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Abstract

This paper presents a method to create the geometric model of skull defects to be applied in anatomic
prosthesis modelling. The approach is to generate an image that represents the missing information in the skull
when bone's defect is non-symmetric. We are proposing the use of superellipse concept to recover the
parameters that represents the geometric shape of a skull bone curvature in tomography. If the superellipse is
properly adjusted in each computed tomography slice, the arcs that represent the piece of missing bone can be
modelled in 3D. The problem is that many similar ellipses can be created, and the best solution must be found.
This research applies the Particle Swarm Optimization (PSO) algorithm in order to find the best solution for each
tomographic slice. Once the solution found for each slice, the whole 3D missing information can be virtually
rebuilt as an adjusted prosthesis model image.
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1 Introduction

Nowadays, useful methods to surface reconstruction might be used to human body visualization, and the
start point is the 3D reconstructed images from DICOM [1], [2]. Despite available data provided by medical
images and integrated automated manufacturing resources, the handmade skull prosthesis is still reality in
many surgical procedures [3], [4]. The quality requirements to surgical planning depend of doctor abilities
and complexity of the defect.

We are proposing to use three-dimensional images obtained by tomography scans to generate the
machining pre-processing parameters to automatically build anatomic skull prosthesis. In general the
methods have focus about skull curvature, as [5] that have been proposed the approach called Bilaterally
Symmetric Closed Fourier Curves based on the human body symmetry. In this case, we have some
guaranties of the shape is very similar in the left or right side of human body as described by [6] [7]. This
idea can be applied in the skull problems, because the existing good bone area of one side can be mirrored to
repair a missing area in opposite side. However it is true only when the local of defect is symmetric from the
both sides how shows [8]. In several cases, the position of skull defect does not permit use of symmetry
information and traditional methods can’t be applied. In this case, a missing bone piece image must be
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created from a criterion that guarantees their curvature. For this problem [9] proposed a method based on
sub-cube pixel technique to obtain a surface model of a lost part of a defective skull. His work operates the
3D modelling by triangulations techniques.

Despite those good solutions presented, the problem addressed in this work is not only about 3D
reconstruction and visualization to medical evaluation. We also need export data to a CAD/CAM (Computer
Aided Design/Computer Aided Manufacturing) system thinking about a further step of machining. In this
case, we need extract the necessary parameters embedded in the CT slices. Due some slices perimeter not
completed because a hole, we need to generate additional information.

Due this reason, the study of [10] proposed a manner to adjust ellipses, slice by slice with parameters
based on the skull border curvature to fill a missing area.

The image patterns that describe natural shapes can be represented by the superellipse concept. The [11]
described its mathematical formulation and also create a superformula to be applied to plants and leaves
shape identification. This theory also has been explored in many other ways, as show [12] and [13]. In our
study, we are proposing to use this natural comportment in order to represent segments of human body as
skull bone curvature. Depending of region of skull registered in the tomography, the circular form is
different among all slices. So, the concept is adjusting ellipses to each one CT with different parameters. The
problem is that several ellipses could be created with similar shape of a skull bone border for the same CT
slice, differing themselves only by slight displacement in their parameters.

In engineering terms the necessity is to decide what the best solution might be found to proceeds an
accurate machining operation. In this context, the evolutionary algorithms have been implemented
successfully in several areas as well as image processing and shape recognition as [14][15][16].

The aim of the work is decide what ellipse represents the best adjust for each bone border in a specific CT
slice. To generate the ellipse we are adjusting the superellipse parameters in order to estimate the data that
represents it curvature. The parameters can be achieved through optimization methods. The PSO (Particle
Swarm Optimization) can be used together with superformula as shown in [17] and together ellipses
generation as demonstrated in [10]. It can be used in order to decide what is the best solution (best ellipse)
that represents the bone curvature to each CT slice. The found ellipses parameters could be used in CAD
profiles to generate the 3D machining model.

The contribution of work is about integration with machining that addresses the asymmetric case in skull
repairing.

2 Proposed Method

By engineering viewpoint the prosthesis design process can be automated in some specific parts. The
image correction is a necessary requirement in middle of process, among data patient acquisition and piece
machining.

The proposed method to prosthesis modelling is stated as figure 1.
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Figure 1. Diagram representing the methodology of the proposed process, adapted from [10].
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The figure 1 shows the flow process arranged in three layers as:

1) The first level is the acquiring and conversion of the tomography image. This is the first step and
consists in extracting the considering image portion from DICOM (Digital Image Communication in
Medicine) file format. The information is achieved when the scanned sections pass through applied
image segmentation algorithms to separation of brain and other tissues from bone to obtain only
skull border information. Also, contains the method to 3D reconstruction and visualization of a
virtual model of entire real skull. Here, the problem (hole in skull) is identified.

ii) The second level deals about the generation of the geometrical model of missing piece of bone.
This layer is the main part of this research due handling of proposed optimization technique in each
slice of CT followed by 3D reconstruction.

iii) The third layer is the final stage. The virtual model representation created in previous stage is
prepared to CNC machining commands. This is a part that involves manufacturing requirements and
it is not addressed here.

The interest part in this research is the second stage (layer 2) of the proposed process. The shape of skull
bone has a circular form that seems an elliptical form in a CT slice. Despite the shape is not exactly an
ellipse, an arc formed by an adjusted virtual ellipse can fill a gap in the bone for each CT image as shown in

figure 2.
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Figure 2. (a) Example of CT slice with a region to be fitted. (b) Ellipse
parameters identification.

The figure 2.a shows an example of a CT slice with an uncompleted bone region. Figure 2.b shows the
parameters to be find, as minor and major diameter a and b, the centre (x,, y,) of ellipse and e is the thickness
of the edge. Slight changing in the values of these parameters generates a lot of possibilities to create arcs
and the more feasible answer must be finding. The aim is find the best ellipse that fits the skull border for
each CT slice. The proposed method combines the formulation to generate an ellipse together with PSO
optimization as described in sequence.

2.1. Superellipse definition

Due skull anatomy, the bone’s curvature is different among all CT slices, and part of them seems ellipses
(basically on frontal and parietal regions). The bone in each image can be modelled as ellipse with different
shapes. To perform the ellipse generation, we are investigating the superellipse concept as presented by [11].
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This concept permits the creation of geometric shapes as commonly found in nature. The mathematical
formulation of the superellipse is presented in equation 1.

(e o)” s Gen o))

From equation (1) the parameters a and b represents the minor and major axis of ellipse. The m value
represents the rotational symmetry, which is the number of fixed arguments on the unitary circle. The
obtained shape is a rounded polygon and m describes the number of sides of this polygon. For example, for
m = 3 we obtain a triangular shape and for m = 0 we obtain a circle. The values of n, and n; determine if the
shape is inscribed or circumscribed in a unitary circle. The figure 3 shows some plot examples by modifying
of superllipse parameters. Additional interesting examples applied together superformula can be seen in [11].
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Figure 3. Examples of plots for different superellipse parameters. (a) [a=1,
b=1,m=6,n1=250,n2=100,n3=100]; (b) [a=1,b=1,m=3,nl=2,n2=3,n3=2]; (c)
l[a=1,b=1,m=4,nl=1, n2=1,n3=1]; (d) [a=1,b=1,m=4,n1=200,n2=30, n3=30)].

In figure 3 is observed different polygon’s achieved by modified values of superellipse parameters. The
polygon in figure 3.a has six fixed points (m = 6) and figure 3.b has three fixed points (m = 3) as a triangle,
but in these cases with rounded border due modified n values. The figure 3.c and 3.d have the same m value,
but # determines the curvature that not appears in figure 3.c due unitary values. An ellipse can be obtained if
n;=n,=n;=2 and m=4, and in this case we have the traditional ellipses’ equation. By observation, some slices
in the middle of skull seem as a normal ellipse (by the equality of parameters n). When the shape turns more
oval, on the skull top for instance, the superellipse can self-adjust better than the normal ellipse by adjusting
the values of n.

To plot the shape, we can consider the E(i,j) as the binary value of a pixel in the current position (i,j) in
generated ellipse. The ellipse point E(i,j) can be obtained by polar coordinates, as presented in equation 2.

E(i,j) = (r * cos@ + xo, 7 * seng + y,) 2

We are adapting this concept to generate elliptical shape to self-adjustment in skull border, as in figure 4.
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The ellipse found by superellipse formula as the example in figure 4.a, is one whose parameters
represents a possible curvature around bone (in this example only represented the external border). But, is
expected which there are slight differences between generated ellipse and real bone shape because the bone
perimeter is not a perfect circle.

solution #1

ROI (b)
solution #N
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(a)

Figure 4. (a) An example of superllipse adjustment overlapped in external skull border.
(b) A sketch of one possible adjustment to external (E.) and inner (E;) borders. (¢) A
sketch of a different possibility to ROI filled with different ellipse E., and E;, parameters.

In this approach, the main problem is that many arcs can be found with similar information to the same
CT slice to external and inner borders. It can be seen in figures 4.b and 4.c the different results in ROI
(Region of Interest) area. Among a lot of possible arcs created for each slice, the question here is to decide
what the best solution is. The decision is about what superllipse parameters will permit to create the best
piece of curved shape for this uncompleted bone. The search about these parameters might be optimized to
find the best set of them.

2.2 Particle Swarm Optimization (PSO)

The PSO (Particle Swarm Optimization) has proven to be efficient in solving optimization problem
[18][19]. As presented by [20] in PSO, each possible solution is called particle and it is a part of the swarm
(population). Each particle is initialized with a random position value and after, flies around the
multidimensional search space and adjust its position based on its own experience and also on its neighbors’
experience.

The fitness function F(X) to evaluate the ellipse adjustment was proposed in [10] and it is given by
equation 3. The image I is a black & white segmented CT slice. Each point I(i,j) is the position of one pixel
in the image where its binary value is 1. The / and ¢ values are respectively the total of lines and columns in
the image I.

i X5oalI () * EG D] 3)

PO == e 1))

The r value is the generated parameter in equation 1 to estimate the E(x,)) pixel position by evaluation of
equation 2. The values of a, b, m, ny, N, Nz from equation 1, centre coordinates x,, y, and thickness e are all
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estimated by the PSO algorithm. During the simulation, each iteration the fitness function is evaluated using
the current position of the particle using, the personal best value, namely pbest, and, global best value,
namely gbest. The personal best value is the location of the best value obtained so far by the particle. The
global best value is the location of the value obtained so far considering all the particles in the swarm, as the
follow pseudo code adapted from [14].

I. Initialize particle:
A vector with ellipse parameters a, b, Xo, Yo, M, N1, Ny, N3 is randomly assigned among a range of possible
values. The possible thickness values e = 1,...,8.

I1. Evaluate patrticles:
Do
For each particle:
- Calculate the fitness value F(x) by equation 3.
- If F(x) is better than actual pbest set the current values as pbest.
End
For each particle:
- Find in the neighbourhood the particle with the best fitness among all. Set it as gbest.
- Calculate particle velocity according to the velocity equation”.
- Update particle position according to the position equation”.
End
While (maximum interactions) not obtained.

" The complete definition about “velocity’ and ‘position’ equations can be obtained from [20].

The both bone borders from external and internal skull walls must be evaluated. The maximum and
minimum values of @ and b parameters must be limited to avoid that one overtake other. Also, the changes in
thickness (parameter e) can perform a weak or more precise adjust. A case study was select to demonstration
the optimization process.

3  Case Study

A case study simulating a hypothetical condition of a missing area of the bone of a human skull was used
to evaluate the method. The figure 5 shows the 3D skull image. The hole in the bone was virtually made
slice by slice as in figure 5.a. The figure 5.b shows the hole’s allocation addressed in the example.

slice #24 \ e

(b)
Figure 5. (a) 3D reconstructed skull with respective defect. (b) Selected skull region.
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A partial area with a hole in frontal region of skull was used to simulate a defect to an asymmetric case
(no symmetry between left and right sides of skull). A range with sixteen slices numbered as indicated in
figure 5.b was used to demonstrate the method's application. The slices #18 till #24 represents the hole's
height. Figure 6 shows some samples of adjustments using the selected slice. In each figure can be seen the
bone’s border with its respective ellipse superposed. The slice number #20 was used to demonstration of
adjustment presented in figure 6.a.

Original CT sample adjust #1 adjust #2 adjust #3
(a) (b) (¢ (d)
adjust #4 adjust #5 adjust_#6 Result

(e) ® (& (h)

Figure 6. CT slices and samples of ellipse adjustments.

The parameters generated by PSO permits to draw different ellipses as shown in figures 6.b to 6.g to the
same CT slice. Each drawn ellipse was created based on optimized values generated from PSO algorithm,
and we need choose the best one. To the analysed region (slices between number #18 and #24) the
superellipse parameters was adjusted as a normal ellipse with n;=n,=n;=2 and m=4. Table 1 presents a
representative set of virtual ellipses fitness values and its respective parameters with a range of six
possibilities to the same CT slice (number #20) as example.

adjust Xy Yo a b e Fitness (%)
#1 189 145 | 257 | 267 | 8 29,2898
#2 192 122 | 232|269 | 7 51,0782
#3 185 138 | 238 | 266 | 8 54,8275
#4 180 146 | 247 | 268 | 4 51,1811
#5 187 138 | 247 | 275 | 5 60,0475
#o 188 146 | 247 | 270 | 6 61,5324

Tablel. Optimized parameters from a same sampled CT.

Among all ellipses generated for the same slice, the fitness value help us to decide what the best
adjustment is. The adjustment numbered as #6 is the found solution because it has the better ellipse
parameters. This resulting ellipse is superposed on bone edge, and by subtraction it is possible to separate
only the arc that fits that missing area. The final adjustment can be seen in figure 6.h.
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(a) (b)

Figure 7. (a) Sample of pieces found to each remain slice. (b) Reconstructed model.

The same evaluation process is done for all other remained slices, and, for each one we can use the
individual solution found to build a 3D reconstructed piece. The figure 7 shows the individual solutions for a
sampled set of CT slices. They are used to create virtual 3D piece prosthesis. The individual solution for
each CT slice was superposed to build a virtual 3D prosthesis model as presented in figure 7.a. The figure
7.b shows the completed reconstructed structure that represents the missing bone region.

The numeric result generated by proposed method is presented in table 2. The fitness values for a set of
six (e;,es,e3.e4,65.65) sampled slices are shown as example. Based on those values, an example with minor set
of ellipses was drawn to illustrate the arc positions and respective surface as indicated in figure 8, where each
e, ellipse represent its respective CT.

PSO Generated Ellipse
Algorithm € € €3 €4 €5 (573
Best Fitness (%) 73.6621 69.6184  53.0127 69.5255  69.5981 64.5173
Worst Fitness (%) 423930  61.3342 51.5145 31.0352  56.8046  36.8291
Mean Function (%) 69.5516  67.7773  52.2834 56.1286  67.9126  51.2728
Median Func. (%) 73.6621 68.6799  52.0166  62.1287  68.8226  54.4475
Standard Deviation 0.0022 0.0005 0.0001 0.0042 0.0007 0.0037
Medium Time (s) 184.137 176.457 173.954 177.937 174.888  177.915

Table 2. Fitness values to six sampled CT slices.

Figure 8. 3D piece of virtual model by superposed arcs from each CT slice.
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The figure 8 shows the inner side of constructed model with respective distances r; from centre to each
generated ellipse e, with i = 1,...n possibilities. Without losing the generality we can consider each radius
measurement  as the same a parameter from superellipse equation. Those all values that were found can be
exported to CAD system to build the representative graph of obtained ellipse. The virtual model in CAD will
permit define the parameters to planning in advance the machining process.

4  Results and Discussion

The experimental results were obtained from the proposed study case, based in an amount of 16 CT slices
in the region of interest (CT #13 to CT #28) as indicated previously in figure 5. Among those CT we have 9
slices with closed borders and 7 with open contours. Through the specific characteristics from presented
problem, by observation of image data, we were able to define the initial set of parameters to start the PSO
algorithm. The initial parameters were initialized with a limited values set where the values of axis a and b
have a variation about 15 and 10 pixels respectively from original centre of slice. For instance, taking as base
the best fitness values found in the simulations, the range to length of axis a is between min=229 and
max=259, and the range of the axis b length is between min=261 and max=281. The position of the centre,
the coordinate x¢ has a range between min=180 and max=192, and the coordinate y, has a range between
min=122 and max=146. The variance to position of the ellipse centre in absolute values is 6 pixels to x, and
12 pixels to yy.

The figure 9 shows the generated ellipses in a CAD system according parameters obtained from best
fitness adjustment for each tested CT slice. The number of iterations of PSO algorithm was 100 for each
slice. Figure 9.a show the ellipses that represents the internal edge of bone, and figure 9.b presents the
ellipses adjusted to external skull border. The difference of the centre positions and axis length can be seen in
the both results. Based on evaluation of comportment of mean, median and deviation in this study case, the
number total of iterations could be reduced to more than a half part because the fitness value that maximize
the function F(x) is found around 20 to 30 iterations for each slice. This generates important reduction of
processing time.

Also, depending if ellipse adjustment occurs on open or closed border slices, the fitness values indicates
what border type is. If fitness is around 60% to 80% we know that it represents an adjustment of an open
border, and if fitness values are more than 80% is because the border is closed. This is occurs because in a
closed border there are a major amount of coincident pixels present between in E(i,j) and /(i,j) in equation 3.
This is an observed fact, but complementary analysis is still necessary to prove whether this interpretation
can be generalized for different cases.

(b)
Figure 9. (a) The 3D skull reconstruction in CAD. (b) Prosthesis model
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The ellipse parameters of all generated curves were used as input in CAD software. An ASCII text file
with tabled values is imported by the CAD system, and it made the interpolation by an automatic way to
create the surface and its 3D visualization. In this example, the curves e; were equally spaced because the
purpose was also to evaluate the interpolation accuracy to surface generation. The best fitness values (as
shown in table 2) were used to get the ellipse parameters in order to generate the prosthesis adjusted in the
skull as indicated in figure 10.

(b)

(©) (d)

Figure 10. (a) The 3D skull reconstruction in CAD. (b) Prosthesis model with respective ellipses.
(c) Adjusted virtual prosthesis of outer side view. (d) Adjusted prosthesis of inner side view.

In figure 10.a we have the original testing image of a skull with respective hole reconstructed in CAD. In
figure 10.b it is presented the 3D model of calculated prosthesis that fills the hole in the skull and respective
external arcs to each tested CT slice. It is possible to see in the surface, an interpolation problem between
each arc. The apparent distortion is a problem to be explored in a future work. The figures 10.c and 10.d are
two views of reconstructed prosthesis model that fits the hole in the external and internal bone's wall of
skull. Through a visual inspection we can observe that it is possible to generate a curved surface as skull
shape using the proposed approach by ellipse. Despite this observation the method still presents some
problems and due this, the model is not feasible to real application yet. For instance, there are some problems
such as the union between the real bone segment and the reconstructed piece have appeared in some cases.
The figure 11 shows an example of junction problem.

This problem is highlighted in 3D reconstructed piece as in figures 10.c and 10.d where the shadows and
lights positions emphasize a discontinuous link between prosthesis and bone. Virtual illumination from
software causes a “rounded effect” in extremities and it is not desirable in this case because it might cause a
confused visualization. This is still an open question that will not be addressed now.
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constructed piece

original bone

Figure 11. Non-accurate junction after ellipse's adjustment.

Despite some adjustment problems are visible in 3D, the conceptual idea about creation of a virtual model
to machining a piece from C.T. images appear as an possible way to generate information when we don’t
have symmetry and when a mirroring process can’t be used.

Other methods as Genetic Algorithm (GA) and Harmony Search (HS) discussed in [14] are still under
study. Nevertheless PSO has been demonstrated upper among them for the cases studied. The next step in the
research is CAM preparing in order to machining.

5 Conclusion

This paper presented a method to prosthesis modelling, based in the concept of ellipses that were capable
to perform a self-adjustment at bone curvature through optimization techniques called PSO. The case study
used to validate the method, established that it is possible to build a virtual model of part of bone whose
information do not exists in the image (without symmetry). Although this information can be obtained by
other means such as numerical methods or user interaction, the question is how to find a way of modelling
the prosthesis automatically.

The accuracy is a fundamental requirement to turn the method in a functional tool. Moreover, other
optimization methods based on artificial intelligence might be used to improve the ellipse adjustment and are
being explored in order to continue the research. It is, also necessary future steps of study to answer the
points that still open and which are:

e The analysis about the quality of the results based on a set of images of a skull with real fractures
or anatomical defects;

o The evaluation of the measurement accuracy between the 3D reconstructed image and the real
bone considering the prosthesis fixation.

o The medical analysis viewpoint about the functional aspects of the method, to review surgery
planning and about the procedures in the implant methods;

e The machining of prosthesis using CAD/CAM technology and the comparison of the real skull
shape for both structures — the skull and prosthesis prototyping;

Despite some question are still open, the union of image processing tools and optimization techniques
open an important range of possibilities to complete this research.
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