, R-tree,
SR-tree and BIRCH) with the global k-means clustering method, which does not
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decompose clusters into sub-clusters as in the case of hierarchical methods. Our
results indicate that BIRCH is less sensitive to variations in its parameters and/or
to the dictionary size in the case of local descriptors than AHC, R-tree and SR-
tree. Moreover, BIRCH may be more promising to be used in the incremental
context than global k-means. BIRCH is also more e�cient than global k-means
and AHC in the context of large image databases. The experimental results show
that BIRCH+rgSIFT is the best choice in our context.

Unsupervised clustering methods are suitable for the initial clustering when we
know nothing about the ground truth (i.e. before the user is involved). In the
context of an interactive clustering system, the user can be involved in the further
steps for providing feedback to the system. Then, another clustering is done by
considering the user feedback. This clustering may then be semi-supervised. Semi-
supervised clustering is studied in the next chapter.

3.7 Summary of the chapter

This chapter presents a survey of the most principal unsupervised clustering meth-
ods, divided into four types: partitioning methods, grid-based methods, density-
based methods and hierarchical methods. Moreover, di�erent internal and external
measures (also considered respectively as unsupervised and supervised measures)
for evaluating the clustering results are also presented.

The �rst contribution of this chapter lies in respectively analyzing the advantages
and drawbacks of di�erent unsupervised clustering methods in a context in which
the user is involved in the clustering of huge masses of data and where incrementality
and hierarchical structuring are needed. Based on a formal comparison of the
analyzed methods, the hierarchical methods (BIRCH, R-tree, SS-tree and SR-tree)
are determined as the most suitable to our context.

The second contribution of this chapter is an experimental comparison, us-
ing both internal and external measures, of some unsupervised clustering meth-
ods (global k-means, AHC, R-tree, SR-tree and BIRCH) with di�erent real im-
age databases of increasing sizes (Wang, PascalVoc2006, Caltech101, Corel30k) to
study the scalability of these approaches when the size of the database is increas-
ing. Di�erent feature descriptors of di�erent sizes are used in order to evaluate
these approaches in the context of high-dimensional data. Based on this experi-
mental comparison, the BIRCH+rgSIFT, using the Bags of Words approach, is the
best choice in our context.
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Chapter 4

Semi-supervised clustering

4.1 Introduction

Because of the �semantic gap� between high-level semantic concepts expressed by the
user and the low-level features extracted from the images, the results of unsupervised
clustering methods are generally di�erent from the intent of the user. Therefore, in
some cases unsupervised clustering can be replaced by semi-supervised clustering
where a small amount of supervised information is available in order to guide the
clustering of unlabelled data. Supervised information can be provided by the user
or another system at the beginning of the clustering in the form of prior knowledge
(traditional semi-supervised clustering) or can be provided progressively during
each interactive iteration in the form of user's feedback useful for further clustering
steps (interactive semi-supervised clustering). Note that the prior knowledge or the
feedback provided by the user in each step is too poor to be used with supervised
learning. While only similarity information is used in the case of unsupervised
clustering, it is used in conjunction with the provided supervised information in
the case of semi-supervised clustering. In the latter case, supervised information is
used to guide the structuring process. In general, semi-supervised clustering aims at
maximizing intra-cluster similarity, minimize inter-cluster similarity while keeping
a high consistency between the clustering results and the domain knowledge.

Di�erent semi-supervised clustering methods are presented and analyzed in this
chapter. Di�erent kinds of supervised information which are usually used in semi-
supervised clustering are presented in Section 4.2. Section 4.3 presents a brief survey
of the semi-supervised clustering methods (traditional methods as well as interactive
methods) and analyzes the possibility to use these methods in an interactive context
in which users are involved for providing supervised information in the form of
feedback at each interactive iteration. An experimental comparison of some semi-
supervised clustering methods in an interactive context is presented in Section 4.4.
Finally, Section 4.5 gives some conclusions and discussions.

4.2 Di�erent kinds of supervised information

In general, supervised information for semi-supervised clustering is based on some
knowledge given by the user or another system, either in the form of class labels
(for some objects) or pairwise constraints between objects. For class label super-
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vised information, class labels are assigned to a small amount of objects in the data
set. In general, it requires at least one labelled object for each class. Pairwise
constraints specify whether two objects should be in the same cluster (must-link)
or in di�erent clusters (cannot-link). Depending on the moment when supervised
information is provided, semi-supervised clustering methods can be divided into tra-
ditional methods and interactive methods. In the case of traditional semi-supervised
clustering, supervised information is given at the beginning of the clustering and is
not changed depending on the clustering results. Whereas in the case of interactive
semi-supervised clustering, supervised information is progressively provided by the
user based on the clustering results at each interactive iteration.

As unsupervised clustering produces clusters based on the low-level features
extracted from the images, the produced clusters may not be the ones wished by
the user. Therefore, supervised information is needed to guide the clustering process
for giving clusters which are more adapted to the user's wishes. For instance, for
clustering a database with thousands of animal images, a user may want to cluster
by animal species or by background landscape types. An unsupervised clustering
method may give, as a result, a cluster containing images of horses with a grass
background together with some images of elephants with a grass background and
another cluster containing images of elephants with a sand background. These
results are ideal when the user wants to cluster by background landscape types.
But they are poor when the user wants to cluster by animal species. In this case,
the user can provide some supervised information to guide the clustering process.
When using supervised information in the form of class labels, the user can assign
the label �elephant� for some images of elephants with a grass background and
for some images of elephants with a sand background, and the label �horse� for
some images of horses with a grass background. By using these labels, the user
speci�es that he wants to cluster by animal species and thus avoids the merge
of images of elephants and horses with a grass background into a same cluster.
With the same purpose, when using supervised information in the form of pairwise
constraints between images, the user can specify must-link constraints between
images of elephants with a grass background and images of elephants with a sand
background as well as cannot-link constraints between images of elephants with a
grass background and images of horses with a grass background.

4.3 Semi-supervised clustering methods

This section presents a brief overview of di�erent semi-supervised clustering meth-
ods (traditional semi-supervised methods as well as interactive semi-supervised
methods), in which a small amount of supervised information is provided by the user
or another system in order to guide the clustering of unlabelled data. Note that
semi-supervised clustering is di�erent from semi-supervised classi�cation. Semi-
supervised classi�cation trains labelled data for inducing the classi�cation model,
by exploiting some additional unlabelled data. Whereas semi-supervised clustering
exploits additional labelled data (labelled objects or pairwise constraints) to aid and
bias the clustering of unlabelled data. Moreover, in semi-supervised classi�cation,
the set of all the data categories (data classes) has to be given in the labelled data
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and is not changed during the classi�cation process. While the category set can
be extended in the case of semi-supervised clustering (i.e. the number of obtained
clusters may be di�erent from the number of categories given in labelled data).
Therefore, semi-supervised clustering is more compatible than semi-supervised clas-
si�cation when knowledge of data categories is incomplete.

Semi-supervised clustering (traditional or interactive) has been developed in the
last decade and some methods have been published in the literature. Similar to un-
supervised clustering, semi-supervised clustering can be divided in semi-supervised
hard clustering and semi-supervised fuzzy clustering. As in this thesis, we are
interested in only hard clustering methods, semi-supervised fuzzy clustering meth-
ods [40] [80] [84] are not studied in this chapter. Hard semi-supervised clustering
can be divided into semi-supervised clustering with class labels or semi-supervised
clustering with pairwise constraints corresponding to the two kinds of supervised in-
formation. As far as we know, semi-supervised clustering methods with class labels
currently use supervised information in the form of prior knowledge or user feedback,
while the current methods with pairwise constraints use only supervised informa-
tion in the form of prior knowledge. In the experimental section of this chapter, we
adapt the semi-supervised methods with pairwise constraints into the interactive
context so that supervised information is not provided a priori but during di�erent
interactive iterations based on the clustering results. Most of the semi-supervised
clustering methods presented in this section are partitioning methods, only few of
them are hierarchical methods. Depending on the �nal application, we can choose
the suitable kind of supervised information as well as the suitable semi-supervised
clustering method.

In this chapter, we use the following notations:

• X = {xi|i = 1, ..., N}: the set of input feature vectors for clustering, where
N is the number of vectors.

• K = {Kj|j = 1, ..., k}: the set of clusters, where k is the number of clusters.

• µj: the centre of cluster Kj.

• |Kj|: the number of points in cluster Kj.

• K(xi): the cluster containing the point xi.

• µ(xi): the centre of the cluster containing the point xi.

4.3.1 Semi-supervised clustering with class labels

Semi-supervised clustering using labelled objects as supervised information has both
traditional and interactive forms. Traditional methods use supervised information
in the form of prior knowledge (labelled objects) provided at the beginning while
interactive methods use supervised information in the form of feedback progressively
provided in each interactive iteration, depending on the clustering results.

4.3.1.1 Traditional semi-supervised clustering with class labels

Some traditional semi-supervised clustering methods using labelled objects as prior
knowledge have been published such as seeded-kmeans [9], constrained-kmeans [9].
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Seeded-kmeans [9] : Seeded-kmeans is a partitioning method which is a variant
of the k-means algorithm that uses seeds to guide the k-means algorithm. Given
a data set X that should be partitioned into k clusters {Kj}kj=1. Prior knowledge
for this method is a small subset of the input data set S ⊆ X, called seed set,
containing user-speci�ed labelled objects of k di�erent clusters. Assume that for
each cluster Kj, there is at least one seed point xi ∈ S. Therefore, the seed set
contains k disjoint partitions {Sj}kj=1, each partition containing points of one class.
Unlike the k-means algorithm which initializes the clustering from k random means,
the seeded-kmeans uses the seed set for initializing clustering, so that the mean of
the jth cluster is initialized as the mean of the partition Sj. Following this we
repeat, until convergence, the re-assignment of each object to the nearest mean and
the re-estimation of the means, given the assigned objects. The clustering does not
make any di�erence between the points in the seed set and other points in the data
set. Note that the distance used for the seeded-kmeans is the Euclidean distance.
The algorithm of the seeded-kmeans is as follows:

1. Initialize the mean µj of each cluster Kj as the mean of each partition Sj
(j = 1, ..., k) of the seed set :

µj =
1

|Sj|
∑
xi∈Sj

xi (4.1)

2. Repeat until convergence

(a) Re-assignment: assign each data point xi ∈ X to the nearest cluster
Kj∗ :

j∗ = argmin
j
||xi − µj||2 (4.2)

(b) Re-estimation: re-estimate the mean of each cluster Kj:

µj =
1

|Kj|
∑
xi∈Kj

xi (4.3)

As a partitioning method, the seeded-kmeans gives a ��at� organization of clus-
ters. The supervised information is provided in the form of prior knowledge. How-
ever, the seeded-kmeans is still very basic in the way of handling prior knowledge,
as supervised information is not used during the re-clustering phase, but only used
for initializing the cluster centres. Therefore, the seeded-kmeans allows the viola-
tion of the provided class labels. It can be adapted to the interactive context but the
user should have prior knowledge about the data set in order to provide at least one
labelled object for each of the k clusters.

Constrained-kmeans [9] Another variant of the k-means algorithm that uses
seeds to guide the k-means algorithm is the constrained-kmeans algorithm. Prior
knowledge of constrained-kmeans is also a seed set containing user-speci�ed labelled
objects of k di�erent clusters. As in seeded-kmeans, the seed set is used for initial-
izing clustering so that the mean of the jth cluster is initialized as the mean of the
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partition Sj using equation (4.1). However, in the subsequent steps, while seeded-
kmeans re-estimates the labels of all objects in the data set X, constrained-kmeans
maintains the data points of the seed set S in their initial clusters and re-estimates
only the labels of the non-seed objects xi ∈ X \ S. Similar to the seeded-kmeans,
the Euclidean distance is used for calculating the distance between objects. The
algorithm of the constrained-kmeans is as follows:

1. Initialize the mean µj of each cluster Kj as the mean of each partition Sj
(j = 1, ..., k) of the seed set using equation (4.1).

2. Repeat until convergence

(a) Re-assignment:

• For xi ∈ S: if xi ∈ Sj, assign xi to the cluster Kj which contains all
the points of Sj.

• For xi ∈ X \ S, assign xi to the nearest cluster Kj∗ using equation
(4.2).

(b) Re-estimation: re-estimate the mean of each cluster Kj using equation
(4.3).

Similar to the seeded-kmeans, constrained-kmeans is a partitioning method and
gives a ��at� organization of clusters. Supervised information is also in the form of
prior knowledge. As the data points of the seed set are maintained in their initial
clusters, constrained-kmeans does not allow constraint violation. As seeded-kmeans,
the prior knowledge of the user about the data set is required in order to implement
the constrained-kmeans in the interactive context.

4.3.1.2 Interactive semi-supervised clustering with class labels

Semi-supervised clustering methods using feedback as supervised information are
de�ned as interactive semi-supervised methods. Among the interactive semi-supervised
clustering methods using class labels, we can cite: cluster-level semi-supervised clus-
tering [26], clustering based on relevance feedback [64] and the Rocchio formula [113]
based clustering method.

Interactive cluster-level semi-supervised clustering [26] Dubey et al. pro-
posed an interactive cluster-level semi-supervised clustering framework for docu-
ment analysis. In this model, knowledge is not provided a priori, but is progressively
provided as user feedback during di�erent interactive iterations. In each interactive
iteration, the user provides a set of assignment feedback and a set of cluster descrip-
tion feedback. The numbers of assignment feedback and cluster description feedback
given in di�erent interactive iterations can be di�erent. Using assignment feedback,
the user moves an object from one cluster to another. Using cluster description
feedback, the user modi�es the feature vector of any current cluster to make it more
meaningful. Note that the method proposed in [26] is dedicated to document analy-
sis, in which the feature vector of a cluster or a document is a vector representing the
weights of di�erent text words in the dictionary. For modifying the feature vector
of a cluster, the user can, for example, click and drag a weight curve over di�erent
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text words. In each interactive iteration, the system re-organizes the objects in the
data set, not only based on the feedback provided in this iteration but also on the
feedback accumulated from all the previous iterations. The re-clustering minimizes
the average distance between points and their cluster centres while minimizing the
violation of constraints corresponding to feedback. The interactive process contin-
ues until the clustering result satis�es the user. This interactive framework is useful
for large databases when supervised information is not provided in advance.

In each interactive iteration, let us consider that l and m are respectively the
total numbers of assignment feedback and cluster description feedback provided
by the user over all di�erent interactive iterations, supervised information for the
re-clustering phase of this interactive iteration are:

• Let F a = {fai }li=1 be the set of l assignment feedback provided by the user
over all di�erent interactive iterations (the letter 'a' means assignment feed-
back). The ith assignment feedback fai = {xai ,Ma

i , µ
a
i } indicates that, having

the set of cluster centres Ma
i = {µaij}kj=1, the user wants to assign the data

point xai to the cluster corresponding to the centre µ
a
i fromMa

i . Note that the
set of cluster centresMa

i indicates the cluster centres at the moment when the
assignment feedback fai is provided. As the cluster centres generally change
after each interactive iteration, the set of cluster centres at the current itera-
tion may be di�erent from Ma

i if the assignment feedback fai is provided at a
previous iteration.

• Let F d = {fdi }mi=1 be the set of m cluster description feedback provided by
the user over all di�erent interactive iterations (the letter 'd' means cluster
description feedback). For the ith cluster description feedback fdi , the user
observes the feature vector of a cluster centre and provides a new feature
vector for this cluster centre. Cluster description feedback is suitable for
the case of document clustering where the user could assign more important
weights for some text words which he thinks they better describe the cluster.
But this kind of feedback is not compatible in the case of image clustering as it
is di�cult for the user to understand the image feature descriptors which are
low-level features. Therefore, we do not describe here the details of neither the
cluster description feedback nor the processing concerning cluster description
feedback. See [26] for more information about this kind of feedback.

The interactive cluster-level semi-supervised clustering proposed in [26] is based
on the k-means clustering. Without feedback, the objective function of the tradi-
tional k-means (using Euclidean distance) is as follows:

Ex =
∑
i

(xi − µ(xi))
2 (4.4)

where µ(xi) is the cluster centre corresponding to the data point xi. In order to
incorporate the user feedback in the objective function, a constraint and a corre-
sponding penalty for violating this constraint are associated for each feedback.

The constraint associated with an assignment feedback fai = {xai ,Ma
i , µ

a
i } is that

every time the current set of cluster centres {µj}kj=1 exactly matchesM
a
i = {µaij}kj=1,

xai always has to be assigned to the cluster corresponding to the centre µai . If the
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current set of cluster centres matchesMa
i but x

a
i is currently assigned to µ(xai ) 6= µai ,

then this constraint is violated and the penalty for this violation is calculated as
the distance between µai and µ(xai ). Of course, the set of cluster centres at the
current interactive iteration can be di�erent from Ma

i . In order to deal with this
problem, the relevance Ra

i (K) of an assignment constraint fai , given the current
set of cluster centres {µj}kj=1, is de�ned as the similarity of {µj}kj=1 with the set
of cluster centres Ma

i speci�ed in the feedback. This relevance is measured using
the best mapping Mapai (K) between the current set of cluster centres {µj}kj=1 and
the set of cluster centres Ma

i speci�ed in the feedback. The best mapping between
the two sets of cluster centres is de�ned as the mapping having the smallest sum
of distances between mapped cluster centres from the two sets. The relevance is
computed as follows:

Ra
i (K) = exp(−(

k∑
j=1

(µj −Mapai (µj))
2)) (4.5)

where Mapai (µj) is, among the set of cluster centres Ma
i = {µaij}kj=1, the mapped

cluster centre, de�ned by the best mapping, corresponding to the cluster centre µj
of the current set of clusters. For an assignment feedback fai , given the current
set of cluster centres {µj}kj=1, Dubey et al. [26] assume that there is no penalty
when xai is currently assigned to the mapped cluster centre Mapai (µ

a
i ) of µ

a
i in the

current set of cluster centres. If, however, µ(xai ) 6= Mapai (µ
a
i ), then the constraint

corresponding to fai is violated and the penalty for this violation is the squared
Euclidean distance between µ(xai ) and Mapai (µ

a
i ). The assignment error takes into

account both penalty and the current relevance of the constraint:

Ea
i = (µ(xai )−Mapai (µ

a
i ))

2 ×Ra
i (K) (4.6)

and the total error for all assignment feedback is computed as follows:

Ea =
l∑

i=1

Ea
i (4.7)

A constraint and a penalty for violating this constraint are also associated with
each cluster description feedback fdi . Let E

d
i is the error associated with the cluster

description feedback fdi (see [26] for more information), the total error for all cluster
description feedback is computed as follows:

Ed =
m∑
i=1

Ed
i (4.8)

Finally, the total error (or the objective function) to be minimized is computed
as:

E = Ex + Ea + Ed (4.9)

In each interactive iteration, after receiving the user feedback, the algorithm
repeats, until convergence, the re-estimation of cluster centres and the re-assignment
of points to clusters. The objective is to minimize the total error in Equation (4.9).
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• Cluster centre re-estimation: In this step, the cluster centres are updated
based on the current assignment of points to clusters and the current relevance
of the feedback in F a and F d. As the feedback represents the dependencies
across clusters, di�erent cluster centres cannot be updated independently.
Dubey et al. [26] cyclically update each cluster centre µj while keeping the
other k − 1 cluster centres �xed, until all cluster centres are stable. Each
cluster centre µj is updated as follows:

µj =
1

|Kj|
∑
xi∈Kj

xi

+
l∑

i=1

Ra
i (K)[δ(xai , µj)Mapai (µ

a
i ) +

∑
µ′

I(µj,Mapai (µ
a
i ))δ(x

a
i , µ

′)µ′]

+
m∑
i=1

Move(fdi ) (4.10)

where I() is the indicator function (I(s1, s2) equals 1 if s1 = s2, and equals 0
otherwise), δ(x, µ) is the assignment function (δ(x, µ) equals 1 if x is assigned
to the cluster corresponding to the centre µ, and equals 0 otherwise). The �rst
term of Equation (4.10) represents the movement of µj towards the centroid of
the data points currently assigned to the cluster Kj. The second and the third
terms of Equation (4.10) re�ect the e�ects of the set of assignment feedback
F a in the update step. According to the second term, if the data point xai
speci�ed in the feedback fai is currently assigned to µj, we move µj towards
the cluster centreMapai (µ

a
i ) which is the preferred cluster centre for x

a
i de�ned

by the feedback fai . According to the third term, if µj is the preferred cluster
centreMapai (µ

a
i ) for the feedback f

a
i , we move µj towards the cluster centre µ

′

to which xai is currently assigned. Finally, the fourth term of Equation (4.10)
represents the movement of µj based on the set of cluster description feedback
F d, where Move(fdi ) represents the movement according to the feedback fdi
(see [26] for more details).

• Point re-assignment : In this step, points are re-assigned to clusters based on
the current cluster centres and the current relevance of assignment feedback.
The cluster description feedback does not in�uence the re-assignment of data
points. A point xi ∈ X is assigned to the cluster Kj∗ which minimizes the
contribution of its cluster centre µj∗ to the objective function:

j∗ = argmin
j

(||xi − µj||2 +
l∑

i=1

Ra
i (K)I(xi, x

a
i )(µj −Mapai (µ

a
i ))

2) (4.11)

where I() is the indicator function.

The cluster-level semi-supervised clustering is a partitioning method. It does
not give any hierarchical structure. This method is interactive. By minimizing
the objective function, including the penalty cost for the violation of the constraint
corresponding to each feedback, the violation of the constraints corresponding to
the set of feedback is minimized during the re-clustering process. However, the
satisfaction of all the constraints is not ensured after the re-clustering phase.
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Clustering based on relevance feedback [64] Kinoshita et al. present in
their work the clustering of video packets based on relevance feedback. Relevance
feedback approach is usually used in CBIR that allows the user to indicate the
relevance of the retrieved images for a particular query. For the clustering problem,
relevance feedback is used for specifying if an image is relevant or non-relevant to
the cluster it belongs to. Therefore, in that case the relevance feedback can be seen
as a class label information incrementally added on some objects, at each interactive
iteration.

In [64], the k-means algorithm is used for clustering a set of video packets repre-
sented by their feature vectors. In each interactive iteration, the user gives feedback
specifying whether each video packet is relevant or not to the cluster it belongs to.
In order to satisfy the user feedback, the system updates the feature vectors of all
video packets based on the feedback and then re-clusters the set of updated feature
vectors by the k-means algorithm. Note that the satisfaction of the user feedback
is not guaranteed after the re-clustering process.

The feature vectors in each cluster Kj are updated based on the feedback as
follows. For the set of feature vectors which are marked as relevant to the clusterKj,
the system considers that the lth feature is not important and gives it a small weight
wl if the standard deviation of this feature is large in Kj, and vice versa a large
weight wl is given to the feature whose standard deviation is small inKj. The weight
wl is de�ned as 1/σl, where σl is the standard deviation of the lth feature computed
based on all xi ∈ Kj that user considers as relevant. The system normalizes the

weights Wl = wl/
∑d

m=1 wm and updates each feature vector xi = {xi1 , ..., xid} of
cluster Kj as xi = {W1xi1 , ...,Wdxid}, where d is the number of dimensions of the
feature vectors. The updated feature vectors are then used in the re-clustering
phase using the k-means algorithm.

The interactive clustering based on relevance feedback proposed by Kinoshita et
al. [64] originally uses the k-means partitioning method because of its simplicity. As
the feature vectors are updated after each interactive iteration for being used in the
next re-clustering phase, any other clustering method (partitioning, hierarchical,
grid-based or density-based methods) can also be used instead of k-means. This
method allows the violation of the feedback. However, as all feature vectors have to be
updated in each iteration, it may not compatible for performing with large database.
Moreover, as the clusters change between di�erent interactive iterations, the feedback
given in previous iterations may be not compatible to be used in the current iteration.
Furthermore, only relevant objects are used for updating the feature vectors, whereas
non-relevant objects are omitted.

Rocchio formula [113] based clustering The Rocchio formula [113] is the
most popular technique for implementing relevance feedback in information retrieval
systems. The idea is that the user speci�es, among the retrieved documents of each
search query, the documents which are relevant or non-relevant for the input query.
The relevance feedback information is then used for updating the search query, in
order to move it closer to the centroid of relevant documents and farther away
from the centroid of non-relevant documents in the feature space. The search query
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vector is updated as follows:

qm = αqo +
β

|Sr|
∑
xi∈Sr

xi −
γ

|Snr|
∑
xi∈Snr

xi (4.12)

where qm is the modi�ed query vector, qo is the original query vector, Sr and Snr
are the sets of feature vectors of respectively relevant and non-relevant documents
speci�ed in the feedback. α, β and γ are the weights corresponding to respectively
the original query, relevant feedback and non-relevant feedback. Typically α = 1
and 0 < β, γ < 1. In general, the weight of relevant feedback is usually greater than
the weight of non-relevant feedback (β > γ).

Originally, the Rocchio formula is used for implementing relevance feedback
in information retrieval systems. But we can easily extend it for incorporating
relevance feedback in clustering systems. To the best of our knowledge, such a
method has not been implemented yet. We propose to apply the Rocchio formula
in the interactive clustering as follows. The user can specify, in each interactive
iteration, whether each document is relevant or not to the cluster it belongs to.
Then, the centre µj of each cluster Kj can be altered by incorporating the feedback
information as in Equation (4.13):

µj =
α

|Kj|
∑
xi∈Kj

xi +
β

|Snj |
∑
xi∈Snj

xi −
γ

|Snrj |
∑

xi∈Snrj

xi (4.13)

where Snj and Snrj are respectively the set of relevant and non-relevant objects of
cluster Kj. Then, updated centres can be used as initial centres for clustering using
k-means in further interactive iteration.

The Rocchio formula based clustering is a partitioning method, it does not give
any hierarchical structure of cluster. It is interactive and uses not only relevant but
also non-relevant objects for updating the cluster centres. Moreover, the violation
of the constraints is allowed. However, supervised information is not used during
the re-clustering of the data set, but only used for initializing the cluster centres for
the next re-clustering step.

4.3.2 Semi-supervised clustering with pairwise constraints

Pairwise constraint supervised information does not exactly specify the cluster to
which each object should belong, but speci�es whether two objects should be in
the same cluster (must-link) or in di�erent clusters (cannot-link). Among the semi-
supervised clustering methods using pairwise constraints between objects, we can
cite COP-kmeans (constrained-kmeans) [136], constrained complete-link [65], con-
strained agglomerative clustering [25], COP-COBWEB [135], HMRF-kmeans (Hid-
den Markov Random Fields Kmeans) [10], semi-supervised kernel-kmeans [69], etc.
According to our knowledge, all semi-supervised clustering methods using pairwise
constraints which are published to date are traditional methods, in which pair-
wise constraints are provided as prior knowledge at the beginning of the clustering.
Therefore, all methods presented in this section are traditional methods (i.e. not
interactive).

Supervised information for these methods are:
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• ML: the set of all must-link constraints. A must-link constraint (sometimes
referred to as must-link) (xi, xj) ∈ ML speci�es that xi and xj should be in
a same cluster.

• CL: the set of all cannot-link constraints. A cannot-link constraint (some-
times referred to as cannot-link) (xi, xj) ∈ CL speci�es that xi and xj should
be in di�erent clusters.

Constrained Complete-Link [65] is a traditional hierarchical semi-supervised
clustering method. It is a variant of the complete-link Agglomerative Hierarchical
Clustering (AHC) [70] which uses pairwise constraints as supervised information.
Similar to the AHC clustering, the constrained complete-link is an ascendant clus-
tering method. It starts by assigning each object to a separate cluster. Then, it
merges at each iteration the two closest clusters until it remains only one cluster con-
taining all data objects. Therefore, the closest clusters are merged earlier, whereas
distant clusters are merged later. Note that the constrained complete-link [65]
computes the distance between two clusters Ki and Kj as the maximum distance
between an object in cluster Ki and another object in cluster Kj. In order to ensure
the must-link entries are merged before the cannot-link entries, Klein et al. [65] set
the distance between entries of each must-link in the proximity matrix to 0, and
the distance between entries of each cannot-link to (maxxi∈X,xj∈XD(xi, xj)+1). As
the distance between must-link entries are the minimum distance and the distance
between cannot-link entries are the maximum distance in the proximity matrix,
must-link entries will be merged �rst while cannot-link entries will be merged last
when applying the complete-link clustering on the updated proximity matrix. Simi-
lar to the AHC clustering, the dendrogram created by the constrained complete-link
can be cut either at the cutting point producing k clusters when k is prede�ned, or
at a prespeci�ed distance, or at the position where the gap between two successive
distances for merging clusters is largest.

The constrained complete-link produces a hierarchical structure of clusters. It
allows the violation of the constraints, but it ensures that cannot-link objects are the
last ones which are merged. In the interactive context where pairwise constraints
are progressively provided by the user, the user constraints of di�erent iterations
can be in contradiction, especially in the case of large image database. For example,
the user gives at iteration i a cannot-link (A,B) where A and B are respectively an
image of a dog and an image of a cat; then at iteration j > i when seeing that there
are many images containing both dogs and cats, he decides to give must-links between
all images containing a dog or a cat, including a must-link (A,B), for specifying a
cluster of domestic animals. In this case, the must-link (A,B) given in iteration j is
in contradiction with the cannot-link (A,B) given in iteration i. And therefore, the
distance matrix cannot be computed because the distance between A and B cannot
be determined. Therefore, the constrained complete-link is not compatible with the
interactive context of large image database.

Constrained Agglomerative Clustering [25] A constrained agglomerative
clustering which uses must-link and cannot-link constraints as supervised infor-
mation is presented in [25]. The transitive closure of the must-link constraints is
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used �rst for resulting in r connected components M1, M2, ..., Mr. For each con-
nected component Mj, each point xi ∈ Mj is connected by must-link with at least
another point xl ∈ Mj. The constrained agglomerative clustering constructs then
an initial clustering consisting of r clusters corresponding to the r connected com-
ponentsM1,...,Mr and a singleton cluster for each point which is not included in any
connected component. Then, it merges at each iteration the two closest �mergeable
clusters�, until there is no more pair of clusters which can be merged without vio-
lating any cannot-link constraint. Note that the term �mergeable clusters" denotes
the clusters that can be merged without violating any cannot-link constraint. We
can see that by grouping all points in a connected component into a single initial
cluster, must-link constraints are not violated. The algorithm of the constrained
agglomerative clustering is as follows:

1. Construct the r connected componentsM1,M2, ...,Mr by using the transitive
closure of the must-link constraints given as prior knowledge by the user.

2. If there are both must-link and cannot-link constraints between any two points
xi, xj then return �No Solution�.

3. Let X1 = X − (∪ri=1Mi). Let kmax = r + |X1|.

4. Construct kmax initial clusters consisting of the r clusters corresponding to r
connected components M1,...,Mr and a singleton cluster for each point in X1.

5. While (there exists a pair of �mergeable clusters�)

(a) Select the two closest �mergeable clusters� Kl and Km.

(b) Merge Kl and Km.

Note that the number of clusters k does not need to be �xed a priori, but we can
cut the dendrogram at any level for having clusters as described for the constrained
complete-link, page 109.

The constrained agglomerative clustering is an hierarchical method organizing
points into an hierarchical structure of clusters. It is a traditional semi-supervised
clustering where supervised information is provided in the form of prior knowledge.
The constrained agglomerative clustering is not compatible with the interactive con-
text of large image database where the user constraints provided in di�erent inter-
active iterations can be in contradiction as this method does not allow the violation
of the constraints.

COP-kmeans [136] The COP-kmeans semi-supervised clustering method is a
variant of the k-means algorithms which uses supervised information in the form
of pairwise constraints between objects. In COP-kmeans, points are assigned to
clusters without violating any constraint. A point xi is assigned to the cluster Kj

corresponding to the closest cluster centre µj, unless a constraint is violated. For
instance, if (xi, xl) is a must-link constraint and xl is already placed in another
cluster K(xl) 6= Kj , then xi cannot be placed in its closest cluster Kj. Or if (xi, xl)
is a cannot-link constraint and xl is already placed in the closest cluster Kj of xi,
then xi cannot be placed in Kj any more. If xi cannot be placed in the nearest
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cluster Kj, we continue attempting to assign xi to the next cluster in the sorted
list of clusters by ascending order of distances with xi until a suitable cluster Kh,
such that xi can be assigned to Kh without violating any constraint, is found. The
clustering fails if no solution respecting the constraints is found. The algorithm of
the COP-kmeans is as follows:

1. Let µ1, µ2, ..., µk be the initial cluster centres randomly chosen from the
objects of the data set.

2. For each point xi ∈ X, assign xi to the cluster corresponding to the closest
centre µj such that no constraint is violated. If no such cluster is found, then
the clustering fails, return NULL.

3. Re-estimate the mean of each cluster Kj using the re-estimation equation
(4.3) of the seeded-kmeans, page 102.

4. Iterate steps (2) and (3) until convergence.

The COP-kmeans is a partitioning method, it does not provide any hierarchical
structure of clusters. As a traditional semi-supervised clustering, supervised in-
formation is provided in the form of prior knowledge. The constraint violation is
not allowed, therefore COP-kmeans is not compatible with the interactive context
of large image database where pairwise constraints provided in di�erent interactive
iterations can be in contradiction.

COP-COBWEB [135] COP-COBWEB [135] is a constrained partitioning ver-
sion of the hierarchical clustering COBWEB [29] which was designed for categorical
attributes (i.e. the values for each data feature are discrete). As COBWEB, it em-
ploys the concept of Category Utility (CU) [37] for evaluating the quality of a par-
tition. Assuming xi = {xi1 , ..., xid} is an object in the data set, and xil (l = 1, ..., d)
can take a discrete value Vlm from the set Vl of the discrete values for the l

th feature,
the Category Utility of a partition K = {K1, ..., Kk} is measured as:

CU(K) =
1

k
((

k∑
j=1

P (Kj)
d∑
l=1

|Vl|∑
m=1

P (xil = Vlm|Kj)
2)−

d∑
l=1

|Vl|∑
m=1

P (xil = Vlm)2) (4.14)

where |Vl| is the cardinality of the set Vl. The term P (Kj) denotes the probability
that an object xi belongs to the cluster Kj, the term P (xil = Vlm) designates the
probability that the lth feature takes on value Vlm , and the term P (xil = Vlm|Kj)
denotes the probability that the lth feature takes the value Vlm given that the object
xi belongs to the cluster Kj.

For each point xi in the data set, COP-COBWEB considers all the ways to
incorporate xi into the existing partition K by considering �ve operators (Must-
link check, New, Add, Merge, Split) presented in the following pseudo code.
Then, the best partition among the partitions created by the �ve previous operators
is kept for xi. It �rst checks the must-link constraints. If there exists a must-link
between xi and another point xl which is already in a cluster Kj of the partition,
the constraint is enforced by adding xi in Kj for creating the new partition Kmust

(step 2(a)). If not, another operator (New, Add orMerge) is applied to determine
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the place of xi. For the operator New, a new singleton cluster K∗ is created for
containing xi (partition Knew, step 2(b)). Cannot-links are checked during the
Add or Merge steps. xi can be added in an existing cluster Kj for creating the
partition Kaddj if no cannot-link is violated (step 2(c)). Similarly, the partition
Kmerge is created by merging the two best clusters for xi if there is no cannot-link
between points of these two clusters (step 2(d)). The split operator, which recurses
the COP-COBWEB on the best host cluster for xi, is applied for creating the new
partition Ksplit (step 2(e)). Finally, the partition with the highest CU, among the
partitions Kmust, Knew, Kaddj , Kmerge and Ksplit, is selected as the new partition
K.

The pseudo code of the COP-COBWEB algorithm is as follows:

COP-COBWEB(data set X, must-link set ML, cannot-link set CL)

1. Let K be the set of clusters, initially K = {} and k = 0.

2. For each point xi ∈ X, consider all ways to incorporate xi:

(a) Must-link check: If there exists some must-link constraints
(xi, xl) ∈ ML such that xl is already in a cluster Kj ∈ K, then
add xi to Kj and skip to (e). Kmust = (K −Kj) ∪ {Kj ∪ {xi}}.

(b) New: Let Knew = K ∪ {K∗} where K∗ = {xi} is a new cluster.

(c) Add: For each cluster Kj ∈ K, create a new partition Kaddj =
(K−Kj)∪{Kj∪{xi}} unless there exist a cannot-link (xi, xl) ∈ CL
where xl ∈ Kj.

(d) Merge: If there exist at least two clusters, let Kmax1 and Kmax2

be the two best hosts for xi from step (c) as determined by the
CU values of their resulting partitions. Merge these two clusters
Kmerge = (K − Kmax1 − Kmax2) ∪ {Kmax1 ∪ Kmax2 ∪ {xi}} unless
there exist a cannot-link (xl, xm) ∈ CL where xl ∈ Kmax1 and
xm ∈ Kmax2.

(e) Split: If there exist at least two clusters, let Kmax be the best host
for xi as determined by the CU values. Let Ksplit = (K −Kmax) ∪
COP − COBWEB(Kmax ∪ {xi},ML,CL).

(f) Let m = argmax
l

CU(Kl) for l ∈ {must, new, addj,merge, split}.

Update K = Km

If m = new, then k = k + 1

else if m = split, then k=the number of clusters in Km.

3. Return K.

The COP-COBWEB is a partitioning method, it does not produce any hierar-
chical structure of clusters. As a traditional semi-supervised clustering, supervised
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information is provided as prior knowledge. As all constraints have to be satis�ed
when using the COP-COBWEB clustering, this method is not compatible to be used
in the interactive context of large image database where pairwise constraints are pro-
gressively provided by the user and the constraints of di�erent interactive iterations
can be in contradiction.

CVQE [24] The Constrained Vector Quantization Error (CVQE) algorithm is a
semi-supervised clustering technique which penalizes the pairwise constraint viola-
tion using distance. The objective function to be minimized is as follows:

JobjCVQE =
1

2

∑
xi∈X

D(xi, µ(xi))
2

+
1

2

∑
(xi,xj)∈ML,K(xi)6=K(xj)

D(µ(xi), µ(xj))
2

+
1

2

∑
(xi,xj)∈CL,K(xi)=K(xj)

D(µ(xi), µh(µ(xi)))
2 (4.15)

where h(µ(xi)) refers to the label of the cluster whose centre is the nearest to
the centre of the cluster µ(xi). The �rst term in Equation (4.15) is the distance
between points and the corresponding cluster centres, the second term represents the
penalty of must-link violation, while the third term represents the penalty of cannot-
link violation. The penalty for violating a must-link constraint (xi, xj) ∈ ML is
the distance between the two corresponding cluster centres µ(xi) and µ(xj). The
penalty for violating a cannot-link constraint (xi, xj) ∈ CL is the distance between
the cluster centre µ(xi) to which these two points are assigned and the nearest
cluster centre µh(µ(xi)) to which the point xi or xj could be moved in order to satisfy
the cannot-link constraint (xi, xj) ∈ CL.

The CVQE algorithm repeats until convergence the re-assignment step of objects
to clusters and the re-estimation step of cluster centres.

• The re-assignment step assigns objects to clusters so as to minimize the ob-
jective function in Equation (4.15) as follows:

◦ For each object xi which is not part of any constraint, we assign xi to
the closest cluster Kj∗ :

j∗ = argmin
j

D(xi, µj)
2 (4.16)

◦ For each must-link constraint (xi, xj) ∈ ML, all possible combinations
of cluster assignments for the two objects xi and xj are considered, and
xi and xj are assigned to respectively the clusters µl∗ and µm∗ which
minimize the increase of the objective function:

l∗,m∗ = argmin
l,m

D(xi, µl)
2 +D(xj, µm)2 + I(l 6= m) ∗D(µl, µm)2 (4.17)

where I() is the indicator function (I(true) = 1, I(false) = 0).
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◦ For each cannot-link constraint (xi, xj) ∈ CL, this method veri�es all
possible combinations of cluster assignments for the two objects xi and
xj, and assigns xi and xj to respectively the clusters µl∗ and µm∗ which
minimize the increase of the objective function:

l∗,m∗ = argmin
l,m

D(xi, µl)
2+D(xj, µm)2+I(l = m)∗D(µl, µh(µl))

2 (4.18)

where I() is the indicator function.

• The re-estimation step updates the cluster centres so as to minimize the ob-
jective function. Each cluster centre µj is updated as in Equation (4.19).

µj =

∑
xi∈Kj [xi +

∑
(xi,xl)∈ML,K(xi) 6=K(xl)

µ(xl) +
∑

(xi,xl)∈CL,K(xi)=K(xl)
µh(µ(xi))]

|Kj|+
∑

xi∈Kj ,(xi,xl)∈ML,K(xi)6=K(xl)
1 +

∑
xi∈Kj ,(xi,xl)∈CL,K(xi)=K(xl)

1

(4.19)
The CVQE algorithm is a partitioning method, it does not produce any hierar-

chical structure of clusters. By allowing the violation of the constraints with the
corresponding penalty costs, this method is compatible with the interactive context
where constraints of di�erent iterations can be in contradiction. However, for each
pairwise constraint (xi, xj), we have to verify k× k possible combinations of cluster
assignments for the two objects xi and xj. Therefore, this method is not compatible
for large databases, especially when the number of clusters is high.

Semi-supervised kernel-kmeans [69] Similar to the CVQE algorithm, the
semi-supervised kernel-kmeans (SS-Kernel-Kmeans) [69] allows the violation of the
constraints with a violation cost. But instead of calculating the objective function in
the original feature space, the SS-Kernel-Kmeans computes the objective function
in a transformed space, by using a kernel function mapping φ as follows:

JobjSS−Kernel−Kmeans =
∑
xi∈X

||φ(xi)− φ(K(xi))||2

−
∑

(xi,xj)∈ML,K(xi)=K(xj)

wij

+
∑

(xi,xj)∈CL,K(xi)=K(xj)

wij (4.20)

where φ(xi) is the kernel function mapping, K(xi) refers to the cluster containing xi,
wij and wij are respectively the penalty costs for violating a must-link and a cannot-

link constraint between xi and xj, and φ(K(xi)) is the centre in the transformed
space of the cluster containing xi:

φ(K(xi)) =

∑
xj∈K(xi)

φ(xj)

|K(xi)|
(4.21)

In the second term of Equation (4.20), instead of adding a penalty cost for a
must-link violation if the two points are in di�erent clusters, Kulis et al. [69] give
a reward for a must-link constraint satisfaction if the two points are in the same
cluster, by subtracting the corresponding penalty term from the objective function.



4.3. Semi-supervised clustering methods 115

We can expand the distance computation ||φ(xi)− φ(K(xi))||2 as follows:

φ(xi).φ(xi)−
2
∑

xj∈K(xi)
φ(xi).φ(xj)

|K(xi)|
+

∑
xj ,xl∈K(xi)

φ(xj).φ(xl)

|K(xi)|2
(4.22)

We can see that if the dot product φ(xi).φ(xj) is known, the distance between
points in the transformed space can be computed without knowing the mapping
of xi and xj in the transformed space. Therefore, instead of explicitly de�ning a
mapping function, only a kernel matrix K = {Kij}, where Kij = φ(xi).φ(xj), is
usually needed (the same trick is used like for kernel SVMs for instance).

The semi-supervised kernel-kmeans is a partitioning method, it produces a ��at�
organization of clusters. Supervised information is provided in the form of prior
knowledge. It allows the violation of the constraints, and therefore is compatible to
the interactive context where pairwise constraints of di�erent interactive iterations
can be in contradiction. However, it is di�cult to tune the parameters of the kernel
matrix, while the selection of these parameters in�uences much on the clustering
results.

HMRF-kmeans [10] The constraint violation is not strictly prohibited, but it is
allowed with a violation cost (penalty) in Hidden Markov Random Fields Kmeans
(HMRF-kmeans). The Hidden Markov Random Field (HMRF) probabilistic frame-
work for semi-supervised pairwise constrained clustering is presented in [10]. In this
framework, the set of given data points X corresponds to the set of observable vari-
ables while the unobserved cluster labels of the points are hidden variables for the
HMRF. Each hidden random variable representing the cluster label of xi ∈ X is
associated with a set of neighbours Ni containing the cluster labels of the points
to which xi is must-linked or cannot-linked. And the value of the hidden variable
representing the cluster label of xi, given the set of constraints, depends only on
the cluster labels of the observable variables xj's that are must-link or cannot-link
to xi.

HMRF-kmeans aims at partitioning the data set into k clusters so as to minimize
the sum of distances between the points and the corresponding cluster centres,
while minimizing the total cost of constraint violation. The objective function to
be minimized in the semi-supervised HMRF-kmeans is as follows:

JobjHMRF−Kmeans =
∑
xi∈X

D(xi, µ(xi))

+
∑

(xi,xj)∈ML,K(xi)6=K(xj)

wijfML(xi, xj)

+
∑

(xi,xj)∈CL,K(xi)=K(xj)

wijfCL(xi, xj) (4.23)

where:

• D(): the distance measure, e.g. the Euclidean distance.

• fML(xi, xj): the must-link penalty function measuring the penalty cost for
violating the must-link constraint between xi and xj.
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• fCL(xi, xj): the cannot-link penalty function measuring the penalty cost for
violating the cannot-link constraint between xi and xj.

• wij: the weight corresponding to the must-link constraint (xi, xj). In general,
wij's are constant (wij = w) for all must-link constraints.

• wij: the weight corresponding to the cannot-link constraint (xi, xj). In gen-
eral, wij's are constant (wij = w) for all cannot-link constraints.

We can see that, the �rst term of the objective function in Equation (4.23)
measures the sum of distances between the points and the corresponding cluster
centres, the second term measures the total cost of must-link constraint violation
while the third term measures the total cost of cannot-link constraint violation.
Note that the violation cost of a pairwise constraint may be either a constant or a
function of the distance between the two points speci�ed in the pairwise constraint
as follows:

fML(xi, xj) = D(xi, xj) (4.24)

fCL(xi, xj) = Dmax −D(xi, xj) (4.25)

where Dmax is the maximum value of the distance measure D(., .) for the data set.
We can see that, to ensure that the most �di�cult� constraints are respected, higher
penalties are assigned to violations of must-link constraints between points which
are distant and to violations of cannot-link constraints between points which are
close to each other. The term Dmax in Equation (4.25) ensures that the cannot-
link penalty remains non-negative. However, it can make the cannot-link penalty
term sensitive to extreme outliers, but all cannot-link are processed in the same
way, so even in the presence of extreme outliers, there would be no cannot-link
constraint favoured compared to the others. The objective function in Equation
(4.23) is also sensitive to outliers. We could reduce this sensitivity by using an
outlier �ltering technique or by replacing the term Dmax by the maximum distance
between two clusters and specifying a lower bound for the term Dmax −D(xi, xj).
These sensitivity reduction techniques are aimed in our future works.

The algorithm of the HMRF-kmeans is as follows:

1. Initialize the k cluster centres {µj}kj=1 based on the set of pairwise constraints
as presented in the following paragraph.

2. Repeat until convergence:

(a) E-step: Given the cluster centres {µj}kj=1, re-assign the points {xi}Ni=1 to
clusters {Kj}kj=1 so as to minimize the objective function JobjHMRF−Kmeans

(Equation (4.23)).

(b) M-step (A): Given the cluster assignments {K(xi)}Ni=1, re-estimate
the cluster centres {µj}kj=1 so as to minimize the objective function
JobjHMRF−Kmeans .

(c) M-step (B): Re-estimate the distance measure D(., .) in order to reduce
the objective function JobjHMRF−Kmeans .
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HMRF-kmeans �rst initializes the k cluster centres based on the set of must-link
constraints as follows. The transitive closure of the must-link constraints is used
�rst for resulting in λ connected components (further referred to as neighbourhoods)
so that points in a neighbourhood are connected by must-link constraints. Then, k
cluster centres are initialized as follows:

• If λ = k, then k cluster centres are initialized as the λ = k centroids of all the
neighbourhoods.

• If λ < k, then λ clusters centres are initialized as the centroids of the λ neigh-
bourhoods, and the remaining k − λ cluster centres are randomly initialized.

• If λ > k, k neighbourhoods are selected for initializing k cluster centres as
follows. The largest neighbourhood (in number of points) is chosen as the
�rst selected component. Then, the neighbourhood with the highest aver-
age weighted distance from the selected set is chosen, until having k selected
neighbourhoods. The weighted distance between two neighbourhoods corre-
sponds to the distance between the centroids of these two neighbourhoods
multiplied by the weights of the two components, where the weight of each
neighbourhood is proportional to the number of points included in this com-
ponent.

After the initialization step, an iterative relocation approach is applied to minimize
the objective function. The iterative algorithm represents the repetition of the E-
step, M-step(A) and M-step(B). The E-step (or re-assignment step) re-assigns each
data point to the cluster which minimizes its contribution to the objective func-
tion JobjHMRF−Kmeans . In the M-step(A), given the cluster assignments {K(xi)}Ni=1

of the points {xi}Ni=1, the cluster centres {µj}kj=1 are re-estimated so as to minimize
the objective function for the current assignment. In the M-step(B), the distance
measure D(., .) is re-estimated to reduce the objective function JobjHMRF−Kmeans . In
general, the M-step(B) minimizes the objective function by modifying the parame-
ters (the weights) of the distance measure. Therefore, this step is only needed when
a parameterized distance measure is used for the clustering. The details of these
steps are described in [10].

The HMRF-kmeans is a partitioning method, it does not produce any hierarchi-
cal structure of clusters. Supervised information is provided in the form of prior
knowledge. By allowing the constraint violation with a corresponding penalty cost,
the HMRF-kmeans can be used in the interactive context where pairwise constraints
provided by the user in di�erent interactive iterations can be in contradiction.

4.3.3 Discussion

Table 4.1 resumes some characteristics (supervised information used, constraint vio-
lation tolerated or not, adaptability to the interactive context, hierarchical structure
produced or not) of di�erent semi-supervised clustering methods presented in this
chapter. We can see that most of them use supervised information in the form of
prior knowledge, whereas only few methods use supervised information in the form
of feedback in the interactive context to guide the clustering process. Moreover,
most of them (except the clustering based on relevance feedback, the constrained
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complete-link and the constrained agglomerative clustering) do not produce any
hierarchical structure of clusters.

Among semi-supervised clustering methods which use class labels of some ob-
jects as supervised information, the seeded-kmeans and the constrained-kmeans are
traditional methods (using prior knowledge) while the others are interactive meth-
ods (using user feedback on the clustering results). The constrained-kmeans method
does not allow any constraint violation, as the data points of the seed set are main-
tained in their initial clusters. The seeded-kmeans allows constraint violation, but
it is still very basic in the way of handling prior knowledge, as supervised informa-
tion is used only for initializing the cluster centres. Both constrained-kmeans and
seeded-kmeans can be used in the interactive context, but the user should have prior
knowledge about the data set in order to provide the class labels for the objects.

Among the di�erent interactive semi-supervised clustering methods with class la-
bels, the interactive cluster-level semi-supervised clustering uses assignment feed-
back and cluster description feedback, while the others use relevance feedback. For
incorporating the feedback in the clustering phase, the cluster-level semi-supervised
clustering incorporates, in the objective function, a penalty cost for the violation
of the constraint corresponding to each feedback. The objective function is then
minimized during the clustering process, but the satisfactions of the constraints are
not ensured. Concerning the methods using relevance feedback, the constraint vio-
lation is allowed. The clustering based on relevance feedback proposed by Kinoshita
et al. [64] may produce a ��at� or hierarchical structure of clusters based on the
used clustering method. However, by updating, in each iteration, all the feature
vectors based on user feedback, it may not compatible for performing with large
database. Moreover, it uses only relevant objects. Clustering based on the Roc-
chio formula [113] is more compatible for large databases, by updating only cluster
centroids in each iteration, and it uses both relevant and non-relevant objects for
guiding the clustering. However, for both clusterings using relevance feedback, the
relevance feedback given in previous interactive iterations may not be compatible
to be used in the current iteration, as the cluster centres change between di�erent
iterations.

All the semi-supervised clustering methods which use supervised information
in the form of pairwise constraints between objects presented in this chapter are
traditional semi-supervised methods, in which supervised information is provided a
priori at the beginning of the clustering. But some methods can be compatible with
an interactive context, which means that they can be modi�ed and adapted for an
interactive usage. Semi-supervised methods using pairwise constraints allow con-
straint violation or not. Constrained agglomerative clustering, COP-kmeans and
COP-COBWEB do not allow constraint violation and therefore are not compatible
with the interactive context of large image database where pairwise constraints are
provided progressively by the user and the user constraints of di�erent iterations
can be in contradiction. The constrained complete-link method allows the violation
of the cannot-link constraints, but it ensures that cannot-link objects are the last
ones which are merged. Despite this, it is also not compatible with the interactive
context of large image database as when the user constraints of di�erent iterations
are contradictory, the distance matrix could not be constructed. CVQE, HMRF-
kmeans and semi-supervised kernel-kmeans assign a corresponding penalty cost for
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the violation of each constraint and realize the clustering by minimizing the objec-
tive function including the sum of distances between objects and the corresponding
cluster centroids as well as the penalty of constraint violation. By allowing the con-
straint violation, these methods are compatible with the interactive context where
constraints of di�erent iterations may be contradictory. However, CVQE is not
compatible for large databases, especially when the number of clusters k is high, as
we have to verify, for each pairwise constraint (xi, xj), k×k possible combinations of
cluster assignments for the two objects xi and xj. Concerning the semi-supervised
kernel kmeans, it is di�cult to tune the parameters of the kernel matrix which
in�uence much on the clustering results.
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4.4 Experiments

In this section, we present some experimental results on the Wang image database
(see page 84) of some semi-supervised clustering methods (traditional or interactive
methods) implemented in the interactive context.

Among di�erent semi-supervised clustering methods presented in the above sec-
tion, we choose to implement the interactive cluster-level semi-supervised clustering
method [26], the algorithm we proposed based on the Rocchio formula [113] and the
HMRF-kmeans (Hidden Markov Random Fields Kmeans) method [10]. The cluster-
level semi-supervised clustering method [26] is one of the semi-supervised clustering
methods which use class labels between objects as supervised information. It is in-
teractive and the feedback information is not only used for initializing the cluster
centres as in the seeded-kmeans method, but also used during the re-clustering
phase by including, in the objective function, the corresponding penalty costs for
the violation of the constraints. Note that there are two kinds of feedback (assign-
ment feedback and cluster description feedback) used for the interactive cluster-level
semi-supervised clustering. For the cluster description feedback, the user has to pro-
vide the new feature vector for some cluster centres. It is possible in the case of
document clustering where the user could assign more important weights for some
text words which he thinks they better describe the cluster. But cluster description
feedback is not compatible in the case of image clustering as it is di�cult for the
user to understand the image feature descriptors which are low-level features. The
algorithm we proposed based on the Rocchio formula [113] uses relevance feedback
instead of assignment feedback as for the cluster-level semi-supervised clustering
method. It is more compatible for large database than the clustering based on
relevance feedback proposed by Kinoshita et al. [64] and it uses both relevant and
non-relevant feedback for updating the cluster centroids. The HMRF-kmeans [10]
is the most popular method among di�erent semi-supervised clustering methods
using pairwise constraints as supervised information. Moreover, it is also compat-
ible with the interactive context where constraints of di�erent iterations may be
contradictory by allowing the constraint violations with the corresponding penalty
costs. Therefore, the traditional semi-supervised clustering HMRF-kmeans is also
applied in our experiments where supervised information is provided as feedback
in di�erent interactive iterations. Note that the M-step (B) of the HMRF-kmeans
(page 115) is only needed when a parameterized distance measure is used for the
clustering. In our system, we use the Euclidean distance, therefore the M-step (B)
is not implemented.

In our interactive context, the initial clustering is realized without any prior
knowledge. At each interactive iteration, the user views the clustering results and
provides feedback to the system. Then, the semi-supervised clustering is applied to
re-cluster the whole dataset using the feedback provided by the user. The interactive
process is repeated until the clustering result satis�es the user.

4.4.1 Interactive interface

In order to allow the user to view the clustering results and to provide feedback
to the system, we implement an interactive interface as shown in Figure 4.1. The
rectangle at the bottom right corner of Figure 4.1 is the principal plane representing
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all clusters by their prototype images (one prototype image for each cluster). The
prototype image of each cluster is the most representative image of that cluster
chosen as presented in the next paragraph.

Figure 4.1 � 2D interactive interface. The rectangle at the bottom right corner
represents the principal plane consisting of the two �rst principal axes (obtained by
PCA) of the prototype images of all clusters. Each circle represents the details of a
given cluster. If needed, the user can zoom in a speci�c cluster (see the �elephant�
cluster in the left-hand part of the interface).

In our model, we use the internal measure Silhouette Width (SW) [115] to
estimate the quality of each image in a cluster. The higher the SW value of an image
in a cluster, the more representative this image is for the cluster. The prototype
image of a cluster is thus the image with the highest SW value in the cluster.
Any other internal measure could be used instead but here we choose the SW
measure because, based on preliminary experiments, the SW measure was the most
correlated with external measures and therefore to the user's wishes. The position
of the prototype image of each cluster in the principal plane represents the position
of the corresponding cluster centre. It means that, if two cluster centres are close
(respectively distant) in the n-dimensional feature space, their prototype images are
close (respectively distant) in the 2D principal plane.

For representing the cluster centres (which are n-dimensional feature vectors) in
the 2D plane for user visualization, we use Principal Component Analysis (PCA)
[101]; the principal plane consists of the two principal axes associated with the
highest eigenvalues. The importance of an axis is represented by its inertia (the
sum of the squared elements of this axe [2]) or by the percentage of its inertia in the
total inertia of all axes. In general, if the two principal axes explain (cumulatively)
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greater or equal to 80% of the total inertia, the PCA approach could lead to a nice
2D-representation of the prototype images. In our case, the accumulated inertia
explained by the two �rst principal axes is about 65% for the Wang databases
(note that the accumulated inertia does not depend on the clustering algorithm,
but on the feature vectors of the images in the database). The quality of the 2D-
representation is therefore acceptable to give to the user a rough idea of the pairwise
distances between clusters.

By clicking on a prototype image in the principal plane, the user can view the
corresponding cluster. In Figure 4.1, each cluster selected by the user is represented
by a circle:

• The prototype image of this cluster is located at the centre of the circle.

• The 10 most representative images (images with the highest SW values), which
have not yet received feedback from the user in the previous iterations, are
located in the �rst circle of images around the prototype image, near the
centre.

• The 10 least representative images (images with the smallest SW values),
which have not received feedback from the user in the previous iterations, are
located in the second circle of images around the prototype image, close to
the cluster border.

By showing, for each iteration, the images which have not received user feedback
in previous iterations, we wish to obtain feedback for di�erent images. Note that
the largest circle in Figure 4.1 represents the last cluster selected by the user.
Therefore, if needed, the user can zoom in a speci�c cluster by a simple click on the
corresponding cluster prototype image.

The user can specify positive feedback and negative feedback (images in Figure
4.1 with blue and red borders respectively) for each cluster. The user can also change
the cluster assignment of a given image by dragging and dropping the image from
the original cluster to another cluster.

4.4.2 Experiment protocol

In order to analyze the performance of the selected semi-supervised clustering meth-
ods in the interactive context, we use the Wang image database which contains 1000
images divided into 10 classes. Note that in our experiments, we use the same num-
ber of clusters as the number of classes in the ground truth. As there are only 10
classes in the Wang image database, all the cluster prototype images can be shown
to the user on the principal plane.

The external measures compare the clustering results with the ground truth,
thus they are compatible for estimating the quality of the interactive clustering
involving user interaction. Therefore, in order to evaluate the clustering results,
we use for these experiments only external measures (V-measure [114], Rand Index
[109] and Fowlkes-Mallows Index [32]). The greater the values of these measures
are, the better the results (compared to the ground-truth).

Concerning feature descriptors, we use the local descriptor rgSIFT [130] which
gives the best results for the experiments in Chapter 3. The "Bag of words" ap-
proach [121] is used. The size 200 of the visual word dictionary, which determines
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the dimension of the feature vector of each image, is chosen because it gives a good
trade-o� between the size of the feature vector and the performance (see Section
3.5).

In order to automatically undertake the interactive tests, we implement a soft-
ware agent, later referred to as "user agent" that simulates the behaviour of the
human user when interacting with the system (assuming that the agent knows all
the ground truth, i.e. the class label for each image). At each interactive iteration,
clustering results are returned to the user agent by the system; the agent simulates
the behaviour of the user giving feedback to the system. For simulating the user
behaviour, we suggest some rules:

• At each interactive iteration, the user agent interacts with a �xed number of
c clusters.

• The user agent uses two strategies for choosing clusters for interacting in each
iteration: (1) randomly choose c clusters, or (2) iteratively choose pairs of
closest clusters until there are c clusters. The closest clusters are chosen by
the user agent in the second strategy because when there are di�erent clusters
which are close together, the human user may want to separate these clusters
or at least view them to check if some of their images should be moved from
one cluster to another.

• The user agent determines the image class (in the ground truth) corresponding
to each cluster by the most represented class among the 21 presented images
(in the interactive interface) of the cluster. The number of images of this
class in the cluster must be greater than a threshold MinImages. If this is
not the case, this cluster can be considered as a noise cluster, but the user
can still re-assign some images from this cluster to another cluster. For the
experiments in this chapter, MinImages = 5.

• When several clusters (among chosen clusters) corresponding to a same class,
the cluster in which the images of this class are the most numerous (among
the 21 presented images of the cluster) is chosen as the principal cluster of
this class. The classes of the other clusters are rede�ned as usual, but without
taking into account the images from this class.

• For simulating the human user's action of giving positive and negative feed-
back, in each chosen cluster, all of the 21 displayed images where the result of
the algorithm corresponds to the ground truth are labelled as positive sam-
ples of this cluster, while the others are negative samples of this cluster. All
negative samples are moved to the cluster (among the selected clusters) corre-
sponding to their class in the ground truth. This corresponds to the drag and
drop action of the human user for changing the cluster assignment of images.

As the chosen semi-supervised clustering algorithms (the interactive cluster-level
semi-supervised clustering method [26], the clustering based on the Rocchio formula
[113] and the HMRF-kmeans [10]) use di�erent kinds of supervised information
for re-clustering, we have to deduce, for each method, the corresponding kind of
supervised information based on the user feedback in each interactive iteration.
Note that in each interactive iteration, the user (or user agent) can specify positive
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and negative feedback for each cluster, he can also change the cluster assignment
of some images. For the experiments in this chapter, we use some simple strategies
for deducing the corresponding supervised information from the user feedback as
follows:

• In our experiments, the interactive cluster-level semi-supervised clustering
method uses supervised information in the form of assignment feedback (as-
signment of images to clusters). Therefore, in each interactive iteration, for
each positive image of a cluster, we create an assignment feedback of this pos-
itive image to this cluster. Moreover, when the user moves an image from the
original cluster A to another cluster B, an assignment feedback of this image
to the cluster B is created. The feedback of di�erent interactive iterations is
accumulated for being used in the current iteration.

• The clustering based on the Rocchio formula uses supervised information in
the form of relevant and non-relevant feedback. Therefore, in each interac-
tive iteration, all positive and negative feedback given by the user is used as
relevant and non-relevant feedback. Note that only the feedback of the cur-
rent iteration is used for the re-clustering phase, the feedback of the previous
iterations being ignored because the cluster centres are changed after each
iteration.

• The HMRF-kmeans method uses pairwise constraints (must-link and cannot-
link) between images as supervised information. Note that when the user
changes the cluster assignment of an image by moving it from the original
cluster A to another cluster B, the image is considered as negative feedback
for cluster A and positive feedback for cluster B. Therefore, in each inter-
active iteration, we obtain a positive image list and a negative image list for
each cluster with which the user has interacted. For the experiments in this
chapter, in each iteration, must-link constraints are created between each pair
of positive images of each cluster, and cannot-link constraints are created be-
tween each pair of a positive image and a negative image of each cluster. The
feedback of di�erent interactive iterations is accumulated for being used in
the current iteration.

4.4.3 Scenarios

For evaluating the performance of chosen semi-supervised clustering method in
the interactive context, we propose three test scenarios corresponding to di�erent
strategies used by the user agent when choosing clusters for interacting in each
interactive iteration. Note that c speci�es the number of clusters which are chosen
for interacting in each iteration. The three scenarios are as follows:

• Scenario 1: c = 5 closest clusters are chosen.

• Scenario 2: c = 5 clusters are randomly chosen.

• Scenario 3: c = 10, all cluster are chosen (as there are 10 classes of images
in the Wang image database).
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Figure 4.2 � Comparison of di�erent semi-supervised clustering methods (cluster-
level semi-supervised clustering, HMRF-kmeans, Rocchio formula based clustering)
in the interactive context using the external measure V-measure.

4.4.4 Results and discussion

Figures 4.2, 4.3 and 4.4 compare the results during 50 interactive iterations of
the three chosen semi-supervised clustering methods (cluster-level semi-supervised
clustering, Rocchio formula based clustering, HMRF-kmeans) on the Wang image
database by using, respectively, the V-measure, Rand Index and Fowlkes-Mallows
Index external measures. The vertical axis speci�es the values of an external mea-
sure (V-measure, Rand Index or Fowlkes-Mallows Index) corresponding to each
�gure, while the horizontal axis speci�es the number of iterations. The results at
iteration 0 are the results of the initial unsupervised clustering (k-means) with-
out any supervised information. The results at iteration i (i > 0) are the results
of the corresponding semi-supervised clustering after i interactive iterations using
supervised information in the form of feedback provided by the user agent. The
experiments shown in these �gures are performed according to the three scenar-
ios proposed in section 4.4.3. As in the second scenario, 5 among 10 clusters are
randomly chosen for being interacted by the user agent, we realize this scenario 10
times for each semi-supervised clustering model. The curves corresponding to the
scenario 2 shown in Figures 4.2, 4.3 and 4.4 represent the mean values of respec-
tively the V-measure, the Rand Index and the Fowlkes-Mallows Index over these
10 executions at each iteration. The corresponding standard deviations from the
mean values of the 10 executions are also presented by vertical lines in Figures 4.2,
4.3 and 4.4. The average standard deviation after 50 iterations corresponding to
each semi-supervised clustering model is presented in Table 4.2. And the corre-
sponding execution time for these experiments is presented in Table 4.3 (note that
for the scenario 2, the average execution time of the 10 executions are shown). The
experiments are executed using a normal PC with 2GB of RAM.

Note that in our system, since 21 images are displayed for each selected cluster,



4.4. Experiments 127

Figure 4.3 � Comparison of di�erent semi-supervised clustering methods (cluster-
level semi-supervised clustering, HMRF-kmeans, Rocchio formula based clustering)
in the interactive context using the external measure Rand Index.

Figure 4.4 � Comparison of di�erent semi-supervised clustering methods (cluster-
level semi-supervised clustering, HMRF-kmeans, Rocchio formula based clustering)
in the interactive context using the external measure Fowlkes-Mallows Index.
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Table 4.2 � Average standard deviation of 10 executions of the scenario 2 after 50
interactive iterations corresponding to the experiments of di�erent semi-supervised
clustering method on the Wang image database shown in Figures 4.2, 4.3 and 4.4.

Average standard deviation (Scenario 2)
V-measure Rand Index Fowlkes-Mallows Index

Cluster-level semi-
supervised clustering

0.0232 0.0122 0.0283

HMRF-kmeans 0.049 0.0163 0.0623
Rocchio formula based
clustering

0.0251 0.0381 0.0191

Table 4.3 � Processing time after 50 interactive iterations of the experiments of
di�erent semi-supervised clustering methods on the Wang image database shown in
Figures 4.2, 4.3 and 4.4.

Wang database
Scenario 1 Scenario 2 Scenario 3

Cluster-level semi-supervised clustering 39h55' 137h03' 165h04'
HMRF-kmeans 18' 12'35" 23'
Rocchio formula based clustering 9'9" 7'24" 10'30"

the maximum number of user clicks in each interactive iteration for interacting with
5 clusters (scenarios 1 and 2) or 10 clusters (scenario 3) are respectively 105 or 210.
These upper bounds do not depend on the clustering methods, and in practice the
number of clicks that the human user has to provided is far lower. In our experi-
ments, with each selected cluster, the user agent gives all possible feedback (choose
all possible positive and negative images of each selected cluster, move all possible
negative images to the right cluster (among the c selected clusters)). Therefore, for
each scenario, the numbers of user feedback (or user clicks) are comparable between
di�erent iterations and between di�erent semi-supervised clustering methods.

We can see that the clustering comparison results evaluated by di�erent external
measures (V-measure, Rand Index and Fowlkes-Mallows Index) are similar (beware
of the scale of the vertical axis which is not the same from one plot to another). The
results change, in general, after each interactive iteration, as the system re-clusters
the dataset by considering supervised information deduced from the new feedback
provided by the user agent when interacting with the system. In most cases, the
clustering results converge after some interactive iterations. This may be due to the
fact that no new knowledge is provided to the system, as the supervised information
deduced from the feedback of the current iteration is already deduced from the
feedback of previous iterations. Moreover, we can easily see that the clustering
results are better and converge more quickly when the number of chosen clusters
(and therefore the number of user feedback) in each interactive iteration is higher
(scenario 3 gives better results and converges more quickly than scenarios 1 and 2).
In addition, scenario 2, in which clusters are randomly chosen for interacting, gives
in general better results than scenario 1, in which the closest clusters are chosen.
In fact, when selecting the closest clusters, there may be only a few clusters that



4.4. Experiments 129

always receive user feedback; thus the supervised information is less �global� than
when all clusters could receive user feedback (when we randomly select the clusters).

Regarding the comparison of di�erent interactive semi-supervised clustering
models, we can see that:

• The semi-supervised clustering method based on the Rocchio formula gives
the worst results. The clustering results are in general not improved when
having supervised information in the form of feedback provided by the user
agent during di�erent interactive iterations. And a lot of oscillations exist
between di�erent iterations. However, its processing time is low. This may
be due to the fact that the Rocchio formula based clustering method uses
supervised information only for updating the cluster centroids which are used
as initial cluster centroids for re-clustering in the next interactive iteration.
Therefore, supervised information does not have much in�uence on guiding
the re-clustering phase and the clustering results cannot be improved.

• The interactive cluster-level semi-supervised clustering model has better per-
formance than the Rocchio formula based clustering. The clustering results
are improved after each interactive iteration and there is no oscillation. This
can be explained by the fact that, supervised information has much more in�u-
ence on the re-clustering phase of the cluster-level semi-supervised clustering
model. Indeed, for the cluster-level semi-supervised clustering, supervised
information guides the cluster prototype update step and the re-assignment
step of points to clusters via the constraint violation penalty cost included
in the objective function. However, the processing time of the cluster-level
semi-supervised clustering model is huge. Indeed, for calculating the penalty
costs of violating the constraints, the system has to �nd the best mapping
between the set of the current cluster centroids and the set of the cluster
centroids speci�ed in each assignment feedback. Each time the cluster cen-
troids are updated, these mappings should be re-computed. As the number
of feedback accumulated during di�erent interactive iterations is high and the
cluster centroids change after each cluster update step, the processing time
for calculating the mappings and therefore the processing time of the method
is very high. Due to its high processing time, the cluster-level semi-supervised
clustering is not compatible to be used in an interactive context.

• The semi-supervised HMRF-kmeans method gives better results than both the
cluster-level semi-supervised clustering model and the Rocchio formula based
clustering model. The clustering results of the HMRF-kmeans are much more
improved after each interactive iteration and no oscillation occurs. In fact,
with the same number of user clicks in each interactive iteration, the num-
ber of pairwise constraints created between pairs of positive/negative images
which are used by the HMRF-kmeans is normally greater than the cluster
assignment constraints which are used by the cluster-level semi-supervised
clustering. And therefore, the same number of user clicks has more in�u-
ence on the re-clustering phase of the HMRF-kmeans clustering than on the
re-clustering phase of the cluster-level semi-supervised clustering. The clus-
tering results of the HMRF-kmeans is thus better. Regarding the processing
time, the HMRF-kmeans runs a little slower than the Rocchio formula based
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clustering method, but much faster than the cluster-level semi-supervised clus-
tering model. According to the processing time presented in Table 4.3, the
HMRF-kmeans clustering is still compatible to be used in the interactive con-
text (especially considering that it converges in 15-20 iterations whereas the
computational times in Table 4.3 are given after 50 iterations).

Some preliminary experiments on the databases of larger size also give similar
results. We can conclude, from this analysis, that among di�erent experimented
semi-supervised clustering methods, the HMRF-kmeans is the best method for be-
ing used in the interactive context, as it gives good performance in a reasonable
processing time.

4.5 Discussion

This chapter presents a brief state of the art of di�erent semi-supervised clustering
methods which can help to reduce the �semantic gap� between high-level semantic
concepts expressed by the user and the low-level features extracted from the images.
Based on the kind of supervised information used for guiding the clustering process
(see Section 4.2), we divide semi-supervised clustering methods into semi-supervised
clustering with class labels (see Section 4.3.1) and semi-supervised clustering with
pairwise constraints (see Section 4.3.2). Each kind of semi-supervised clustering
method can be divided into traditional methods, which use supervised information
in the form of prior knowledge, and interactive methods, which use supervised
information in the form of feedback. It has to be noted that to the best of our
knowledge, there is no interactive method based on pairwise constraints. We also
analyze the possibility to use these methods in an interactive context where the
user is involved during each interactive iteration for providing feedback.

According to the analysis in this chapter, we choose to compare experimentally
the interactive cluster-level semi-supervised clustering method [26], the clustering
based on the Rocchio formula [113] and the HMRF-kmeans method [10] in Section
4.4. In order to automatically undertake the interactive experiments and avoid the
subjective dependence of the experimental results on a human user, a software agent
which simulates the behaviour of a human user is used for providing feedback in each
interactive iteration using ground truth. The experimental results of these methods
after 50 interactive iterations show that: the Rocchio formula based clustering does
not help to improve the clustering result, the cluster-level semi-supervised clustering
improves the clustering results after each interactive iteration but its processing
time is huge, while the HMRF-kmeans method gives the best result in a reasonable
processing time. Moreover, with the same number of user clicks in each interactive
iteration, the number of pairwise constraints created between pairs of images, which
are used by the HMRF-kmeans, is normally greater than the number of cluster
assignment constraints or relevance feedback, which are used respectively by the
cluster-level semi-supervised clustering and the Rocchio formula based clustering.
Thus, the same number of user clicks has more in�uence on the re-clustering phase
of the HMRF-kmeans than on the re-clustering phase of the cluster-level semi-
supervised clustering and the Rocchio formula based clustering. Therefore, the
HMRF-kmeans is the most suitable to be used in our interactive context. However,
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it is not based on a hierarchical method. Moreover, the pairwise constraints used
for the HMRF-kmeans are between images. If similar images are grouped together
and pairwise constraints are given between groups of images without reducing the
supervised information quality, we could reduce the number of constraints, and
therefore reduce the processing time, without decreasing the performance.

In the next chapter, we develop a new interactive semi-supervised clustering
model in which the BIRCH unsupervised clustering method is used as initial clus-
tering and a new semi-supervised clustering using pairwise constraints is used for
re-clustering the data set in each interactive iteration. Instead of using pairwise
constraints between images, the new semi-supervised clustering uses pairwise con-
straints between the leaf entries (CF entries) of the BIRCH tree. Note that each CF
entry of the BIRCH tree represents a group of similar images. The integration of the
pairwise constraints in the re-clustering of the BIRCH leaf entries is inspired from
the HMRF-kmeans. Di�erent strategies for deducing pairwise constraints from the
cluster level feedback given by the user are proposed and experimented.

4.6 Summary of the chapter

In this chapter, a brief survey of the principal methods for semi-supervised cluster-
ing is presented. Depending on the kind of supervised information, they are divided
into semi-supervised with class labels and semi-supervised with pairwise constraints.
Depending on the moment when supervised information is provided, they are di-
vided into traditional methods in which supervised information is provided a priori
and interactive methods in which supervised information is progressively provided
in the form of user feedback. The contribution of this state of the art lies in the
analysis of the possibility to use di�erent semi-supervised clustering methods in
an interactive context in which the user is involved for providing feedback to the
system.

The second contribution of this chapter is the proposition of a framework for
implementing any semi-supervised clustering method in an interactive context as
well as a 2D interactive interface allowing the user to provide some feedback to
the system. We proposed to use internal measures for evaluating the quality of
the images in their clusters, which helps to select the images to be displayed for
each selected cluster on the interactive interface. Via the interactive interface, the
user can give cluster-level feedback (i.e. positive and/or negative images for each
selected cluster, drag and drop images from a cluster to another), without having
any prior knowledge about the database.

The third contribution of this chapter is an experimental comparison of di�er-
ent semi-supervised clustering methods (the interactive cluster-level semi-supervised
clustering, the Rocchio formula based clustering and the HMRF-kmeans), which are
the most suitable for the interactive context, according to our theoretical analysis.
Note that the Rocchio formula was initially proposed for updating the search query
based on the relevance feedback. In our experiments, our proposed semi-supervised
clustering relies on the Rocchio formula for initializing the cluster centres for the
re-clustering phase, based on the current cluster centres and the positive/negative
images of the clusters. Even if the HMRF-kmeans was not initially proposed for an
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interactive context, in our experiments, we also adapt HMRF-kmeans for dealing
with user feedback in our interactive model. In order to automatically undertake the
interactive experiments and avoid the subjective dependence of the experimental
results on a human user, we implemented a software agent simulating the behaviour
of the human user for providing feedback in each interactive iteration. The experi-
mental comparison shows a high performance of the HMRF-kmeans compared with
the other methods.



Chapter 5

Proposed interactive semi-supervised

clustering model

5.1 Introduction

In Chapter 4, we present a brief state of the art of semi-supervised clustering meth-
ods and experimentally compare some semi-supervised clustering methods (inter-
active cluster-level semi-supervised clustering [26], clustering based on the Rocchio
formula [113] and the HMRF-kmeans [10]) in the interactive context. In these ex-
periments, a software agent is used for simulating the behaviour of the human user
when giving feedback to the system. The experimental analysis shows that the
clustering result is improved with the user interaction and the HMRF-kmeans gives
the best results. Moreover, the same number of user clicks gives more supervised
information in the form of pairwise constraints than in the form of class labels (i.e.
assignment constraints or relevance feedback in the interactive context).

However, the HMRF-kmeans is not based on a hierarchical method. Moreover,
the pairwise constraints used for the HMRF-kmeans are between images. After a
number of interactive iterations, the number of pairwise constraints could be very
high, and the processing time of the re-clustering phase is thus of a high complexity.
If similar images are grouped together, then pairwise constraints between images can
be replaced by a less number of pairwise constraints between groups of images, with-
out reducing the quality of supervised information. Therefore, the processing time
could be reduced without decreasing the performance. In this chapter, we present
our interactive semi-supervised clustering model which uses pairwise constraints
between the leaf entries (CF entries) of the BIRCH tree as supervised information
for guiding the clustering process. Note that each CF entry groups a set of similar
objects. The integration of the pairwise constraints in the re-organization of the
CF entries is inspired from the HMRF-kmeans. Section 5.2 presents our interactive
semi-supervised clustering model as well as di�erent strategies for deducing pairwise
constraints to be used according to our model. Section 5.3 presents some experi-
ments of our proposed interactive semi-supervised clustering model using di�erent
strategies for deducing pairwise constraints and databases of di�erent sizes. The
results of our proposed method are also compared with the results of the HMRF-
kmeans in Section 5.3. Finally, some conclusions and discussion are presented in
Section 5.4.
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5.2 A new interactive semi-supervised clustering model

5.2.1 Model

In our model, the initial clustering is carried out without any supervised infor-
mation, using an unsupervised clustering method. In Chapter 3, we discuss the
adequation between di�erent unsupervised clustering methods and our application
context, with our willingness to involve the user in the loop; we also experimentally
compare di�erent unsupervised clustering methods such as global k-means [76],
AHC [70], R-tree [13, 42, 117], SR-tree [60] and BIRCH [145]. Our conclusion is
that BIRCH is the most suitable to our context. Indeed, BIRCH is incremental, it
provides a hierarchical structure of clusters and it outperforms other methods in the
context of a large database. Therefore, BIRCH is chosen for the initial unsupervised
clustering in our model. After the initial clustering, the user views the clustering
results and provides feedback to the system. The pairwise constraints (must-link
and cannot-link) between the CF entries at the leaf level of the BIRCH tree are
deduced, based on the user feedback. The system then re-organizes the leaf level
CF entries of the BIRCH tree by considering the constraints, using the proposed
semi-supervised clustering described in Section 5.2.6. The interactive process (user
providing feedback and system re-organizing the clusters) is repeated until the clus-
tering result satis�es the user. The proposed interactive semi-supervised clustering
model is decomposed into the following steps:

1. Initial clustering using BIRCH unsupervised clustering (Section 5.2.2).

2. Repeat :

(a) Receive feedback from the user (Section 5.2.3).

(b) Deduce pairwise constraints from the user feedback (Sections 5.2.4 and
5.2.5).

(c) Re-organize the leaf level CF entries of the BIRCH tree using the pro-
posed pairwise constraint semi-supervised clustering method (Section
5.2.6) and provide the new clustering result to the user.

until the clustering result satis�es the user.

Note that the deduction of pairwise constraints is not only based on the user feed-
back, but also on the image neighbourhoods. The notion of neighbourhood and
the inference of the neighbourhoods from the user feedback is presented in Section
5.2.4, whereas the deduction of pairwise constraints is presented in Section 5.2.5.

5.2.2 Initial clustering

As mentioned above, the BIRCH (Balanced Iterative Reducing and Clustering using
Hierarchies) [145] is used as the initial unsupervised clustering in our interactive
clustering model. The details of this method are presented in Chapter 3, Section
3.2.4 (page 64). The idea of BIRCH is to scan the database and organize feature
vectors in a CF-tree. Each leaf node of the CF-tree contains a list of elements [CFi],
where each element CFi = (Ni, LSi, SSi) summarizes the information of a cluster
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including Ni data points, and where LSi and SSi are respectively the linear sum and
the square sum of the data points in this cluster (LSi =

∑Ni
j=1 xj; SSi =

∑Ni
j=1 xj.xj).

Each internal node of the tree contains a list of elements [CFi, childi], where CFi
summarizes the information of the sub-cluster represented by its ith child pointed
by the pointer childi.

After creating the CF-tree, we can use any clustering method (AHC, k-means,
etc.) for clustering all CF entries of the leaf nodes, where each CF entry is considered
as a single point for clustering. The point corresponding to each entry CFi =

(Ni, LSi, SSi) is computed as {
LSi1
Ni

, ...,
LSid
Ni
}, where d is the number of dimensions of

the feature vector. In our work, we use k-means for clustering the leaf entries, mainly
because of its simplicity and its low computational complexity; it is furthermore
suitable for being used with our interactive semi-supervised clustering inspired from
the HMRF-kmeans, which gives the best results in our interactive experiments in
the last chapter.

In the following sections, we explain the mechanisms to interactively improve
this initial clustering, starting with the user feedback integration in the next section.

5.2.3 User feedback integration

In order to allow the user to view the clustering results and allow him/her to provide
feedback to the system, we use the same interactive interface implemented for our
experiments of di�erent semi-supervised clustering methods presented in Chapter
4 (see Section 4.4.1 for more details about the interactive interface).

Using this interactive interface, all clusters are represented in the principal plane
by their prototype images, where the prototype image of each cluster is the most
representative image of the cluster (i.e. the image with the highest Silhouette Width
(SW) value in the cluster).

By clicking on a prototype image in the principal plane, the user can view more
details about the corresponding cluster (the prototype image, the 10 most represen-
tative images and the 10 least representative images which have not received any
feedback from the user in the previous iterations). The user can select up to 5 clus-
ters for visualizing and interacting simultaneously. But the user can interact with
more than 5 clusters in each interactive iteration by alternatively selecting di�erent
groups of 5 clusters for visualizing at the same time. The user can specify positive
feedback and negative feedback (relevant and non-relevant images) for each cluster.
The user can also change the cluster assignment of a given image by dragging and
dropping it from the original cluster to the new cluster. When an image is changed
from cluster A to cluster B, it is considered as negative feedback for cluster A and
positive feedback for cluster B. Therefore, in each interactive iteration, the process
returns a positive image list and a negative image list for each cluster with which
the user has interacted.

The user feedback presented here, combined with the neighbourhoods inferred
from the feedback presented in the next section, will be used in Section 5.2.5 for
deducing pairwise constraints. Pairwise constraints will then be used as supervised
information for the re-clustering by the semi-supervised clustering method presented
in Section 5.2.6, in order to improve the initial clustering of Section 5.2.2.
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5.2.4 Neighbourhood inference and CF-tree update

As mentioned above, in each interactive iteration, we receive user feedback in the
form of positive and negative images for each cluster with which the user interacts.
According to the user feedback, all positive images should remain in �their� cluster
while negative images should move to other clusters. Therefore, for each cluster, we
consider that must-links exist between each pair of its positive images, and cannot-
links exist between each negative image and each positive image of this cluster.
There may have cannot-link constraints between images of the same entry CFi.
There may also exist simultaneous must-link and cannot-link between images of
CFi and images of CFj. In such cases, these CF entries should be split into purer
CF entries and the CF-tree should be accordingly updated, as the clustering is
realized by considering each CF entry as a feature point.

If we assume that the user feedback is coherent between di�erent interactive
iterations, our objective is to group all images in a group called neighbourhood,
according to the willingness of the user to group them in the same cluster (during
the interactive session). The neighbourhood term is already used in the traditional
HMRF-kmeans for grouping objects which are �must-linked� based on the pairwise
constraints provided as prior knowledge. In this section, we explain how to extend
the neighbourhoods for our interactive context where supervised information is
progressively provided during di�erent interactive iterations, not in the form of
pairwise constraints, but in the form of cluster-level feedback (i.e. positive images
and negative images for each cluster). We also de�ne a new term called �seed� which
helps to adapt the neighbourhoods with the CF entries of the BIRCH tree. The
seed term is later presented in this section. The notion of �neighbourhood� helps
to maximize the supervised information gained from a same number of user clicks,
and is used in conjunction with the user feedback in the next section for deducing
pairwise constraints for the re-clustering phase.

We de�ne:

• Np = {Npi} is the neighbourhood list, each neighbourhood Npi = {xj}
includes a list of images which should be in a same cluster according to user
feedback.

• Two neighbourhoods Npi and Npm are called cannot-link neighbourhoods
if there is at least one cannot-link between a point of Npi and a point
of Npm. We call CannotNp the cannot-link neighbourhood matrix, where
CannotNpim = 1 specifying that Npi and Npm are cannot-link neighbour-
hoods according to user feedback, and CannotNpim = 0 otherwise.

After receiving the list of feedback in the current iteration, the list Np and the
matrix CannotNp are updated as follows:

1. Update based on positive feedback : For each cluster Kh which receives inter-
action from the user:

(a) If all positive images of Kh are not included in any existing neighbour-
hood, a new neighbourhood including all these positive images is created.
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(b) If some positive images of Kh are already included in one or multiple
neighbourhoods, these neighbourhoods (in the case of multiple neigh-
bourhoods) are merged into one single neighbourhood, called Np(Kh).
The other positive images of Kh which are not included in any existing
neighbourhood are inserted into the neighbourhood Np(Kh). The matrix
CannotNp is updated by deleting the lines and columns corresponding
to the neighbourhoods which have merged, and inserting a new line and
column for the new neighbourhood Np(Kh). Note that the new line and
column for Np(Kh) is updated for signifying that neighbourhoods, that
had cannot-link with one of the neighbourhoods which have merged, now
have cannot-link with the new neighbourhood Np(Kh).

2. Update based on negative feedback : For each image xj of each clusterKh which
receives negative feedback from the user:

(a) If xj is not included in any existing neighbourhood, then a new neigh-
bourhood is created for xj. Assume that Np(xj) is the new neighbour-
hood for xj, Np(Kh) is the neighbourhood including the positives im-
ages of the cluster Kh, we update the corresponding entries of the matrix
CannotNp to signify that Np(xj) and Np(Kh) have cannot-link between
them.

(b) If xj is already included in a neighbourhood Np(xj), the corresponding
entries of the matrix CannotNp are updated to signify that Np(xj) has
cannot-link with the neighbourhood Np(Kh) including positive images
of the cluster Kh.

Figure 5.1 � Example of neighbourhood deduction based on user feedback (Np:
neighbourhood). Left: user interaction. Right: deduced neighbourhoods and
cannot-link neighbourhoods. The red ellipses represent the CF entries, the black
ellipses represent the clusters, and the dashed ellipses represent the neighbourhoods.
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Figure 5.1 shows an example of a neighbourhood deduction based on user feed-
back. User feedback is shown on the left hand-side of the �gure while the resulting
neighbourhoods are shown on the right hand-side of the �gure. Note that our clus-
tering organizes the CF entries into clusters by considering each CF entry as a
feature point. In Figure 5.1, the CF entries are represented by the red ellipses, the
clusters are represented by the black ellipses, and the neighbourhoods are repre-
sented by the dashed ellipses. We can see that cluster 1 contains two entries CF1

and CF2, cluster 2 contains two entries CF3 and CF4, while cluster 3 contains three
entries CF5, CF6 and CF7. While interacting with the system, the user visualizes
the images in clusters and provides feedback with the images, not with the CF en-
tries. For example, in cluster 1, the user marks x1, x2, x4 as positive feedback and
x7 as negative feedback for the cluster. The user also changes the cluster assign-
ment of x5 from cluster 3 to cluster 1 and marks x15, x16, x17 as positive feedback
of cluster 3. All positive points of cluster 1 are grouped in the neighbourhood Np1

while all positive points of cluster 3 are grouped in the neighbourhood Np3. As
x5 is changed from cluster 3 to cluster 1, it is considered as positive feedback of
cluster 1 and negative feedback of cluster 3. Therefore, x5 is added into the neigh-
bourhood Np1 corresponding to positive feedback of cluster 1. As a consequence,
neighbourhood Np1 has cannot-link with neighbourhood Np3.

All images in a same neighbourhood should be in a same cluster and images of
cannot-link neighbourhoods should be in di�erent clusters. As mentioned above,
we have to split into purer CF entries, the CF entries which include cannot-link
images, or which simultaneously have must-link and cannot-link with another CF
entry. For the example in Figure 5.1, three entries CF2, CF3 and CF5, which include
cannot-link images, should be split into purer CF entries. To do so, we de�ne a
seed of an entry CFi as a subset of images of CFi which are included in a same
neighbourhood. Therefore, an entry CFi may contain some seeds corresponding
to di�erent neighbourhoods, and additional images which are not included in any
neighbourhood. Cannot-link may or may not exist between seeds of a given CF
entry. For example, the points of CF2 can be divided into two seeds. The �rst seed
contains x1 and x4, which are included in the neighbourhood Np1. The second seed
contains x7, which is included in the neighbourhood Np4.

With each CF entry that should be split, we present the user with each pair
of seeds which do not have cannot-link between them, in order to demand more
information (for each seed, the image which is the closest to the centre of the seed
is presented to the user):

• If the user indicates that there is must-link between these two seeds, then these
two seeds and their corresponding neighbourhoods are merged. Note that the
matrix CannotNp should also be updated accordingly for specifying that each
neighbourhood having cannot-link with one of the neighbourhoods containing
these two seeds now has cannot-link with the new merged neighbourhood.

• If the user indicates that there is cannot-link between these two seeds, then
the corresponding entries of the matrix CannotNp are updated for specifying
that the two neighbourhoods corresponding to these two seeds have cannot-
link between them.

Any entry CFi that should be split, either because it includes cannot-link images
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or because it has simultaneously must-link and cannot-link with another CF entry,
is split as follows:

1. For each seed of CFi, create a new CF entry for including all points of this
seed. Therefore, if CFi has p seeds, p new CF entries are created (It has to
be noted that all the seeds that could be merged were merged before).

2. Then, each point of CFi that is not included in any seed is assigned to the
new CF entry corresponding to the closest seed.

Given the inferred neighbourhoods and the user feedback from Section 5.2.3, the
next section presents how to deduce pairwise constraints as supervised information
for the re-clustering by the semi-supervised clustering presented in Section 5.2.6.

5.2.5 Pairwise constraints deduction strategies

As the clustering is done by considering each CF entry as a point, pairwise con-
straints (supervised information for the semi-supervised clustering method described
in Section 5.2.6) should be deduced for pairs of CF entries at each interactive itera-
tion, after user feedback integration, neighbourhood inference and CF-tree update.

We can see that, by splitting the necessary CF entries into purer CF entries as
described above in Section 5.2.4, we can eliminate the case where cannot-link exists
between images of a same CF entry or where must-link and cannot-link simulta-
neously exist between images of two di�erent CF entries. Subsequently, pairwise
constraints between CF entries can be deduced based on pairwise constraints be-
tween images as follows:

• If there is a �must-link� between an image of CFi and another image of CFj,
a �must-link� is created between CFi and CFj.

• If there is a �cannot-link� between an image of CFi and another image of CFj,
a �cannot-link� is created between CFi and CFj.

The problem now is how can we deduce pairwise constraints between images
based on the user feedback of each interactive iteration, and also on the neigh-
bourhood information. As mentioned in Section 5.2.3, user feedback is received in
each interactive iteration under the form of positive and negative images of each
cluster. The neighbourhood information is in the form of the list Np = {Npi}
and the matrix CannotNp, where each neighbourhood Npi contains images which
should be in a same cluster and CannotNpij speci�es if two neighbourhoods Npi
and Npj are cannot-link neighbourhoods or not (CannotNpij = 1 if Npi and Npj
are cannot-link neighbourhoods, and CannotNpij = 0 otherwise). A simple and
complete way to deduce pairwise constraints between images is to create must-link
between each pair of images of a same neighbourhood, and to create, for each pair
of cannot-link neighbourhoods (Npi, Npj), cannot-link between each image of Npi
and each image of Npj. This strategy for deducing pairwise constraints between
images is shown in Figure 5.2 and will be further called �Strategy 1�. Note that in
Figure 5.2, only cannot-link between objects of the two cannot-link neighbourhoods
Np1 and Np3 are shown. Cannot-link between points of other pairs of cannot-link
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neighbourhoods (Np2 and Np3, Np1 and Np4, Np2 and Np5) can be similarly de-
duced. We can see that by deducing pairwise constraints between images in this
way, the number of constraints between images can be very high, and therefore the
number of constraints between CF entries could also be very high. The processing
time of the semi-supervised clustering in the next phase could thus be very high
due to the high number of constraints. Therefore, in this section we propose some
alternative strategies for deducing pairwise constraints between images that could
reduce the number of constraints and also the processing time.

Figure 5.2 � Illustrative example of the Strategy 1 for deducing pairwise constraints
between images based on the neighbourhood information deduced from the user
interaction shown on Figure 5.1. Only cannot-link constraints between objects of
the two cannot-link neighbourhoods Np1 and Np3 are shown in this �gure. Cannot-
link between points of other pairs of cannot-link neighbourhoods (Np2 and Np3,
Np1 and Np4, Np2 and Np5) are deduced in a similar way.

We can divide pairwise constraints between images into two categories: user
constraints and deduced constraints. User constraints are directly created, based on
user feedback at each iteration, while deduced constraints are created by deduction
rules. For instance, in the �rst iteration, the user marks x1, x2 as positive images
and x3 as a negative image of cluster Ki while in the second iteration, he marks x1

and x4 as positive images of cluster Kj. The created user constraints are: must-link
between positive images in the �rst iteration (x1, x2) ∈ ML, must-link between
positive images in the second iteration (x1, x4) ∈ ML, and cannot-link between
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positive and negative images in the �rst iteration (x1, x3) ∈ CL, (x2, x3) ∈ CL.
As there are must-links (x1, x2) ∈ ML and (x1, x4) ∈ ML, there is also a deduced
must-link (x2, x4) ∈ ML. In addition, deduced cannot-link (x3, x4) ∈ CL is cre-
ated, based on the must-link (x1, x4) ∈ML and the cannot-link (x1, x3) ∈ CL. We
can see that deduced constraints can also be created based on neighbourhood in-
formation. Table 5.1 summaries the di�erent strategies we experiment for deducing
pairwise constraints between images. In Section 5.3, these strategies are evaluated
and compared.
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The �rst strategy (Figure 5.2), which is already described in the last paragraph,
is the most complete one. By creating must-links between each pair of images of
a same neighbourhood and cannot-links between images of neighbourhoods which
have cannot-link between them, the strategy 1 covers all possible user constraints
and deduced constraints that can be created based on feedback of all interactive
iterations. But the number of constraints used (and therefore the execution time)
may be huge when the size of the neighbourhoods is increased.

The second one is a very basic strategy, as it does not use deduced constraints,
but only uses all the pairwise constraints which can be created at all interactive
iterations based on the user feedback, and without taking into account the neigh-
bourhood information. The user constraints of each interactive iteration are must-
links between each pair of positive images of each cluster and cannot-links between
each positive image and each negative image of a same cluster. This strategy helps
to reduce the number of constraints compared with the strategy 1, but it does not
use deduced constraints, which may also be important.

The third strategy is similar to the strategy 2. But along with all possible
user constraints created in all interactive iterations, it also uses constraints deduced
by using neighbourhood information in the current iteration (deduced constraints
in the previous iterations are eliminated). Only the newest deduced constraints
are kept, as they are considered as the most important deduced constraints. The
number of constraints used in the strategy 3 is greater than in the strategy 2, but
less than in the strategy 1.

Strategy 4 relies on the same idea of using user constraints of all interactive
iterations and deduced constraints of the current iteration as Strategy 3. However,
it does not create, in each interactive iteration, all possible user constraints and/or
deduced constraints, but only a part of these constraints. The idea is to reduce the
number of constraints used for re-clustering. In each interactive iteration, among all
positive images of a cluster, this strategy considers the image having the best inter-
nal measure (SW) value as the positive prototype image of this cluster. Then, for
each positive image of a cluster, instead of creating must-link user constraints with
all other positive images of this cluster, only one must-link constraint between this
positive image and the positive prototype image of this cluster is created. Similarly,
instead of creating cannot-link user constraints between a negative image and all
positive images of the same cluster, strategy 4 creates only one cannot-link between
this negative image and the positive prototype image of this cluster. Regarding
deduced constraints, if xi and xj must be in the same (or di�erent) clusters (based
on user feedback of the current iteration), deduced must-links (or cannot-links) are
created between xi and positive prototype images of the neighbourhood containing
xj, and vice versa, between xj and positive prototype images of the neighbourhood
containing xi. By creating constraints in this way, we hope that the constraints
between an image and the positive prototype images of a group (neighbourhood or
cluster) can represent the constraints between this image and all the images of the
group.

By considering that both constraints deduced in the current iteration and con-
straints deduced in older iterations are both important, the strategy 5 uses both
user constraints and deduced constraints of all iterations, but reduces the number
of constraints created in each iteration. The idea is to only keep the �di�cult� con-
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straints. For each cluster, must-link user constraints are not created between each
pair of positive images of this cluster, but are successively created between two pos-
itive images of this cluster (at least one of them is not part of any created must-link
user constraint of this cluster) that have the longest distance until all the positive
images of this cluster are connected by these user must-links. Similarly, deduced
must-link constraints for each neighbourhood are successively created, until all im-
ages of this neighbourhood are connected by these deduced must-links. Regarding
cannot-link user constraints, for each negative image of a cluster, instead of creating
multiple cannot-links between this negative image and each positive image of the
cluster, only one cannot-link between this negative image and its nearest positive
image is created. Similarly, for cannot-link deduced constraints, if Npi and Npj are
cannot-link neighbourhoods, then deduced cannot-links are created between each
image of Npi and the nearest image of Npj, and vice versa between each image of
Npj and the nearest image of Npi.

Strategy 6 is similar to Strategy 5, but the number of deduced cannot-link
constraints in each iteration is reduced. Indeed, if Npi and Npj are cannot-link
neighbourhoods and |Npi| ≤ |Npj|, where |Npi| is the number of images of Npi,
then deduced cannot-links are created only between each image of Npi and the
nearest image of Npj.

Combining all the elements from this section and the previous ones, the next
section is dedicated to our contribution related to semi-supervised clustering method
based on pairwise constraints between CF entries.

5.2.6 Semi-supervised clustering method based on pairwise

constraints between CF entries

After deducing pairwise constraints from the user feedback and the neighbourhood
information, CF entries at the leaf level of the CF-tree have to be re-organized
according to the wishes of the user. Our semi-supervised clustering method aims at
re-organizing the set of all leaf entries SCF = (CF1, ..., CFm) of the CF-tree based on
supervised information in the form of two sets of pairwise constraints between CF
entries deduced from user feedback and neighbourhood information as described
in Section 5.2.5. We call MLCF = {(CFi, CFj)} and CLCF = {(CFi, CFj)} the
sets of respectively must-links and cannot-links constraints between CF entries. A
must-link constraint (CFi, CFj) ∈ MLCF implies that CFi, CFj, and therefore all
points which are included in these two entries, should belong to the same cluster,
while a cannot-link constraint (CFi, CFj) ∈ CLCF implies that CFi and CFj should
belong to di�erent clusters. Inspired from the HMRF-kmeans method, our objective
function to be minimized is as follows:

Jobj =
∑

CFi∈SCF

D(CFi, µ(CFi))

+
∑

(CFi,CFj)∈MLCF ,K(CFi)6=K(CFj)

wNCFiNCFjD(CFi, CFj)

+
∑

(CFi,CFj)∈CLCF ,K(CFi)=K(CFj)

wNCFiNCFj(Dmax −D(CFi, CFj)) (5.1)

where:
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• K(CFi) refers to the cluster containing CFi.

• µ(CFi) is the centre of the cluster containing CFi.

• The �rst term of Equation (5.1) measures the distance between each leaf entry
CFi and its corresponding cluster centre µ(CFi).

• The second and the third terms of Equation (5.1) represent the penalty costs
for respectively violating the must-link and cannot-link constraints between
CF entries. w and w are constant values specifying the violation cost of a
must-link and a cannot-link between two points. As an entry CFi represents
the information of a group of NCFi points, a pairwise constraint between two
entries CFi and CFj corresponds to NCFi ×NCFj constraints between points
of these two entries. The violation cost of a pairwise constraint between two
entries CFi, CFj is thus a function of their distance D(CFi, CFj) and of the
number of points included in these two entries. Dmax is the maximum dis-
tance between two CF entries in the set SCF . Therefore, higher penalties
are assigned to violations of must-link between entries that are distant and
of cannot-link between entries which are close. As in HMRF-kmeans, the
term Dmax can make the cannot-link penalty term sensitive to extreme out-
liers. However, we could reduce this sensitivity by using an outlier �ltering
techniques or by replacing the term Dmax by the maximum distance between
two clusters and specifying a lower bound for the term Dmax −D(CFi, CFj).
These sensitivity reduction techniques are considered in our future works.

In our case, we use the famous squared Euclidean distance as distortion measure.
The distance between two entries CFi = (NCFi , LSCFi , SSCFi), CFj = (NCFj ,
LSCFj , SSCFj) is calculated as the distance between their means as follows:

D(CFi, CFj) =
d∑
p=1

(
LSCFi(p)

NCFi

−
LSCFj(p)

NCFj

)2

(5.2)

where d is the number of dimensions of the feature space.
Inspired from the HMRF-kmeans, our proposed pairwise constraint semi-supervised

clustering is as follows:
Input: Set of leaf entries SCF = {CFi}mi=1 which are clustered into k clusters with
the corresponding centres {µh}kh=1,

set of must-link constraints MCF = {(CFi, CFj)}
set of cannot-link constraints CCF = {(CFi, CFj)}.

Output: New disjoint k clusters of SCF such that the objective function in Equa-
tion (5.1) is locally minimized.
Method:

1. Set t← 0.

2. Repeat until convergence:

(a) Re-assignment step: Given {µ(t)
h }kh=1, re-compute the cluster assignments

{K(CFi)
(t+1)}mi=1 so as to minimize the objective function in Equation

(5.1).
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(b) Re-estimation step: Given the cluster assignments {K(CFi)
(t+1)}mi=1, re-

calculate the cluster centres {µ(t+1)
h }kh=1 to minimize the objective func-

tion in Equation (5.1).

(c) t← t+ 1.

In the re-assignment step, given the current cluster centres {µ(t)
h }kh=1, each entry

CFi is re-assigned to the cluster Kh∗ ∈ K which minimizes the contribution of this
re-assignment to the objective function in Equation (5.1). The contribution to the
objective function of the re-assignment of an entry CFi to a cluster Kh is computed
as in Equation (5.3):

Jobj(CFi, Kh) = D(CFi, µ
(t)
h )

+
∑

(CFi,CFj)∈MLCF ,Kh 6=K(CFj)(t)

wNCFiNCFjD(CFi, CFj) (5.3)

+
∑

(CFi,CFj)∈CLCF ,Kh=K(CFj)(t)

wNCFiNCFj(Dmax −D(CFi, CFj))

Therefore, each entry CFi is re-assigned to the clusterKh∗ (i.e. K(CFi)
(t+1) = Kh∗)

such that:
h∗ = argmin

h
Jobj(CFi, Kh) (5.4)

We can see that the optimal assignment of each CF entry also depends on the current
assignment of the other CF entries, due to the violation cost of pairwise constraints
in the second and third terms of Equation (5.3). Therefore, after all entries are re-
assigned, they are randomly re-ordered, and the re-assignment process is repeated
until no CF entry changes its cluster label between two successive iterations.

In the re-estimation step, given the cluster assignments {K(CFi)
(t+1)}mi=1 of all

CF entries, the cluster centres {µh}kh=1 are re-calculated in order to minimize the
objective function of the current assignment. For saving computational time, each
cluster centre is also represented in the form of a CF-vector. By using the squared
Euclidean measure, the CF-vector of each cluster centre µh is calculated based on
CF entries which are assigned to this cluster as follows:

Nµh =
∑

K(CFi)(t+1)=Kh

NCFi (5.5)

LSµh =
∑

K(CFi)(t+1)=Kh

LSCFi (5.6)

SSµh =
∑

K(CFi)(t+1)=Kh

SSCFi (5.7)

We can see that in each re-assignment step, each entry CFi moves to a new
cluster Kh if its contribution to the objective function is decreased with this re-
assignment. Therefore, the objective function Jobj in Equation (5.1) is decreased or
unchanged after the re-assignment step. In each re-estimation step, the mean of the

CF-vector of each cluster centre µh (computed as
LSµh
Nµh

) corresponds to the mean of

the CF entries (and therefore the points) in this cluster. That minimizes the contri-
bution of µh to the component

∑
CFi∈SCF D(CFi, µ(CFi)) of the objective function
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Jobj in Equation (5.1), where Kh = K(CFi). The penalty terms of the objective
function Jobj do not depend on the cluster centres, thus they do not take part in
cluster centre re-estimation. Therefore, the objective function Jobj of our proposed
method will decrease or remain the same in the re-estimation step. Since Jobj is
bounded below and decreases after each re-assignment and re-estimation steps, the
proposed semi-supervised clustering converges to a (at least local) minimum in each
interactive iteration.

After each interactive iteration, new constraints corresponding to new feedback
are given to the system. These new constraints might be in contradiction with
some of the ones previously deduced by the system from the earlier user interactive
iterations. For this reason, and also for computational time matters, our system
may at each step omit some of the constraints deduced at earlier steps. Therefore,
the objective function Jobj in Equation (5.1) may be di�erent between di�erent
interactive iterations. And the convergence of the interactive semi-supervised model
is thus not guaranteed. But we can experimentally verify the convergence of the
model by determining, at the end of all interactive iterations, the global objective
function which considers all feedback given by the user in all interactive iterations
and then by verifying if this global objective function has improved or not after
several interactive steps.

5.3 Experiments

In this section, we present some experimental results of our interactive semi-supervised
clustering model using the di�erent strategies presented in Table 5.1 for deducing
pairwise constraints between images. We also experimentally compare our semi-
supervised clustering model with the semi-supervised HMRF-kmeans, which gives
the best results in our experiments in Chapter 4. As in Chapter 4, when using the
semi-supervised HMRF-kmeans in the re-clustering phase, the initial unsupervised
clustering is k-means.

5.3.1 Experiment protocol

In order to analyze the performance of our interactive semi-supervised clustering
model, we use the same image databases which are used in the experiments of the
previous chapters:

• Wang (1000 images divided into 10 classes).

• PascalVoc2006 (5304 images divided into 10 classes).

• Caltech101 (9143 images divided into 101 classes).

• Corel30k (31695 images divided into 320 classes).

Note that in our experiments we use the same number of clusters as the number
of classes in the ground truth. Concerning feature descriptors, the local descriptor
rgSIFT with the size 200 of the visual word dictionary is also used in this chapter.
As presented in Chapter 4, Section 4.4.1, the cluster prototype images (one image for
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each cluster) are shown to the user on the principal plane. Users can choose to view
and interact with any cluster in which they are interested. For databases which
have a small number of classes, such as Wang and PascalVoc2006, all prototype
images can be shown on the principal plane. For databases which have a large
number of classes, such as Caltech101 and Corel30k, it may be di�cult for the user
to select the good clusters to interact with, if too many cluster prototypes are shown
on the principal plane. Therefore, in the case of databases having a large number
of classes, only a maximum of 30 cluster prototypes can be shown to the user on
the principal plane in each interactive iteration. We use two simple strategies for
choosing clusters to be shown in each iteration:

• Strategy 1: by considering that the user may be interested in any clusters, in
this strategy, 30 clusters are randomly chosen to be shown on the principal
plane.

• Strategy 2: by considering that the user may want to separate the clusters
which are close together, in this strategy, the system iteratively chooses pairs
of closest clusters until reaching 30 clusters.

As the external measures compare the clustering results with the ground truth,
they are compatible for estimating the quality of the interactive clustering involv-
ing user interaction. Therefore, external measures are used for evaluating the ex-
periments in this chapter. Experimental results in Chapter 4 show that di�erent
external measures (V-measure [114], Rand Index [109] and Fowlkes-Mallows In-
dex [32]) evaluate the interactive clustering results in a similar way. Thus, in this
chapter, only the V-measure is used for evaluating the experiments. The greater
the V-measure values are, the better the results (compared to the ground-truth).

In order to automatically undertake the interactive tests and to avoid the sub-
jective dependence of experimental results on the human user, the software agent
simulating the behaviour of the human user when interacting with the system is
always used for experiments in this chapter. For every interactive iteration, the
user agent always chooses to interact with a �xed number of c clusters (random
clusters or nearest clusters depending on the used strategy). In order to provide
the feedback to the system, the software agent should know which image class in
the ground truth corresponds to each chosen cluster. Note that for each chosen
cluster, only 21 images (the prototype image, the 10 most represented images and
the 10 least represented images of the cluster) can be viewed by the user in each
interactive iteration. The image class corresponding to each cluster is determined
by the most represented class among 21 presented images of the cluster. If the
number of images of the most represented class of a cluster is not greater than
a threshold MinImages, this cluster can be considered as a noise cluster, and
the user can still re-assign some images from this cluster to another cluster. In
our experiments, MinImages = 5 for databases having a small number of classes
(Wang, PascalVoc2006), and MinImages = 2 for databases having a large number
of classes (Caltech101, Corel30k). When several clusters (among the selected clus-
ters) correspond to a same class Cj in the ground truth, the cluster in which the
images of Cj are the most numerous (among the 21 shown images of the cluster)
is chosen as the principal cluster of Cj. For the other clusters also corresponding
to the class Cj, another image class has to be reassigned for each of these clusters.
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The new image class is rede�ned for each cluster as usual, but without considering
the images of Cj. In our experiments, we assume that the user agent gives all pos-
sible feedback in each interactive iteration. Therefore, for each chosen cluster, the
user agent labels all images, where the result of the algorithm corresponds to the
ground truth, as positive samples of this cluster, and labels all the others images
(among 21 presented images) as negative samples of this cluster. Moreover, the
user agent moves all possible negative images to the cluster (among the c chosen
clusters) corresponding to their class in the ground truth.

As presented in Section 5.2.5, there are di�erent strategies for deducing pairwise
constraints between images, which further result in pairwise constraints between
CF entries, to be used as supervised information in our proposed semi-supervised
clustering. All the six pairwise constraint deduction strategies presented in Section
5.2.5 are analyzed in our experiments.

5.3.2 Experimental analysis of our proposed interactive semi-

supervised clustering model

The �rst set of experiments aims at evaluating the performance of our interactive
semi-supervised clustering model. The six pairwise constraint deduction strategies
presented in Section 5.2.5 are used for deducing pairwise constraints between images
from the user feedback. Note that constraints between CF entries should be deduced
from constraints between images (see Section 5.2.5), before being used as supervised
information in the re-clustering phase using our proposed semi-supervised cluster-
ing method. We use the Wang and the PascalVoc2006 image databases for these
experiments. These two databases both have 10 classes of images (and therefore
10 clusters), thus all prototype images can be shown to the user on the principal
plane. For these two databases, we use three test scenarios which are already used
for the experiments of di�erent semi-supervised clustering methods in Chapter 4.
Note that c speci�es the number of clusters which are chosen for interacting in each
interactive iteration, the three scenarios are as follows:

• Scenario 1: c = 5 closest clusters are chosen.

• Scenario 2: c = 5 clusters are randomly chosen.

• Scenario 3: c = 10, all clusters are chosen.

Note that our experiments are carried out automatically, i.e. the feedback is
given by a software agent simulating the behaviours of the human user when in-
teracting with the system, but the proposed scenarios are also feasible by a human
user. In fact, the human user can give feedback by clicking for specifying the positive
and/or negative images of each cluster or by dragging and dropping the image from
one cluster to another cluster. For each cluster selected by the user, only 21 images
of this cluster are displayed. Therefore, for interacting with 5 clusters (scenarios 1
and 2) or 10 clusters (scenario 3), the user has to respectively realize a maximum
of 105 or 210 mouse clicks in each interactive iteration. These upper bounds
do not depend neither on the size of the database nor on the pairwise
constraint deduction strategy, and in practice the number of clicks that
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the user has to provide is far lower. However, the number of deduced con-
straints may be much greater than the user clicks (and this number depends on the
database size and on the pairwise constraint deduction strategy). When applying
the proposed interactive semi-supervised clustering model in the indexing phase,
the user is generally required to provide as much feedback as possible for having a
good indexing structure which could lead to better results in the further retrieval
phase. Therefore, in the case of the indexing phase, the number of clicks proposed
in these scenarios seems tractable.
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Figure 5.3 � Results of our proposed semi-supervised clustering model during 50
interactive iterations on the Wang image database, using 6 strategies for deduc-
ing pairwise constraint. The vertical axis speci�es the V-measure values and the
horizontal axis speci�es the number of iterations.

Figures 5.3 and 5.4 show the results of our proposed interactive semi-supervised
clustering model on respectively the Wang and PascalVoc2006 image databases,
using 6 strategies for deducing pairwise constraints between images presented in
Table 5.1. The experiment for each of the three proposed scenarios is realized in
50 interactive iterations in which the user agent is involved for providing feedback
to the system. The vertical axis speci�es the V-measure values, while the horizon-
tal axis speci�es the number of iterations. The results of the initial unsupervised
clustering (BIRCH) without any supervised information is presented at iteration 0.
The results at iteration i (0 < i ≤ 50) represents the results of the re-clustering
phase, using the proposed semi-supervised clustering method presented in Section
5.2.6, after i interactive iterations using supervised information in the form of pair-
wise constraints between CF entries deduced from the provided user feedback. Note
that in our experiments, with each selected cluster, the user agent gives all possible
feedback (chooses all possible positive and negative images of each selected clus-
ter, moves all possible negative images to the right cluster (among the c selected
clusters)). Therefore, for each scenario, the numbers of user feedback (user clicks)
are similar between di�erent interactive iterations, and between di�erent pairwise
constraint deduction strategies. As in scenario 2, the user agent randomly chooses
5 among 10 clusters for viewing and giving feedback, we realize this scenario 10



5.3. Experiments 155

Figure 5.4 � Results of our proposed semi-supervised clustering model during 50
interactive iterations on the PascalVoc2006 image database, using 6 strategies for
deducing pairwise constraint. The vertical axis speci�es the V-measure values and
the horizontal axis speci�es the number of iterations.

times for each image database. The curves of the scenario 2 shown in Figure 5.3
and 5.4 represent, at each interactive iteration, the mean values of the V-measure
over these 10 executions. As in Figures 5.3 and 5.4, the curves corresponding to
the 6 pairwise constraint deduction strategies are close each other, it is not visible
if the corresponding standard deviation are shown at each iteration in Figures 5.3
and 5.4. Instead, the average standard deviation of each strategy after 50 interac-
tive iterations is presented in Table 5.2. And the corresponding processing times
over all 50 interactive iterations for these experiments are shown in Table 5.3. Note
that the processing times for the scenario 2 presented in Table 5.3 are the average
processing times of 10 executions. As in the previous chapters, the experiments are
executed using a normal PC with 2GB of RAM.

The results in Figures 5.3 and 5.4 show that the clustering results progress,
in general, after each interactive iteration, in which the system re-clusters all the
dataset by considering the supervised information in the form of pairwise constraints
deduced from feedback provided by the user agent when interacting with the system.
Similar to the experiments of di�erent semi-supervised clustering model presented
in Chapter 4, in most cases, the clustering results of our proposed semi-supervised
clustering model converge after only a few iterations. This may be explained by
the fact that after some interactive iterations, the constraints deduced from new
provided feedback and neighbourhood information are similar to the constraints
deduced in previous iterations, and therefore, no new knowledge is provided to the
system and the clustering results cannot be improved further.

Regarding to the three proposed interactive scenarios, we can easily see that for
both Wang and PascalVoc2006 image databases and for all the 6 pairwise constraint
deduction strategies, the clustering results are better and converge more quickly
when the number of chosen clusters in each interactive iteration is higher (scenario
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Table 5.2 � Average standard deviation of 50 interactive iterations over 10 execu-
tions of the scenario 2 corresponding to the experiments of our proposed interactive
semi-supervised clustering model on the Wang and PascalVoc2006 image databases
shown in Figures 5.3 and 5.4. 6 strategies for deducing pairwise constraints between
images are used.

Average standard deviation (Scenario 2)
Wang database PascalVoc2006 database

Strategy 1 0.033 0.022
Strategy 2 0.044 0.017
Strategy 3 0.045 0.025
Strategy 4 0.047 0.022
Strategy 5 0.036 0.024
Strategy 6 0.044 0.026

Table 5.3 � Processing times over 50 interactive iterations of the experiments shown
in Figures 5.3 and 5.4 of our proposed interactive semi-supervised clustering model.
These experiments are on the Wang and PascalVoc2006 image databases, according
to 3 interactive scenarios and 6 strategies for deducing pairwise constraints between
images.

Wang database
Scenario 1 Scenario 2 Scenario 3

Strategy 1 1h58' 2h24' 1h41'
Strategy 2 9' 12' 10'
Strategy 3 31' 19' 47'
Strategy 4 8' 9' 8'
Strategy 5 8' 9' 9'
Strategy 6 6' 8' 8'

PascalVoc2006 database
Scenario 1 Scenario 2 Scenario 3

Strategy 1 16d12h 14d11h 14h9h
Strategy 2 2h55' 4h02' 5h6'
Strategy 3 3h23' 6h39' 6h22'
Strategy 4 1h9' 1h33' 2h17'
Strategy 5 3h33' 4h42' 3h10'
Strategy 6 1h3' 1h21' 2h
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3 gives better results and converges more quickly than scenarios 1 and 2). This
is due to the fact that the higher the number of clusters chosen for interacting in
each iteration, the higher the number of constraints used for re-clustering by the
proposed semi-supervised method, and the better the results. And the higher the
number of constraints deduced in each interactive iteration, the sooner no more
new knowledge is provided and the sooner the clustering converges. In addition,
for both image databases, scenario 2, in which clusters are randomly chosen for
interacting, gives better results than scenario 1, in which the closest clusters are
chosen. In fact, when closest clusters are always selected for interacting in every
iteration, there may be only some clusters that always receive user feedback while
others never receive any feedback. Therefore, the constraint information deduced
from user feedback and neighbourhood information is more limited than when all
the clusters could receive user feedback when clusters are randomly selected.

Regarding the di�erent strategies for deducing pairwise constraints between im-
ages, we can see that, for the scenario 2, the average standard deviations of 50 inter-
active iterations over 10 executions shown in Table 5.2 are similar for all strategies.
Therefore, di�erent strategies can be analyzed based on the mean values shown in
Figures 5.3 and 5.4. We can see that:

• Strategy 1 shows, in general, very good performance but the processing time is
huge. This can be explained by the fact that all possible user constraints and
deduced constraints created based on the user feedback accumulated during all
interactive iterations are used as supervised information for the re-clustering
process. When using a high number of pairwise constraints as supervised
information, the clustering result can be considerably improved, but the pro-
cessing time is very high, as all constraints are considered when minimizing
the objective function in Equation 5.1. Due to the huge processing time,
strategy 1 is not suitable to be used in the interactive context where the user
is involved.

• Strategy 2, which does not use any deduced constraints but all possible
user constraints created during all interactive iterations for re-clustering the
dataset, generally gives the worst results. In fact, among 6 strategies for
deducing pairwise constraints between images used in our experiments, only
this strategy does not use any deduced constraint. Thus, we can conclude
that deduced constraints are needed for improving the performance. The pro-
cessing time of this strategy shown in Table 5.3 is still high due to the large
number of user constraints. Therefore, the number of user constraints used
for re-clustering needs to be reduced.

• Strategy 3 shows good or very good performance. By also using constraints
deduced in the current iteration along with all possible user constraints cre-
ated in all interactive iterations, strategy 3, in comparison with strategy 2,
gives better results but with a higher processing time. The results shown in
Figures 5.3 and 5.4 corresponding to strategy 3 show some oscillations between
di�erent iterations. This may be due to the fact that, when withdrawing de-
duced constraints created in previous iterations, some important constraints
are omitted.
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• Strategy 4, with the same idea of using user constraints of all interactive iter-
ations and deduced constraints of the current iteration, generally gives better
results than strategy 2, but the results are unstable due to the lack of con-
straints deduced in previous iterations. This strategy has good execution time
while reducing the number of user constraints and deduced constraints cre-
ated in each iteration. The worse performance of the strategy 4 in comparison
to the strategy 3 shows that the substitution of the constraints between an
image and all the images of a cluster (a neighbourhood) by the constraint
between this image and the centre image of the cluster (or neighbourhood)
is not a good strategy for reducing constraints created in each iteration, as it
probably provides a too limited amount of information.

• Strategy 5, which uses both user constraints and deduced constraints of all
interactive iterations, generally gives good or very good results. Its process-
ing time is still high, but less than the processing time of the strategy 1, by
reducing the number of pairwise constraints created in each iteration. How-
ever, strategy 5 and strategy 1 show similar performance. This may be due
to the fact that, while reducing the number of constraints in each iteration,
strategy 5 keeps the most important (i.e. the most �di�cult�) constraints
(must-links between the most distant images and cannot-links between the
closest images). Therefore, this strategy can be used in place of the strategy
1 for reducing the processing time.

• Strategy 6, by reducing the number of deduced cannot-link constraints in com-
parison to the strategy 5, gives in general very good results. Its performance
is a little less than the performance of the strategy 5, but its execution time
is considerably lower than the execution time of the strategy 5.

From this analysis, we can conclude that strategy 6 shows the best trade-o� be-
tween performance and processing time. This strategy is suitable to be used in the
interactive context and therefore it is used in our further experiments with bigger
image databases.

5.3.3 Comparison of the proposed semi-supervised clustering

and HMRF-kmeans

The experiments in this section aims at comparing our interactive semi-supervised
clustering model with the semi-supervised HMRF-kmeans, the latter giving the
best results in our experimental comparison of di�erent semi-supervised clustering
models presented in Chapter 4. Note that when using the semi-supervised HMRF-
kmeans in the re-clustering phase, the initial unsupervised clustering is k-means.
Our experiments of both semi-supervised clustering models are automatically car-
ried out using the same software agent for simulating the behaviour of the human
user when interacting with the system. In each interactive iteration, for each se-
lected cluster, the user agent gives all possible feedback (chooses all possible positive
and negative images of each selected cluster, moves all possible negative images to
the right clusters). Therefore, for each interactive scenario, the numbers of user
feedback (user clicks) are similar for both our interactive semi-supervised clustering
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and the HMRF-kmeans clustering. The clustering results of the two methods are
thus comparable. Note that the constraints between images deduced by using one
of the deduction strategies presented in Table 5.1 are directly used by the HMRF-
kmeans clustering, while they should be deduced into pairwise constraints between
CF entries for being used by our semi-supervised clustering method.

Figure 5.5 � Comparison of the proposed semi-supervised clustering and the HMRF-
kmeans clustering on the Wang image database, according to the scenario 1. The 6
strategies for deducing pairwise constraints between images presented in Table 5.1
are used.

Comparison using the 6 pairwise constraint deduction strategies We �rst
compare our proposed interactive semi-supervised clustering model with the HMRF-
kmeans clustering, by using the experiments corresponding to the six strategies
presented in Table 5.1 for deducing pairwise constraints between images. These
experiments are carried out on the Wang image database using the three scenarios
used in the previous experiments.
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Figure 5.6 � Comparison of the proposed semi-supervised clustering and the HMRF-
kmeans clustering on the Wang image database, according to the scenario 2. The 6
strategies for deducing pairwise constraints between images presented in Table 5.1
are used.

Figures 5.5, 5.6 and 5.7 represent the clustering results for 50 interactive itera-
tions on the Wang image database respectively corresponding to the scenarios 1, 2
and 3 when using our semi-supervised clustering and the semi-supervised HMRF-
kmeans in the re-clustering phase. The vertical axis speci�es the V-measure values
and the horizontal axis speci�es the number of iterations. Note that the results of
scenario 2, in which the user agent randomly chooses 5 among 10 clusters of the
database for visualizing and giving feedback, represent, at each interactive iteration,
the mean value of the V-measure over 10 executions, along with the corresponding
standard deviation from the mean. The corresponding processing times over all 50
interactive iterations for these experiments are presented in Table 5.4. As usual,
the average processing times of 10 executions are presented in Table 5.4 for the
experiments of scenario 2.

We can see, from the results shown in Table 5.4 and Figures 5.5, 5.6 and 5.7,
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Figure 5.7 � Comparison of the proposed semi-supervised clustering and the HMRF-
kmeans clustering on the Wang image database, according to the scenario 3. The 6
strategies for deducing pairwise constraints between images presented in Table 5.1
are used.

that in all scenarios and for all di�erent strategies for deducing pairwise constraints
between images, our semi-supervised clustering method always gives better results,
in a lower processing time than the HMRF-kmeans. We can see that the results of
the initial clustering (k-means for the HMRF-kmeans and BIRCH for our method)
shown in Figures 5.5, 5.6 and 5.7 are generally similar. Therefore, the better per-
formance of our model is mainly due to the interactive phase. In fact, for each
scenario, the numbers of user feedback (user clicks) given by the software agent in
each interactive iteration are similar for both our method and the HMRF-kmeans
method. Therefore, when using a same pairwise constraint deduction strategy, the
number of pairwise constraints between images created in each iteration are equiv-
alent for both methods. While the pairwise constraints between images are directly
used by the HMRF-kmeans, they are deduced into pairwise constraints between CF
entries for being used by our semi-supervised clustering. As a CF entry groups a
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Table 5.4 � Processing times over 50 interactive iterations of the experiments shown
in Figures 5.5, 5.6 and 5.7 comparing our proposed interactive semi-supervised
clustering model with the HMRF-kmeans clustering. These experiments are on
the Wang image database, according to 3 interactive scenarios and 6 strategies for
deducing pairwise constraints between images.

Wang database
Proposed model HMRF-kmeans

Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

Strategy 1 1h58' 2h24' 1h41' 7h10' 4h25' 30h56'
Strategy 2 9' 12' 10' 18' 12'35" 23'
Strategy 3 31' 19' 47' 38' 53' 44'
Strategy 4 8' 9' 8' 9' 12' 12'
Strategy 5 8' 9' 9' 14' 17' 15'
Strategy 6 6' 8' 8' 7' 11' 10'

list of similar images (images which are close in the feature space), many pairwise
constraints between some images of entry CFi and some images of entry CFj can
result in only one pairwise constraint between CFi and CFj. Thus, with a same set
of user feedback (user clicks), the number of pairwise constraints between images,
which are used as supervised information in the HMRF-kmeans clustering, is gener-
ally greater than the number of pairwise constraints between CF entries, which are
used as supervised information in our method. Due to the higher number of pair-
wise constraints used for re-clustering, the processing time of the HMRF-kmeans
is much higher than the processing time of our method. However, HMRF-kmeans
was not initially proposed for dealing with user feedback in an interactive context.
Moreover, in our method, when a must-link (or cannot-link) (CFi, CFj) is deduced
from the must-link (or cannot-link) of the corresponding images (xk, xl), xk ∈ CFi,
xl ∈ CFj, the constraint (CFi, CFj) forces the grouping (or separating) of not only
the two images xk and xl but also the other images, which do not appear in any
pairwise constraints between images, but are included in the entries CFi and CFj.
We can say that the set of pairwise constraints between CF entries deduced from
the set of pairwise constraints between images are stronger and more informative
than the set of pairwise constraints between images itself. That explains why our
proposed clustering, which uses pairwise constraints between CF entries, gives bet-
ter performance than the HMRF-kmeans clustering, which uses pairwise constraints
between images.

Regarding the di�erent strategies for deducing pairwise constraints between im-
ages, we can see for both our semi-supervised clustering method and the HMRF-
kmeans method, the strategy 6 gives very good results in low processing time in
comparison to the other strategies. This strategy provides a good trade-o� between
performance and processing time, and therefore is suitable to be used in the inter-
active context. Thus, in further experiments, we only use strategy 6 for deducing
pairwise constraints between images.

Comparison using strategy 6 for deducing pairwise constraints These
experiments aim at comparing the performance of our proposed semi-supervised



5.3. Experiments 163

Figure 5.8 � Comparison of the proposed semi-supervised clustering and the HMRF-
kmeans clustering on the PascalVoc2006 image database according to the scenario
1, 2 and 3. Strategy 6 for deducing pairwise constraints between images is used (see
Table 5.1).

clustering model and the semi-supervised HMRF-kmeans in larger image databases
(PascalVoc2006, Caltech101 and Corel30k). For the PascalVoc2006 which has 10
classes of images, the three scenarios 1, 2 and 3 described above are still used
for comparing the results of the two methods. For databases which have a large
number of classes: Caltech101 (101 classes) and Corel30k (320 classes), we do not
show all cluster prototype images to the user on the principal plane, but only
the prototype images of a small number of clusters, as explained in 5.3.1. The
maximum number of clusters that could be shown on the principal plane in each
interactive iteration is �xed to 30. The set of 30 clusters chosen to be shown on the
principal plane of di�erent interactive iterations may be slightly di�erent or quite
di�erent, depending on the strategy used for choosing the clusters. As presented in
Section 5.3.1, two strategies are proposed for choosing clusters to be shown on the
principal plane: either 30 clusters are randomly chosen or the 30 closest clusters
are chosen. Both these two strategies are analyzed experimentally in this section.
Regarding the strategies used by the user agent for choosing the c clusters (among
the displayed clusters), for interacting in each interactive iteration, the results of
previous experiments show that the scenario 2 gives better results than the scenario
1. Note that the clusters are randomly chosen in the scenario 2, while the closest
clusters are chosen in the scenario 1. Therefore, in the following experiments on
the Caltech101 and the Corel30k image databases, we present only the clustering
results when c among the 30 presented clusters are randomly chosen by the software
agent simulating the behaviour of the human user when interacting with the system.
We propose the 4 following scenarios for the experiments on the Caltech101 and
Corel30k image databases in addition of the �rst three scenarios presented at the
beginning of Section 5.3.2:

• Scenario 4: 30 closest clusters are chosen to be shown to the user on the
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Figure 5.9 � Comparison of the proposed semi-supervised clustering and the HMRF-
kmeans clustering on the Caltech101 image database according to the scenario 4, 5,
6 and 7. Strategy 6 for deducing pairwise constraints between images is used (see
Table 5.1).

principal plane in each interactive iteration, c = 5 clusters are randomly
chosen by the user agent for interacting.

• Scenario 5: 30 clusters are randomly chosen to be shown to the user on
the principal plane in each interactive iteration, c = 5 clusters are randomly
chosen by the user agent for interacting.

• Scenario 6: 30 closest clusters are chosen to be shown to the user on the
principal plane in each interactive iteration, c = 10 clusters are randomly
chosen by the user agent for interacting.

• Scenario 7: 30 clusters are randomly chosen to be shown to the user on
the principal plane in each interactive iteration, c = 10 clusters are randomly
chosen by the user agent for interacting.



5.3. Experiments 165

Figure 5.10 � Comparison of the proposed semi-supervised clustering and the
HMRF-kmeans clustering on the Corel30k image database according to the sce-
nario 4, 5, 6 and 7. Strategy 6 for deducing pairwise constraints between images
presented in Table 5.1 is used.

Figure 5.8 compares our proposed semi-supervised clustering and the HMRF-
kmeans method during 50 interactive iterations on the PascalVoc2006 image database,
according to the three interactive scenarios 1, 2 and 3. Figures 5.9 and 5.10
present the clustering results of the two methods on respectively the Caltech101
and Corel30k image databases, using the four scenarios 4, 5, 6 and 7. As for pre-
vious experiments, the results of the scenario 2 shown in Figure 5.8 represent, at
each interactive iteration, the mean value over 10 executions along with the cor-
responding standard deviation. Moreover, in all the scenarios 4, 5, 6 and 7 used
for the experiments on the Caltech101 and Corel30k database, the clusters are also
randomly chosen for the user agent interaction. Therefore, each scenario is executed
5 times and Figures 5.9 and 5.10 show the mean values and also the corresponding
standard deviations over 5 executions of the clustering results for these scenarios.
The processing time (or average processing time) over all 50 interactive iterations
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Table 5.5 � Processing times over 50 interactive iterations of the experiments shown
in Figures 5.8, 5.9 and 5.10 comparing our proposed interactive semi-supervised
clustering model with the HMRF-kmeans clustering. These experiments are on
the PascalVoc2006, Caltech101 and Corel30k image databases, using strategy 6 for
deducing pairwise constraints between images.

PascalVoc2006 database
Scenario 1 Scenario 2 Scenario 3

Proposed model 1h3' 1h21' 2h
HMRF-kmeans 2h16' 3h10' 2h49'

Caltech101 database
Scenario 4 Scenario 5 Scenario 6 Scenario 7

Proposed model 13h26' 8h4' 33h34' 50h12'
HMRF-kmeans 48h33' 33h45' 157h26' 101h11'

Corel30k database
Scenario 4 Scenario 5 Scenario 6 Scenario 7

Proposed model 45h05' 94h04' 101h47' 217h38'
HMRF-kmeans 154h37' 159h33' 109h26' 629h13'

corresponding to the experiments shown in Figures 5.8, 5.9 and 5.10 are presented
in Table 5.5.

The results shown in Figures 5.8, 5.9, 5.10 and Table 5.5 show that for all
scenarios and for all image databases, our proposed interactive semi-supervised
clustering model outperforms the HMRF-kmeans in both the performance and the
processing time. Moreover, the clustering results are also better when the numbers
of feedback for each iteration is higher (scenarios 6 and 7, where the number of
clusters used for interaction is higher, give better results than scenarios 4 and 5).
We can also see that the clustering results progress less when the size of the database
increases. Note that the better performance of our semi-supervised clustering model
can also be explained by the higher performance of the BIRCH in comparison to the
k-means clustering in the initial step, especially for the Corel30k image database.

5.4 Discussion

A new interactive semi-supervised clustering model is presented in this chapter.
After receiving user feedback for each interactive iteration, the proposed semi-
supervised clustering re-organizes the dataset by considering the pairwise con-
straints between CF entries deduced from the user feedback. Experimental analysis,
using a software agent for simulating human user behaviour, shows that our model
helps to improve the clustering results when using user feedback. Note that our ex-
perimental scenarios are realistic, and can be realized by a real user as the number
of clicks required is tractable. The experiments on di�erent image databases (Wang,
PascalVoc2006, Caltech101, Corel30k), presented in this chapter, also show that our
semi-supervised clustering method outperforms the semi-supervised HMRF-kmeans
in both performance and processing time. Note that the processing times of the
experiments presented in this chapter include also the times for analyzing the per-
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formance by the external measures, for simulating the behaviour of the human user
by the user agent. Therefore, the real processing time of the clustering phase is
lower. Moreover, our code is not optimized. The optimization of our code is a part
of our future work.

Furthermore, we propose and compare, experimentally, di�erent strategies for
deducing pairwise constraints from the user feedback accumulated from all interac-
tive iterations. The experimental results show that strategy 6 in Table 5.1, which
keeps only the most important constraints (must-links between the most distant
images and cannot-links between the closest images), provides the best trade-o�
between performance and processing time. Strategy 6 is therefore the most suit-
able, in our context involving the user in the indexing phase by clustering.

5.5 Summary of the chapter

This chapter presents the main contribution in this thesis: a new interactive semi-
supervised clustering model which helps to reduce the semantic gap between the
high-level semantic concepts expressed by the user and the low-level features ex-
tracted from the images, by involving the user for progressively providing feedback
to the system. Our semi-supervised clustering method is developed from the hier-
archical BIRCH unsupervised clustering, and is inspired from the integration of the
pairwise constraints in the re-clustering of the HMRF-kmeans.

Di�erent of the HMRF-kmeans, our semi-supervised clustering method uses
pairwise constraints between CF entries which are more signi�cant than the pairwise
constraints between images. Using pairwise constraints between CF entries can help
to reduce the number of constraints, since a pairwise constraints between two CF
entries corresponds to multiple pairwise constraints between images of these two CF
entries. As a consequence, it contributes to a signi�cant reducing of the processing
time.

Our semi-supervised clustering proposes to use the neighbourhood information
in conjunction with the user feedback for deducing pairwise constraints for the
re-clustering phase. The �neighbourhood� is already used in the traditional HMRF-
kmeans for grouping objects which are �must-link�, based on the basis the pairwise
constraints provided as prior knowledge. In this chapter, we extend the neigh-
bourhood for our interactive context where supervised information is progressively
provided during di�erent interactive iterations, not in the form of pairwise con-
straints, but in the form of cluster-level feedback (i.e. positive images and negative
images of each cluster, displacement of images between clusters). We also de�ne a
new term called �seed� which helps to adapt the neighbourhood with the CF entries
of the BIRCH tree.

Another important contribution of this chapter is the proposition of 6 di�erent
strategies for deducing pairwise constraints. These 6 strategies are both theoreti-
cally and experimentally analyzed in this chapter. From these analyses, the strategy
6 which keeps only the most important constraints (must-link between the most dis-
tant objects and cannot-links between the closest objects) gives the best trade-o�
between the performance and the processing time.

The �nal contribution of this chapter is an experimental comparison of our
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method with the HMRF-kmeans, using di�erent image databases of increasing
sizes (Wang, PascalVoc2006, Caltech101 and Corel30k). Experimental results show
that our semi-supervised clustering outperforms the HMRF-kmeans, in both per-
formance and processing time.



Chapter 6

Conclusions

In this thesis, we are interested in the structuring phase of the Content-Based Image
Retrieval (CBIR) model. We assume that the feature extraction phase is completed
and the image feature descriptors are available. Instead of traditional indexing
methods, we propose to use clustering methods in the structuring phase. The aim
is to obtain an indexed structure more adapted to the retrieval of high dimensional
and unbalanced data. The objective of this thesis is to implement the clustering in
an interactive context where the user is involved to interact with the system in order
to reduce the �semantic gap� between the high-level semantic concepts expressed
by the user and the low-level features extracted from the images. That may help to
improve the clustering results and therefore improve the performance of the further
retrieval.

In this chapter, the Section 6.1 summarizes the contributions of this thesis on
the interactive clustering problem of image databases of increasing sizes. Section
6.2 presents a discussion of the proposed approach as well as some future directions
for this thesis.

6.1 Contributions

In this section, we summarize the contributions of this thesis for involving the user
in the structuring phase, by using clustering methods instead of traditional indexing
methods, in order to reduce the semantic gap between high-level semantic concepts
expressed by the user and the low level features extracted from the images.

Our �rst contribution, associated with a structured survey of the principal tech-
niques used in di�erent phases of CBIR, lies in analyzing the advantages of using
clustering methods instead of traditional feature space structuring method for struc-
turing large image databases. The usefulness of involving the user in the clustering
phase in order to reduce the semantic gap is also analyzed.

The second contribution of this thesis is a survey of the main unsupervised
clustering methods as well as di�erent measures (internal measures and external
measures) for evaluating the clustering results. Di�erent of other surveys in the
literature, we respectively analyze the advantages and drawbacks of di�erent unsu-
pervised clustering methods in a context in which the user is involved in the cluster-
ing of large image databases and where incrementality and hierarchical structuring
are needed. Our formal comparison of the analyzed methods shows that the hier-
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archical methods (BIRCH, R-tree, SS-tree and SR-tree) are the most suitable to
our context because of their hierarchical structures, their incrementality and their
adaptability to large databases.

Our third contribution is an experimental comparison, using di�erent internal
and external measures, of some unsupervised clustering methods (global k-means,
AHC, R-tree, SR-tree and BIRCH) with di�erent image databases of increasing
sizes (Wang, PascalVoc2006, Caltech101 and Corel 30k). The aim is to study the
scalability of these approaches when the size of the database is increasing. In
order to evaluate these unsupervised clustering approaches in the context of high-
dimensional data, di�erent feature descriptors of di�erent sizes are used for these
experiments. Based on this experimental comparison, the BIRCH+rgSIFT, using
the Bags of Words approach, appears to be the best choice in our context because
it gives high performance in low processing time.

Our fourth contribution is a brief state of the art of the principal semi-supervised
clustering methods (traditional methods using prior knowledge as well as interac-
tive methods using feedback). The contribution of this state of the art lies in the
analysis of the possibility to use di�erent semi-supervised clustering methods in an
interactive context in which the user is involved for progressively providing feedback
to the system.

The �fth contribution in this thesis is the proposition of a framework for imple-
menting any semi-supervised clustering method in the interactive context. A 2D
interactive interface is proposed, allowing the user to provide feedback to the sys-
tem. Via this interactive interface, the user can give cluster-level feedback (positive
images, negative images of each cluster, displacement of images between clusters),
without having any prior knowledge about the image database. We proposed to
use internal measures for evaluating the quality of the images in their clusters, in
order to select the representative images that are shown for each selected cluster on
the interactive interface. Internal measures are proposed to be used because they
do not need any ground truth about the image database.

Based on our theoretical analysis of di�erent semi-supervised clustering algo-
rithms, our sixth contribution lies in experimentally comparing some semi-supervised
clustering methods (the interactive cluster-level semi-supervised clustering, the Roc-
chio formula based clustering and the HMRF-kmeans), which are the most suitable
for our interactive context. External measures, which provide evaluation close to
the wishes of the user by using the ground truth, are used for evaluating these
experiments. The Rocchio formula based clustering is our proposed interactive
semi-supervised clustering, based on the use of the Rocchio formula for incorporat-
ing user feedback in initializing the cluster centres for the re-clustering phase. We
adapt the traditional semi-supervised HMRF-kmeans for dealing with user feedback
in our interactive model. With the aim of automatically undertaking these interac-
tive experiments and avoiding the subjective dependence of the experimental results
on a human user, a software software agent simulating the behaviour of the human
user is implemented for providing feedback in each interactive iteration. The exper-
imental results show an improvement of the clustering results when involving user
feedback. Moreover, the HMRF-kmeans which uses pairwise constraints between
images gives the best result in a reasonable processing time.

The seventh contribution, which is our main contribution in this thesis, is a
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new interactive semi-supervised clustering model involving the user for progres-
sively providing feedback to the system. Our semi-supervised clustering method
is developed from the hierarchical BIRCH unsupervised clustering, and is inspired
from the integration of the pairwise constraints in the re-clustering of the HMRF-
kmeans. Di�erent of the HMRF-kmeans, our semi-supervised clustering method
uses pairwise constraints between CF entries which are more signi�cant than the
pairwise constraints between images. Using pairwise constraints between CF entries
can help to reduce the number of constraints, and therefore improve the processing
time, since multiple pairwise constraints between images of two CF entries can be
replaced by only one pairwise constraint between these two CF entries. We pro-
pose to use the neighbourhood information in conjunction with the user feedback
for deducing pairwise constraints for the re-clustering phase. The �neighbourhood�
is already used in the traditional HMRF-kmeans for grouping objects which are
�must-link� based on the pairwise constraints provided as prior knowledge. In our
work, we explain how to extend the neighbourhood to our interactive context, where
supervised information is progressively provided not in the form of pairwise con-
straints, but in the form of cluster-level feedback (i.e. positive images and negative
images of each cluster, displacement of images between clusters). We also de�ne a
new term called �seed� which helps to adapt the neighbourhood with the CF entries
of the BIRCH tree.

The eighth contribution of this thesis is the proposition of 6 di�erent strate-
gies for deducing pairwise constraints, based on the user feedback as well as the
neighbourhood information. Both theoretical and experimental analyses of these 6
strategies are proposed. From these analyses, the strategy 6 which keeps only the
most �di�cult� constraints (must-link between the most distant objects and cannot-
links between the closest objects) gives the best trade-o� between the performance
and the processing time. This strategy is therefore the most suitable to be used in
the interactive context in which the user is involved.

The ninth and �nal contribution of this thesis is an experimental comparison
of our semi-supervised clustering with the HMRF-kmeans, using di�erent image
databases of increasing sizes (Wang, PascalVoc2006, Caltech101 and Corel30k). Ac-
cording to this comparison, our semi-supervised clustering outperforms the HMRF-
kmeans, in both performance and processing time.

6.2 Discussion and future directions

Since interactive clustering for feature space structuring of large image databases
is still a di�cult problem, there are numerous directions for improving our model.

The �rst direction, a theoretical perspective, concerns the clustering evaluation
measures. As far as we know, there exist only internal measures which do not use
any semantic information and external measures which require the ground truth
specifying the class labels of all the images in the database. In our system, since
the clustering system does not know the ground truth, we use internal measures
for evaluating the representativity of the images in each cluster in order to select
the images which should be shown to the user on the interactive interface. As only
21 images of each selected cluster are displayed for the user in each interactive
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iteration, the choice of these images is very important. It in�uences the quality
of the user feedback, especially in the case of large image databases in which each
cluster generally contains a high number of images. In fact, the system receives
a small amount of supervised information in the form of user feedback. It may
be more e�cient if there are some measures which can evaluate the quality of the
images in each cluster with a small amount of knowledge provided by the user.
Moreover, for huge image databases, the ground truth is generally di�cult to be
generated. The measures which evaluate the clustering results using a small amount
of knowledge are therefore more suitable than external measures. The development
of this kind of measures is considered in our future lines of work. This kind of
measures will be valuable not only for our context, but also for evaluating the
result of any unsupervised or semi-supervised clustering method, based on a small
amount of supervised information which is generally easier to have than a complete
ground truth.

The next directions concern the experimental aspects. Until now, our exper-
imental analyses generally uses a software agent for simulating the behaviour of
the human user for providing feedback to the system. Indeed, the user interface
is already implemented and some preliminary experiments with a real user are
performed but a complete experimental analysis involving a human user was not
performed at a large scale yet. The experiments with di�erent human users in the
clustering of di�erent image database are envisaged in the near future for studying
the scalability of our model according to the interactions of di�erent users. Our cur-
rent experiments were only performed with a maximum of 30 000 images. Larger
image databases such as MIRFLICK including about one million images are also
envisaged for further experiments for analyzing the computational complexity as
well as the performance of the proposed model in the case of huge image databases.
Moreover, our model is actually only experimented in the interactive clustering con-
text. It was not applied yet in the structuring phase of a real CBIR system. In
the near future, we envisage to adapt our model for the structuring phase of a real
CBIR system in order to study the variation of the retrieval results when the user
is involved in the structuring phase for improving the indexed structure.

Another direction of our work, a technological perspective, is to improve the
visualization interface. The e�cient visualization of the clustering results of huge
image databases is still an open challenge. At the moment, only up to 30 clusters
can be visualized on a 2D PCA plane summarizing, for instance, roughly 65%
of the data information of the Wang and PascalVoc2006 images databases. This
percentage may be reduced when the size of the database is higher. However,
the visualization of the clustering results strongly in�uences the performance of
the interactive process. A more adapted representation could help the user better
observe the clustering results and give more relevant feedback which could lead to
a better performance of the re-clustering phase, and therefore the further retrieval.

Our �nal direction, a technological/theoretical perspective, lies on improving
the user interaction. At the moment, the user can provide cluster-level feedback
via some simple interactions (clicks for specifying positive and/or negative images
for each cluster, drags and drops images from a cluster to another). In fact, the
user may sometimes want to merge di�erent clusters into only one cluster, he may
also want to split a cluster into multiple clusters. These kinds of interactions are
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realistic, and do not require any prior knowledge about the ground truth, but can
be performed by only basing on the visualizing of the clustering results. In our
near future, we will adapt our interactive interface for providing these kinds of
interactions to the user. For instance, the user can drag a cluster, by clicking on
the circle corresponding to this cluster, and drop it to another cluster for demanding
to merge these two clusters. For splitting cluster, for instance, the new interactive
interface can also provide the user the possibility to create a new �empty� cluster on
the screen, and the user then can drag and drop some images from another cluster to
this empty cluster. Our semi-supervised clustering also has to be adapted according
to these new kinds of user interactions. For instance, we can create must-links
between images of the clusters which should be merged, or cannot-link between
images of the cluster which should be split and thus perform the re-clustering with
the corresponding number of clusters. Another hierarchical clustering can also be
envisaged for clustering the CF entries of the BIRCH tree instead of the k-means
for more adapting to the merge and split interactions.
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