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todos los compañeros y compañeras de la Universidad de Barcelona y del Centro de
Visión por Computador, a los estudiantes y a todos aquellos con que he tenido la
oportunidad de intercambiar ideas y opiniones. Muchas gracias a todos. Un agradec-
imiento especial, y no se en que idioma darselo, se lo debo a Francesco, con el cual he
compartido mucho a lo largo de este viaje. Muchas gracias Fra.

No tinc tantes paraules per expressar els meus agräıments a la Mireia. Aquest
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0.2 Abstract

The main interest of this thesis focuses on computational methodologies able to
reduce the degree of complexity of learning algorithms and its application to physical
activity recognition.

Random Projections will be used to reduce the computational complexity in Mul-
tiple Classifier Systems. A new boosting algorithm and a new one-class classification
methodology have been developed. In both cases, random projections are used for
reducing the dimensionality of the problem and for generating diversity, exploiting in
this way the benefits that ensembles of classifiers provide in terms of performances
and stability. Moreover, the new one-class classification methodology, based on an en-
semble strategy able to approximate a multidimensional convex-hull, has been proved
to over-perform state-of-the-art one-class classification methodologies.

The practical focus of the thesis is towards Physical Activity Recognition. A new
hardware platform for wearable computing application has been developed and used
for collecting data of activities of daily living allowing to study the optimal features
set able to successful classify activities.

Based on the classification methodologies developed and the study conducted on
physical activity classification, a machine learning architecture capable to provide a
continuous authentication mechanism for mobile-devices users has been worked out,
as last part of the thesis. The system, based on a personalized classifier, states on
the analysis of the characteristic gait patterns typical of each individual ensuring an
unobtrusive and continuous authentication mechanism.
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1“For he was fashioning tripods, twenty in all, to stand around the wall of his well-builded hall,
and golden wheels had he set beneath the base of each that of themselves they might enter the
gathering of the gods at his wish and again return to his house, a wonder to behold.” [Murray(1924)]
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Chapter 1

Introduction

“I’m losing my mind.
[...]Each day that passes I forget more and remember less. I don’t have Alzheimer’s
or even brain damage. I’m just aging.”
With those words, Gordon Bell starts his book “Total Recall. How the E-Memory
revolution will change everything” [Bell and Gemmel(2009)]. Bell, a luminary in the
computer world, has been the first person in the world attempting to digitally record
his life. He wore an automatic camera, wore an arm-strap that logged his biometrics
and began recording telephone calls. The wonder of the technology created is the
new capability to find the desired information in the large amount of data he stored.
Bell is the center of a technological revolution that will accomplish a transformation
in the way humans think about the meaning of their life.

Nevertheless, Bell’s words also focus on an important social concern: aging. Euro-
pean population is having fewer children and is getting older [Hewitt(2002)]. Further-
more, the prevalence of health problems and chronic illnesses will affect how people
live, their mobility and social relationships. In this context, the use of Information
and Communication Technologies (ICT) must play the role of enhancing the qual-
ity of life of these people [European Commision(2001)]. In particular, ICT solutions
based on new computational paradigms as Ubiquitous Computing, aiming to hide the
technological complexity, will make older and disable people the most frequent users
of selfcare and eHealth services via mobile phones and computers at home. With tech-
nology pervading everyday life, people can live longer and healthier lives, changing
accordingly their habits and lifestyle.

1



2 INTRODUCTION

Figure 1.1: A shift in people-computing power ratio

1.1 The third era of modern computing
Ubiquitous computing is the term given to the third era of modern computing. The
first era was dominated by mainframe computers, a single large time-shared computer
owned by an organization and used by many people at the same time (see Figure 1.1).
The second era was the era of the personal computer, a machine primarily owned and
used by only one person. The third era, Ubiquitous Computing, representative of the
present time, is characterized by the explosion of networked portable digital computer
products in the form of smart phones, tablets, Personal Digital Assistants (PDAs) and
embedded computers built into many of the devices we own. Each era has resulted
in progressively larger numbers of computers becoming integrated into everyday life.

The original term Ubiquitous Computing, or UbiComp, was coined by [Weiser(1991)]
at Xerox PARC. He envisioned a future in which computing technologies will be em-
bedded in everyday artifacts, were used to support daily activities, and were equally
applicable to our work and our homes. Weiser saw UbiComp as an opportunity to
improve the style of computing that has been imposed on users since the early days of
the mainframe, that is, sitting on a chair, looking at a screen, typing on a keyboard,
and making selections with a mouse. Through this style of interaction, traditional
computers consume much of our attention and divorce us from what is happening
all around us, resulting in a somewhat solitary all-consuming experience. Personal
computers try to virtualize our world with familiar PC desktops and nice icons rep-
resenting documents, printers, and trash. UbiComp takes the opposite philosophy.
UbiComp pushes the computerized versions of these technologies back into the physi-
cal world. Weiser believed that in a UbiComp world, computation could be integrated
with common objects that you might already be using for everyday work practices,
rather than forcing computation to be a separate activity. If the integration would
be well done, you may not even notice that any computer was involved in your sor-
rounding. The confluence of Ubiquitous Computing and Artificial Intelligence brings
to a new paradigm known as Ambient Intelligence [Augusto(2007)].
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1.1.1 Ambient Intelligence and Ambient Assisted Living

The concept of Ambient Intelligence (AmI) provides a vision of the Information Soci-
ety where the emphasis is on greater user-friendliness, more efficient services support,
user-empowerment, and support for human interactions. People are surrounded by
intelligent intuitive interfaces that are embedded in all kinds of objects and an en-
vironment that is capable of recognizing and responding to the presence of different
individuals in a seamless, unobtrusive and often invisible way. The emerging demo-
graphic change towards an aging population has begun to introduce technological
solutions developed to motivate and assist older people to stay active for longer in
the labour market, to prevent social isolation and to help people stay independent
for as long as possible. AmI plays a major role in helping to achieve these goals.
AmI can help elderly individuals to improve their quality of life, stay healthier, live
independently for longer, and counteract reduced capabilities which are more preva-
lent with age. AmI can enable them to remain active at work, in their community
and at home. However, the problems cannot be solved by means of AmI alone. An
interdisciplinary work is required to identify the actual problems and to develop and
evaluate solutions together with the involved fields. It is important to note that the
underlying technology is supposed to work in the background, as many users simply
will not be able to deal with the attached technical complexity. This is a major factor
to ensure the acceptance of developed solutions. The research field dealing with the
above presented problems is called Ambient Assisted Living (AAL).

1.2 The Focus of this Thesis

The European Ambient Assisted Living Innovation Alliance [AAliance(2010)] released
a road-map, which presents a detailed overview into the prospected future of AAL
topics, concepts and technologies until the year 2025. This road-map contains the
AAL Systems Composition Reference Architecture, shown in Figure 1.2, which details
the common requirements for AAL systems. The reference architecture describes a
three-layer networking approach to enable communication and connectivity between
devices and services. It defines an AAL system consisting of seven component types.

Figure 1.2: AALIANCE Systems Composition Reference Architecture
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The first block of the architecture, the Personal Area Network (PAN) Device, is
object of discussion in this thesis1. PAN Devices represent sensors and actuators
that are either in-body, on-body or wearable. PAN devices principally perceives
the status of the user using a variety of sensors like obtrusive physiological ones
supporting health monitoring or unobtrusive sensors like cameras, microphones and
accelerometers. Some devices have the only capability to store a small batch of raw
data and sending it to a network gateway. Other devices are powerful enough to
process the collected data locally and provide useful support and information to the
user. Depending on its type, a device may be able to provide basic feedback to the user
in case of emergencies or failure. These aspects highlight an important characteristic.
PAN Devices learn from users, reason about the actions occuring in a specific moment
and react in an intelligent way. Nevertheless, the majority of AI and machine learning
techniques running on PAN devices are methodologies usually developed for typical
desktop computers. Some of these techniques still remains useful in the case of PAN
devices, others are pretty difficult to be adapted to the specific limited resources
hardware.

Figure 1.3: Main Topics of this Thesis

The main topics of this thesis are presented in Figure 1.3. First, this work focuses
on finding computational methodologies able to reduce the degree of complexity of
learning algorithms in order to be adapted to computational devices with limited
resources, as PAN Devices are. In particular, the focus has been put on ensembles
learning, a widely accepted methodology to improve the performances of a predictive
model [Kuncheva(2004)]. The technique of Random Projections is able to reduce
the complexity of many geometrical and probabilistic algorithms [Vempala(2004)].
This technique is used here to reduce the computational complexity of the particular
problem at hand. Beside the mere task of dimensionality reduction, Random Pro-
jections will be used to provide diversity as well, exploiting in this way the benefits
that ensembles of classifiers provide in terms of performances and stability. The high
dimensionality of PAN Devices data represents a of problems when machine learning
algorithms are used. For this reason, a study on the optimal set of features capable to

1For a complete description of the other blocks please refere to [AAliance(2010)]
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discriminate a subset of Activity of Daily Life (ADLs) will be performed. Monitoring
ADLs should be accomplished using PAN Devices that look like common consumer
devices rather devices with many wires [Lester et al.(2006)]. A wearable device is
assembled in order to collect data, perform experiments on ADLs in different envi-
ronmental situations and conduct the aforementioned study. Non intrusive sensors
like a camera, a microphone and an accelerometer will be used instead of physio-
logical sensors like ECG or pulse-oximetry those, despite its capabilities to provide
direct information about the health of a subject, would provide more resistance at
the moment to be worn by the subject.

The confluence of these two lines leads to the development of a machine learning
architecture capable to verify people by means of their own walking motion patterns.
Walking represents the baseline activity for healthy people. Furthermore, the capa-
bility of walking and its deviation from regular patterns is symptomatic of the health
status of a person. The system is able to verify users in unobtrusive and reliable way,
adapting to slight changes occurring when walking through different environments.

Figure 1.4: Structure of this Thesis



6 INTRODUCTION

1.3 Structure of the Thesis

This thesis is structured as shown in Figure 5.1.

In Chapter 2, two algorithms using dimensionality reduction and approximation
techniques are presented. In Section 2.1, the technique of Random Projections will
be studied from the machine learning point of view, paying particular attention on
both the dimensionality reduction aspect and the diversity that Random Projections
are able to provide. These capabilities will be used in the construction of a boosted
ensemble of classifiers. Different typologies of Random Projections will be taken into
account and the effect of keeping or changing the original dimensionality of the learn-
ing problem will be also studied. The embedding of Random Projections in boosting
ensembles will lead to a novel boosting technique called RpBoost. In Section 2.2,
a new one-class classification ensemble strategy will be presented, the Approximate
Polytope Ensemble. The main contribution of this section is two-fold. First, the geo-
metrical concept of convex hull will be used to define the boundary of the target class
defining the problem. Expansion or contraction of the structure will be introduced
in order to avoid over-fitting and to provide the optimal behavior of the classifier.
Secondly, the high computational complexity needed for computing the convex hull
in high dimensional spaces will be reduced using the Random Projections technique.

Chapter 3 relates two aspects of physical activity recognition. In Section 3.1,
a wearable computing device developed for acquiring data of physical activities will
be presented. The device, designed for monitoring a variety of day-to-day activities,
will be used for collecting different datasets in different environments. The capability
of the system to acquire different datastreams will be shown and some highlights on
the computational power of the system will be presented. In Section 3.2, a study
on features for classifying physical activities will be conducted. The set of features
obtained allows to achieve high results in classification problems and, when solely
the features derived by motion data are taken into account, allows to use the only
accelerometric sensor for classifying activity with good performances.

In Chapter 4, a novel technique for users authentication and verification using gait
as a biometric unobtrusive pattern will be presented. The method, based on a two
stages machine learning pipeline, uses an activity classifier and a verification system.
The general activity classifier will be subsequently personalized for a specific user
with data related to her walking pattern. As a result of this step, the system will be
much more selective with respect to the new walking pattern. In the second stage,
the system verifies whether the user is an authorized one or not. The core of this
stage is the Approximate Polytope Ensemble and a four layers architecture is built
around this one-class classifier. The architecture proposed will improve robustness to
outliers, taking into account temporal coherence as well.

Finally, in Chapter 5, conclusions on this thesis will be reported.



Chapter 2

Approximate Ensemble Methods

Random Projections (RPs) are a well known and widely employed technique for di-
mensionality reduction. RPs are based on the theoretical results that high dimensional
data can be projected into a lower dimensional space without significantly losing the
structure of the original data. The capability to reduce effortlessly the dimensionality
of the problem at hand without a remarkable loss in significance allows to create very
simple and powerful learning algorithms. The principal interest towards RPs is due
to this specific behavior. Using RPs, the computational complexity of reducing the
dimensionality of a problem is based on a multiplication operation. This operation
can be efficiently performed using Digital Signal Processors commonly available in
many digital hardware systems.

On the other hand, the theoretical interest towards RPs is not limited to the
only dimensionality reduction capabilities of this technique. In the specific context of
machine learning, RPs may be considered a tool for generating diversity in the creation
of an ensemble of classifiers. Using RPs, the different embeddings of the original
feature space provide multiple view of the original features space. This diversity can
be generated projecting data into subspaces, space having the same dimensionality of
the features spaces or spaces with dimensionality higher than the original space.

7
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2.1 Embedding Random Projections in Boosting En-

semble

AdaBoost [Freund and Schapire(1999)] represents the most popular meta-algorithm1

to ensemble a set of classifiers. Boosting is based on the observation that finding many
rough classification rules can be much easier than finding a single, highly accurate
prediction rule. To apply the boosting approach, we start with a method or algorithm
for finding those rough rules. The boosting algorithm calls this “weak” learning
algorithm repeatedly. Each time it is called, the base learning algorithm generates
a new weak prediction rule and, after many rounds, the boosting algorithm must
combine these weak rules into a single prediction rule that, hopefully, will be much
more accurate than any one of the weak rules.

From the point of view of incremental optimization, AdaBoost represents an ad-
ditive model fitting procedure that approximates the optimization of an exponential
loss function. Changing the exponential loss function with a least square loss func-
tion yields to a new model of boosting, known as LsBoost [Friedman(2000)]. Gradient
Boosting Machines (GBMs) generalize this idea for any arbitrary loss function.

In this section, a methodology for embedding Random Projections into the incre-
mental optimization process of GBM will be presented. The stepwise approximation
will be obtained projecting data into random spaces at every step of the optimization
process and looking for the classifier that best fits the data in the projected space.

2.1.1 Related works on Random Projections in Machine Learn-
ing

Random Projections have been widely used in pattern recognition applications as a
tool for dimensionality reduction [Achlioptas(2001)],[Dasgupta(2000)],
[Fradkin and Madigan(2003)],[Bingham and Mannila(2001)].

[Arriaga and Vempala(2006)] outline the basic learning algorithm based on Ran-
dom Projections consisting of two simple steps: project the data in a random subspace
and run the algorithm in that space, taking advantage of working faster with a lower
dimensionality. This simple algorithm represents the baseline for embedding RPs into
GBMs.

[Dasgupta(2000)] uses RPs with Gaussian mixture models for classification of both
synthetic and real data. In his work, data are projected into a randomly chosen d-
dimensional subspace and the learning algorithm works in this new smaller space
achieving highly accurate classification results. [Fradkin and Madigan(2003)] com-
pare the performances of C4.5, Nearest Neighbors and SVM using both Principal
Component Analysis and RPs as dimensionality reduction technique. Their experi-
mental results demonstrate the advantages of using PCA in almost all the considered

1A meta-algorithm is an algorithm that can be usefully considered to have other significant
algorithms, not just elementary operations and simple control structures, as its constituents.
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test cases.

Some works also suggest that RPs are a powerful tool even for non linearly sep-
arable classification problems. For example, [Rahimi and Recht(2008)] use RPs for
building a weighted sum of linear separators. Authors show that using RPs is equiv-
alent to use the kernel trick. At the same time, authors state that embedding RPs
into the weighted sum of linear separators provides a faster decaying of the testing
error rate with respect to standard AdaBoost.

Others works, like [Blum(2006)],[Balcan et al.(2006)], suggest that RPs can help
in the features selection process and provide specific insights in the construction of
large margin classifiers. [Blum(2006)] reports some basic algorithms showing that if
the learning problem is separable with a large margin, then the problem still remains
separable in the reduced random space. Moreover, even picking a random separator on
data projected down to a line, provides a reasonable chance to get a weak hypothesis
as well.

2.1.2 Gradient Boosting Machines

In regression and classification problems, given a set of training sample {yi,xi}
N
1 , we

look for a function F ∗(x) that maps x to y such that, over the joint distribution
of all (y,x)-values, the expected value of some specified loss function Ψ(y, F (x)) is
minimized. Usually, the function F (x) is member of parameterized class of functions
F (x;P) :

F (x;P) =

M
∑

m=0

βmh(x;am) (2.1)

where P = {βm,am} M
0 is a set of parameters. Nevertheless, we can consider F (x)

evaluated at each point x to be a parameter and minimize:

Φ(F (x)) = Ey[Ψ(y, F (x)|x)], (2.2)

at each individual x, directly with respect to F (x). The solution is of the type:

F ∗(x) =

M
∑

m=0

fm(x), (2.3)

where f0(x) is an initial guess, and {fm}M1 are incremental functions, known as “steps”
or “boosts”. Using steepest-descent, we get :

fm(x) = −%mgm(x), (2.4)

where, assuming that differentiation and integration can be interchanged,

gm(x) = Ey

[

∂Ψ(y, F (x))

∂F (x)
|x

]

F (x)=Fm−1(x)

(2.5)
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and

Fm−1(x) =
m−1
∑

i=0

fi(x). (2.6)

When the joint distribution of (y,x) is represented by a finite data sample, Ey[·|x]
cannot be evaluated accurately at each xi and, if we could perform parameter opti-
mization, the solution is difficult to obtain. In this case, given the current approxi-
mation Fm−1(x) at the m-th iteration, the function βmh(x;a) is the best greedy step
towards the minimizing solution F ∗(x), under the constraint that the step direction
h(x,am) be a member of the parameterized class of functions h(x,a). One possibility
is to choose the member of the parameterized class h(x;a) that is most parallel in the
N -dimensional data space with the unconstrained negative gradient {−gm(xi)}

N
1 . In

this case, it is possible to use h(x,am) instead of the unconstrained negative gradient
−gm(x). Weights %m are given by the following line search:

%m = argmin%

N
∑

i=1

Ψ(yi, Fm−1(xi) + %h(xi;am)) (2.7)

and the approximation updated in the following way:

Fm(x) = Fm−1(x) + %mh(x;am). (2.8)

When y ∈ {−1, 1} and the loss function Ψ(y, F ) only depends on y and F only
through their product Ψ(y, F ) = Ψ(yF ), the algorithm reduces to the original boost-

ing formulation. If the loss function is Ψ(y, F ) = (y−F )2

2 , gradient boosting produces
the stage-wise approach of iteratively fitting the current residuals. Algorithm 1, de-
scribing this situation, is called LsBoost. Generally, direct optimization of ill-posed
problems usually yields to poor results. The influence of each base classifier in the
ensemble is governed by the weighting vector % and its optimization can be formulated
as an L2 regularization problem modifying line 4 in Algorithm 1 as follows

(%m,am) = argmina,%

N
∑

i=1

[ỹmi − %h(xi;a)]
2 + λ2‖%‖22 s.t. % > 0 (2.9)

In the next section, an analytical solution for the L2 regularization problem will be
used jointly to RPs in the construction of the ensemble of classifiers.

2.1.3 The Random Projections Method

[Johnson and Lindenstauss(1984)] showed the theoretical foundation of RPs. This
lemma states that, given m points in <n, it is possible to project these points into a
d-dimensional subspace, with d = O( 1

γ2 log(m)). In this space, relative distances and
angles between all pairs of points are approximately preserved up to 1± γ, with high
probability.
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Input: A set of training sample {yi,xi}
N
1

Output: A classifier F (x)

F0(x) = argmin%

∑N
i=1 Ψ(yi, %);1

foreach m ∈ {1..M} do2

ỹmi = yi − Fm−1, i = 1, N ;3

(%m,am) = argmina,%

∑N
i=1[ỹ

m
i − %h(xi;a)]

2;4

Fm(x) = Fm−1(x) + %mh(xi;am);5

end6

Algorithm 1: LsBoost Algorithm

Formally, given 0 < γ < 1, a set X of m points in <N , and a number n > n0 =
O( 1

γ2 log(m)), there is a Lipschitz function f : <N → <n such that

(1− γ)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + γ)‖u− v‖2. (2.10)

If m data points in a features space are considered row-vectors of length N , the
projection can be performed by multiplying all the m points by a randomly generated
N ×m matrix. The random matrix should be one of the following types:

• P with columns to be random orthonormal vectors;

• U−1,1 with each entry to be 1 or −1 drawn independently at random;

• N0,1 with each entry drawn independently from a standard Normal Distribution
N(0, 1).

While using these types of projections ensures that relative distances and angles are
approximately preserved, there is no guarantee that using other types of matrices
could preserve the structure of the data. Data can be projected down to lower di-
mensions, to space having the same dimension than the original problem or, even,
spaces with higher dimension. The projection of the data to spaces of higher dimen-
sion does not rely on any theoretical results. Here, the possibility to project data to
super-spaces is also taken into account.

2.1.4 Embedding Random Projections in Boosting Machines

The original algorithm of LsBoost has been modified to be adapted to embedding RPs
into the boosting algorithm. In point 4 of Algorithm 1, it is possible first searching
analytically for the optimal set of weighting values for each candidate classifier and
after to select the classifier that best approximates the negative gradient with the
correspondent precomputed weight [Pujol(2010)]. It is possible to find the optimal
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weighting value for each candidate classifier h(x; a) by:

∂[(ỹm − %Ta h(x; a))
T (ỹm − %Ta h(x; a))]

∂%a
= 0 (2.11)

solved by

ỹmT
h(x; a) = %Ta h(x; a)

Th(x; a) = %TaN. (2.12)

Since h(x; a) ∈ {+1,−1}, the dot product h(x; a)Th(x; a) is just the number of train-
ing examples. In this way, the regularization parameter can be simply taken into
account by addition. The optimal set of weights is given by Eq.(2.13)

%m =
ỹmA

N + λ
, (2.13)

where ỹm denotes the vector of residuals at step m, A is the matrix of training
examples, N is the number of training examples and λ represents the L2 penalization
term. If λ = 0, regularization is not taken into account. Once the optimal set of
values is found, a simple selection of the classifier that best approximates the negative
gradient can be performed. The described procedure can be performed on training
data projected onto random spaces. This modified version, called RpBoost is defined
as Regularized Gradient Boosting where data are projected using a transformation
represented by a specific RPs technique. Algorithm 2 defines the steps of the proposed
method. Finally, the following three classifiers are defined:

Definition 1. RpBoost.sub is defined as RpBoost working on data projected
down-to a random space with dimension lower than the original space;

Definition 2. RpBoost.same is defined as RpBoost working on data projected
to a random space with the same dimension of the original space;

Definition 3. RpBoost.super is defined as RpBoost working on data projected
to a random space with dimension upper than the original space.
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Input: The type of projection, the dimension of the random space
Output: A classifier F (x)

F0(x) = argmin%

∑N
i=1 Ψ(yi, %);1

foreach m ∈ {1..M} do2

ỹmi = yi − Fm−1, i = 1, N ;3

Set a new Rp;4

Ar = A ·Rp;5

%m = ỹmAr

N+λ ;6

am = argmina

∑N
i=1[ỹ

m
i − %mh(xi;a)]

2;7

Fm(x) = Fm−1(x) + %mh(xi;am);8

end9

Algorithm 2: RpBoost Algorithm

2.1.5 Experimental Results

The performances of RpBoost will be evaluated on synthetic and real problems. Rp-
Boost will be compared with AdaBoost and LsBoost on both set of problems. Decision
stumps are used as weak classifiers. The maximum dimension of the ensemble has
been arbitrarily set to 500 classifiers. In order to have a straightforward comparison,
the dimensions of both projection subspace and super-space will be equals to the half
and the double of the dimension of the features space, respectively. The effect of
using the three types of projections will be evaluated and compared. Classification
accuracy is used as performance measure.

Synthetic problems: Test Patterns

Test patterns are synthetic bi-dimensional datasets proposed by [Fawcett(2010)] to
be used for comparing classifiers. The patterns are randomly generated on a two di-
mensional grid of points, in the ranges [0:4] x [0:4] with a resolution of 0.05, yielding
6561 total points. The points are labeled according to their position in the pattern.
In Table 2.1, the formal description of all the used patterns is reported. In Figure 2.1,
examples of two patterns are shown.

Validation Procedure: For each test pattern, a stratified sample of 1000 points
is used for training and the complete distribution for testing. The validation proce-
dure has been performed five times and results averaged.

Results: Results obtained using projection of type P and projections of type
U−1,1 are reported in Figure 2.2 and Figure 2.3. RpBoost performs slightly better
than AdaBoost and LsBoost on some particulars patterns. RpBoost.sub with P pro-
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Table 2.1: Test Patterns
Test Pattern Description

Sine Y = 0.84sin(1.78X)
Linear Y = 1.87 ∗X ± 1.74
Parity 9 parity circles
Annulus Annulus at (2.00, 2.00)

Parabolic Y = (X−2)2

4∗0.25+1

Disjunctive 4 disjoint concave polygons
Polynomial Y = 1

2 ∗ (x− 2)3 + 1
2 ∗ (x− 2.2)2 + 2

Checkerboard 9 squares alternating classes

(a) (b)

Figure 2.1: Test Patterns: (a) Annulus; (b) Checkerboard

jections always performs considerably worse than RpBoost.same and RpBoost.super.
RpBoost.super with U−1,1 projections always performs worst the RpBoost.same and
RpBoost.sub. In the Parity and in the Checkerboard test patterns, RpBoost al-
ways performs better than the compared methods, independently from the type of
projection. In Figure 2.4, results obtained withN0,1 projections are shown. The corre-
spondent numerical values are reported in Table 2.2. RpBoost.sub and RpBoost.same
always have the best accuracy. In Annulus and Checkerboard, the performances are
considerably improved.
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Figure 2.2: Test Patterns : Comparative Results with RpBoost using projections
of type P

Figure 2.3: Test Patterns : Comparative Results with RpBoost using projections
of type U−1,1
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Figure 2.4: Test Patterns : Comparative Results with RpBoost using projections
of type N0,1

Table 2.2: Numerical Values of Accuracy obtained on Test Pattern with RpBoost
working on N0,1 projections

AdaBoost LsBoost RpBoost.sub RpBoost.same RpBoost.super
Sine 0.983 0.937 0.986 0.985 0.840
Linear 0.984 0.921 0.993 0.992 0.946
Parity 0.824 0.884 0.966 0.968 0.738
Annulus 0.83 0.828 0.963 0.965 0.730
Parabolic 0.976 0.943 0.987 0.989 0.806
Disjunctive 0.827 0.816 0.935 0.928 0.495
Polynomial 0.984 0.951 0.988 0.990 0.892

Checkerboard 0.694 0.854 0.955 0.957 0.620
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Table 2.3: List of UCI problems used to evaluate RpBoost

Dataset Elements Dataset Elements
Monks-1 272,284 Liver 100,245
Monks-2 300,301 Tic-Tac-Toe 626,332
Monks-3 275, 279 Ionosphere 126,225
Breast 239,485 Sonar 97,111

UCI Datasets

Eight datasets from UCI Repository [Frank and Asuncion(2010)], reported in Ta-
ble 2.7, have been used to evaluate the performances of RpBoost. The cardinality of
each class of the dataset is also reported. All the datasets selected are binary classi-
fication problems.

Validation Procedure Results have been obtained using two rounds of 10-folds
cross-validation and averaging the results. The value of the regularization parameter
λ has been selected using generalized 5-fold cross validation on the training set for
λ ∈ {1, 5, 10, 50, 100, 500, 1000, 5000, 10000}.

Results Comparative results for RpBoost are reported in Figure 2.5 and in Fig-
ure 2.6 for projections of type P and projections of type U−1,1, respectively. As
for synthetic data, there exist problems where RpBoost outperforms AdaBoost and
LsBoost. RpBoost.super provides better classification accuracies only when using pro-
jections of type P . In Figure 2.7, comparative results of RpBoost using projections
of type N0,1 are shown. Numerical values are reported in Table 2.4. In Monks-1 and
Monks-2, RpBoost outperforms AdaBoost and LsBoost. A slight improvement can be
noted in Breast as well. The slight improvements on Sonar and Ionosphere, datasets
with the highest dimensions, do not seem to completely benefit of the dimensionality
reduction that RPs provide.
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Figure 2.5: UCI Datasets: Comparative Results with RpBoost using projections of
type P

Figure 2.6: UCI Datasets: Comparative Results with RpBoost using projections of
type U−1,1
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Figure 2.7: UCI Datasets: Comparative Results with RpBoost using projections of
type N0,1

Table 2.4: Numerical Values of Accuracy obtained on UCI datasets with RpBoost
working on N0,1 projections

AdaBoost LsBoost RpBoost.sub RpBoost.same RpBoost.super

Liver 0.708 0.742 0.692 0.698 0.547
Breast 0.959 0.962 0.974 0.973 0.937
Sonar 0.839 0.862 0.829 0.841 0.579

Monks-1 0.746 0.746 0.796 0.794 0.625
Monks-2 0.577 0.654 0.872 0.873 0.554
Monks-3 0.953 0.963 0.913 0.919 0.756

Tic-tac-toe 0.920 0.983 0.983 0.986 0.611
Ionosphere 0.924 0.914 0.921 0.928 0.857
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Table 2.5: Resume of Results Obtained on Test Patterns

Test Pattern Accuracy Classifier Rp

Sine 98.6% RpBoost.sub N
Linear 99.3% RpBoost.sub N
Parity 96.8% RpBoost.same N
Annulus 96.5% RpBoost.same N
Parabolic 98.9% RpBoost.same N
Disjunctive 93.5% RpBoost.sub N
Polynomial 99.0% RpBoost.same N

Checkerboard 95.7% RpBoost.same N

Table 2.6: Resume of Results Obtained on UCI Datasets

Dataset Accuracy Classifier Rp

Liver 74.2% LsBoost -
Breast 97.6% RpBoost.super/sub P N
Sonar 86.2% LsBoost -

Monks-1 95.3% RpBoost.same N
Monks-2 91.6% RpBoost.super P
Monks-3 97.2% RpBoost.same N

Tic-tac-toe 98.6% RpBoost.same U
Ionosphere 92.8% RpBoost.same/sub U N

Discussion on Results Obtained

Table 2.5 and Table 2.6 report the highest accuracies obtained on the set of prob-
lems considered. For each one, the value of accuracy, the classifier providing such a
value and the type of projection Rp, if used, are reported. RpBoost always provides
the best accuracy on synthetic data using projections drawn from a normal distribu-
tion. Significant improvements are experienced in Annulus but also in Checkerboard,
Parity and Disjunctive where performance are incremented of more than 10%. In
Figure 2.8, the classification of Annulus is shown. Although classification is not
highly accurate, the effect of using RPs is evident. RPs allow to follow the non linear
boundary even when weak linear classifiers as decision stumps are used. Figure 2.9
shows the classification of Checkerboard. Here, differently from other classifiers,
RpBoost is capable to grasp the different class in the central part of the pattern.
Checkerboard represents a typical XOR-type problem that linear classifiers are not
able to solve. Similarly, Parity and Disjunctive represent XOR-type problems. This
fact is confirmed in the Monks-1 and Monks-2 datasets, both representing XOR-type
problems [Thrun et al.(1991)]. In all these cases, the classification accuracy is consid-
erably improved compared to the performance obtained from AdaBoost and LsBoost.
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Figure 2.8: Classification of the annulus test pattern using RpBoost, AdaBoost
and LsBoost

Figure 2.9: Classification of the checkerboard test pattern using RpBoost, Ad-
aBoost and LsBoost
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2.1.6 Discussion on Random Projections

A preliminary study on Random Projections has been conducted in this first section.
Random Projections have been used for dimensionality reduction with the aim, at
the same time, to generate diversity in the construction of Boosting Machines. This
embedding has generated the definition of a new algorithm called RpBoost. At each
step of the boosting optimization process, data are projected in a random space and,
in this new space, the classifier that best fits the data is selected and added to the
ensemble. Projections can be performed to random spaces having the same dimension
of the original features space, but also to lower and higher dimensional spaces.

RpBoost always has the best performances on synthetic data and, in the majority
of the cases, on real problems too. Performances are good especially when projections
to subspaces or space of the same dimensionality than the original spaces are used.
With these spaces, RpBoost performs well with all the types of projections on most
of the problems. The use of super-spaces yields to better classification accuracy only
when the projection is drawn completely at random. In this case, the performance
appears to be slightly better than other types of projections. Nevertheless, results
redoubtably highlights the fact that the type of projection providing the best results
is N0,1 that is, projections drawn from a standard Normal Distribution N(0, 1). This
type of projections provide always the best results in the artificial datasets and in the
majority of the cases of the real problems.

When methodologies are not corroborated by solid theoretical foundations, as in
the case of Random Projections, these empirical results may be useful and significant
guidelines. In the next section, a new ensemble algorithm for one-class classification
is presented where Random Projections represent the fundamental methodology aim-
ing to reduce the complexity of the classification problem at hand. Thanks to the
experience acquired, we naturally decide to use projection of type N0,1 when using
Random Projections.
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2.2 Approximate Polytope Decision Ensemble for

One-Class Classification

In pattern recognition, a particular class of problems is defined when only data related
to a target are available. This typology of problems is known as One-Class classifi-
cation. These classification tasks naturally arise when target data can be effortlessly
collected while counterexamples are scarce or difficult to obtain
[Kulikowski et al.(1999)]. Typical one-class problems are the prediction of mean time
before failure of a machinery [Kulikowski et al.(1999)], [Tax(2001)] where examples of
non-regular operations can only be found in presence of cracks and malfunctions or the
problem of authorship verification [Koppel and Schler(2004)] where, while it is possi-
ble to easily provide all the examples necessary to model the author taken into account,
it is pretty hard to define a proper sampling of all the possible similar authors. Effec-
tive One-Class classification strategies use density estimation methods or boundary
methods to model the target class. Gaussian Model [Bishop(1995)], Mixture of Gaus-
sian Model [Duda and Hart(1973)] and Parzen Density Estimation [Parzen(1962)] are
density estimation methods widely used. Density estimation methods work well when
there exists a-priori knowledge of the problem at hand or a big load of data is avail-
able. Boundary methods only intend to model the boundary of the problem disregard-
ing the underlying distribution. Well known approaches to boundary methods are k-
Centers [Ypma et al.(1999)] and Nearest Neighbors Method [Duda and Hart(1973)],
[Tax(2001)]. Support Vectors Data Description (SVDD) [Tax(2001)] represents the
state of the art in One-Class classification. SVDD computes the minimum hyper-
sphere containing all the data in a multidimensional space, providing an elegant and
intuitive understanding about the solution of the classification problem. Indeed, many
classification problems can be solved efficiently when looked at from the geometrical
point of view. In this geometrical framework, the smallest polytope containing the
full set of points, i.e. convex hull, represents an even more general structure than
hypersphere.

The convex hull has always been considered a powerful tool in geometrical pattern
recognition [Bhattacharya(1982)],[Toussaint(1978)].
Recent researches [Bennett and Bredensteiner(2000)], [Bi and Bennett(2001)] show
that there exists a geometrical interpretation of the Support Vector Machine (SVM)
[Vapnik(1995)] related to the convex hull. Finding the maximum margin between two
classes is equivalent to find the nearest neighbors in the convex hull of each class when
classes do not overlap. This intuitive explanation provides an immediate visualization
of the main concepts of SVM from a geometrical point of view. Nevertheless, using the
convex hull in real applications is limited by the fact that its computation in a high
dimensional space has an extremely high cost. Many approximations have been pro-
posed in order to circumvent this problem. For instance, [Takahashi and Kudo(2010)]
use the convex hull as a maximum margin classifier. They approximate the facets of
the convex hull where the support planes are represented by a set of reflexive support
functions separating one class from the other ones. [Pal and Bhattacharya(2007)] pro-
pose a self-evolving two-layers neural network model for computing the approximate
convex hull of a set of points in 3-D and spheres. The vertices of the convex hull
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are mapped with the neurons of the top layer. [Mavroforakis and Theodoridis(2006)]
introduce the notion for Reduced Convex Hull based on the geometric interpretation
of SVM, formalizing the case when classes are not separable.

In this section, a new algorithm is introduced for using shrunk/enlarged versions
of the convex hull of the training data in order to model the boundary of one-class
classification problems. The geometrical entities that define the boundary are called
Extended Convex Polytopes and their growth is governed by a parameter α. Using this
model, a point is said to belong to the class if it lies inside the extended convex poly-
tope. However, the creation of an exact extended convex polytope is computationally
unfeasible in high dimensional spaces. Random projections represent a suitable tool
to approximate the original multidimensional convex hull and to reduce its computa-
tional complexity. Therefore, the computational limitation derived from computing
the convex hull in high dimensional spaces is circumvented by approximating the
d-dimensional expanded convex polytope decision by an ensemble of decisions in low-
dimensional (<< d) spaces, i.e. Approximate Convex Polytope Decision Ensemble.
In those low-dimensional spaces, computing the convex hull and establishing whether
points belong to the geometric structure are both well known problems having very
efficient solutions [Preparata and Shamos(1985)].
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2.2.1 Convex Approximate Polytope Ensemble

One-class classification can be performed by modeling the boundary of the set of
points defining the problem. If the boundary encloses a convex area, then the convex
hull, defined as the minimal convex set containing all the training points, provides a
good general tool for modeling the target class. The convex hull of a set C ⊆ <n,
denoted as convC, is the smallest convex set that contains C and is defined as the
set of all convex combinations of points in C:

convC = {θ1x1 + · · ·+ θmxm |xi ∈ C, θi ≥ 0, ∀i;
∑

i

θi = 1}

In this scenario, the one-class classification task is reduced to the problem of knowing
whether test data lie inside or outside the hull. Although the convex hull provides
a compact representation of the data, a small amount of outliers may lead to very
different shapes of the convex polytope. Thus, a decision using these structures is
prone to over-fitting. In this sense, it is useful to define a parameterized set of con-
vex polytopes associated with the original convex hull of the training data. These
polytopes are shrunk/enlarged versions of the original convex hull governed by a pa-
rameter α. The goal of this family of polytopes is to define the degree of robustness to
outliers. This allows to set the operating point in the receiver-operating characteristic
i.e. ROC curve. Given the set C ⊆ <n, we define the extended convex polytope
with respect to the center c and with expansion parameter α as

vα : {v + α
(v − c)

‖v − c‖
|v ∈ convC} (2.14)

Observe that the parameter α defines a constant shrinking (−‖v − c‖ ≤ α ≤ 0) or
enlargement (α ≥ 0) of the convex structure with respect to the center c. If α = 0
then v0 = convC. Figure 2.10 illustrates a shrunk and enlarged expanded convex
polytope. The light gray convex polytope represents the original convex hull with
vertices {vi, i = 1 . . . 5}. The dark gray polytope corresponds to the enlargement of the
original convex hull using α > 0. The white polytope corresponds to a shrunk version
of the convex hull using α < 0. Two fundamental limitations exist in the suggested

Figure 2.10: Illustration of the expanded convex polytope in the 2D space
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approach. In high dimensional spaces, the task of computing the extended convex
polytope and testing if a point belongs to its interior is computationally unfeasible. In
the following section, an approximate solution to this problem is introduced.

Approximate convex polytope decision ensemble

The creation of high-dimensional convex hulls is computationally intensive. In gen-
eral, the cost for computing a d-dimensional convex hull on N data examples is
O(Nbd/2c+1). This cost is prohibitive in time and memory and, for the classification
task, only checking if a point lies inside the multidimensional structure is needed.
The Approximate convex Polytope decision Ensemble (APE) consists in ap-
proximating the decision made using the extended convex polytope in the original
d-dimensional space by aggregating a set of t decisions made on low-dimensional ran-
dom projections2 of the data. The approximation is based on the observation that
the vertices defining a convex polytope in a low-dimensional projection of the data
set correspond to a subset of the projected vertices belonging to the convex polytope
in the original d-dimensional space. With this observation in mind, we define the
decision rule as follows: given a set of T randomly projected replicas of the training
set, a point does belong to the modeled class if and only if the point lies inside the cor-
responding projected convex polytope – the polytope corresponding to the projected
data set – in all projections.

Figure 2.11: Illustration of the approximate convex polytope decision strategy

2As previously stated, random projections drawn by a normal distribution are those providing
the best results. In the rest of this section, projections will be drawn from a normal distribution
with zero mean and standard deviation 0.3, ensuring in this way that the elements of the projection
matrix are in the range [−1, 1] with high probability.



2.2. Approximate Polytope Decision Ensemble for One-Class Classification 27

In Figure 2.11, the method is shown graphically. Here, a three-dimensional convex
polytope and a test point laying outside of the hull is presented. At the bottom, three
random projection planes are displayed. The point does not belong to the modeled
class if there exists at least one projection in which the point is outside of the projected
convex polytope. Note that a testing point outside the original structure might appear
inside of some projections.

The expansion factor in random spaces

In order to decide if a point belongs to the target class, the extended convex polytope is
used. It is worth to remind that this structure is a shrunk or expanded version of the
convex hull governed by the parameter α. The approximate convex polytope decision
strategy relies in creating the expanded polytope in a low-dimensional space. Since
the projection matrix is created at random, the resulting space does not preserve the
norm of the original space. Hence, a constant value of the parameter α in the original
space corresponds to a set of values γi in the projected one. As a result, the low-
dimensional approximation of the expanded polytope is defined by the set of vertices
as follows

v̄α :

{

v̄i + γi
(v̄i − c̄)

‖v̄i − c̄‖

}

(2.15)

where c̄ = Pc represents the projected center, v̄i is the set of vertices belonging to
the convex hull of the projected data and γi is defined as follows,

γi =
(vi − c)TPTP (vi − c)

||vi − c||2
α (2.16)

where P is the random projection matrix, c is the center and vi is the ith vertex
of the convex hull in the original space. Note that there exists a different expan-
sion factor for each vertex vi belonging to the projected convex hull. Figure 2.12
illustrates the difference between the constant expansion of the original polytope and
the different gamma parameters in the projected counterpart. The original polytope
lies in a 2-dimensional space and the corresponding projected convex polytope in a
1-dimensional space. The figure clearly shows that though the convex polytope is
expanded by a constant value α in the original space, different expansion parameters
γi are needed in the projected space.

Approximate convex polytope decision ensemble learning algorithms

Algorithms 3 and 4 describe the steps needed for learning and testing the APE,
respectively. Both algorithms require defining the number of projections T for ap-
proximating the original convex polytope. In Algorithm 3, at each iteration, we first
create a random matrix. Then, the training set is projected into the space spanned
by the random projection matrix. Finally, the vertices of the convex hull of the
projected data set are found. The low-dimensional destination spaces is <2. Al-
gorithm 4 describes the test procedure. At each iteration t of the algorithm, the
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Figure 2.12: Projection of an expanded convex polytope

test point is projected into the space spanned by the tth random projection matrix.
Then, each vertex of the tth convex hull computed at the training step is expanded
by its corresponding gamma value (Eq. 2.16). Given the set of vertices of the ex-
panded convex polytope in the low-dimensional space (Eq. 2.15), we check if the test
point lies inside the projected polytope. A point is said to belong to the model if it
lies inside all the T projected polytopes. Many algorithms may be used to check if
a data point is inside a 2-D convex polytope like, for instance, the ray casting algo-
rithm [Preparata and Shamos(1985)]. In the 1-D case, the convex polytope is reduced
to a single line segment, and checking if a point lies in the segment just requires two
comparison.

Input: Training set C ∈ Rd, with d the number of features;
Number of Projections T

Output: The model M composed of T projection matrices and their respective convex hulls
vertices. The center c of the data.

M = ∅1

c = 1
N

∑
x, ∀x ∈ C2

foreach t = 1..T do3

Pt ∼ N (0, 1) % Create a normal random projection matrix4

Ct : {Ptx | x ∈ C} % Project data onto the low dimensional random space5

{v}t = conv Ct % Find the convex hull and return the set of vertices6

M = M ∪ (Pt, {v}t) % Store the set of vertices associated to the convex hull in the projected7
space and the projection matrix

end8

Algorithm 3: Approximate convex polytope decision ensemble training algorithm.
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Input: A test point x ∈ Rd;
The model M and center c;
Parameter α

Output: Results

Results = INSIDE1

foreach t = 1..T do2

x̄t = Ptx % Project data.3

vα

t
: {vi + γi

(vi−c)

‖vi−c‖ |vi ∈ {v}t} % Find the expanded convex polytope in the low dimensional4
space

if x̄t /∈ conv vα

t
then5

Results = OUTSIDE6
Break

end7

end8

Algorithm 4: Approximate convex polytope decision ensemble testing algorithm.

2.2.2 Non-Convex Approximate Polytope Ensemble

Many real world problems are not well modeled using a convex polytope. In this case,
an extension of APE is proposed that approximates the non-convex boundary by an
ensemble of convex polytopes. The algorithm is based on a tiling strategy where each
convex polytope is approximated by the APE methodology formerly described.

The underlying idea of this extension is to divide the non-convex boundary into a
set of convex problems. The result of this process is a new ensemble algorithm called
non-convex APE (NAPE). Algorithm 5 describes the pseudo-code for creating
this decomposition. Starting with a random point c, the set of points inside a d-
ball centered at c with radius r are considered at first. Figure 2.13(a) illustrates
this step. The black point corresponds to the first center c. Around c, a d-ball of
radius r is laid and the convex hull of the set of points inside the ball is computed.
This first d-dimensional convex hull is approximated using the technique described in
Section 2.2.1. For each projection the set of vertices conforming the convex hull in
the reduced space are back projected3 into the original space – see the gray points in
Figure 2.13(a). These points are added to a list of new candidate centers. At the next
iteration, the algorithm removes one of the possible candidate centers of the list and
repeat the former process as long as there are still training data points not covered
by any of the created convex hulls. Figure 2.13(b) shows the second iteration of the
process.

3Note that this step only needs to keep track of the points that are selected in the low-dimensional
space and correspond to the vertices of the projected convex hull.
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Input: Training set C ∈ Rd, with d the number of features;
Number of Projections T

Output: Model M composed of several convex models defined by Algorithm 3

L = ∅1

Pick a random training point pstart2

L = L ∪ {pstart} % Initialize the list of possible centers with the first random element3

Set all data points x ∈ C to the value not visited4

while ∃ x with value not visited do5
if L = ∅ then6

Pick a random a training point with attribute not visited, p ∈ C7
L = L ∪ {p}

end8
p = first(L) % Remove the first element of the list9
Ci : {x ∈ C| ‖x − p‖2 ≤ r} % Find the set of points to be modeled with a convex polytope in10
this iteration
Mi = TrainAch(Ci, T ) % Find the approximate model associated to the selected set using11
Algorithm 3
M = M ∪ Mi % Add the new convex model to the final model set.12
L = L ∪ {vi ∈ C| v̄i ∈ Mi} % Add the points of C corresponding to vertices of the projected13
convex hulls of the current model Mi

end14

Algorithm 5: Non-convex approximate decomposition algorithm.

Figure 2.13: Approximation of bi-dimensional Banana-shaped dataset using NAPE

In the same way the extended convex polytope is defined, an extended non-convex
polytope may also be defined. Observe that, due to the definition of the extended
convex polytope in Eq.2.14 and its approximation in Eq.2.15, taking a global α value
for all the convex polytopes suffices to expand the whole non-convex shape by a
constant value α. In order to test if a point lies inside the non-convex model, it
must be checked if it lies inside of at least one of the conforming extended convex
polytopes. Otherwise, the point is considered external.
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2.2.3 Experimental Results

In this section, an exhaustive comparison of APE and NAPE with many commonly
known one-class classifiers is presented. Here, the effect of projecting multi-dimensional
data down to one or bi-dimensional spaces is taken into account. For that reason,
APE-1 and APE-2 will mark the APE strategy when data are projected respectively
down to a line and down to a plane. The validation methodology, has been expanded
and presented in the subsequent subsection in order to include artificial data and UCI
datasets. In the next subsections, results obtained are reported.

Validation Methodology

APE and NAPE algorithms are compared with state-of-the-art one-class classifiers.
APE is created by projecting data down to both 1-dimensional (APE-1) and 2-
dimensional (APE-2) spaces. The methods are validated on two different typologies
of problems using standard performance evaluation metrics for one-class classifiers.

Comparison Methods: The proposed approaches are compared to Gaussian
model (Gauss), Mixture of Gaussians (MoG), Parzen Density Estimation (PDE), k-
Centers (kC), k-Nearest Neighbor (k-NN), k-Means (kM) [Bishop(1995)], Minimum
Spanning Trees (MST) [Juszczak et al.(2009)] and SVDD.

Evaluation Metrics: The Area Under the ROC Curve (AUC) is used as the
performance measure. In the proposed approaches, the ROC curve is computed using
the expansion factor α as a varying parameter.

Parameters Setting: For all the parametric one-class classifiers, the optimal
values of the parameter have been found using a 2-folds cross validation procedure
on the training set varying the parameter in the range 1 to 10. For PDE and MST,
no optimization parameters are needed. The fraction of no-target data rejected by
the compared classifiers is set to 0.1. For APE-1, APE-2 and NAPE, the number
of projections represents a parameter of the ensemble and it has been arbitrarily set
to 1000. Proper discussion on the number of projections is found in the following
sections. For NAPE, the value of the optimal radius r has been chosen by 2-fold cross
validation on the training set.

Datasets APE and NAPE are validated on two different typologies of problems:

• Artificial Datasets These datasets have been taken into account in order
to evaluate the behavior of the methods with respect to non-convexity. Nor-
mal distribution, banana-shaped, S-shaped, toroidal and 3-shaped distributions
have been used. No-target points are generated using the procedure described
in [Tax and Duin(2001)]. The radius of the generating hypersphere is set to 2.
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For each problem, 5-fold cross validation is performed on ten randomly created
sets and the results averaged.

• UCI datasets A number of 82 real one-class problems derived from UCI ma-
chine learning repositories datasets is considered. One-class problems are ob-
tained using one class as target and considering data from other classes as
no-target points. The list D of datasets is shown in Table 2.7. Each problem is
evaluated using 5-fold cross-validation on 10 different permutations of the data
for a total of 50 experiments per problem. The final result is obtained averaging
all the results. Due to its high computational complexity in training phase, a
reduced set of problems are used for comparison with SVDD. This subset D∗

is composed by problem in Table 2.7 marked with star. The choose of these
datasets is based on the fact that all these datasets, except Tic-tac-toe, have
cardinality less than 500 elements.

Table 2.7: List of One Class Problems

Id Dataset Targets

1,2,3 Balance-scale 3
4,5 Breast-Cancer 2

6,..,11 *Breast Tissue 6
12,13 *Bupa 2
14,..,17 Car 4
18,..,27 Cardiotogography 10
28,29 *CB-Sonar 2
30,31 *CB-Vowel 2
32,..,34 Contraceptive 3
35,..,37 *Glass 3
38,39 *Haberman 2
40,..,42 *Hayes-Roth 3
43,44 *Ionosphere 2
45,..,47 *Iris 3
48,49 *Monks 1 2
50,51 *Monks 2 2
52,53 *Monks 3 2
54,55 *Statlog Heart 2
56,..,62 Statlog Seg 7
63,..,65 *Teaching 3
66,..,68 *Tic-tac-toe 3
69,..79 Vowel 11
80,..,82 *Wine 3
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Table 2.8: Comparative Results obtained on Artificial Datasets

Normal Banana S-shaped 3-shaped Toroidal

Gauss 0.963 ± 0.006 0.941 ± 0.010 0.951 ± 0.010 0.954 ± 0.008 0.912 ± 0.010

MoG 0.963 ± 0.006 0.967 ± 0.005 0.973 ± 0.006 0.971±0.007 0.941 ± 0.009

PDE 0.963 ± 0.006 0.967 ± 0.005 0.973 ± 0.006 0.970 ± 0.006 0.941 ± 0.008

kNN 0.949 ± 0.009 0.956 ± 0.008 0.966 ± 0.007 0.965 ± 0.006 0.930 ± 0.009

kM 0.958 ± 0.008 0.961 ± 0.006 0.969 ± 0.006 0.969 ± 0.007 0.934 ± 0.009

kC 0.961 ± 0.007 0.955 ± 0.008 0.961 ± 0.007 0.963 ± 0.008 0.924 ± 0.012

MST 0.942 ± 0.012 0.953 ± 0.009 0.964 ± 0.007 0.964 ± 0.006 0.927 ± 0.010

SVDD 0.959 ± 0.006 0.955 ± 0.010 0.954 ± 0.007 0.952 ± 0.007 0.911 ± 0.013

APE-1 0.921 ± 0.029 0.872 ± 0.055 0.931 ± 0.027 0.881 ± 0.056 0.911 ± 0.023

APE-2 0.960 ± 0.013 0.880 ± 0.064 0.962 ± 0.010 0.955 ± 0.015 0.831 ± 0.050

NAPE 0.966±0.008 0.975±0.005 0.977±0.006 0.960 ± 0.004 0.957±0.012

Results on Artificial Datasets

Experiments on artificial datasets have been performed on datasets with 500, 750
and 1000 data-points4. In Table 2.8, all results obtained are averaged and reported.
All the numerical results are reported in Appendix 2. APE-2 provides good results
on the normal distribution dataset and on the S-shaped datasets. APE-1 performs
generally better than APE-2 on the Banana-shaped and Toroidal datasets. NAPE
always performs better than APE with significant improvement in the performances
when highly non-convex datasets are provided, like Banana and Toroidal. Finally,
NAPE always performs better than all the other methods on all the artificial problems
taken into account.

Results on UCI Datasets

Results obtained on D∗ and D dataset are reported in Table 2.9 and Table 2.10.
Each element of the table represents the number of times the methods reported on
the rows wins, ties and loses with respect to the method reported on the column. In
order to evaluate the statistical significance of the results, a z-test [Demšar(2006)] is
applied5. NAPE is statistically significant with respect to almost all the methods on
D∗. Using a larger number of problems, the improvement provided by NAPE still is
quite significant. This fact is shown in Table 2.10. NAPE increases the number of
problems where the approximate strategies perform better and it is able to approach
more close the statistical difference at 95%, when not reached. Numerical values of
the AUC obtained in the experiments are reported in Appendix 2. Finally, it should
be noted that, there exists a wide range of problems where APE-2 and NAPE tie.
This fact derives directly from the definition of the NAPE methodology that must
behave like APE-2 when the problem is convex. APE-1 does not provide significant
results compared with the other methods.

4Due to its high computational complexity in training, SVDD has been evaluated only on a
dataset with 500 data-points.

5The z-test ensures that, given N problems, if a method behaves better on at least N/2 +
√
N

problems, then there exists a probability p ≥ 0.95 that this behavior it is not due to randomness.
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Table 2.9: Counts of Wins, Ties and Losses obtained on D
∗

Gauss MoG PDE kNN kM kC MST SVDD APE-1 APE-2 NAPE

Gauss 0/0/0 21/4/17 22/3/17 19/3/20 23/2/17 23/0/19 19/1/22 19/3/20 25/0/17 17/0/25 17/0/25
MoG 17/4/21 0/0/0 22/3/17 14/3/25 27/2/13 23/0/19 18/1/23 19/3/20 22/0/20 13/0/29 12/0/30
PDE 17/3/22 17/3/22 0/0/0 11/3/28 27/2/13 25/0/17 13/1/28 14/3/25 22/0/20 13/0/29 12/0/30
kNN 20/3/19 25/3/14 28/3/11 0/0/0 29/2/11 29/0/13 12/1/29 16/4/22 23/0/19 16/0/26 14/0/28
kM 17/2/23 13/2/27 13/2/27 11/2/29 0/0/0 24/0/18 9/0/33 14/2/26 24/0/18 11/0/31 11/0/31
kC 19/0/23 19/0/23 17/0/25 13/0/29 18/0/24 0/0/0 15/0/27 15/0/27 30/0/12 16/0/26 13/0/29
MST 22/1/19 23/1/18 28/1/13 29/1/12 33/0/9 27/0/15 0/0/0 17/1/24 22/0/20 14/0/28 13/0/29
SVDD 20/3/19 20/3/19 25/3/14 22/4/16 26/2/14 27/0/15 24/1/17 0/0/0 25/0/17 16/0/26 15/0/27
APE-1 17/0/25 20/0/22 20/0/22 19/0/23 18/0/24 12/0/30 20/0/22 17/0/25 0/0/0 12/2/28 10/1/31
APE-2 25/0/17 29/0/13 29/0/13 26/0/16 31/0/11 26/0/16 28/0/14 26/0/16 28/2/12 0/0/0 0/30/12
NAPE 25/0/17 30/0/12 30/0/12 28/0/14 31/0/11 29/0/13 29/0/13 27/0/15 31/1/10 12/30/0 0/0/0

Table 2.10: Counts of Wins, Ties and Losses obtained on D

Gauss MoG PDE kNN kM kC MST APE-1 APE-2 NAPE

Gauss 0/0/0 25/21/36 28/18/36 26/18/38 49/13/20 50/4/28 28/9/45 50/0/32 31/0/51 30/0/52
MoG 36/21/25 0/0/0 34/18/30 27/18/37 54/13/15 49/4/29 34/9/39 51/0/31 39/0/43 36/0/46
PDE 36/18/28 30/18/34 0/0/0 20/22/40 54/13/15 50/4/28 25/13/44 50/0/32 38/0/44 35/0/47
kNN 38/18/26 37/18/27 40/22/20 0/0/0 54/13/15 54/4/24 23/16/43 51/0/31 41/0/41 37/0/45
kM 20/13/49 15/13/54 15/13/54 15/13/54 0/0/0 43/3/36 16/4/62 39/0/43 24/0/58 20/0/62
kC 28/4/50 29/4/49 28/4/50 24/4/54 36/3/43 0/0/0 27/4/51 48/0/34 32/0/50 27/0/55
MST 45/9/28 39/9/34 44/13/25 43/16/23 62/4/16 51/4/27 0/0/0 47/0/35 36/0/46 32/0/50
APE-1 32/0/50 31/0/51 32/0/50 31/0/51 43/0/39 34/0/48 35/0/47 0/0/0 13/20/49 10/5/67
APE-2 51/0/31 43/0/39 44/0/38 41/0/41 58/0/24 50/0/32 46/0/36 49/20/13 0/0/0 0/51/31
NAPE 52/0/30 46/0/36 47/0/35 45/0/37 62/0/20 55/0/27 50/0/32 67/5/10 31/51/0 0/0/0

2.2.4 Discussions

In this section, the number of random projections needed to approximate the original
multidimensional convex hull, the role of the expansion parameter α in the classifica-
tion process and the computational complexity of the methods are discussed.

Number of Projections

The number of projections in APE-1, APE-2 and NAPE has been arbitrarily set to
1000. Experiments show that using 1000 projections, the AUC obtained generally
converges to a maximum level of performances. However, using a lower number of
projections, high level of performance can still be achieved. In Table 2.11, the number
of projections needed to reach the 90%, 95% and 99% of the performances level,
computed for D∗, is reported, averaged over all the problems. In order to reach the
90%, APE-2 and NAPE need much less projection than APE-1. Both of them need
a very exiguous number of projections to achieve good performances. Nevertheless,
the 99% of the performance is reached by using approximately the same number of
projections. Results obtained also show that the slope of the performance curve for
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APE-1 is smoother than APE-2 and NAPE.

Table 2.11: Mean Number of Projections

90% 95% 99%
APE-1 24± 57 48± 93 156± 264
APE-2 8± 17 64± 132 184± 270
NAPE 6± 12 25± 70 169± 261

Expansion parameter

When non-target data are close to the boundary of the convex hull, the number of
projections needed for checking if those points are inside the polytope might be very
high. However, there is a synergistic effect that allows to mitigate this drawback.
The number of projections needed for checking if a point lies inside of the polytope
depends on the relative distance d to be checked and the size of the polytope. If
we consider a ball of radius R inscribing the polytope, the number of projections is
proportional to ∝ e−d/R. It should be observed that a negative value of the expansion
factor α shrinks the polytope. This has two effects: it increases the distance of the
point to the polytope by α and reduces the size of the polytope. As a result, the
relative distance becomes d+α

R−α . Thus, reducing the value of the α parameter reduces
drastically the number of projections needed without hindering the performance, i.e.
for α = 0.1R the number of projections is approximately reduced by 70%.

Computational Complexity

The proposed approximation strategy demonstrates great advantages from both com-
putational and memory storage points of view when compared to computing the multi-
dimensional convex hull. Given a training set of N examples, the computational cost
of building the convex hull in APE-2 is O(N logN) [Preparata and Shamos(1985)]
and O(N) in the case of APE-1. Let K be the number of points defining the convex
hull. The memory needed for storing the convex hull is K << N . The cost of testing
if a point lies inside or outside the structure is O(K). Thus, using t projections, the
final computational cost for building the APE-2 is O(tN logN) and the test cost is
O(tK). In one dimension, the convex hull reduces to a segment. In this case, the
modeling of the boundary simply consists in searching for the outermost points in the
interval of the real line where the projected points lie.

An estimation of training and testing time for all the methods is reported in Fig-
ure 2.146. Training time is represented by white bars and testing time with black
ones. Bars are obtained as the logarithm of the training and testing time normalized

6Tests have been performed in Matlab R2009a on 4-core Intel i5-2300@2.80GHz desktop computer
with 8 GiB RAM
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with respect to APE-2. Hence, positive bars are representative of slower times, neg-
ative bars represent faster times. Measures are reported with respect to APE-2. For
APE and NAPE, training and testing have been performed on 200 projections. APE-
1 is the fastest algorithm in both training and testing, followed by APE-2. SVDD
is the slowest algorithm in training, followed by NAPE although NAPE is 15 times
faster than SVDD. NAPE is the slowest method in testing, followed by MST by a
slight difference. NAPE is built using many APE-2 classifiers and the dimension of
its ensemble depends by the radius parameter. If the problem is highly non con-
vex, many polytopes are needed to approximate properly the original geometrical
structure. Numerical results are reported in Appendix 2.

Figure 2.14: Comparison of Training and Testing Time
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Table 2.12: Ranking of Best Methods

Position D∗ D

1 NAPE (4.155) NAPE (4.109)
2 APE-2 (4.715) kNN (4.786)
3 SVDD (5.536) APE-2 (4.908)
4 MST (5.655) MoG (5.036)
5 kNN (5.702) MST (5.067)
6 Gauss (5.881) PDE (5.298)
7 MoG (6.309) Gauss (5.561)
8 PDE (6.702) kC (6.518)
9 kC (6.976) APE-1 (6.665)
10 APE-1 (7.037) kM (7.048)
11 kM (7.333) -

2.2.5 Conclusions

In this section, the Approximate Polytope Ensemble and its extension, the Non-convex
Approximate Polytope Ensemble have been presented.

APE is based on the Convex Hull and extends this geometric concept in order
to model one-class classification problems. Expansion and contraction of the origi-
nal polytope governed by a parameter α, allows to avoid over-fitting and looking for
the optimal operating points in the ROC curve. The high computational complex-
ity for building the convex hull in high dimensional spaces is handled by projecting
data-points down to one or bi-dimensional spaces. In those low-dimensional spaces,
building the convex hull and check if a point lies inside the polygon are well known
problems with very efficient solutions. NAPE extends this approach using a tiling
strategy of convex patches able to approximate the original non-convex structure.

APE and NAPE have been compared on two different typologies of problems with
widely used one-class classifiers. A ranking of the results obtained on two sets of one-
class problems has been done with results shown in Table 2.12. The ranking shows
that NAPE and APE are highly competitive methods.

The fact that NAPE and APE are able to achieve similar results highlights the
fact that many of the problem considered may have a convex structure. When strong
non-convexities are present into the distribution, the differences in performance be-
tween NAPE and APE-2 is significant, as highlighted by results obtained on artificial
datasets. On artificial datasets, MoG is competitive with NAPE, over-performing in
some cases its performances.

In Chapter 4, the intuition that a mixture of convex structures can provide high
performances will be used to model non convex shapes maintaining at the same time a
good level of computational speed. The enhancement provided by the APE method-
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ology regarding the computational performance has been shown from theoretical and
practical point of view in comparison to the other classification methods taken into
account. Nevertheless, while APE is one of the fastest methods in train and the
fastest method in test, NAPE pays off its high performances at the expense of com-
putational speed. NAPE manages the non-convexity by mean of a parameter that sets
the dimension of the convex patches tiling the non-convex distribution. The optimal
radius, able to provide the best approximation, provides also the largest ensemble
that accurately models the non-convex shape. This drawback cannot be considered
an advantage when the methodology is applied into devices with limited resources.
As previously stated, in those cases the mixture of convex structure may represent a
solution able to provide the best trade-off between performances and speed.



Chapter 3

Wearable Sensors and Features
Selection for Physical Activity
Recognition

3.1 BeaStreamer,

a new platform for wearable computing appli-

cations

The original aim for a Wearable Computers (WCs) was to augment the human per-
ception and increase human mental capabilities. At the early age of WC, fundamental
characteristics for a WC were persistence and consistency [Starner(1999)]. The persis-
tent WC was constantly available and used concurrently while the user is performing
other tasks. At the same time, the WC was consistent because the same structured
wearable interface and functionality would be used in every situation, though adapted
to the current situation. This original trend, strength of the early prototypes of WC,
has waned with time, making systems much more humble and adapted to specific
applications. Modern WC systems have today the features already introduced for
PAN Devices, able to perceive the status of their user.

In this section, a new platform for wearable computing application, developed
during the work on this thesis, will be introduced and described in details. The system
will be used principally for collecting data of physical activities in many environmental
conditions and with many users. Moreover, the resulting system offers potentialities
useful in many contexts related to wearable computing.

39
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(a) (b)

(c) (d)

Figure 3.1: (a) The Xybernaut(1990); (b) The Twiddler, Massachusetts Institute of
Technology (1993); (c) The WearARM, ETH Zürich (2001) ; (d) TimMith, University
of South Australia (2003) (preprint from [Amft and Lukowicz(2009)])

3.1.1 Background on Wearable Computing

In the summer of 1961, Claude Shannon and Edward O. Thorp met in the Casino
in Las Vegas for testing a special device. Claude Shannon wore a concealed com-
puter and, using toe-operated switches, timed the ball and the rotor of the ball
running in the roulette wheel. The computer would send the prediction about the
outcome by radio to Ed Thorp, the bettor. The predictions were consistent with
the laboratory expected gain of +44% but a minor hardware problem deferred sus-
taining serious betting. This curious history, published by Thorp himself at Inter-
national Symposium of Wearable Computing [Thorp(1998)], told us how the first
wearable computer was built. In the 80s, technological challenges related to size,
power consumption, and weight constrained the development of wristwatch comput-
ers to simple calculators. In the early 90s, the increasing processing performance al-
lowed to build WC able to perform classic desktop computing tasks. In that decade,
the Xybernaut [Xybernaut(1990)] (Figure 3.1(a)) , one of the first commercial so-
lutions, appears on the market. The standard Xybernaut system setup consisted
of a belt-attached computing block and a carry-on display. Over all the decade,
many universities and research centers started to build its own wearable system. The
pioneer Thad Starner, in 1993, built the Twiddler [Starner(1993)](Figure 3.1(b)),
with an head mounted display and a one-handed keyboard. At the early 2000s, re-
searchers at ETH in Zürich investigated approaches to clothing attached electronics
resulting in the WearARM computing core [Lukowicz et al.(2001)] (Figure 3.1(c)).
As computational power increases, augmented reality has been integrated in WC.
In 2003, Bruce Thomas and his colleagues at University of South Australia de-
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veloped TinMith [Piekarski and Thomas(2009)](Figure 3.1(d)) to study information
overlay outdoors, using a WC. Since the early 2000s, various mobile computers
that could be used as WC have appeared on the market, such as the Sharp Zau-
rus [Sharp(2001)] and the Nokia N770 [Nokia(2005)]. Nevertheless real user-friendly
devices started to appear only around the late 2000s. In 2007, Eurotech introduced
Zypad WL1100 [Eurotech(2008)] (Figure 3.2(a)), a wrist-worn touchscreen computer,
that includes GPS, motion and audio sensor. In 2008, a joint effort from Intel,
the University of Washington and Standford, brings to the Mobile Sensing Plat-
form [Choudhury et al.(2008)] (Figure 3.2(b)), system principally developed for phys-
ical activity recognition research.

(a) (b)

Figure 3.2: (a) ZyPad WL1110, Eurotech (2007); (b) The Mobile sensing Platform,
Intel (2008)(preprint from [Amft and Lukowicz(2009)])

3.1.2 Overview on BeaStreamer

BeaStreamer is a custom wearable computing system designed for real-time multi-
sensors data acquisition. The principal advantage offered by BeaStreamer is that,
once purchased the hardware baseboard, all the Open-Source software components
can be installed, assembled and used under GPL [GNU(1989)] or OSI [OSI(1998)] li-
cense. Moreover, the hardware baseboard respects the Open-Source hardware philos-
ophy, recently defined in [OSHW(2010)], where the hardware design is made publicly
available so that anyone can study, modify, distribute, make, and sell the design or
hardware based on that design.

Any type of data-stream can be acquired from the system via hardwired or Blue-
tooth connection and stored in memory. In Figure 3.3(a), the system disassembled
is shown with its components. In Figure 3.3(b), the system is shown packaged. The
principal components of the system are the BeagleBoard [Beagleboard(2008)], a low-
price board with high computational capabilities, the Bluetooth Inertial Measurement
Unit (IMU) produced by Shimmer [Shimmer(2008)], a standard audio-video acquisi-
tion device, a Vuzix Wrap 310XL video eye-wear [Vuzix(2006)] and an USB battery.
The system can be easily brought in one hand or in a little bag. Audio and video
stream are acquired with standard low-cost webcam that can be hooked to the shirt
just down the neck or at chest level. The Bluetooth accelerometer can be put in the
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(a) (b)

Figure 3.3: (a) Components of BeaStreamer and (b) BeaStreamer packaged

pant pocket or in the shirt pocket. Users can wear the system as in Figure 3.4(a). In
Figure 3.4(b), an user proposing a different wearing setting is presented. In the former
case, the system is used for acquiring data of physical activities. The accelerometer
is inside the bag pocket, positioned on the chest, just behind the camera. The core
package is inside the bag. In the latter case, the accelerometer is on the wrist, the
core package is hooked at the waist level and the eye-wear glasses are also worn.

The system is able to perform intensive data analysis too. The core of the sys-
tem is based on the BeagleBoard, an OMAP-based board with high computational
capability. The system is equipped on-board with a 4 Gigabytes SD-Card where both
operating system and data can be stored. In the next section, the system is described
in details at all the levels.

(a) (b)

Figure 3.4: (a) User wearing BeaStreamer during data acquisition and (b) User
wearing the full BeaStreamer system
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Figure 3.5: BeagleBoard front view with components highlights

3.1.3 Description of the system

In this section, BeaStreamer is described at all the architectural levels. The typical
computer architecture approach [Tanenbaum and Goodman(1998)] is used during the
description. Firstly the description will focus on the hardware level and, afterwards,
on the operating system level and the application software level. In the following,
we will refer to BeaStreamer as the conjunction of hardware and operating system
constituting the wearable device. BeagleBoard will refer to the hardware board, that
is, the board without the operating system.

The Core: BeagleBoard

The BeagleBoard (BB), shown in Figure 3.5, is a low-power, low-cost single-board
computer produced by Texas Instruments (TI). With open source development in
mind, BB has been developed to demonstrate the potential of the OMAP3530 system-
on-chip, though not all OMAP functionalities are available on the board. The BB
sizes approximately 80mm × 80 mm and it provides all the functionalities of a basic
computer. The OMAP3530 system-on-chip includes an ARM Cortex-A8 CPU at 500
MHz which can run Windows CE or Linux, a TMS320C64x+ DSP for accelerated
video and audio codecs, and an Imagination Technologies PowerVR SGX530 GPU
to provide accelerated 2D and 3D rendering that supports OpenGL ES 2.0. Built-in
storage and memory is provided through a Package on Package chip that includes
256MBytes of NAND flash memory and 256MBytes of RAM. The board carries a
single SD/MMC connector, supporting a wide variety of device such as WiFi Cards,
SD/MMCMemory Cards and SDIO Cards. One interesting feature of the OMAP3530
is the possibility of booting the processor from SD/MMC card. Video output is
provided through separate S-Video and HDMI connections. A 4-pin DIN connector is
provided to access the S-Video output of the BeagleBoard. This is a separate output
from the OMAP processor and can contain different video output data from what is
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found on the DVI-D output. The S-Video output can be used to connect eyewear
glasses like Vuzix Wrap 310XL. The BB is equipped with a DVI-D connector that
uses an HDMI connector. It does not support the full HDMI interface and it is used
to provide the DVI-D interface only. Two USB ports are present on the board. Both
ports can be used as host ports, using High Speed USB devices conform to USB 2.0
protocol, using a maximum of 500 mA to power the host device. If additional power
is needed or multiple devices as mouse, keyboard and USB mass storage devices have
to be used, one USB port can be used as On-The-Go port to drive a self-powered USB
hub. This port can be also used to power the board from a standard external USB
port. If both USB ports need to be used, there exists an additional 5 mm power jack
to power the board. DC supply must be a regulated and clean 5 Volts supply. The
board uses up to 2 Watts of power. BB presents on board a populated RS-232 serial
connection where a serial terminal is present. Using the terminal, it is possible to set
the boot parameters and the size of the video buffer. Furthermore, a 14-pins JTAG
connection is present on-board to facilitate the software development and debugging
using various JTAG emulators. Two stereo 3.5mm jacks for audio input and output
are provided. An option for a single 28 pin header is provided on the board to allow
the connection of various expansion cards. Due to multiplexing, different signals can
be provided on each pin providing more that 24 actual signal accesses. This header is
not populated on the BB and, depending on the usage scenario, it can be populated as
needed. Because of the efficient power consumption, the board requires no additional
cooling. Typical usage scenario for the BB are shown in Figure 3.6. BB might be
considered a substitute of a laptop PC.

Figure 3.6: BeagleBoard usage scenario: BeagleBoard substitutes a laptop PC

The Motion Sensor: from Arduino to Shimmer

At the early stage of the development of BeaStreamer, no wireless motion sensor and
IMU devices were commercially available at accessible cost. For that reason, a custom
Bluetooth accelerometer was assembled to perform experiments. The custom Blue-
tooth accelerometer, shown in Figure 3.7(a), uses an Arduino board, a ADXL 345
accelerometer and a BlueSMiRF Gold Bluetooth modem. Arduino [Arduino(2008)] is
an open-source electronics prototyping platform based on flexible, easy-to-use hard-
ware and software. Arduino can sense the environment by receiving input from a
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variety of sensors and can affect its surroundings by controlling lights, motors, and
other actuators. The micro-controller on the board is programmed using the Arduino
programming language and the Arduino development environment. Although the
custom accelerometer board has a small form factor, its usability is affected by its low
physical robustness. Large scale experiments have been performed using a Shimmer
Bluetooth-IMU devices, shown in Figure 3.7(b).

(a) (b)

Figure 3.7: (a) Arduino-based Bluetooth Accelerometer and (b) Shimmer Bluetooth
Accelerometer

Power Management

There exists many projects using BB in many different applications , and lastly, a few
projects start using BB for wearable computing applications [Beagleboard(2011)].
The major issue in using BB in wearable applications is the need of a suitable
portable power supply source. In our typical setting, an AKAI external USB bat-
tery at 3400mAh has been used, allowing 4 hours of autonomy for the system in
complete functionality. Nevertheless, it is possible to assemble custom batteries able
to power the board (and the full BeaStreamer system) for the time needed. A custom
four-cells Li-Ion battery has been built up for powering the system. Experiments
about its duration have been performed receiving accelerometer data via Bluetooth.
Wireless connections, and in particular Bluetooth, are the responsible of the biggest
power consumption in electronic devices. Using the custom battery, up to ten hours
of continuous Bluetooth data reception can be guaranteed on BeaStreamer.

Boosting computational performances using the DSP

The DSP embedded into the OMAP SoC can be used to enhance the performances of
many algorithms, specially algorithms related to machine learning and computer vi-
sion. Although there is a JTAG port on the board, the cheapest way to enable the DSP
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is to make a software bridge from the ARM processor able to view the DSP as a shared-
memory peripheral from the ARM-side. TI provides C6EZRun [TexasInstruments(2010)],
a free, open-source development tool intended to easy develop DSP code on two-core
heterogeneous SoC processor. C6EZRun is a tool which takes in DSP C files and
generates either an ARM executable, or an ARM library which will leverage the DSP
to execute the C code. Using C6EZRun, the performances of computing array and
matricial operations have been evaluated. Results are shown in Figure 3.8 for bidi-
mensional arrays. Depending on the dimension of the array, there may be no evident
advantages in using the DSP. For very small array dimensions, using the DSP is much
slower than using the ARM processor, due to the cost of inter-processor communica-
tion. Nevertheless, when the dimension of the array increases, the advantage of using
the DSP are indisputable being able to perform operation of matrix up to three time
faster than the normal ARM processing unit.

Figure 3.8: Comparison ARM/DSP speed on bi-dimensional arrays

3.1.4 The Operating System Level:
OpenEmbedded + Ångstrom

Open Embedded (OE) [OpenEmbedded(2008)] is a complete cross-compiler suite al-
lowing developers to create complete Linux Distributions for embedded devices. In
particular, OE offers different kernels for the BeagleBoard. A stable Linux Kernel
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2.6.28r12 runs on BeaStreamer. This kernel has Video for Linux drivers, allowing to
plug in the system almost every Linux-compatible webcam. It also contains BlueZ,
the official Bluetooth protocol stack. The Ångstrom Distribution, a specific Linux
distribution for embedded systems, is running on the board. The Ångstrom Distribu-
tion can be easily built using OE with the possibility to install all the most common
packages available for Linux. In the distribution built, a tool-chain for developing
source codes on board has been included. Arm-gcc, arm-g++ and Python-Numpy
development environment are installed on the board.

3.1.5 The Application Software Level:
GStreamer and OpenCV

The main functionalities of BeaStreamer are acquiring and processing biometric sig-
nals. For that reason, a framework able to support the data acquisition process would
be useful. GStreamer, although born as a framework oriented to streaming media ap-
plications, provide very useful functionality for data-stream acquisition process.

The GStreamer framework [GStreamer(1999)] is designed to easily write applica-
tions handling audio/video streaming allowing simple interfaces for streams synchro-
nization. GStreamer is not restricted to audio and video. It can manage any kind
of data flow. The main advantages of GStreamer are that the software components,
called plug-ins, can be mixed and matched into arbitrary pipelines so that it is possi-
ble to write complete streaming data editing applications. Plug-ins can be linked and
arranged in a pipeline. The main function of GStreamer is to provide a framework for
connecting plug-ins, for data flow management and for media type handling and ne-
gotiation. Using GStreamer, performing complex media manipulations becomes very
easy and it integrates an extensive debugging and tracing mechanism. In BeaStreamer
a pipeline acquires audio and video from web-cam, with the possibility to encode the
data-flow with the request quality and the resolution and the possibility to change the
acquisition parameters at run time, and the motion data from the Bluetooth channel.

The Open Source Computer Vision Library (OpenCV) [OpenCV(2007)] is a li-
brary of programming functions for real time computer vision and machine learning
applications, developed by Intel. OpenCV is released under a BSD license, it is free
for both academic and commercial use. It has C++, C, Python and Java interfaces
running on Windows, Linux, Android and MacOS. Many computer vision application
are based on the OpenCV library. This library has been compiled for the Ångstrom
distribution running on BeaStreamer. The optimization of many of its functionalities
using the DSP are still under development from the BeagleBoard Internet community.

3.1.6 Showing the potentiality of BeaStreamer

In this section, experiments performed using BeaStreamer aiming to demonstrate
its computational capabilities are shown. In Figure 3.1.6, a sequence of photos
taken wearing BeaStreamer, walking in the street are shown. The frame-rate is one
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Figure 3.9: Example of Pictures taken wearing BeaStreamer

photo/second with a size of 320x240 pixels, compressed in jpeg format. At the same
time, in a separate thread, a continuous audio flow is grabbed from the webcam mi-
crophone, sampled at 44100 samples/s and compressed in ogg format. GStreamer
allows setting online the parameters of acquisition making simple to change the reso-
lution of photo and the encoding audio quality at run-time, even under an intelligent
adaptive setting.

In Figure 3.1.6, the functionality of an OpenCV-based face detector is shown. The
face detector can compute detections at a frame-rate of 5-10 frames/second depending
of the images resolution, without using DSP. The synergy of GStreamer and OpenCV,
allows working with very good performances. Using images with size of 80x60 pixels,
the face detector can scan the image in less than 100 ms and detect faces in 200 ms.

A system for face verification has been implemented using BeaStreamer. The
system uses the eigen-faces technique [Turk and Pentland(1991)] based on Principal
Components Analysis. The system runs with 2 frames/seconds, detects faces using
the OpenCV face detector and performs the face verification on the face detected.
In controlled environments, the systems perform with very high classification rates.
Some examples of classification are shown in Figure 3.11. Big issues arise during the
verification process due to the intrinsic problems of the technique used, especially
concerned to lighting conditions and posing of the faces grabbed from the wearable
camera.
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Figure 3.10: OpenCV Face Detector running in real-time on BeaStreamer

Figure 3.11: Face Verification using BeaStreamer
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3.1.7 Discussions

In this section, BeaStreamer, a platform for wearable computing applications, has
been presented. Although the system was initially designed for data acquisition tasks
for wearable applications, its natural evolution has led to a very flexible system with
a good physical strength, even if its development has been only limited to the proto-
typical phase. Its high computational capabilities allow to use the system not only
for data acquisition but as a powerful and complete PAN Device.

BeaStreamer can sense the environment using audio and video and monitor user
activity using an accelerometer. Intelligent feedback to the user can be provided using
audio and visual information. Although the computational capabilities of the system
have been shown at the early stage of development, its potentiality allows the use of
BeaStreamer in a wide spread of Ambient Intelligence applications.

Nevertheless, the question of why developing a new wearable device when a great
number of powerful computational devices like tablet-pc and smart-phones are nowa-
days available, naturally arises.

The degree of openness that an ad-hoc architecture can provide represents a great
advantage at the time to develop software. Moreover, this development can be done
with many different and commonly used tools. Available commercial systems, even
those with open Application Program Interfaces(APIs), always enclose their hardware
layer in order to avoid, in the right way, the full control of the system.

On the other hand, the main drawback of assemble an ad-hoc hardware architec-
ture is provided by the Moore’s law1. The small form factor of the BeagleBoard, in
the early stage of development representing its strength jointly with the high compu-
tational power, has been outmoded by more powerful boards with even smaller form
factor (see [Gumstix(2011)], shown in Figure 3.12). For a new development in a new
board, the complete rebuilt of the whole software stack needs to be performed. Avoid-
ing this rebuilt is what open API commercial devices provide to the final software
developers.

Figure 3.12: The Gumstix Board

1In 1965, Gordon Moore, co-founder of Intel, predicted that the number of transistors integrated
into a chip would double every two years. This forecast is commonly known as Moore’s law.
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3.2 Features Extraction and Selection for Physical

Activity Recognition

The task of classifying and monitoring a basic set of Activities of Daily Living
(ADLs) [Lin et al.(2011)] takes the name of Physical Activity Recognition. ADLs
refers to daily self-care activities within an individual’s place of residence, in outdoor
environments, or both. ADLs are divided into Basic ADLs, consisting of self-care
tasks like personal hygiene, dressing, self-feeding and deambulation, and Instrumen-
tal ADLs like taking medications, managing money, shopping or using telephone or
technology. In this section, a sub-set of ADLs will be selected and successful classi-
fied, isolating at the same time the optimal set of features able to provide the best
classification performances.

The deambulation ADL will be taken into account differentiating three aspects of
that general definition. Walking, walking up/down stairs and staying standing
will be separately included into our basic set of ADLs.2. These three activities may
be considered the baseline activities of healthy people. “Using technology” is listed as
Instrumental ADL. For that reason, using a personal computer will be included
into our set of ADLs as well. Being involved in a social context represents an important
aspect in everyday life and the definition of ADLs also contemplate a speaking activity.
Hence, social interaction activities, i.e. speaking with a single or a group of persons,
will be the fifth and last ADL taken into account. From our point of view, this
basic set represents the minimum set of ADLs able to prove the healthy physical and
psychological status of a subject.

3.2.1 Significant Related Works on Physical Activity Recog-
nition

Traditionally, researchers used vision sensors for activity recognition.

[Clarkson and Pentland(1999)] use high dimensional and densely sampled audio
and video streams classifying in an unsupervised way significant events in daily life
activities like walking or visiting a supermarket. Since they work in an unsupervised
way and general events need to be discovered, authors use coarse features for both
audio and video streams.

[Spriggs et al.(2009)] use a wearable camera and Inertial Measurement Units
(IMUs) for temporally segmenting human motion into actions and performing ac-
tivity classification in the context of home environments. The system works with
unsupervised temporal segmentation and classifies activities from multimodal data
in a supervised way. For supervised experiments, results show that using a simple
K-NN model for frame classification outperforms Hidden Markov Models (HMM) or
Gaussian Mixture Models(GMM). Authors suggest that this is due to the high dimen-
sionality of the data that cannot be properly handled by GMM and HMM. The gist

2The activity of staying standing is representative of situations as waiting for the elevator, waiting
for the bus or waiting for in single line at bank, post office etc.
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of each image has been used as features for visual data and Principal Components
Analysis has been used on IMUs data.

[Lester et al.(2006)] resume their experience in developing an automatic physi-
cal activities recognition system. Authors answer some important questions about
where to place the sensors, if variation across users helps to improve the accuracy
in activity classification and which are the best modalities for recognizing activities.
Results show that it does not matter where the users place the sensors but having
sensors localized in the same part of the body enhances significantly the classification.
Furthermore, variation across users do help improving accuracy classification and the
best modalities for physical activities recognition are accelerometers and microphones.
They use a machine learning pipeline composed by two classification stages with, at
the first stage, a modified version of AdaBoost and, in the second stage, a Hidden
Markov Model classifier. They achieve 87% of accuracy in classifying 8 activities. Fea-
tures used are cepstral coefficients, log FFT frequency bands, spectral entropy, energy,
mean, variance, linear FFT frequency bands, correlation coefficients and integration
over the time series over a window.

As highlighted in the previous works, inertial sensor provide a low-cost, effective
and privacy-aware alternative for activity recognition. Accelerometers are inertial
sensors widely used in physical activity recognition. Accelerometers consist of a mass
suspended by a spring and placed in a housing. The mass inside the accelerometer
moves depending on the acceleration of the sensor and displacement of the mass is
measured as the difference of accelerations. In many recent works, activity recognition
is based on classifying sensory data using one or more accelerometers.

The seminal work of [Bao and Intille(2004)] represents the first work on activity
recognition from user-annotated acceleration data. Acceleration data was collected
from 20 subjects without researcher supervision or observation. Subjects were asked
to perform a sequence of everyday tasks but not told specifically where or how to do
them. Mean, energy, frequency-domain entropy and correlation of acceleration data
were calculated and several classifiers using these features were tested. Decision tree
classifiers showed the best performance recognizing everyday activities with an overall
accuracy rate of 84%.

Using the dataset collected in the previous work, [Mannini and Sabatini(2010)]
give a complete review about the state of the art of activity classification using data
from one or more accelerometers, giving a complete list of features and classifiers
used in the field. The best classification approaches are based on wavelet features
using threshold classifiers. Furthermore, they classify 7 basic activities and transi-
tions between activities, from 5 biaxial accelerometer placed in different parts of the
body, using a 17th-dimensional feature vector and a Hidden Markov Model classifier,
achieving 98.4% of accuracy. In their work, they separate high-frequency motion com-
ponents from low-frequency components of the acceleration signal that are related to
the dynamics of the activities the subject is performing. Features are extracted only
from low frequencies components.
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3.2.2 Features Extraction

High dimensionality does not necessarily mean richer information and, often, interest-
ing patterns and underlying structures in the data can arise using a reduced number
of dimensions. Learning algorithms suffer from the so-called “curse of dimensional-
ity” which denotes the drastic raise of computational complexity and classification
error with data having large dimensionality. In this case, data can be transformed
into a reduced representation of features. This process is called feature extraction.
Features extraction from raw data provides dimensionality reduction and robustness
to noise and, when the features to compute are carefully chosen, the performances of
the classification process can be significantly enhanced. In this section, the features
extracted on images, audio and motion data are discussed.

Table 3.1: Features Extracted on Images

Horizontal Rectangular Haar Features(H-haar)
Vertical Rectangular Haar Features(V-haar)

4 Rectangular Haar Features(4-haar)
First 10 Singular Values(n-SV)

Features Extraction on Images

Wearing a wearable camera brings to a new paradigm in Computer Vision sometimes
known as Egocentric Vision. This new paradigm addresses classical computer vision
problems under a new perspective where objects do not appear well positioned in
isolated photos but they are embedded into a real and dynamic environment and
constantly interact with it. In this case, physical activities are not recognized and
classified from a far and passive point of view but from an active and participant one.
With the aim to classify ADLs, simple coarse features, computed on the difference
between a frame and its subsequent, will be computed. Those features, listed in Ta-
ble 3.1, roughly quantifies the degree of motion that is present between consecutive
differential frames. The first three features are typical Haar-like features, commonly
used in computer vision applications3. In addition, the first ten singular values ob-
tained by the SVD decomposition3 of the differential image will be used too. The use
of singular values allows to represent the image with a smaller set of values able to
preserve useful features of the original image.

Features Extraction on Audio

The process of separating conversational speech from silence is called Voice Activity
Detection (VAD). The primary function of a VAD is to provide an indication of speech

3Cfr. Appendix 1
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Table 3.2: Features Extracted on Audio

Mean Value (Mv)
Standard Deviation (Std)

Skewness(Sk)
Kurtosis (K)

Coefficients Energy 7-Wavelet Decomposition (n-Wdc)

presence and to hopefully provide delimiters for the beginning and end of a speech
segment. VAD is a widely used technology for a variety of speech-based applications
specially those concerning bandwidth issues in digital communications. VAD systems
are based on standard classification schemes. The features shown in Table 3.2 will
be used to characterize audio data frames containing a voice activity. Audio data
frames have been obtained using windows of raw audio data with 44100 samples,
representing one second of speeching, with 50% of overlapping between consecutive
windows. Statistical measurements like mean value, standard deviation, skewness and
kurtosis3 will be used to characterize the speech activity. In addition, the sub-band
energy of coefficients of 7 levels wavelet3 decomposition with Haar-like mother wavelet
will be used to detect the degree of activity present in the window.

Figure 3.13: User wearing BeaStreamer

Features Extraction on Motion Data

Motion data are strongly related to physical activities. Accelerometers provide three
separated values, each one related to a motion axis. The direction of acceleration axis
as used in the experimental setting is shown in Figure 3.13. These values provide three
time series Ax, Ay and Az. An example of accelerometer data for different activities
is shown in Figure 3.14. In the figure, it is possible to appreciate the regular pattern
arising from a walking activity. In climbing stairs, activity similar to walking, the



3.2. Features Extraction and Selection for Physical Activity Recognition 55

Figure 3.14: Visualization of activity acceleration data

same pattern seems not to be present although some common components between
the two activities can be still noted. The rest of activities differs significantly from the
previous ones specially in the time series trends and in the intensities of acceleration
involved. Small differences in the variation of the acceleration can help to visually
differentiate between the three activities.

From these separated time-series data, an additional time series, Am can be ob-
tained computing the magnitude of the acceleration as in

Am =
√

A2
x +A2

y +A2
z (3.1)

Each time series Ai, with i = {x, y, z,m} has been filtered with a digital filter in
order to separate low frequencies components and high frequencies components. The
cut-off frequency has been set to 1Hz. In this way, for each time series, three more
time series Aij can be obtained, with j = {b, dc, ac} representing respectively the time
series without filtering, the time series resulting from a low pass filtering and the time
series resulting from a high pass filtering. Features from each one of these time series
have been extracted.

As previously outlined for audio data, a successful technique for extracting fea-
tures from sequential data has been demonstrated to be windowing with overlap-
ping [Dietterich(2002)]. Features will be extracted from windows of T samples, with
T = 52, corresponding to 1 second of accelerometer data, with 50% of overlapping
between windows. From each window, Root Mean Squared value of the integration of
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Table 3.3: Features Extracted on Accelerometer Data

Mean Value (Mv)
Standard Deviation (Std)

Skewness(Sk)
Kurtosis (K)

Correlation between each pairwise of accelerometer axis (Corri,j)
Coefficients Energy 7-Wavelet Decomposition (n-Wdc)

RMS Velocity (Rms)
Mean Value of Absolute Difference of consecutive peaks (Mvad)

acceleration in one window, and the Mean Value of absolute difference of consecutive
peaks have been extracted as features. The integration of acceleration corresponds to
Velocity. For each window, the integral of the signal and the RMS value of this series
will be computed as shown in

Rms =

√

√

√

√

√

1

2T

t+T
∫

t

A2
ij(t) (3.2)

Integration is approximated by running sums with step equals to 10 samples. The
second typology of features is computed as the sum of all the differences of the ordered
pairs of the peaks of the time series, as shown in

Mvad =
t±ε+T
∑

k=t±ε

maxAij(k)−minAij(k) (3.3)

Finally, in order to complement the proposed set of features, further features already
proved to be useful in physical activity recognition [Mannini and Sabatini(2010)] have
been added to complement the set. Mean value, standard deviation, skewness and
kurtosis4 have been used to statistically characterize the acceleration in each window.
The degree of coupling between acceleration axis has been measured by the correlation
between each pair of accelerometer axis, without including magnitude. Finally, the
sub-band energy of coefficients of 7 levels wavelet4 decomposition are also used to
measure the degree of activity present in the window. In this case, a Daubechies-4
has been used as mother wavelet. The complete list of features used is shown in
Table 3.3.

4Cfr. Appendix 1
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3.2.3 Features Selection

The dimensionality of the feature vector obtained can be further reduced to a selected
subset of features chosen between those having mayor relevance into the classification
process. The Random Forest learning function (RF) will be used to measure the
relevance of the features extracted.

Here, a short explanation about how RF can be used for measuring features rel-
evance, is given. For more details, please refer to [Breiman(2001)]. RF builds many
classification trees. Each tree votes for a class and the forest chooses the classification
having the most votes over all the trees. Each tree is built as follows:

- if the number of cases in the training set is N , N cases are sampled at random
with replacement. This sample is the training set.

- if there are M input variables, a number m � M of variables are selected at
random and the best split on these m is used to split the node. The value of m
is held constant during the construction of the forest.

- trees are not pruned.

When the training set for the current tree is drawn with replacement, about one-third
of the cases are left out of the sample. This Out-Of-Bag (OOB) data is used to get
an unbiased estimate of the classification error as trees are added to the forest. This
can also be used to get estimates of features relevance. Measuring the importance of
attributes in RF is based on the idea that randomly changing an important attribute
between the m selected for building a tree affects classification, while changing an
unimportant attribute slightly affect the results. Relevance of each feature for a single
tree is computed as correctly classified OOB examples minus correctly classified OOB
examples when an attributes is randomly shuffled. The final Relevance Measure
(RM) is obtained dividing the accumulated attribute by the number of used trees
and multiplying the result by 100 in order to get a percentage. The main advantage
provided by this approach is that RF performs well on noisy data like those provided
by accelerometers.

Selection of Image Features

In Table 3.4, on the right, ten features selected from images, presented in decreas-
ing RM order, are shown. Many of the features selected are from the SV. This fact
confirms the intuition that SVs can be representative features of an image. In this
particular case where we work on the difference between subsequent images, SVs may
be representative of images having low motion. The 4-Haar feature, having an im-
portant weight as well, is also representative of this fact.
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Table 3.4: Features Selected on Images (right) and Audio (left)

Images Audio

Features RM Features RM
1-SV 4.31 6-Wdc 15.05
4-haar 4.15 7-Wdc 10.87
2-SV 2.92 Std 9.94
3-SV 2.76 K 8.1
4-SV 1.68 4-Wdc 8
H-haar 1.43 5-Wdc 7.94
5-SV 1.33 1-Wdc 7.85

8-SV/10-SV 1.16 3-Wdc 5.93
6-SV 1.15 2-Wdc 5.3
7-SV 1.13 Sk 4.5

Selection of Audio Features

In Table 3.4, on the left, ten features selected from audio, presented in decreasing
RM order, are shown. All the values of the sub-band energy of the coefficients of the
7-levels wavelet decomposition are selected as significant features. Standard deviation
and kurtosis are also selected as significant features. High values in kurtosis mean that
a big contribution in the deviation of the distribution is due to infrequent extreme
deviations, fact that may be representative of the audio signal during conversation.

Table 3.5: Features Selected on Accelerometer Data

Feature RM Feature RM
MV Azdc 4.64 Mvad Azdc 4.61
Rms Azdc 4.23 Rms Amdc 4.2
Rms Axac 4.14 MVAmdc 4.07
Mvad Aydc 3.92 StdAxb 3.9
Mvad Amdc 3.89 StdJxdc 3.87
MV Aydc 3.86 Rms Aydc 3.67
MV Azb 3.59 MV Axdc 3.57

Mvad Axdc 3.52 Mvad Azb 3.51
MV Ayb 3.33 Rms Axdc 3.22
Rms Azb 3.2 Mvad Ayb 2.96
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Selection of Motion Features

In Table 1, the best 20 features and their respective RM are reported. Really mean-
ingful features are selected from those extracted on motion data for classifying activ-
ities. The most relevant features are related to the Z axis (refer to Figure 3.14(a)
to visualize the direction of acceleration axis.) The Z axis is the axis concordant
to the direction of the movements. The majority of the features are relative to the
low-frequency (DC) components of movements. RMS velocity relative to the X axis
has been selected from high-frequencies (AC) components. The information provided
by this feature, relative to accelerations on an horizontal axis, helps to discriminate
between activities like staying standing, talking and using a PC.

On the other side, features related to the acceleration on the Y axis, can help to
discriminate between activities like walking and walking up/down stairs. Mean value,
sum of consecutive peaks and RMS velocity are selected for all the DC components
of all the time series.

All the features selected extracted from the time series without filtering are also
selected from the DC time series. In all these cases, the features selected from the
DC time series have an importance value bigger than their corresponding value from
the series without filtering. This fact highlights that low-frequencies are more useful
than high-frequencies in the classification process of physical activities.

Finally, features derived from higher level statistics (skewness and kurtosis) and
features related to the correlation between axis are the features with the lowest im-
portance and are not reported in Table 3.5.

The Physical Activity Dataset

A dataset containing audio, video and motion data related to the selected ADLs has
been collected from fourteen volunteers. Testers, three women and eleven men with
age between 27 and 35 were asked to perform all the ADLs of our selected basic set.
More specifically, users should do :

• walking up/down stairs for at least 5 minutes without interruptions ;

• walking of a indoor/outdoor environments for at least 15 minutes, without
interruptions ;

• talking with one or more persons for at least 15 minutes ;

• staying standing for at least 5 minutes ;

• using a personal computer for at least 15 minutes.

In order to label activities, testers had to annotate the sequential order of the activities
performed just restarting the system every time a new activity is started. The system,
booting in 2 minutes, automatically starts the acquisition process while the user is
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already performing the activity. In this way, no cutting has to be performed at the
time to analyze data. The user can stop the acquisition in every moment just pressing
a stop button. The dataset collected is composed by:

- around 70 minutes of walking up/down stairs (10 sequences);

- around 200 minutes of walking (14 sequences);

- around 120 minutes of talking (11 sequences);

- around 50 minutes of staying standing (9 sequences) ;

- around 190 minutes of using a personal computer (10 sequences).

3.2.4 Classification Results

Figure 3.15: Classification Accuracy Using Different Classifiers

Classification performance has been evaluated in terms of accuracy on two dif-
ferent datasets. A first dataset, Dm has been created using the 20 features se-
lected from all those extracted from acceleration data. A second dataset, Davm,
has been built joining Dm with the first three features selected from audio and
the four best features selected from images. Using two separated datasets allows
to evaluate how much the overall information provided by all the sensors may en-
hance the classification performances with respect to the case where the only motion
sensor is used. Classification and Regression Trees [Brieman(1984)], a bagging en-
semble [Breiman(1996)] of decision trees, AdaBoost [Freund and Schapire(1999)] and
a Random Forest [Breiman(2001)] of 10 decision trees have been used as learning
functions.
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In Figure 3.15 classification accuracies obtained are shown for both datasets and
all the classifiers. Results on Davm are 4% better than results obtained on Dm. On
Davm, Random Forest ensures 98% of accuracy. This result is competitive with the
state of the art in activities classification.

Stairs Standing Talking Walking usingPC
Stairs 0.970 0.005 0.001 0.022 0.002

Standing 0.001 0.972 0.018 0.002 0.007
Talking 0.001 0.009 0.984 0.003 0.003
Walking 0.007 0.001 0.004 0.987 0.001
UsingPC 0.001 0.002 0.002 0.001 0.994

Stairs Standing Talking Walking usingPC
Stairs 0.899 0.006 0.015 0.075 0.004

Standing 0.002 0.889 0.093 0.002 0.015
Talking 0.005 0.039 0.929 0.006 0.020
Walking 0.029 0.001 0.008 0.959 0.002
UsingPC 0.001 0.007 0.013 0.002 0.977

Table 3.6: Normalized Confusion Matrix for Davm (up) and Dm (down)

The motivations of those differences can be easily found looking at the confusion
matrices, shown in Table 3.6. Confusion matrices obtained with Random Forest on
Davm and on Dm are shown in the upper and bottom part of the table, respectively.
The rows of the matrices, representing the total number of elements considered for
each activity, have been normalized in order to get a percentage. The highest con-
fusion obtained on Davm is between talking and standing. Although this represents
the biggest confusion, its value is not higher than 1.8%. This confusion becomes
obviously bigger when only the accelerometer is used. Almost a 13% of confusion is
obtained between talking and standing. For classifying these two activities, the use
of the microphone provides an indubitable advantage. Other significant confusions
are obtained between walking and walking up/down stairs. The total amount of con-
fusion reaches in this case 10%. Nevertheless, the overall classification performance
obtained on Dm are pretty good, taking into account that the only accelerometric
sensor is used. In Figure 3.16, the F-Measure of each activity obtained on Dm are
shown. The F-Measure is above 80% for each activity and for walking, talking and
using a PC is above 90%.
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Figure 3.16: F-Measure obtained on Dm

3.2.5 Conclusions

In this chapter, the task of classifying physical activities has been carried out. Using
simple and comfortable sensors, five common ADLs have been successful classified
with high classification performances. These performances are comparable with the
state of the art in physical activity recognition, specially taking into account that
a single classifier is used instead of more complex classification architectures. These
high performances are principally due to the features used in the classification process,
selected from a bigger set using a selective procedure conducted by Random Forest.
The selection process has been conducted on all the sensors available and, in particular
for the accelerometer, provides a set of features able to provide physical meaning to
the quantities involved into the classification process. Using the only set of motion
features selected, good classification performances are obtained too.

In Table 3.7, comparison of works using a single accelerometer for physical activity
recognition are reported. Results obtained in this chapter using a single accelerome-
ter are completely aligned with results reported in the table, from both features and
accuracy point of view. Some works are able to achieve very high classification perfor-
mance, even higher than results obtained here. Putting aside the mere competition
of reaching the highest performance value, the capability of a single accelerometer to
provide a good classification represents an important fact. Accelerometers are going
to be (or they already are) widely accepted due to their miniaturized form factor,
their low-power requirement and for their capacity to provide data directly related to
motion.

Last but not the least, accelerometric sensors are much more prone to be accepted
by final users because they do not invade privacy. One of the major issues we faced on
during the data collection process has been the reluctance of many potential testers
to perform the experiment with a camera and a microphone, even once ensured that
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Reference Features Classifiers ADLs Subjects Accuracy
[Allen et al.(2006)] Raw Data GMM 8 6 91.3%

Delta Coefficients
DC Coefficients

[Song and Wang(2005)] Wavelet Coefficients k-NN 5 6 86.6%
[Ravi et al.(2005)] Standard Deviation Naive Bayes 8 NA 46.3-99.3%

Energy Distribution k-NN
DC Components SVM

Correlation Coefficients Binary Decision
[Randell and Muller(2000)] Standard Deviation ANN 7 NA 95%

[Sekine et al.(2002)] Wavelet Coefficients Threshold-based 3 20 98.8%
[Lee et al.(2003)] FFT Threshold-based 9 12 95.1%

[Karantonis et al.(2006)] Magnitude Area/vector Binary Decision 10 6 90.8%
Tilt Angle

FFT

Table 3.7: Comparison of Results for Physical Activity Recognition using a Single
Accelerometer

the semantics of their conversation would not be used and not even stored. This issue
might be solved with the use of only accelerometer data at the expense of a small
decrease (but with still good values) in the classification performances.

Finally, the possibility to use only an accelerometer to classifying ADLs is the
fundamental concept next chapter states on. With only motion data, a system able
to verify users wearing the accelerometer by mean of their walking patterns, will
be presented. The system, besides its highly accurate performances, has the main
advantage to be used as a unobtrusive and continuous authentication mechanism.
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Chapter 4

Personalization and User
Verification in Wearable Systems
using Biometric Walking Patterns

Mobile devices, smart-phones and tablet-pc are nowadays inseparable objects for us.
We bring a mobile phone with us to stay connected via voice, email and chat with
our friends, workmates and family. These devices have become in the last couple of
years multi-functional wearable computer systems. Their computational capabilities
allow their use as GPS localization systems, portable video game systems or personal
digital assistants. Moreover, their rapid acceptance in our society, jointly with the
advent of new technology like NFC [ISO(2010)], is making those devices oriented
towards on-line shopping and consumer applications. While up to now these devices
manage information about our personal privacy, in the near future they will manage
private and sensible information such as our bank account and credit cards numbers.
Protecting the device from illicit and inappropriate use should be constantly ensured
making, at the same time, the authentication task as transparent as possible to the
user. In this sense, unobtrusive biometric measures become an appropriate tool for
verifying devices user identity. Biometrics are currently available on mobile devices.
Modern smart phones and PDA have integrated accelerometers able to detect changes
in the orientation and acceleration of the device and, consequently, of the person
wearing it. Consequently, physical activity recognition represents the starting point
to make biometric measurement suitable to verify authorized users.

Persons can be distinguished on the base on their walking style and there seems to
be a physiological justification of this fact. In [Bianchi et al.(1998)], authors state that
there is inter-individual variability in walking styles between persons particularly at
moderate and fast velocity. They show that this variability cannot be simply explained
on the basis of the different bio-mechanical characteristics of the subjects, but that
it depends on the different kinematic strategies. Subjects differ in their ability to
minimize energy oscillations of their body segments and to transfer mechanical energy
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between the trunk and the limbs. Individual characteristics of the mechanical energy
expenditure were correlated with the corresponding kinematic characteristics.

In this chapter, a personalized verification system based on a two stages machine
learning pipeline is presented. The system aims to verify authorized users by means
of their own walking patterns guaranteeing inappropriate intrusions from unautho-
rized users. Being truly general, the technique described here may be used in many
different applications besides the mere authentication task. Many applications can be
found in the fields of Ambient Intelligence and Pervasive Computing where a system,
like the one proposed, can provide a continuous authentication mechanism that can
possibly be complemented by other mechanisms able to provide very high and reliable
authentication rate even in critical situations. Application domains for this kind of
techniques may be principally intelligent and personalized settings of domestic and
working environments. If a wearable sensor might be able to constantly authenticate
yourself, the smart environment always would provide you personalized services and
attention according to your needs. Analogously, at work place, the intelligent environ-
ment might provide a tracking of the to-do list of the day. Many others applications
might be found in multiple application domains of physical activity recognition where
a constant and pervasive authentication mechanism finds its natural application.

4.1 Related Works on Biometric-based Verification

Systems

To the best of our knowledge, user verification by means of accelerometer data has
been rarely addressed. Verification systems are usually measured in terms of the false
acceptance rate (FAR) and false rejection rate (FRR). FAR measures the probability
of an unauthorized user to be confused with a legit user. On the other hand, FRR
measures the probability of the system to misclassify an authorized user as a non-
authorized one. While the first measurement concerns the robustness of the system to
intruders, the second measurement regards usability and inconspicuousness of the sys-
tem. In [Vildjiounaite et al.(2007)], a walking-based authentication system has been
integrated with fingerprints data and voice recognition, ensuring in this way an high
degree of reliability. Walking based authentication provides 14% of Equal Error Rate
(EER)1 with small variations if the system is brought on the chest or on the waist. In
that work, data are acquired from an ad-hoc accelerometer-based system assembled
for the experiments. Although authors do not use a real mobile phone, that work
represents the first work using walking biometrics for user verification. Some efforts
have been done also in [Derawi et al.(2010)], where, using the accelerometer of an
Android-based mobile phone, walking data have been collected from 51 testers walk-
ing for two runs in an interior corridor. Authors report results of 0.2 of EER. Results
obtained are encouraging but not persuasive to be implemented in a mobile device
for a reliable system. That work is the first one where user verification has been done
using an everyday current mobile phone. A close notion to user verification is user

1When FRR and FAR are equal, the common value is usually named Equal Error Rate or EER.
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identification – not necessarily needed for authentication. In [Gafurov et al.(2006)],
a biometric user authentication system based on a person gait is proposed. Applying
histogram similarity and statistics about walking cycle, authors ensure 0.16 of iden-
tification error rate. Accordingly to the physiological justification of inter-individual
variability in walking styles, in [Terrier and Schutz(2003)], authors, using a GPS sen-
sor, are able to capture basic gait parameters over a period of time of 5 seconds. They
observed a specific gait pattern for slow walking. The walking patterns in free-living
conditions exhibit low intra-individual variability, but there is a substantial variability
between subjects.

4.2 User verification system

A machine learning architecture for user verification with personalization is presented
in this section. Starting from a general physical activity classifier based on AdaBoost,
trained on a baseline training set, the system is personalized adding data of walking
activities of authorized users in order to boost the classification performances for
those users. Since AdaBoost is an incremental classifier, this process is extremely
efficient because just further weak classifiers need to be added to the original baseline
classifier. On the base of this personalized system able to filter in its first stage many
walking activities of unauthorized users, authorized users are verified too.

The modeling of the walking activity of authorized users can be considered a
one-class classification problem where the boundary of a given dataset has to be
found without the possibility of knowing any counter examples. This is specific of
the case of user verification since examples of all the possible non-authorized users
cannot be explicitly provided to the learning algorithm. In the second stage, the
Approximate Polytope Ensemble (APE) technique has been used to model the one-
class classification problem. The overall verification systems can be seen as a four
layered architecture. The inner most layer is based on the APE algorithm. Since
the convex hull structure is very sensible to outliers, the next layer concerns a robust
way to ignore outliers and define the core distribution of the data. The third layer
concerns the modeling of complex shapes using a mixture model. Finally, the last
layer takes into account the temporal coherence of the accelerometer data-stream to
improve the results.

The overall user verification system, shown in Figure 4.1, can be modeled with a
two stage pipeline. The first stage consists of the personalized activity classifier. As
a result of the first stage, only data belonging to the class “walking” are provided as
input to the user verification stage. This second stage is tuned to verify the walking
biometric parameters of the only authorized user.
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Figure 4.1: Block Diagram of the User Verification System

4.3 Personalized Activity Subsystem

The underlying idea behind the personalization in this subsystem is to bias a gen-
eral physical activity recognition classifier towards the data of only authorized users.
Thus, a general classifier is trained to distinguish among the five ADLs previously in-
troduced. This classifier is trained using data from a general set of people performing
these activities.

The general activity classifier is based on a multi-class extension of AdaBoost.
It receives as input the features extracted from accelerometer data and it detects
the occurrence of walking activities. AdaBoost, which has been briefly presented in
Section 3.1, is an efficient incremental algorithm for supervised learning. AdaBoost
boosts the classification performance of a weak learner by combining a collection of
weak classification functions to form a strong classifier with high performance. The
algorithm combines iteratively weak classifiers by taking into account a weight distri-
bution on the training samples such that more weight is given to samples misclassified
in previous iterations. The final strong classifier is a weighted combination of weak
classifiers followed by a threshold.

Algorithm 6 shows the pseudo-code for AdaBoost. The algorithm takes as input a
training set (x1, y1), . . . , (xm, ym) where xk is a N-dimensional feature vector, yk are
the class labels and D1(k) an uniform weights distribution over the training examples.
At the training step t, a weak classification hypothesis ht is selected with error εt ≥ 0.5.
The weight αt correspondent to the current hypothesis ht is computed proportional to
the error εt. Examples are weighted based on the updated distribution proportional
to the current hypothesis. In this way, misclassified examples will have, in the next
step, more weight than well-classified examples. After T rounds of training, the weak
classifiers ht and ensemble weights αt are used to assemble the final strong classifier.
The multi-class extension of AdaBoost is performed using an Error Correcting Output
Codes One-Vs-All [Dietterich and Bakiri(1991)] technique.

For classifying activities, AdaBoost is previously trained using a large amount
of data from many subjects as a general activity recognition classifier Horiginal(x).
However, when this general classifier is applied to a specific user, its performance may
be poor since inter-variability between people may be significant. For this reason,
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Input: A training set (x1, y1), . . . , (xm, ym), with xk ∈ RN ,
yk ∈ Y = {−1,+1}

Output: A classifier H(x)

Initialize weights D1(k) = 1/m, k = 1, . . . ,m;1

foreach t = 1, . . . , T do2

Train weak learner using distribution Dt;3

Get weak hypothesis ht : X → {−1,+1}4

with error εt = Prk∼Dt
[ht(xk) 6= yk];

Choose αt =
1
2 ln(

1−εt
εt

);5

Update Dt+1(k) =
Dt(k) exp(−αtykht(xk))

Zt
6

where Zt is a normalization factor chosen so that Dt+1 will be a
distribution.;

Output the final hypothesis H(x) = sign(
∑T

t=1 αtht(x)) ;7

end8

Algorithm 6: AdaBoost Algorithm

when the system is given to an authorized user, a dataset Xauth with data only
concerning the authorized user is recorded. The incremental nature of AdaBoost
allows to perform T runs of training using a dataset and to follow the training process
for T ′ runs using a new dataset. This feature becomes crucial in the personalization
step of the pipeline. In order to bias the performance of the general classifier towards
an authorized user, the recorded data from this user Xauth is used for T ′ runs. This
adds to the previous strong classifier T ′ new weak classifiers which take into account
the specific biometric features of the authorized user. Hence, the classifier specializes
on them. It should be observed that, since our biometric verification system from
inertial data is based on the walking activity, only data that the general classifier
labels as “walking” are used for this specialization. What we expect as a result of
this personalization, is that the performance when classifying authorized users walking
activities will be enhanced for the specific user and, consequently, a big load of walking
activity from other users will be considerably filtered. Therefore, the first stage of the
pipeline serves two purposes. First, it filters walking activity from the rest of ADLs
and second, due to the personalization process, it filters many walking activities from
non-authorized users.

4.4 User Verification subsystem

Many times, verification tasks are confused with recognition. However, while in recog-
nition it is necessary to chose among different possible choices or classes, in verification
only a decision if data belong or not to a given class must be performed. It may be ar-
gued that the verification task can be reduced to that of recognizing the desired class
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versus the undesired one. Although there are some scenarios in which this is true,
this reduction does not hold in general. This is because a recognition system needs
to correctly model all the different choices in order to achieve good results. However,
taking into account our specific problem, the class non-verified user can not be ef-
fectively modeled since it would require the knowledge of all possible unauthorized
users with respect to the authorized one. For this reason, probabilistic approaches
that model the distribution of just one class are generally used in these specific prob-
lems. When looked at from the machine learning discriminative point of view, the
counterpart of the aforementioned problem is One-Class classification. As described
in the previous chapter, one of the most successful strategies and state-of-the-art in
one-class classification is Support Vector Data Descriptor(SVDD) [Tax(2001)]. How-
ever, training a SVDD is computationally expensive and it can not be done efficiently
in embedded systems or mobile phones not only due to the computational complexity
but also because it usually involves a delicate parameter tuning step.

In the user verification subsystem, the one-class classification paradigm will be
followed and the Approximate Polytope Ensemble as baseline one-class classification
strategy will be used. Appropriate strategies for outliers rejection and temporal con-
sistence coherence will be adopted and a new ensemble, based on the mixture of APEs
will be used to tackle the non-convexity of the problems at hand.

Figure 4.2: Layer structure of the User Verification subsystem

The verification system is structured in layers (see Figure 4.2). The inner most
layer concerns the way of modeling the one class problem. The approach proposed is
based on the Approximate Polytope Ensemble.

The different layers created around APE deal with the concept of robustness and
appropriateness of the convex hull for modeling user data. The inner most layer
builds the approximate polytope. The second layer concerns the robustness of the
approximated convex hull to outliers by means of a bagging strategy. The third layer
models the problem of the convex hull to approximate non-convex shapes. Finally,
the last layer considers the temporal coherence of the users walking pattern in order
to reduce the verification error rates. In the following subsections, the algorithms
used in each layer are described in detail.
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4.4.1 Layer 1: Approximate Polytope Ensemble

A One-Class classifier ensemble will be learned using the Approximate Polytope En-
semble strategy. The underlying idea is shown in Figure 4.3 where a scatter plot of
a random plane is reported. In this bi-dimensional space, data related to each user
are localized in a specific region of the features space. Learning the boundaries of
the one-class classification problem means building the convex hull and defining the
region of the space where user data lie. When a new point appears, if the point is in-
side the convex hull, then it represents a walking activity of the user. This approach,
as already commented in Section 2.2.4 has important computational and storage ad-
vantages. On one hand, given a training set of N examples, the computational cost
of building the convex hull in a bi-dimensional space is O(N logN). Let K be the
number of examples that define the convex hull – the set of examples of the dataset
that conform the facets of the polygon – then K << N and the cost of testing if a
data point lies inside or outside the convex hull is O(K). Another worthwhile advan-
tage of computing the convex hull is that it can be built or updated online – as new
training data arrives – with cost O(logN) [Preparata and Shamos(1985)]. Thus, if
t random projections have been used, the final computational cost for building this
approach is O(tN logN) and the test cost O(tK).

Figure 4.3: User verification using a convex hull as one class classifier

4.4.2 Layer 2: Robust convex hull

An issue that needs to be addressed when using a convex hull is about robustness with
respect to outliers. Convex hulls are strongly sensitive to outliers. Outliers can heavily
influence the performance of the verification process and, moreover, they are heavily
affected by noise. Assuming that data from accelerometers are noisy and can contain
outliers, the resulting convex hull might not represent user data accurately. In order
to reduce the influence of outliers, when training data are projected down to a bi-
dimensional plane, a bagged set of convex hulls will be used. Bagging [Breiman(1996)]
is a machine learning ensemble meta-algorithm that improves classification models in
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terms of stability and classification accuracy. It reduces variance and helps to avoid
over-fitting.

Given a training set X ∈ RM of size N , once data are projected, the bagging
strategy generates l new training sets X ′

i of size N by sampling examples from X
uniformly with replacement. Then, l convex hulls will be built using the examples of
each sub-sampled training set X ′

i and combined by majority voting. In the scatter
plot shown in Figure 4.3, the result of building three convex hulls on different sub-
sampled sets is shown. This process aims to reduce the influence of the elements on
the boundary of each convex hull and better defines the core set of training examples.

4.4.3 Layer 3: Mixture of convex hulls

Data from different walking runs of one user can vary significantly and not necessarily
be well represented by a convex shape. NAPE, studied in Section 2.2.2, could rep-
resent a possible solution to the problem. Nevertheless, two main drawbacks avoid
the use of NAPE in this situation. First, computational complexity of learning and
testing NAPE may be high enough to prevent it to be used in limited resources com-
putational devices. On the other side, batches of walking data come on-line. Applying
NAPE would mean learning again the whole structure. NAPE has not built to man-
age this type of problems. In order to overcome this problem, a mixture of APE
will be built in this layer (see Algorithm 7). The mixture begins with one APE. As
training data arrive, the performance of this convex hull will be checked. If data are
well represented by the current model, there is no need to change anything but if a
new stream of training data is not correctly represented by the current model, a new
APE is learned on the new data and added to the user profile model.

Input: A training source that produces streams of data Xi ∈ RM

An APE-2 learning function such that CH = APE(x)

Output: A classifier M

M = ∅;1

while Not End of Training do2

if tM(Xi) < τ %%τ : Performance measure then3

M = M∪APE(Xi)4

end5

end6

Algorithm 7: Mixture of APEs algorithm
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4.4.4 Layer 4: Temporally coherent convex hulls

The final step is to take into account the temporal coherence of each user data stream.
The assumption in this layer is that in a given temporal window, the user of the device
does not change, and thus, considering the full length of the window, she must be
either an authorized or an unauthorized user. Thus, a simple majority voting on a
temporal window of walking data will be used. That is, given a sequential training set
X = {x1, x2, . . . , xN}, a sliding window of size t will be used on the predictions of the
layer-3 convex hull ȳ of those examples. As a result, given a sequence of predictions,
the final decision is achieved by ŷi = majority{ȳi−t, ȳi−t+1, . . . , ȳi}.

4.5 Experimental Results

The system developed has been validated over different setting and, for each sub-
component of the system, a proper validation protocol has been defined and used. In
the following sections, this validation protocols and experimental settings are results
will be explained in detail.

4.5.1 Comparative Results

The APE approach has been compared with the set of one-class classifiers introduced
in Section 2.2.3. Average AUC and standard deviations obtained are shown in Fig-
ure 4.4. Results are obtained performing a 10-fold cross validation using the LOUO
protocol, introduced in the subsequent section. NAPE is the best method able to
solve the verification problem with high performances, followed by APE-2. K-Means
and K-NN are the methods that, after NAPE and APE-2, provide the best perfor-
mances. This fact will be justified in Section 4.6.1 where it will be shown how the
feature points derived from walking patterns have its own localization in the features
space for each specific user. APE-1 does not provide significant good results when
compared with the other methods.

4.5.2 Validation protocol

The general activity classifier, the personalized activity classifier and the user veri-
fication classifier will be validated using a Leave-One-Out based protocol. For each
one of aspect of the system to be validated, the original protocol will need applied
with the opportune modifications.

General Physical Activity Recognition The general activity classifier has
been trained and validated using a Leave-One-User-Out (LOUO) cross-validation
strategy, outlined in Algorithm 8. In LOUO, each subject is used once for test-
ing a classifier trained on the rest of users. This process is repeated for each user and
the performance measurements are computed.



74 USER VERIFICATION FROM WALKING PATTERNS

Figure 4.4: User verification Problem: AUC Mean value obtained on different one-
class classifiers

Input: M users;

a learning function F ;

foreach i = 1, . . . ,M do1

Create a testing set TestSet with data from user i;2

Create a training set TrainSet with data from all users except user i;3

Train F on TrainSet;4

Classify TestSet for classification performance estimation;5

end6

Algorithm 8: Leave-One-Person-Out Testing Protocol
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Personalized Activity Classification In order to validate the personalized ver-
sion of the activity classifier, a modification in the LOUO protocol has been done.
The testing algorithm, called Folded-LOUO is shown in Algorithm 9. Once data of
every subjects are randomly separate into N folds, Folded-LOPO iterates on both
subjects and folds, using in this way all the examples of all the subjects for testing
exactly once.

Input: M users; N users;
a incremental learning function F ;

foreach i=1,...,N do1

foreach j=1,...,M do2

Create a testing set TestUser with the iâth fold of user j;3

Create a testing set TestRest with the i-th fold of all users except user j;4

Create a training set TrainUser with all the folds of user j except the5

i-th fold;
Create a training set TrainRest with all the folds except the i-th fold of6

all users except for j-th user;
Train F on TrainRest;7

Train F on TrainUser;8

Classify TestUser for user-specific classification performance estimation;9

Classify TestRest for no-user classification performance estimation;10

end11

end12

Algorithm 9: Folded Leave-One-Person-Out Testing Protocol

User Verification User verification has been validated for both APE and Mixture
of APEs algorithms. APE has been validated using a folded-LOPO validation strategy
with the opportune modifications for being adapted to one-class classification. For
each training step, there exist two testing sets, one related to the specific subject
being tested and one related to all the other subjects. The testing protocol is shown
in Algorithm 10. Mixture of APEs has been validated using a Leave-One-Walking-Out
(LOWO) cross validation procedure. The testing algorithm is described in Table 11.
For each user, a testing set with the walking data of all the other user is created. For
every walking run of the user, a testing set is created using the current data and a
training set is created for training a Mixture APE classifier. Results are averaged for
every user.

4.5.3 Results of Personalized Activity Recognition Subsystem

Data acquisition setting A new dataset has been collected with BeaStreamer.
The dataset contains data of the five ADLs from 15 different persons, with ages
between 25-35, 5 women and 10 men. Differently to the previous dataset where
people were completely free to perform the activities in the environment they selected
without a predefined activity order, in this new dataset experimenters perform the
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Input: M users; N users;
a One-Class learning function OC ;

foreach i=1,...,N do1

foreach j=1,...,M do2

Create a testing set TestUser with the iâth fold of user j;3

Create a testing set TestRest with the i-th fold of all users except user j;4

Create a training set TrainUser with all the folds of user j except the5

i-th fold;
Train OC on TrainUser;6

Train F on TrainUser;7

Classify TestUser for False Rejection Estimation;8

Classify TestRest for False Acceptance Estimation;9

end10

end11

Algorithm 10: Folded Leave-One-Person-Out Testing Protocol for One-Class

Input: N users;
Given a Mixture OC Learning Function ;

foreach i = 1, . . . , N do1

Create a testing set TestRest with the i− th fold of all users except user j;2

foreach j = 1, . . . , numberOfRuns do3

Create a testing set TestUser using walking run j;4

Create a training set TrainUser using all walking runs except run j;5

Train a Mixture OC with TrainUser;6

Classify TestUser for False Rejection Estimation;7

Classify TestRest for False Acceptance Estimation;8

end9

end10

Algorithm 11: Leave-One-Walking-Out Testing Algorithm
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same sequence of activities in the same environment. Also in this case, ground-truth
has been obtained by automatic labeling provided by subsequent start/stop phases
of the device. Separation between activities is performed by means of one minute
of ”staying standing” activity. With this new dataset, 15 hours and 16 minutes of
labeled activity have been obtained divided in:

- around 75 minutes of walking up/down stairs;

- around 300 minutes of walking;

- around 325 minutes of talking;

- around 60 minutes of staying standing;

- around 150 minutes of using a personal computer.

Performance Measurements: Accuracy, precision and recall have been chosen
as classification performance measures. The quantities are defined in Equation 4.1,
Equation 4.2 and Equation 4.3 in terms of the elements of the confusion matrix C 2.

Accuracyi =
C(i, i) +

∑
l 6=i,m 6=i C(l,m)

∑
i,j C(i, j)

(4.1)

Precisioni =
C(i, i)

∑
j 6=i C(j, i)

(4.2)

Recalli =
C(i, i)

∑
j 6=i C(i, j)

(4.3)

Experimental Results: The general activity recognition system performance are
shown in Table 4.1. All the activities are classified with good performance. Walking
is the activity with the best overall performance for all the metrics taken into account.
This effect is expected since the features extracted, discussed in Section 4.6.1 have
been specifically designed to capture subtleties in the walking pattern. The effect of
personalization is shown in the Figure 4.5 with accuracy, precision and recall. Black
bars represent performances obtained testing the baseline classifier on the subject,
gray bars represent performances obtained testing the personalized classifier on the
user and white bars represent performances obtained testing the personalized classi-
fier on all the other subjects. Personalization ensures that the performances of the
classifier are reduced for all the subjects except for the user.

2An element C(i, j) of the confusion matrix accounts for the number of examples of class j
classified as class i.
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Table 4.1: Classification Performances for General Activity Classifier.

Accuracy Precision Recall

Walking Up/Down Stairs 98.55± 0.7 98.01± 3.9 89.89± 8.32
Standing 98.01± 1.07 81.58± 33.3 55± 28.7
Talking 92.64± 3.7 87.41± 7.6 85.01± 15.3
Walking 99.52± 0.4 98.37± 1.5 99.43± 0.09
Using PC 92.7± 3.9 89.95± 6.5 86.8± 12.2

Figure 4.5: Accuracy of General Walking, Personalized and Non Personalized Clas-
sification

4.5.4 Results of User Verification subsystem

Data acquisition setting The validation of this subsystem has been performed us-
ing two different acquisition systems and conditions. The same acquisition system
and data as in the validation of the personalized activity recognition subsystem are
used. However, in order to have a more complete experimental section, an addi-
tional database has been collected using a different acquisition system with different
experimental settings using an Android-based smart-phone.

Acceleration data from walking activities have been acquired using a Google Nexus
One mobile phone with operating system Android 2.2 [Android(2007)]. Android-based
mobile phones have an open Application Program Interface that allows programming
the phone and accessing the sensors present in it. In this way, it is possible to read



4.5. Experimental Results 79

and save accelerometer data. Every sensor in the Android platform has an listener
associated that delivers data when a change in its value happens. The delivery rate can
be set to different frequency but this value is just an hint to the system. Events may
be received faster or slower than the specified rate. In the setting for the experiments,
accelerometer has been sampled with timestamps of approximatively 33 ms, using the
mobile phone in normal mode, with all the network connections active.

Data have been collected from 20 testers with ages between 25-35, 15 men and 5
women. Testers perform seven different runs of walking, for a total of 140 different
walking runs. Testers were free to perform all the runs as they like. The mobile phone
has been put in the jacket pocket on the chest. The acceleration axis are concordant
to the specification of the Android platform and, in our setting, the Z axis refers
to the direction concordant to the movement. The walking activity is performed in
indoor, outdoor and urban environment. The walking scenarios are described in the
following :

• 1 : Indoor corridor ;

• 2 : Outdoor street uphill and downhill ;

• 3 : Crowded flat urban street;

• 4 : Free flat urban street;

• 5 : Mixed scenario: Passing through doors from urban environment to indoor
environment with people ;

• 6 : Mixed scenario: Semi-Indoor corridor with up and down ramps ;

• 7 : Walking in a garden with rough floor.

Performance measurements False Rejection Rate (FRR) and False Acceptance
Rate (FAR) have been chosen as performance measures for verification. The FRR is
defined as the percentage of identification instances in which false rejection occurs or
the percentage of how many times an authorized user is not well verified. FAR is a
measure of the likelihood that the system will wrongly accept an unauthorized user.

Experimental Results

Custom wearable system results The verification system has been evaluated on
accelerometer data using a temporal frame of 35 seconds. In this way, results are
achieved every 35 seconds of observing user data. Figure 4.6(a) and Figure 4.6(b)
show the box plot representing the distribution of the cross-validation results for each
user for both values FAR and FRR, respectively. For all the users, FAR values are
below 0.08. There exist some variabilities between different users. Nevertheless, the
wide majority of the users is under a 5% of FAR. The false rejection reaches even bet-
ter results. All the users have FRR values below 6 · 10−3. Using data acquired by the



80 USER VERIFICATION FROM WALKING PATTERNS

custom wearable device, the rejection of an authorized user is smaller than the accep-
tance of an intruder. This fact means that the system is able to verify an authorized
user with very good performances but, more important, that the system provides very
few false alarms. This feature is important for usability purposes because the aim of
using biometrics is that the system would be as unobtrusive as possible.

(a)

(b)

Figure 4.6: Verification Results using a custom wearable system: (a) False Accep-
tance Rate and (b) False Rejection Rate.

Android-based system results With the Android-based smart-phone, the sys-
tem has been evaluated on the same temporal frame of 35 seconds. In Figure 4.7(a)
and Figure 4.7(b) FAR and FRR distributions for each subject are shown in box plots.
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The great majority of users FAR is below 6 · 10−4. There is one pathological example
in which its FAR is over 10−2. The FRR is slightly worse but for the majority of users
it is below 2 · 10−2. Using the commercial device, each user is very well discriminated
from the rest of users with FAR even smaller than those obtained in the case of the
custom device. On the other side, FRR has values higher then in the previous case.
Both these facts find their explanation in the data that the mobile phone provide.
Accelerometer data collected from the smart-phones, being filtering before to delivery,
have less noise than data provided by the custom device. This fact allows to verify
the user with very good performances. Nevertheless, accelerometer data sampling
does not follow a regular clock. This fact affects the quantity of data available in
the temporal window taken into account and, consequently, the construction of an
accurate boundary of the convex hull. For that reason, the probability that a sample
falls outside the convex hull is higher and, hence, the system is prone to provide more
false rejections.

(a)

(b)

Figure 4.7: Verification Results using a commercial device: (a) False Acceptance
Rate and (b) False Rejection Rate.
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4.6 Discussion

In this section, interesting questions are addressed regarding the verification process,
such as the discriminability of the walking activity, the personalization step, the
influence of the mixture model and the effect of the temporal ensemble.

4.6.1 Concerning the discriminability of the walking activity

Figure 4.8: Accelerometer Data of Walking Activity for five different subjects

In Figure 4.8, walking activities for five different users are shown. The mean value
of the time series depends on the position of the sensor and it represents the rotation of
the accelerometer around the correspondent axis. The pattern related to the walking
activity is clear but its shape depends on the subject. This pattern is representative
of the walking cycle i.e. the step that a person performs after moving both legs.
Systems like pedometers or step-counters are based on the information provided by
this walking-cycle. The walking cycle duration depends on the velocity of walking.
Inside the cycle, the swinging movement characterizes the difference between subjects.
However, in some cases, it seems difficult to find a walking cycle, as for instance, in
subject 4.

In every case, the shape of the time-series and its variations are characteristic
of the subject. This fact is shown in Figure 4.9, where the acceleration time series
related to the walking activity of a subject in different environmental conditions are
shown.

In order to model walking activities from the users, no information related to the
position of the sensor and the velocity of the specific activity performed have been
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Figure 4.9: Accelerometer Data of Walking Activity for the same subject in different
environmental conditions

used but only measures related to the variations of the oscillations in the acceleration
time-series. The measures used are the following:

• difference between pairs of consecutive peaks ;

• difference between the value of consecutive upper-side peaks ;

• difference between the value of consecutive lower-side peaks .

The first feature can provide important information about the variation of the
intensities in the acceleration during an activity. The second and third feature pro-
vide informations about the shape of the waveform. A further time series have been
obtained computing the derivative of acceleration data. In physics, the derivative of
acceleration is called Jerk [Sprott(2003)]. Jerk represents the rate of change of the
force acting on a body. In Figure 4.10, an example of acceleration data and its corre-
spondent derivative is shown, with peaks printed upon the data. The jerk also have
been characterized using the measures previously described. Using those measures,
the oscillatory movements typical of different activities and, at the same time, typical
of the interpersonal differences are taken into account. The mean value of these mea-
sures computed for both acceleration and jerk has been used for activity classification.
The standard deviation has been used for modeling the walking profile of authorized
users. In Figure 4.11, the profiles of three different users modeled by their walking
activity can be seen. The three users are perfectly separable and distinguishable. Six
features have been computed for each acceleration axis, obtaining a 18-dimensional
feature vector when the three acceleration axis are taken into account.
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Figure 4.10: Acceleration Data and its Derivative

Figure 4.11: Localization of walking activity of three different subjects in a ran-
domly projected plane.

4.6.2 With respect to personalization in the general activity
recognition subsystem

After the personalization of the general activity recognition, the system is much more
selective with respect to the new walking pattern. This effect reduces the performance
of the activity classifier for the rest of the subjects and filters out part of the walking
patterns from other users while keeping the discrimination performance for the desired
user. At first glance, this effect could be surprising since one expects the performance
for the verified user to increase. However, observe that the classification ratios are very
high. Thus, even if the system further improves its verification rate the performance
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difference would still be small. By reducing the performance for all users except for
the authorized one, this performance difference increases. This effect filters out non-
walking patterns for all users. The reduction in recall makes the system accept more
non-walking patterns as walking ones for the rest of users. Hopefully and effectively,
the second verification stage, which is finely tuned to user walking pattern, rejects
these last ones.

4.6.3 Concerning users walking variability and the effect of
the layer-3 convex hull algorithm

Most of state-of-the-art methods use a very small number of runs from the users
in the dataset when performing walking activity. Even worse, these runs are usu-
ally performed in very controlled conditions with little terrain variability. These data
severely under-represents users walking variability and makes the task of user verifica-
tion much more simple. For that reason, in this thesis we try to provide results using
data acquired “in the wild” such as in rough terrains or in adversarial conditions, in
crowded places or with obstacles. This feature is important because the variability
of the walking pattern for one user can be very high. In Figure 2, a scatter plot of
Feature 1 versus Feature 2 computed from the acceleration time series are shown.
Features data points are relative to the same subject but they belong to two different
walking paths. Although clusters are close, it is clear that using just one walking run
is not enough for modeling users walking activity .

Figure 4.12: Walking runs in two different paths of the same subject plotted on a
randomly projected plane

In the algorithm proposed, layer-3 uses a mixture of convex hulls in order to
better represent user’s walking pattern. Given a data set in a temporal frame of an
authorized user, if this set is not well represented, a new model – layer-2 convex hull
– is added to the user walking profile. Figure 4.13 shows the effect of adding up to six
models to the user’s profile on the false acceptance and false rejection ratios. These
empirical results reinforce the intuition and claim stated in the former lines about the
unsuitability of using one or two runs for verification purposes.
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Figure 4.13: Average FAR and FRR over all users when building a layer-3 hull
using a commercial device.

Observe that FRR is very high while the FAR is nearly zero at the first step. This
confirms that the first model does not represent very well the diversity of the walking
data of one user. As new data are observed and new models are added, the FRR
drastically reduces and FAR is barely affected. The final results achieved after the
construction of the layer-3 one-class verification system are: average FAR is 0.01604
and the average FRR is 0.3.

If we observe the distribution of FAR and FRR over all users in Figure 4.14, one
observes that the worst case scenario for FAR is below 0.15 with six users over 0.05.
If we consider FRR, the majority of the results are below 0.2. The former results were
reported on an adversarial scenario and acquisition conditions. If we consider the case
of the custom wearable device using a dedicated sensor working on high resolution
with data adequately sampled, the same results change considerably. On the ideal
scenario, the system is able to reject a legitimate user with value 0.006 ± 0.006 and
accepts a non-authorized user with 0.058± 0.048.

4.6.4 Temporal coherence and the effect of the layer-4 convex
hull algorithm

The final result of the verification system is greatly improved if one takes into account
temporal coherence of the data sequence. Figure 4.15 shows FAR and FRR as time
window increases. The value in the abscissa shows how many consecutive examples
of the sequence are used in the majority voting ensemble. Using the Android-based
system, 0.0001 of FAR is reached just after 55 seconds and 0.003 of FRR is reached
after 150 seconds. This fact means that, in less than one minute, no intruders are
allowed in the system and, in less than 2 minutes, the system has a very low probability
to be wrong about the authorized user. Observe that both FAR and FRR are greatly



4.6. Discussion 87

(a)

(b)

Figure 4.14: (a) False Acceptance Ratio (b) False Rejection Ratio for the layer-3
convex hull.

reduced as more examples are taken into account in both systems. If we consider the
results reported in the former section before the time ensemble (Figure 4.14) and the
final results in Figure 4.7, we observe a decrement of an order of magnitude in FAR
and FRR in the results ’in the wild’ and a reduction of half of those values in the
custom scenario.
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4.6.5 Concerning the state-of-the-art

In the following lines, we summarize the results and conditions for the most relevant
state-of-the-art works. In Vildjiounaite et al. [Vildjiounaite et al.(2007)], experiments
with voice, gait and fingerprint data have shown that in most cases FAR is around
0.01 and FRR is around 0.03. However, these results are the composite of three
verification systems. If we focus on the accelerometer verification, they report an EER
of 0.137. Note also that the data set is created walking along a 20 meters corridor.
In Mäntyjärvi et al. [Mäntyjärvi et al.(2005)] 36 test subject for recognition walked
with fast, normal and slow walking speeds in two sessions wearing the accelerometer
device on their belt, at back. The best equal error rate EER = 0.07 was achieved
with a signal correlation method on two runs of 20 meters per walking speed. Derawi
et al. [Derawi et al.(2010)] used a commercially available mobile device. The system
was evaluated having 51 volunteers and resulted in an equal error rate of 0.20 with the
system attached to the belt with two runs for each user in in-vitro conditions (about
37 meters down the hall on flat carpet). Finally, Gafurov et al. [Gafurov et al.(2006)]
attached the wearable system to the hip of 22 subjects performing six rounds of
walking at normal speed on a flat floor. They report EER of 0.16.

Observing the former works, the general state-of-the-art verification rate is around
0.1 of equal error rate, which means that a decrement on one of the two parameters,
FAR or FRR, worsens the value for the other. Observe, that using our custom system
the reported values for FRR and FAR are 0.007 and 0.03 which is far smaller than
the best error rates reported in literature. Note that the EER is between those
values. However, EER is simple to obtain if the system is parameterizable with
just one parameter. In our case different parameters would result in many different
decision error trade-off curves. Thus, we choose to report the most honest results
from the cross-validation tuning of the parameters. Using the Android-based wearable
device in the ’wild’ scenario, we achieve values of FAR and FRR of 0.0001 and 0.003,
respectively. Again, in this scenario the results are far better than the best reported,
but in a hard and adversarial scenario with several obstacles.
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4.7 Conclusions

In this final chapter, a novel personalized technique for user authentication and verifi-
cation using gait as a biometric unobtrusive pattern has been proposed. The method
is based on a two stages pipeline. In the first level, an activity recognition classifier
is able to distinguish the walking pattern of any user with respect to other activities.
This classifier is personalized for a specific user using a small sample of her walking
pattern. As a result, the system is much more selective with respect to the new walk-
ing pattern. This effect reduces the performance of the activity classifier for the rest
of the subjects. This phase of personalization effectively filters out part of the walking
patterns from other users while keeping the discrimination performance for the desired
user. A second stage verifies whether the user is an authorized user or not. This stage
is defined as a one-class classification problem. In order to solve this problem, a four
layer architecture is built around the APE methodology. Each layer covers different
needs. The first layer concerns computational complexity and storage requirements.
The second layer improves the performance by adding robustness to noise and outliers
by means of a bagging ensemble procedure. The third layer allows the use of multiple
APEs for modeling non-convex shapes. Finally, the fourth layer takes into account
temporal coherence to boost the results of the verification system. Two different sce-
narios have been used for validation with two different wearable systems. A custom
high-performance wearable system is built and used in a free environment. Using this
system, a data set of ten users is gathered during several days. A second dataset is
acquired from an Android based commercial device. In this last experiment, twenty
subjects freely perform seven runs in a “wild” scenario with rough terrains, adver-
sarial conditions, in crowded places and with obstacles. Results on both systems and
datasets are FRR = 0.0072 and FAR = 0.03 for the custom wearable system, and
FRR = 0.02 and FAR = 0.001 for the commercial system. These results are very
encouraging and, to the best of our knowledge, improve the verification rates from
gait patterns compared with state of the art techniques. All the results are obtained
setting the accelerometer sensor in the upper torso of a person. Future works would
plan on extending the system for handling data acquired from the sensor located at
different parts of the body. Another interesting problem arises when the number of
authorized users increases in the system. A general verification system considering
just authorized users patterns is not feasible, since FAR will redoubtably increase due
to the fact that there is more feature space considered as authorized. An effective
way of handling this problem is to create and automatically select user profiles.
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(a)

(b)

Figure 4.15: FAR and FRR evolution as the temporal ensemble size increase in (a)
the custom wearable system and (b) in a commercial device



Chapter 5

Conclusions

This thesis has focused its attention into the main topics of reducing the learning
complexity in ensemble of classifiers and recognizing physical activity. The main
achievements of this work are shown in Figure 5.1.

Figure 5.1: Achievement of this Thesis

Starting from a study on Random Projections, a new algorithm called RpBoost
has been developed. RpBoost embeds Random Projections with the aim of reducing
the dimensionality of the classification problem at hand and generating diversity in
the construction of ensemble. At each step of the optimization process, data projected
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in a random space are fitted with the classifier that best approximate data in that
space. RpBoost performs better than usual boosting approach on synthetic data and
in many real problems. Results show that projections drawn from a standard Normal
Distribution N(0, 1) provide the best results when compared to other type of projec-
tions. A new methodology for one-class classification problems, the Approximate
Polytope Ensemble (APE) and its extension, the Non-convex Approximate Poly-
tope Ensemble (NAPE) have been also presented. APE uses a convex hull to model
the boundaries of one-class classification problems. Expansion and contraction of the
original polytope governed by a parameter α, allows to avoid over-fitting. The high
computational complexity needed for building the convex hull in high dimensional
spaces is overcome using the Random Projection technique. The multi-dimensional
structure modeling the boundaries of the problem is approximated projecting data
down to bi-dimensional spaces. In those spaces, building the convex hull and checking
if a point lies inside the polygon are well know problems with very efficient solutions.
NAPE extends this approach using a tiling strategy of convex patches able to approx-
imate the original non-convex structure. Experimental results have shown that APE
and NAPE represent a good general methodology for one-class classification problems,
being competitive and many times outperforming state-of-the-art methodologies in
one-class classification. The low computational complexity of training and testing
makes APE suitable to be used in system with limited computational resources.

BeaStreamer, a new platform for wearable computing applications, has been de-
veloped for carrying out experiments for physical activity recognition. Although the
system was initially designed for acquisition tasks, its high computational capabilities
allow to use the system as a powerful and complete wearable computer. BeaStreamer
senses the environment using a standard low-cost web-cam and monitor user activity
by mean of an accelerometer, being able to provide Intelligent feedback to the user
using audio and visual information. Using BeaStreamer, data of different physical
activities can be easily collected for large amount of time, ensuring user comfortable-
ness. The task of classifying physical activities has also been carried out. Using
BeaStreamer, five common Activities of Daily Living have been successful classified
with high classification performances. These performances are comparable with the
state-of-the-art in physical activity recognition, specially taking into account that
a single classifier is used instead of more complex classification architectures. These
high performances are principally due to the features used in the classification process.
Particularly for motion data, features selected provide a set of meaningful features
able to give physical meaning to the quantities involved into the classification process.
Using the only set of motion features selected, good classification performances are
obtained using the only accelerometer.

Finally, a novel personalized technique for user authentication and verifi-
cation using gait as a biometric unobtrusive pattern has been presented. The method
is based on a two stages machine learning pipeline. In the first level, a personalized
activity recognition classifier is able to distinguish walking patterns in a much more
selective selective way for the authorized user than for others. The second stage veri-
fies the user. This stage is based on the APE methodology and is composed of three
more layers, each one devoted to tackle a specific problem arising from the pure ap-



93

plication of APE. The final verification system improves its performance by adding
robustness to noise and outliers, it is capable to manage situations where different
walking runs are performed in different environments and, finally, it improves itself on
a temporal scale. Results obtained show that the system significantly improves the
verification rates from gait patterns when compared with state of the art techniques.
This encouraging results induce to implement the system for a large scale testing
phase, in order to verify its effectiveness in a wider range of situations.

At the end of a research, two types of findings should always be outlined. The
first ones are related to all the technical results, theoretical and methodological, which
have been reached during the work. This type of conclusions, previously listed, are
pretty simple and immediate to show. Nevertheless, there exist conclusions much
more laborious to be drawn. These last findings, often omitted, represent the philo-
sophical1 contributions that the research has given to the researcher himself. In this
work, a complete system has been developed starting from the hardware up to the
highest intelligent layer. This process, conducted under a practical “problem-solving”
approach, led to aspects that may have interesting implications from the theoretical
points of view. At first, a theoretical study on the APE methodology presented in this
thesis should be conducted from the Computational Learning Theory point of view.
Experiments performed point out that the number of projections used for learning
the concept at hand is a quantity that might be strongly related to the robustness
of the concept to be learn. Moreover, the subtle intuition that random projections
provide is that the particular problem at hand benefits of some particular (random)
projections more than others but the randomness of the process prevents to see this
relationship clearly. On the other side, the evidence that users can be modeled by its
walking patterns opens a door towards biometrics authentications that allow constant
verification mechanisms. This fact, consonant with the increasing human-computer
symbiosis every day more knit, could bring to a new form of interaction. Under the
Ubiquitous Computing guideline, the trend seems to go towards systems personalized
on the users, able to constantly learn from them and augment their perception, as
well as first wearable computers hoped.

1Here the term “philosophical” is intended with its original meaning of “love for wisdom”.
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Appendix 1

Common Performance Measures in Machine Learning
A commonly used technique for validating classification results isN -fold cross-validation.
In N -fold cross-validation, data are partitioned into N approximative equally sized
segments (or folds). Subsequently N iterations of training and validation are per-
formed such that within each iteration a different fold of the data is held-out for
validation while the remaining N − 1 folds are used for learning. The results of the
validation process can be summarized in the Confusion Matrix (CM). The typical
structure of a bi-dimensional CM is show in Table 5, where the columns represent
the instances of the predicted class and the rows represent the instances of the true
class. Using CM, confusions between predicted classes can be easily visualized. Many
quantitative measures of classification performances can be derived directly from CM.
Accuracy is the most common measure of classification performances. Nevertheless,
when many classes are involved into the classification process, quantities like Precision
and Recall might be also interesting to use. Precision and Recall provide a measure
about how much the prediction for each class is consistent with respect false positives
and false negatives, respectively. The F-Measure combines precision and recall. All
these quantities are defined in Table 5.

ROC Curve and Area Under ROC
The Receiver Operating Characteristic (ROC) curve is the representation in a plot
of the sensitivity and 1-specificity. In the context of binary classifier system, ROC is
equivalent to plot the fraction of true positive computed over all the positive values
(as known as the True Positive Rate) obtained versus the fraction of false positive
computed over all the negative (also known as False Positive Rate). The variation of
True Positive and False Positive is discriminated as the threshold varies. The area
under the ROC curve represents a performance measure for binary classifiers.

Basic Statistics Measure
Let X be a random variable taking random value from a finite dataset of n elements,

Ground-truth Positive Label Ground-truth Negative Label
Predicted Positive Label True Positive (TP) False Negative (FN)
Predicted Negative Label False Positive (FP) True Negative (TN)

Table 1: Confusion Matrix
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Accuracy = TP+TN
TP+TN+FP+FN

Precision = TP
TP+FP

Recall = TP
TP+FN

F −Measure = 2 · Precision·Recall
Precision+Recall

Table 2: Classification Performances Measures

X = x1, · · · , xn, the expcted value or average of X, denoted by E, is provided using
the formula in Equation 1.

x = E[X]
1

n

n
∑

i=1

xi (1)

The standard deviation ofX is represented by the quantity provided by Equation 2.
High standard deviation indicates that points are far and spread from the mean. On
the other hand, small standard deviation indicates that points are clustered closely
around the mean.

σ =
√

E[(X − x)2] =

√

√

√

√

1

N

n
∑

i=1

(xi − x)2 (2)

A measure about asymmetry of the probability distribution of a real-valued random
variable is provided by the skewness, defined in Equation 3. The skewness for a
normal distribution is zero, and any symmetric data should have a skewness near
zero. Negative values for the skewness indicate data that are skewed left and positive
values for the skewness indicate data that are skewed right. By skewed left, we mean
that the left tail is long relative to the right tail. Similarly, skewed right means that
the right tail is long relative to the left tail.

skewness =

√

√

√

√E

[

(

X − x

σ

)3
]

=

∑n
i=1 (xi − x)3

(n− 1)σ3
(3)

Kurtosis is a measure of the peakedness of the probability distribution of the real-
valued random variable X. Kurtosis characterizes the relative peakedness or flatness
of a distribution compared to the normal distribution. Positive kurtosis indicates a
relatively peaked distribution. Negative kurtosis indicates a relatively flat distribu-
tion.

kurtosis =

√

√

√

√E

[

(

X − x

σ

)3
]

=

∑n
i=1 (xi − x)4

(n− 1)σ4
(4)

Singular Value Decomposition
Singular Value Decomposition is a way of factoring matrices into a series of linear
approximations that expose the underlying structure of the matrix. Let A be an mxn
matrix, where m ≥ n. Then A can be decomposed as follows:

A = UWV T (5)
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where U is a mxn orthonormal matrix: UUT = Im, W is a nxn diagonal matrix, and
V is an nxn orthogonal matrix, V V T = In.

W =





w1 0 · · · 0
0 w2 · · · 0
0 0 · · · wn



 (6)

The diagonal elements of W are called the singular values. The singular value de-
composition exists always and is unique.

Wavelet Transform
The wavelet transform was developed as a need for further improvements of Fourier
transforms. Wavelets transform signals in the time domain to a joint time-frequency
domain. The main weakness that was found in Fourier transforms was their lack of
localized support, which made them susceptible to Heisenberg’s Uncertainty principle.
It means that we could get information about the frequencies present in a signal, but
not where and when the frequencies occurred. Wavelets, on the other hand, are
not anywhere as subject to it. A wavelet is, as the name might suggest, a little
piece of a wave. Where a sinusoidal wave as is used by Fourier transforms carries
on repeating itself for infinity, a wavelet exists only within a finite domain, and is
zero-valued elsewhere. A wavelet transform involves convolving the signal against
particular instances of the wavelet at various time scales and positions. Since we
can model changes in frequency by changing the time scale, and model time changes
by shifting the position of the wavelet, we can model both frequency and location
of frequency. This provides the resulting domain as a joint time-frequency domain.
Performing these convolutions at every position and every characteristic scale is called
the continuous wavelet transform. This represents a costly process. Fortunately, most
signal data are stored discretely. Moreover, Nyquist’s theorem tells us that the highest
frequency we can model with discrete signal data is half that of the sampling frequency.
So that means we, at worst, have to perform the transform at every other point. The
continuous wavelet transform is generally expressed with the integral in Equation 7.

CWTΨ
x (τ, s) =

1
√

|s|

∫

x(t)Ψ

(

t− τ

s

)

dt (7)

In the discrete wavelet transform, a low-pass(scaling function) and a high-pass (wavelet
function) version of the signal are computed separating the high-pass and low-pass
information. The discrete wavelet transform behaves like a bank of filters. Iterat-
ing downward along the low-pass sub-band, the low-pass data are treated as a new
signal subdivided into its own low and high sub-bands. The Haar wavelet is proba-
bly the most basic wavelet. It is equivalent to a sum-difference transformation. The
Daubechies-4 is probably the shape most associated with the word wavelet.
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Figure 2: Classic Wavelets: Haar (left) and Daubechies-4 (right)



Appendix 2: Numerical Results
obtained on Approximate Polytope
Ensemble

In this Appendix, numerical results of the experiments performed in this thesis are
reported.

Table 3: Comparative Results: AUC obtained on Artificial Datasets with 500 dat-
apoints.

Normal Banana Esse Tre Toro

Gauss 0.963 ± 0.008 0.940 ± 0.014 0.952 ± 0.009 0.953 ± 0.008 0.905 ± 0.010

MoG 0.962 ± 0.008 0.966 ± 0.007 0.973 ± 0.006 0.970 ± 0.009 0.936 ± 0.012

PDE 0.962 ± 0.008 0.966 ± 0.006 0.973 ± 0.005 0.970 ± 0.009 0.936 ± 0.011

kNN 0.947 ± 0.012 0.955 ± 0.009 0.966 ± 0.007 0.965 ± 0.008 0.926 ± 0.013

kM 0.956 ± 0.008 0.959 ± 0.007 0.969 ± 0.005 0.967 ± 0.010 0.930 ± 0.010

kC 0.959 ± 0.011 0.954 ± 0.009 0.962 ± 0.010 0.963 ± 0.008 0.924 ± 0.013

MST 0.938 ± 0.015 0.952 ± 0.011 0.965 ± 0.007 0.964 ± 0.007 0.925 ± 0.015

SVDD 0.959 ± 0.006 0.955 ± 0.010 0.954 ± 0.007 0.952 ± 0.007 0.911 ± 0.013

APE-ONE 0.921 ± 0.031 0.867 ± 0.048 0.926 ± 0.019 0.892 ± 0.045 0.883 ± 0.045

APE-TWO 0.959 ± 0.016 0.863 ± 0.078 0.962 ± 0.010 0.952 ± 0.015 0.824 ± 0.054

N-APE 0.968 ± 0.005 0.974 ± 0.008 0.974 ± 0.009 0.978 ± 0.007 0.940 ± 0.027

Table 4: Comparative Results: AUC obtained on Artificial Datasets with 750 dat-
apoints.

Normal Banana Esse Tre Toro

Gauss 0.963 ± 0.006 0.942 ± 0.008 0.951 ± 0.011 0.955 ± 0.008 0.915 ± 0.013

MoG 0.963 ± 0.006 0.967 ± 0.005 0.972 ± 0.007 0.972 ± 0.006 0.943 ± 0.009

PDE 0.963 ± 0.006 0.967 ± 0.005 0.972 ± 0.006 0.970 ± 0.006 0.944 ± 0.008

kNN 0.951 ± 0.009 0.957 ± 0.008 0.966 ± 0.007 0.965 ± 0.005 0.931 ± 0.009

kM 0.959 ± 0.011 0.963 ± 0.006 0.969 ± 0.007 0.969 ± 0.006 0.936 ± 0.009

kC 0.962 ± 0.008 0.956 ± 0.009 0.961 ± 0.004 0.963 ± 0.011 0.924 ± 0.012

MST 0.943 ± 0.011 0.954 ± 0.008 0.964 ± 0.006 0.963 ± 0.005 0.928 ± 0.010

APE-ONE 0.921 ± 0.038 0.874 ± 0.060 0.934 ± 0.033 0.875 ± 0.055 0.925 ± 0.011

APE-TWO 0.960 ± 0.007 0.888 ± 0.077 0.963 ± 0.013 0.957 ± 0.009 0.835 ± 0.039

N-APE 0.965 ± 0.008 0.975 ± 0.004 0.978 ± 0.005 0.951 ± 0.003 0.965 ± 0.008
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Table 5: Comparative Results: AUC obtained on Artificial Datasets with 1000
datapoints.

Normal Banana Esse Tre Toro

Gauss 0.963 ± 0.003 0.942 ± 0.009 0.951 ± 0.009 0.955 ± 0.007 0.915 ± 0.008

MoG 0.963 ± 0.003 0.967 ± 0.004 0.972 ± 0.006 0.972 ± 0.005 0.943 ± 0.005

PDE 0.963 ± 0.003 0.967 ± 0.004 0.972 ± 0.006 0.970 ± 0.004 0.944 ± 0.006

kNN 0.951 ± 0.007 0.957 ± 0.007 0.966 ± 0.006 0.965 ± 0.006 0.931 ± 0.006

kM 0.959 ± 0.006 0.963 ± 0.005 0.969 ± 0.007 0.969 ± 0.005 0.936 ± 0.006

kC 0.962 ± 0.003 0.956 ± 0.008 0.961 ± 0.006 0.963 ± 0.004 0.924 ± 0.010

MST 0.943 ± 0.009 0.954 ± 0.007 0.964 ± 0.007 0.963 ± 0.006 0.928 ± 0.007

APE-ONE 0.921 ± 0.019 0.874 ± 0.057 0.934 ± 0.028 0.875 ± 0.068 0.925 ± 0.011

APE-TWO 0.960 ± 0.016 0.888 ± 0.038 0.963 ± 0.006 0.957 ± 0.020 0.835 ± 0.058

N-APE 0.965 ± 0.013 0.975 ± 0.003 0.978 ± 0.004 0.951 ± 0.002 0.965 ± 0.002

Table 6: Comparative Results: AUC obtained on D
∗ on Gauss, MoG, PDE, kNN,

kM and kC.

Gauss MoG PDE kNN kM kC

6 0.887 ± 0.086 0.900 ± 0.086 0.921 ± 0.081 0.924 ± 0.078 0.925 ± 0.077 0.922 ± 0.076

7 0.899 ± 0.110 0.875 ± 0.107 0.893 ± 0.094 0.894 ± 0.097 0.875 ± 0.109 0.894 ± 0.114

8 0.855 ± 0.102 0.841 ± 0.107 0.937 ± 0.077 0.937 ± 0.075 0.938 ± 0.074 0.929 ± 0.080

9 0.891 ± 0.076 0.793 ± 0.109 0.834 ± 0.085 0.813 ± 0.082 0.842 ± 0.086 0.912 ± 0.075

10 0.871 ± 0.069 0.851 ± 0.079 0.889 ± 0.065 0.885 ± 0.064 0.879 ± 0.078 0.885 ± 0.070

11 0.752 ± 0.068 0.780 ± 0.070 0.765 ± 0.076 0.780 ± 0.081 0.767 ± 0.092 0.794 ± 0.080

12 0.583 ± 0.047 0.608 ± 0.047 0.585 ± 0.049 0.606 ± 0.055 0.573 ± 0.052 0.562 ± 0.041

13 0.511 ± 0.051 0.522 ± 0.047 0.474 ± 0.045 0.511 ± 0.043 0.494 ± 0.051 0.518 ± 0.071

28 0.625 ± 0.063 0.630 ± 0.077 0.720 ± 0.065 0.720 ± 0.066 0.702 ± 0.059 0.655 ± 0.072

29 0.653 ± 0.084 0.643 ± 0.090 0.674 ± 0.082 0.676 ± 0.082 0.666 ± 0.080 0.608 ± 0.111

30 0.626 ± 0.081 0.641 ± 0.095 0.721 ± 0.083 0.723 ± 0.083 0.694 ± 0.080 0.650 ± 0.084

31 0.654 ± 0.078 0.639 ± 0.079 0.678 ± 0.073 0.681 ± 0.072 0.662 ± 0.088 0.613 ± 0.106

35 0.977 ± 0.022 0.964 ± 0.028 0.971 ± 0.020 0.971 ± 0.020 0.964 ± 0.025 0.963 ± 0.027

36 0.873 ± 0.072 0.841 ± 0.077 0.798 ± 0.066 0.842 ± 0.072 0.797 ± 0.079 0.770 ± 0.079

37 0.926 ± 0.051 0.808 ± 0.089 0.676 ± 0.085 0.713 ± 0.088 0.663 ± 0.096 0.679 ± 0.152

38 0.606 ± 0.060 0.675 ± 0.067 0.669 ± 0.068 0.674 ± 0.062 0.637 ± 0.082 0.589 ± 0.096

39 0.510 ± 0.066 0.439 ± 0.076 0.433 ± 0.067 0.426 ± 0.060 0.432 ± 0.082 0.645 ± 0.090

40 0.602 ± 0.074 0.781 ± 0.098 0.720 ± 0.085 0.761 ± 0.086 0.702 ± 0.077 0.650 ± 0.078

41 0.801 ± 0.085 0.763 ± 0.101 0.775 ± 0.087 0.774 ± 0.089 0.761 ± 0.101 0.683 ± 0.084

42 0.763 ± 0.091 0.809 ± 0.132 0.802 ± 0.083 0.821 ± 0.075 0.796 ± 0.084 0.722 ± 0.107

43 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.385 ± 0.082

44 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.957 ± 0.038

45 0.973 ± 0.022 0.934 ± 0.044 0.941 ± 0.036 0.951 ± 0.034 0.937 ± 0.041 0.938 ± 0.042

46 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.998 ± 0.004 0.993 ± 0.012

47 0.990 ± 0.013 0.979 ± 0.023 0.975 ± 0.019 0.975 ± 0.017 0.971 ± 0.024 0.973 ± 0.022

48 0.486 ± 0.057 0.426 ± 0.054 0.206 ± 0.043 0.239 ± 0.040 0.412 ± 0.057 0.476 ± 0.056

49 0.470 ± 0.056 0.419 ± 0.046 0.230 ± 0.037 0.261 ± 0.033 0.410 ± 0.047 0.482 ± 0.048

50 0.626 ± 0.045 0.689 ± 0.047 0.696 ± 0.044 0.698 ± 0.037 0.678 ± 0.062 0.560 ± 0.056

51 0.518 ± 0.044 0.619 ± 0.047 0.675 ± 0.035 0.667 ± 0.031 0.608 ± 0.055 0.564 ± 0.053

52 0.460 ± 0.051 0.408 ± 0.063 0.215 ± 0.031 0.241 ± 0.029 0.396 ± 0.051 0.480 ± 0.046

53 0.502 ± 0.053 0.442 ± 0.051 0.249 ± 0.035 0.267 ± 0.032 0.428 ± 0.048 0.492 ± 0.038

54 0.798 ± 0.045 0.767 ± 0.068 0.783 ± 0.048 0.770 ± 0.050 0.768 ± 0.055 0.768 ± 0.067

55 0.666 ± 0.065 0.671 ± 0.079 0.653 ± 0.057 0.628 ± 0.058 0.635 ± 0.069 0.830 ± 0.102

63 0.722 ± 0.071 0.770 ± 0.087 0.710 ± 0.083 0.782 ± 0.075 0.724 ± 0.085 0.692 ± 0.088

64 0.553 ± 0.103 0.612 ± 0.115 0.607 ± 0.105 0.678 ± 0.108 0.593 ± 0.103 0.541 ± 0.107

65 0.496 ± 0.097 0.668 ± 0.077 0.678 ± 0.095 0.720 ± 0.088 0.662 ± 0.094 0.651 ± 0.107

66 0.754 ± 0.038 0.651 ± 0.050 0.340 ± 0.036 0.742 ± 0.034 0.746 ± 0.055 0.571 ± 0.043

67 0.431 ± 0.026 0.543 ± 0.034 0.330 ± 0.022 0.558 ± 0.032 0.420 ± 0.034 0.530 ± 0.042

68 0.618 ± 0.037 0.650 ± 0.043 0.488 ± 0.038 0.669 ± 0.043 0.601 ± 0.056 0.577 ± 0.049

80 0.988 ± 0.013 0.981 ± 0.017 0.995 ± 0.006 0.995 ± 0.006 0.994 ± 0.009 0.992 ± 0.010

81 1.000 ± 0.000 1.000 ± 0.000 0.997 ± 0.006 0.997 ± 0.005 0.992 ± 0.011 0.990 ± 0.013

82 0.951 ± 0.033 0.927 ± 0.049 0.883 ± 0.059 0.870 ± 0.062 0.873 ± 0.052 0.872 ± 0.072
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Table 7: Comparative Results: AUC obtained on D
∗ on MST, SVDD, APE-1,

APE-2 and N-APE

MST SVDD APE-1 APE-2s N-APE

6 0.927 ± 0.080 0.895 ± 0.082 0.934 ± 0.013 0.867 ± 0.154 0.867 ± 0.188

7 0.899 ± 0.094 0.899 ± 0.095 0.916 ± 0.025 0.836 ± 0.202 0.836 ± 0.236

8 0.944 ± 0.076 0.946 ± 0.078 0.938 ± 0.012 0.808 ± 0.190 0.808 ± 0.241

9 0.833 ± 0.084 0.881 ± 0.081 0.868 ± 0.099 0.843 ± 0.174 0.843 ± 0.174

10 0.878 ± 0.072 0.836 ± 0.077 0.864 ± 0.141 0.768 ± 0.229 0.819 ± 0.229

11 0.769 ± 0.076 0.755 ± 0.080 0.590 ± 0.183 0.581 ± 0.183 0.699 ± 0.224

12 0.608 ± 0.055 0.618 ± 0.050 0.526 ± 0.068 0.619 ± 0.110 0.627 ± 0.116

13 0.514 ± 0.041 0.538 ± 0.052 0.551 ± 0.064 0.667 ± 0.062 0.670 ± 0.062

28 0.719 ± 0.061 0.680 ± 0.059 0.622 ± 0.148 0.723 ± 0.117 0.730 ± 0.117

29 0.690 ± 0.078 0.701 ± 0.065 0.746 ± 0.069 0.674 ± 0.091 0.674 ± 0.091

30 0.724 ± 0.081 0.679 ± 0.077 0.630 ± 0.119 0.743 ± 0.112 0.743 ± 0.116

31 0.696 ± 0.071 0.705 ± 0.064 0.741 ± 0.068 0.680 ± 0.090 0.682 ± 0.090

35 0.973 ± 0.019 0.976 ± 0.018 0.920 ± 0.022 0.968 ± 0.024 0.968 ± 0.030

36 0.854 ± 0.072 0.850 ± 0.071 0.927 ± 0.032 0.870 ± 0.168 0.870 ± 0.168

37 0.725 ± 0.086 0.720 ± 0.087 0.924 ± 0.026 0.922 ± 0.102 0.922 ± 0.226

38 0.667 ± 0.062 0.625 ± 0.070 0.574 ± 0.079 0.791 ± 0.040 0.791 ± 0.040

39 0.436 ± 0.064 0.573 ± 0.094 0.517 ± 0.068 0.516 ± 0.226 0.541 ± 0.226

40 0.768 ± 0.086 0.724 ± 0.086 0.446 ± 0.042 0.737 ± 0.107 0.800 ± 0.107

41 0.779 ± 0.088 0.792 ± 0.089 0.808 ± 0.132 0.896 ± 0.049 0.896 ± 0.058

42 0.827 ± 0.081 0.691 ± 0.159 0.667 ± 0.219 0.709 ± 0.187 0.730 ± 0.231

43 0.500 ± 0.000 0.000 ± 0.000 0.821 ± 0.002 0.821 ± 0.002 0.821 ± 0.044

44 0.500 ± 0.000 0.000 ± 0.000 0.679 ± 0.002 0.679 ± 0.002 0.960 ± 0.017

45 0.953 ± 0.033 0.973 ± 0.028 0.916 ± 0.031 0.965 ± 0.014 0.965 ± 0.025

46 1.000 ± 0.000 1.000 ± 0.000 0.925 ± 0.026 0.982 ± 0.005 0.982 ± 0.016

47 0.976 ± 0.017 0.978 ± 0.020 0.908 ± 0.020 0.963 ± 0.016 0.963 ± 0.020

48 0.239 ± 0.040 0.320 ± 0.052 0.440 ± 0.076 0.722 ± 0.021 0.722 ± 0.055

49 0.261 ± 0.034 0.314 ± 0.052 0.472 ± 0.069 0.738 ± 0.018 0.738 ± 0.059

50 0.696 ± 0.037 0.692 ± 0.052 0.605 ± 0.039 0.791 ± 0.080 0.791 ± 0.100

51 0.663 ± 0.032 0.664 ± 0.050 0.546 ± 0.059 0.769 ± 0.059 0.769 ± 0.104

52 0.241 ± 0.029 0.315 ± 0.044 0.441 ± 0.064 0.733 ± 0.012 0.733 ± 0.054

53 0.267 ± 0.032 0.338 ± 0.038 0.465 ± 0.070 0.734 ± 0.019 0.734 ± 0.059

54 0.768 ± 0.049 0.778 ± 0.049 0.736 ± 0.070 0.830 ± 0.046 0.830 ± 0.057

55 0.636 ± 0.055 0.638 ± 0.057 0.731 ± 0.102 0.705 ± 0.118 0.726 ± 0.118

63 0.783 ± 0.075 0.752 ± 0.098 0.676 ± 0.168 0.860 ± 0.051 0.860 ± 0.120

64 0.678 ± 0.109 0.579 ± 0.102 0.504 ± 0.124 0.697 ± 0.151 0.697 ± 0.158

65 0.721 ± 0.088 0.705 ± 0.090 0.508 ± 0.122 0.737 ± 0.160 0.737 ± 0.176

66 0.175 ± 0.028 0.677 ± 0.059 0.793 ± 0.092 0.826 ± 0.037 0.826 ± 0.077

67 0.227 ± 0.025 0.468 ± 0.036 0.402 ± 0.045 0.528 ± 0.055 0.528 ± 0.055

68 0.404 ± 0.033 0.544 ± 0.051 0.451 ± 0.022 0.488 ± 0.022 0.580 ± 0.161

80 0.996 ± 0.006 0.995 ± 0.006 0.860 ± 0.016 0.980 ± 0.008 0.980 ± 0.011

81 0.997 ± 0.007 0.997 ± 0.006 0.880 ± 0.012 0.984 ± 0.006 0.984 ± 0.011

82 0.876 ± 0.060 0.880 ± 0.060 0.853 ± 0.024 0.938 ± 0.035 0.938 ± 0.092
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Table 8: Comparative Results: AUC obtained on D on Gauss, MoG, PDE, kNN,
kM and kC. Problems from 1 to 41.

Gauss MoG PDE kNN kM kC

1 0.930 ± 0.018 0.960 ± 0.014 0.971 ± 0.011 0.968 ± 0.011 0.918 ± 0.020 0.880 ± 0.034

2 0.930 ± 0.027 0.953 ± 0.045 0.690 ± 0.057 0.723 ± 0.067 0.624 ± 0.086 0.653 ± 0.063

3 0.929 ± 0.018 0.963 ± 0.014 0.972 ± 0.011 0.970 ± 0.010 0.915 ± 0.023 0.883 ± 0.038

4 0.516 ± 0.042 0.595 ± 0.042 0.558 ± 0.041 0.562 ± 0.040 0.538 ± 0.053 0.582 ± 0.083

5 0.688 ± 0.046 0.642 ± 0.051 0.612 ± 0.050 0.558 ± 0.041 0.604 ± 0.054 0.663 ± 0.052

6 0.887 ± 0.086 0.900 ± 0.086 0.921 ± 0.081 0.924 ± 0.078 0.925 ± 0.077 0.922 ± 0.076

7 0.899 ± 0.110 0.875 ± 0.107 0.893 ± 0.094 0.894 ± 0.097 0.875 ± 0.109 0.894 ± 0.114

8 0.855 ± 0.102 0.841 ± 0.107 0.937 ± 0.077 0.937 ± 0.075 0.938 ± 0.074 0.929 ± 0.080

9 0.891 ± 0.076 0.793 ± 0.109 0.834 ± 0.085 0.813 ± 0.082 0.842 ± 0.086 0.912 ± 0.075

10 0.871 ± 0.069 0.851 ± 0.079 0.889 ± 0.065 0.885 ± 0.064 0.879 ± 0.078 0.885 ± 0.070

11 0.752 ± 0.068 0.780 ± 0.070 0.765 ± 0.076 0.780 ± 0.081 0.767 ± 0.092 0.794 ± 0.080

12 0.583 ± 0.047 0.608 ± 0.047 0.585 ± 0.049 0.606 ± 0.055 0.573 ± 0.052 0.562 ± 0.041

13 0.511 ± 0.051 0.522 ± 0.047 0.474 ± 0.045 0.511 ± 0.043 0.494 ± 0.051 0.518 ± 0.071

14 0.865 ± 0.017 0.893 ± 0.023 0.862 ± 0.015 0.854 ± 0.046 0.858 ± 0.022 0.738 ± 0.034

15 0.657 ± 0.033 0.873 ± 0.047 0.947 ± 0.008 0.950 ± 0.010 0.679 ± 0.033 0.545 ± 0.056

16 0.899 ± 0.014 0.955 ± 0.024 0.929 ± 0.016 0.929 ± 0.028 0.879 ± 0.033 0.807 ± 0.038

17 0.947 ± 0.012 0.965 ± 0.020 0.959 ± 0.011 0.957 ± 0.016 0.946 ± 0.022 0.884 ± 0.033

18 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.002 1.000 ± 0.000

19 1.000 ± 0.000 1.000 ± 0.000 0.997 ± 0.004 0.997 ± 0.004 0.994 ± 0.006 0.996 ± 0.004

20 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

21 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

22 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

23 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.002 1.000 ± 0.001

24 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.001 1.000 ± 0.001 0.991 ± 0.010 0.996 ± 0.006

25 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

26 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

27 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.002 0.999 ± 0.002

28 0.625 ± 0.063 0.630 ± 0.077 0.720 ± 0.065 0.720 ± 0.066 0.702 ± 0.059 0.655 ± 0.072

29 0.653 ± 0.084 0.643 ± 0.090 0.674 ± 0.082 0.676 ± 0.082 0.666 ± 0.080 0.608 ± 0.111

30 0.626 ± 0.081 0.641 ± 0.095 0.721 ± 0.083 0.723 ± 0.083 0.694 ± 0.080 0.650 ± 0.084

31 0.654 ± 0.078 0.639 ± 0.079 0.678 ± 0.073 0.681 ± 0.072 0.662 ± 0.088 0.613 ± 0.106

32 0.407 ± 0.026 0.403 ± 0.033 0.421 ± 0.027 0.426 ± 0.027 0.442 ± 0.033 0.460 ± 0.045

33 0.661 ± 0.029 0.656 ± 0.038 0.661 ± 0.037 0.645 ± 0.037 0.644 ± 0.035 0.580 ± 0.042

34 0.635 ± 0.029 0.610 ± 0.032 0.592 ± 0.029 0.583 ± 0.029 0.611 ± 0.029 0.621 ± 0.037

35 0.977 ± 0.022 0.964 ± 0.028 0.971 ± 0.020 0.971 ± 0.020 0.964 ± 0.025 0.963 ± 0.027

36 0.873 ± 0.072 0.841 ± 0.077 0.798 ± 0.066 0.842 ± 0.072 0.797 ± 0.079 0.770 ± 0.079

37 0.926 ± 0.051 0.808 ± 0.089 0.676 ± 0.085 0.713 ± 0.088 0.663 ± 0.096 0.679 ± 0.152

38 0.606 ± 0.060 0.675 ± 0.067 0.669 ± 0.068 0.674 ± 0.062 0.637 ± 0.082 0.589 ± 0.096

39 0.510 ± 0.066 0.439 ± 0.076 0.433 ± 0.067 0.426 ± 0.060 0.432 ± 0.082 0.645 ± 0.090

40 0.602 ± 0.074 0.781 ± 0.098 0.720 ± 0.085 0.761 ± 0.086 0.702 ± 0.077 0.650 ± 0.078

41 0.801 ± 0.085 0.763 ± 0.101 0.775 ± 0.087 0.774 ± 0.089 0.761 ± 0.101 0.683 ± 0.084
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Table 9: Comparative Results: AUC obtained on D on Gauss, MoG, PDE, kNN,
kM and kC. Problems from 42 to 82.

Gauss MoG PDE kNN kM kC

42 0.763 ± 0.091 0.809 ± 0.132 0.802 ± 0.083 0.821 ± 0.075 0.796 ± 0.084 0.722 ± 0.107

43 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.385 ± 0.082

44 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.957 ± 0.038

45 0.973 ± 0.022 0.934 ± 0.044 0.941 ± 0.036 0.951 ± 0.034 0.937 ± 0.041 0.938 ± 0.042

46 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.998 ± 0.004 0.993 ± 0.012

47 0.990 ± 0.013 0.979 ± 0.023 0.975 ± 0.019 0.975 ± 0.017 0.971 ± 0.024 0.973 ± 0.022

48 0.486 ± 0.057 0.426 ± 0.054 0.206 ± 0.043 0.239 ± 0.040 0.412 ± 0.057 0.476 ± 0.056

49 0.470 ± 0.056 0.419 ± 0.046 0.230 ± 0.037 0.261 ± 0.033 0.410 ± 0.047 0.482 ± 0.048

50 0.626 ± 0.045 0.689 ± 0.047 0.696 ± 0.044 0.698 ± 0.037 0.678 ± 0.062 0.560 ± 0.056

51 0.518 ± 0.044 0.619 ± 0.047 0.675 ± 0.035 0.667 ± 0.031 0.608 ± 0.055 0.564 ± 0.053

52 0.460 ± 0.051 0.408 ± 0.063 0.215 ± 0.031 0.241 ± 0.029 0.396 ± 0.051 0.480 ± 0.046

53 0.502 ± 0.053 0.442 ± 0.051 0.249 ± 0.035 0.267 ± 0.032 0.428 ± 0.048 0.492 ± 0.038

54 0.798 ± 0.045 0.767 ± 0.068 0.783 ± 0.048 0.770 ± 0.050 0.768 ± 0.055 0.768 ± 0.067

55 0.666 ± 0.065 0.671 ± 0.079 0.653 ± 0.057 0.628 ± 0.058 0.635 ± 0.069 0.830 ± 0.102

56 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.965 ± 0.021

57 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.999 ± 0.001

58 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.810 ± 0.052

59 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.830 ± 0.050

60 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.853 ± 0.034

61 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.970 ± 0.012

62 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.993 ± 0.008

63 0.722 ± 0.071 0.770 ± 0.087 0.710 ± 0.083 0.782 ± 0.075 0.724 ± 0.085 0.692 ± 0.088

64 0.553 ± 0.103 0.612 ± 0.115 0.607 ± 0.105 0.678 ± 0.108 0.593 ± 0.103 0.541 ± 0.107

65 0.496 ± 0.097 0.668 ± 0.077 0.678 ± 0.095 0.720 ± 0.088 0.662 ± 0.094 0.651 ± 0.107

66 0.754 ± 0.038 0.651 ± 0.050 0.340 ± 0.036 0.742 ± 0.034 0.746 ± 0.055 0.571 ± 0.043

67 0.431 ± 0.026 0.543 ± 0.034 0.330 ± 0.022 0.558 ± 0.032 0.420 ± 0.034 0.530 ± 0.042

68 0.618 ± 0.037 0.650 ± 0.043 0.488 ± 0.038 0.669 ± 0.043 0.601 ± 0.056 0.577 ± 0.049

69 0.989 ± 0.006 0.999 ± 0.001 0.999 ± 0.002 0.999 ± 0.002 0.978 ± 0.015 0.967 ± 0.013

70 0.982 ± 0.008 0.999 ± 0.001 0.999 ± 0.002 0.999 ± 0.002 0.964 ± 0.014 0.960 ± 0.018

71 0.995 ± 0.005 0.999 ± 0.002 0.999 ± 0.001 0.999 ± 0.001 0.983 ± 0.009 0.974 ± 0.012

72 0.999 ± 0.001 0.999 ± 0.001 1.000 ± 0.001 1.000 ± 0.001 0.982 ± 0.016 0.972 ± 0.012

73 0.975 ± 0.011 0.997 ± 0.004 0.995 ± 0.004 0.995 ± 0.004 0.962 ± 0.020 0.950 ± 0.020

74 0.953 ± 0.017 0.991 ± 0.008 0.992 ± 0.006 0.992 ± 0.006 0.936 ± 0.024 0.915 ± 0.034

75 0.963 ± 0.013 0.995 ± 0.007 0.996 ± 0.004 0.996 ± 0.004 0.937 ± 0.032 0.910 ± 0.032

76 0.994 ± 0.004 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.974 ± 0.018 0.971 ± 0.012

77 0.987 ± 0.010 0.989 ± 0.017 0.990 ± 0.014 0.990 ± 0.014 0.920 ± 0.033 0.855 ± 0.043

78 0.993 ± 0.006 0.999 ± 0.002 1.000 ± 0.001 1.000 ± 0.001 0.948 ± 0.040 0.939 ± 0.029

79 0.991 ± 0.006 0.998 ± 0.002 0.999 ± 0.002 0.999 ± 0.002 0.962 ± 0.029 0.970 ± 0.019

80 0.988 ± 0.013 0.981 ± 0.017 0.995 ± 0.006 0.995 ± 0.006 0.994 ± 0.009 0.992 ± 0.010

81 1.000 ± 0.000 1.000 ± 0.000 0.997 ± 0.006 0.997 ± 0.005 0.992 ± 0.011 0.990 ± 0.013

82 0.951 ± 0.033 0.927 ± 0.049 0.883 ± 0.059 0.870 ± 0.062 0.873 ± 0.052 0.872 ± 0.072



104 NUMERICAL RESULTS

Table 10: Comparative Results: AUC obtained on D
∗ on MST, APE-1, APE-2 and

N-APE. Problems from 1 to 41.

MST APE-ONE APE-TWO N-APE

1 0.901 ± 0.023 0.922 ± 0.048 0.933 ± 0.030 0.937 ± 0.030

2 0.598 ± 0.045 0.707 ± 0.207 0.951 ± 0.065 0.951 ± 0.065

3 0.903 ± 0.022 0.924 ± 0.039 0.935 ± 0.034 0.935 ± 0.034

4 0.561 ± 0.040 0.608 ± 0.097 0.828 ± 0.024 0.828 ± 0.041

5 0.551 ± 0.040 0.560 ± 0.061 0.548 ± 0.176 0.627 ± 0.186

6 0.927 ± 0.080 0.934 ± 0.013 0.867 ± 0.154 0.867 ± 0.188

7 0.899 ± 0.094 0.916 ± 0.025 0.836 ± 0.202 0.836 ± 0.236

8 0.944 ± 0.076 0.938 ± 0.012 0.808 ± 0.190 0.808 ± 0.241

9 0.833 ± 0.084 0.868 ± 0.099 0.843 ± 0.174 0.843 ± 0.174

10 0.878 ± 0.072 0.864 ± 0.141 0.768 ± 0.229 0.819 ± 0.229

11 0.769 ± 0.076 0.590 ± 0.183 0.581 ± 0.183 0.699 ± 0.224

12 0.608 ± 0.055 0.526 ± 0.068 0.619 ± 0.110 0.627 ± 0.116

13 0.514 ± 0.041 0.551 ± 0.064 0.667 ± 0.062 0.670 ± 0.062

14 0.853 ± 0.050 0.717 ± 0.188 0.853 ± 0.117 0.853 ± 0.143

15 0.832 ± 0.060 0.746 ± 0.035 0.778 ± 0.049 0.882 ± 0.049

16 0.928 ± 0.028 0.486 ± 0.002 0.971 ± 0.003 0.971 ± 0.153

17 0.956 ± 0.016 0.981 ± 0.000 0.981 ± 0.000 0.981 ± 0.034

18 1.000 ± 0.000 0.910 ± 0.000 0.910 ± 0.000 0.998 ± 0.001

19 0.997 ± 0.004 0.864 ± 0.001 0.864 ± 0.001 0.996 ± 0.005

20 1.000 ± 0.000 0.988 ± 0.001 0.988 ± 0.001 0.998 ± 0.002

21 1.000 ± 0.000 0.981 ± 0.000 0.981 ± 0.000 0.999 ± 0.000

22 1.000 ± 0.000 0.983 ± 0.001 0.983 ± 0.001 0.998 ± 0.001

23 1.000 ± 0.000 0.922 ± 0.000 0.922 ± 0.000 0.998 ± 0.002

24 1.000 ± 0.001 0.941 ± 0.001 0.941 ± 0.001 0.998 ± 0.001

25 1.000 ± 0.000 0.975 ± 0.001 0.975 ± 0.001 0.998 ± 0.001

26 1.000 ± 0.000 0.984 ± 0.000 0.984 ± 0.000 0.999 ± 0.001

27 1.000 ± 0.000 0.954 ± 0.000 0.954 ± 0.000 0.998 ± 0.002

28 0.719 ± 0.061 0.622 ± 0.148 0.723 ± 0.117 0.730 ± 0.117

29 0.690 ± 0.078 0.746 ± 0.069 0.674 ± 0.091 0.674 ± 0.091

30 0.724 ± 0.081 0.630 ± 0.119 0.743 ± 0.112 0.743 ± 0.116

31 0.696 ± 0.071 0.741 ± 0.068 0.680 ± 0.090 0.682 ± 0.090

32 0.429 ± 0.027 0.461 ± 0.051 0.557 ± 0.069 0.557 ± 0.069

33 0.646 ± 0.036 0.528 ± 0.106 0.550 ± 0.157 0.732 ± 0.170

34 0.586 ± 0.028 0.630 ± 0.155 0.709 ± 0.138 0.726 ± 0.138

35 0.973 ± 0.019 0.920 ± 0.022 0.968 ± 0.024 0.968 ± 0.030

36 0.854 ± 0.072 0.927 ± 0.032 0.870 ± 0.168 0.870 ± 0.168

37 0.725 ± 0.086 0.924 ± 0.026 0.922 ± 0.102 0.922 ± 0.226

38 0.667 ± 0.062 0.574 ± 0.079 0.791 ± 0.040 0.791 ± 0.040

39 0.436 ± 0.064 0.517 ± 0.068 0.516 ± 0.226 0.541 ± 0.226

40 0.768 ± 0.086 0.446 ± 0.042 0.737 ± 0.107 0.800 ± 0.107

41 0.779 ± 0.088 0.808 ± 0.132 0.896 ± 0.049 0.896 ± 0.058
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Table 11: Comparative Results: AUC obtained on D
∗ on MST, APE-1, APE-2 and

N-APE. Problems from 42 to 82.

MST APE-ONE APE-TWO N-APE

42 0.827 ± 0.081 0.667 ± 0.219 0.709 ± 0.187 0.730 ± 0.231

43 0.500 ± 0.000 0.821 ± 0.002 0.821 ± 0.002 0.821 ± 0.044

44 0.500 ± 0.000 0.679 ± 0.002 0.679 ± 0.002 0.960 ± 0.017

45 0.953 ± 0.033 0.916 ± 0.031 0.965 ± 0.014 0.965 ± 0.025

46 1.000 ± 0.000 0.925 ± 0.026 0.982 ± 0.005 0.982 ± 0.016

47 0.976 ± 0.017 0.908 ± 0.020 0.963 ± 0.016 0.963 ± 0.020

48 0.239 ± 0.040 0.440 ± 0.076 0.722 ± 0.021 0.722 ± 0.055

49 0.261 ± 0.034 0.472 ± 0.069 0.738 ± 0.018 0.738 ± 0.059

50 0.696 ± 0.037 0.605 ± 0.039 0.791 ± 0.080 0.791 ± 0.100

51 0.663 ± 0.032 0.546 ± 0.059 0.769 ± 0.059 0.769 ± 0.104

52 0.241 ± 0.029 0.441 ± 0.064 0.733 ± 0.012 0.733 ± 0.054

53 0.267 ± 0.032 0.465 ± 0.070 0.734 ± 0.019 0.734 ± 0.059

54 0.768 ± 0.049 0.736 ± 0.070 0.830 ± 0.046 0.830 ± 0.057

55 0.636 ± 0.055 0.731 ± 0.102 0.705 ± 0.118 0.726 ± 0.118

56 0.500 ± 0.000 0.929 ± 0.000 0.929 ± 0.000 0.957 ± 0.083

57 0.500 ± 0.000 0.929 ± 0.000 0.929 ± 0.000 0.982 ± 0.038

58 0.500 ± 0.000 0.929 ± 0.000 0.929 ± 0.000 0.929 ± 0.243

59 0.500 ± 0.000 0.929 ± 0.000 0.929 ± 0.000 0.932 ± 0.078

60 0.500 ± 0.000 0.929 ± 0.000 0.929 ± 0.000 0.929 ± 0.182

61 0.500 ± 0.000 0.929 ± 0.000 0.929 ± 0.000 0.953 ± 0.120

62 0.500 ± 0.000 0.929 ± 0.000 0.929 ± 0.000 0.929 ± 0.189

63 0.783 ± 0.075 0.676 ± 0.168 0.860 ± 0.051 0.860 ± 0.120

64 0.678 ± 0.109 0.504 ± 0.124 0.697 ± 0.151 0.697 ± 0.158

65 0.721 ± 0.088 0.508 ± 0.122 0.737 ± 0.160 0.737 ± 0.176

66 0.175 ± 0.028 0.793 ± 0.092 0.826 ± 0.037 0.826 ± 0.077

67 0.227 ± 0.025 0.402 ± 0.045 0.528 ± 0.055 0.528 ± 0.055

68 0.404 ± 0.033 0.451 ± 0.022 0.488 ± 0.022 0.580 ± 0.161

69 0.999 ± 0.002 0.986 ± 0.006 0.994 ± 0.004 0.994 ± 0.012

70 0.999 ± 0.002 0.983 ± 0.007 0.994 ± 0.003 0.994 ± 0.039

71 0.999 ± 0.001 0.985 ± 0.006 0.996 ± 0.001 0.996 ± 0.007

72 1.000 ± 0.001 0.988 ± 0.005 0.995 ± 0.003 0.995 ± 0.013

73 0.995 ± 0.004 0.986 ± 0.005 0.994 ± 0.003 0.994 ± 0.013

74 0.992 ± 0.006 0.983 ± 0.007 0.992 ± 0.003 0.992 ± 0.013

75 0.996 ± 0.004 0.974 ± 0.035 0.993 ± 0.004 0.993 ± 0.139

76 0.999 ± 0.001 0.973 ± 0.034 0.995 ± 0.002 0.995 ± 0.011

77 0.990 ± 0.014 0.971 ± 0.035 0.993 ± 0.003 0.993 ± 0.015

78 1.000 ± 0.001 0.989 ± 0.005 0.994 ± 0.004 0.994 ± 0.097

79 0.999 ± 0.002 0.976 ± 0.034 0.994 ± 0.003 0.994 ± 0.010

80 0.996 ± 0.006 0.860 ± 0.016 0.980 ± 0.008 0.980 ± 0.011

81 0.997 ± 0.007 0.880 ± 0.012 0.984 ± 0.006 0.984 ± 0.011

82 0.876 ± 0.060 0.853 ± 0.024 0.938 ± 0.035 0.938 ± 0.092

Table 12: Comparative Results: User Verification from Walkin Patterns on Gauss,
MoG, PDE, kNN, kM and kC.

Gauss MoG PDE kNN kM kC

1 0.964 ± 0.006 0.966 ± 0.008 0.974 ± 0.004 0.978 ± 0.012 0.984 ± 0.001 0.978 ± 0.001

2 0.863 ± 0.012 0.938 ± 0.006 0.939 ± 0.005 0.951 ± 0.014 0.960 ± 0.004 0.948 ± 0.005

3 0.928 ± 0.009 0.966 ± 0.005 0.975 ± 0.006 0.976 ± 0.007 0.976 ± 0.007 0.975 ± 0.006

4 0.965 ± 0.006 0.981 ± 0.005 0.980 ± 0.004 0.979 ± 0.004 0.982 ± 0.004 0.982 ± 0.005

5 0.889 ± 0.015 0.916 ± 0.015 0.926 ± 0.010 0.923 ± 0.018 0.936 ± 0.006 0.936 ± 0.012

6 0.909 ± 0.011 0.954 ± 0.013 0.965 ± 0.007 0.959 ± 0.008 0.975 ± 0.004 0.970 ± 0.005

7 0.841 ± 0.016 0.863 ± 0.014 0.874 ± 0.012 0.867 ± 0.023 0.871 ± 0.013 0.875 ± 0.012

8 0.813 ± 0.012 0.955 ± 0.004 0.958 ± 0.003 0.944 ± 0.010 0.961 ± 0.004 0.962 ± 0.004

9 0.981 ± 0.004 0.985 ± 0.003 0.987 ± 0.002 0.987 ± 0.005 0.988 ± 0.002 0.988 ± 0.002

10 0.937 ± 0.007 0.982 ± 0.004 0.983 ± 0.003 0.983 ± 0.005 0.986 ± 0.004 0.984 ± 0.004

11 0.902 ± 0.012 0.931 ± 0.003 0.932 ± 0.004 0.934 ± 0.008 0.937 ± 0.005 0.935 ± 0.006

12 0.506 ± 0.022 0.760 ± 0.022 0.781 ± 0.021 0.842 ± 0.011 0.830 ± 0.012 0.790 ± 0.016

13 0.812 ± 0.027 0.863 ± 0.028 0.877 ± 0.027 0.889 ± 0.025 0.892 ± 0.024 0.877 ± 0.025

14 0.803 ± 0.024 0.824 ± 0.016 0.840 ± 0.018 0.846 ± 0.012 0.846 ± 0.013 0.839 ± 0.016

15 0.869 ± 0.019 0.883 ± 0.014 0.886 ± 0.008 0.924 ± 0.013 0.913 ± 0.010 0.896 ± 0.007
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Table 13: Comparative Results: User Verification from Walkin Patterns on MST,
SVDD, APE-1, APE-2 and N-APE.

MST SVDD APE-ONE APE-TWO N-APE

1 0.966 ± 0.006 0.972 ± 0.004 0.967 ± 0.011 0.992 ± 0.003 0.996 ± 0.141

2 0.928 ± 0.004 0.942 ± 0.006 0.938 ± 0.008 0.962 ± 0.009 0.982 ± 0.011

3 0.971 ± 0.007 0.975 ± 0.005 0.966 ± 0.008 0.985 ± 0.003 0.995 ± 0.012

4 0.980 ± 0.004 0.982 ± 0.004 0.971 ± 0.007 0.994 ± 0.001 0.997 ± 0.051

5 0.914 ± 0.009 0.920 ± 0.007 0.893 ± 0.077 0.947 ± 0.009 0.979 ± 0.103

6 0.953 ± 0.007 0.967 ± 0.007 0.805 ± 0.145 0.941 ± 0.017 0.979 ± 0.026

7 0.854 ± 0.015 0.878 ± 0.010 0.971 ± 0.005 0.998 ± 0.000 0.999 ± 0.033

8 0.944 ± 0.006 0.957 ± 0.003 0.903 ± 0.066 0.837 ± 0.143 0.982 ± 0.155

9 0.985 ± 0.002 0.988 ± 0.002 0.960 ± 0.007 0.991 ± 0.003 0.998 ± 0.005

10 0.980 ± 0.003 0.982 ± 0.004 0.968 ± 0.007 0.980 ± 0.022 0.994 ± 0.170

11 0.929 ± 0.005 0.934 ± 0.007 0.965 ± 0.007 0.984 ± 0.003 0.994 ± 0.150

12 0.765 ± 0.017 0.780 ± 0.023 0.763 ± 0.099 0.699 ± 0.136 0.907 ± 0.034

13 0.857 ± 0.021 0.876 ± 0.018 0.969 ± 0.010 0.866 ± 0.173 0.993 ± 0.181

14 0.833 ± 0.018 0.850 ± 0.018 0.914 ± 0.010 0.939 ± 0.007 0.975 ± 0.081

15 0.876 ± 0.010 0.886 ± 0.010 0.834 ± 0.118 0.884 ± 0.055 0.970 ± 0.097

Table 14: Comparative Results: Training Time computed in seconds

Gauss 0.0348 ± 0.0918

MoG 0.2851 ± 0.0968

PDE 0.2633 ± 0.1669

kNN 0.1685 ± 0.0324

kM 0.0184 ± 0.0067

kC 0.0778 ± 0.0141

MST 0.3129 ± 0.0199

SVDD 84.7442 ± 4.8212

APE-1 0.0022 ± 0.0059

APE-2 0.1043 ± 0.0341

N-APE 4.9872 ± 4.9610

Table 15: Comparative Results: Testing Time computed in seconds

Gauss 0.0156 ± 0.0320

MoG 0.0104 ± 0.0108

PDE 0.0231 ± 0.0072

kNN 0.0151 ± 0.0076

kM 0.0064 ± 0.0065

kC 0.0260 ± 0.0136

MST 0.0625 ± 0.0094

SVDD 0.0208 ± 0.0067

APE-1 0.0002 ± 0.0002

APE-2 0.0026 ± 0.0002

N-APE 0.0768 ± 0.0752
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