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Abstract

The study addresses the challenging problem of automatic segmentatiohoftha anatomy
needed for radiation dose calculations. Three-dimensional extenditws @vell-known state-
of-the art segmentation techniques are proposed and tested for essfuln a set of clinical
CT images. The new techniques are 3D Statistical Region Merging (3D-SRWM3BD Efficient
Graph-based Segmentation (3D-EGS). Segmentations of eight rejatesetissues (lungs, stom-
ach, liver, heart, kidneys, spleen, bones and the spinal cord)testex for accuracy using the
Dice index, the Hausdorff distance and tHg index. The 3D-SRM outperformed 3D-EGS pro-
ducing the average (across the 8 tissues) Dice index, the Hausdtafiais and théf, of 0.89,
12.5 mm and0.93, respectively.

Key Words: Voxel model, image segmentation, statistical region merging, efficient drapéd
segmentation, full-body CT

1 Introduction

The radiation protection guidelines aim to keep dose "asdsweasonably achievable” (the ALARA
principle). To evaluate the detriment it is necessary towdate the effective dose, and this requires
knowledge of the amount of energy deposited in each of theifspergans and tissues (the organ
doses). For this purpose it is critical to be able to builduaate models of human anatomy. The
development of those models faces two major problems: dififés in obtaining image data sets that
span the entire anatomy from head to toe, and speed and agénraegmenting large number of
images 300 — 400) in such data sets.
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So far, several models of anatomy suitable for dosimetrgtesich as ADELAIDE [1], a torso,
BABY and CHILD [2] and the University of Florida series of phants [3], [4]. The latter series
of models have the limbs, heads and torsos from differenvishabls scaled and assembled into
composite models. Additional anatomical models that saious body sizes and shapes of humans
of all ages are required for dosimetry purposes. Existirgi@ny models were constructed using
semi-automatic or supervised segmentation methods. Hawene process of segmenting all of the
tissues in hundreds of images is extremely time-consuming.

In the 2007 recommendations of the International CommissioRadiological Protection [5], all
organs/tissues in the body were classified into three groupeation to radiation dose calculation.
In this study, we focused on eight organs/tissues which yarécularly selected in this study as
they cover all three groups. Our objective is to evaluateftiiepotential, towards both accuracy
and robustness of the results, of the automatic image asalystem, utilizing either the 3D-SRM or
3D-EGS method, introduced in our recent seminal work [6]faksas we know, it is the first attempt
to use region merging segmentation techniques in the 3ingeit full-body CT segmentation.

Two major research directions on segmentation of CT imagedudrbody CT segmentation,
where contours of several organs are of interest (e.g. 87),[9]) and CT segmentation focusing
on selected organs, needed for an early diagnosis or artigatsn of a pathology (e.g. [10], [11],
[12] (liver, kidneys and spleen), [13] (lungs), [14] (esaghs), [15] (liver)).

Automatic segmentation of all of the tissues needed for dasaulation as recommended by [5]
was not reported so far, although some results on the segtieenbf multiple organs/tissues (in
full-body or targeted region CT) were reported.

Linguraru et al. [10] segmented liver, spleen and kidneysgudD extension of the well-known
graph-cuts technique with shape priors and a probabibsks. The study used a contrast-enhanced
two phase abdominal CT (as opposed to non-contrast CT). Iinanstudy, Okada et al. [11], multi-
organ hierarchically organized atlases were used to ingpsegmentation of the liver and some pe-
ripheral organs. Iglesias et al. in [7] segmented six ordheart, liver, kidneys, lungs, spleen and
pelvis) utilizing random forest classification. Their padtilistic classifier required an extensive train-
ing and tuning of several parameters.

Montillo et al. in [8] segmented eight tissues (heart, lhaorta, lungs, femurs, pelvis, kidneys).
The method achieved very high voxel accuracy but requiregrafieant number of training cases to
teach the classifier. In Seifert et al. [9] a database-gusggenentation is performed on five organs:
heart, liver, kidneys, spleen, bladder and prostate usiggnospecific landmarks.

It is worth observing that the mentioned studies reportetbip good results for the selected
organs but also indicated high complexity of the steps wigimiScant amount of data needed for
training classifiers, significant time required for traigirand necessity of setting several parameters
experimentally.

As pointed out in Bajger et al. [6] the Statistical Region Magy(SRM) technique, introduced in
[16], and the Efficient Graph-based Segmentation (EGS) adkefbroposed in [17] are time efficient
and robust segmentation methods with a potential to sudoge@ segmentation.

Successful medical image segmentations using these nsatrerd reported in several studies (e.g.
[18], [19], [20], [21]), [22]), despite the fact that the rhetls assume some homogeneity property for
components, which often fails in medical images.

To compensate for lack of the homogeneity property, pre astiprocessing techniques are often
used. In Ma et al. [18] an active contour model is used to refieefinal contour, in Bajger et al.
[19] the level-set technique is applied and in Celebi et @] fRorphological dilation and a majority
filtering method are utilized upon the segmented regions.
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A statistical atlas or a database-driven classificationtban be used to accomplish the tissue
classification process, as proved in the above mentionééeston CT segmentations.

The 3D approach utilized in this study allows for a simul@metracking of boundaries of objects
spanning across several slices. Figure 1 shows an exampe @D (slice) segmentation cannot
determine the organ (spinal cord) border due to strong aiityilto the surrounding tissue. In the
neighbouring CT slices the spinal cord is entirely enclosé@tlimwa bone tissue and, hence, easy
to segment. This information is readily incorporated into 8D technique and the spinal cord is
perfectly segmented (Figure 1 (f)). In the dataset usedigstindy, 41 slices included the spinal cord
and four of them suffered from the above mentioned 'tissakitgy’ problem when 2D segmentation
was performed. The 3D techniques were able to recover thalsmrd shape successfuly in all these

cases.

(c) Slice 69

(d) 2D segmentation of slice 68 (e) Expert segmented slice 6@) Our 3D segmentation of slice 68

Figure 1. Spinal cord segmentation in slice 68 using stah({2b) SRM method and our new 3D
version of the method. The figure shows (a) the original CTeshi¢ (resized t@56 x 256) with the
spinal cord fully confined by the bone (b) the original CT slé&with the spinal cord not entirely
surrounded by bone tissue (c) the original CT slice 69, whegespinal cord is again well within the
bone tissue (d) 2D segmentation of slice 68, which fails gment the spinal cord from the soft tissue
surrounding the vertebra (e) the expert segmented spindircslice 68 (within the rectangle) (f) the
slice 68 segmented using our extended 3D-SRM technique hétlgtound truth contour imposed;
the spinal cord overlaps well with the expert contour (Diogex =0.69)
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2 Theoretical Background

2.1 Statistical Region Merging Segmentation Technique

The Statistical Region Merging technique (SRM) introduced\iglsen and Nock ([16], [23]) con-
siders the given imagé as an observation of a true (statistical) scéhe The statistical regior*

is unknown and is a subject of recovery from the given imagé is assumed that pixels if* are
represented by a set ¢f distributions from which color levels ih are sampled. Specifically, the
intensity of each pixel il is realized as a sum @) independant random variables. Thus, in case of
grey level images, these variables take values in the ialtén256/Q)].

The sets of) distributions can differ between statistical pixels busiassumed that the statistical
regions in/* are 4-connected components and that the expected valuéeosity is the same for
components belonging to the same true region, and it difetaeen statistically different adjacent
regions.

The parametef) can be considered as a measure of statistical complexity. @maller() values
result in more general models which are hard to segment.al§sismall Q often gives underseg-
mented scene, while high values may result in oversegmentation. The general theatned in
[16] shows that the probability of undersegmentation ishius it is critical to seleaf) in such a
way that objects of interest are well-segmented.

In some specific applications like masses segmentation mmeagrams ([19]) or segmentation of
individual CT slice images ([21]), itis possible to develapeaanalytical criterion helping in optimizing
the @ value. That is, one can estimate the smallest valug stifficient for successful segmentation
of regions of interests e.g. specific tissues or masses.

SRM algorithm starts with sorting, in an increasing ordepaifs of pixelsp, p’ of I according to a

function f(p, p’). In this studyf(p, p’) is the difference in intensity values jnandp’. Initially single
pixels, then regiong, R’, are merged if the following predicate holds true.

true, if |R— R| </ (R)+b(R),
false, otherwise

[ 1 2

| R| denotes the number of pixels in the regiBn0 < ¢ < 1, R stands for the average intensity across
the regionRk andg is the number of image intensity levels.

The predicate (1) is based on the assumption that the twonegi and R’ should merge if they
come from the same true (statistical) region, that i&(ik — R’) = 0, whereE(R) is the expectation
over all corresponding statistical pixels bfof their sum of expectations of thej} random variables
for their intensity values. Using some probabilistic camtcation theory results it was proved in [16]
that with probabilityp > 1 — O(|I|9), the resulting segmentation 6fis an undersegmentation 6f.
On the other handj must be kept small to facilitate merging. In this study wddel [16] and set

0= 6‘}”2, thus we may expect an undersegmentation effect with a higbapility.

P(R,R) = { (1)

where
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2.2 Efficient Graph-based Segmentation Technique

There are several graph-based segmentation methods itetia¢éure based on the minimum spanning
tree of the graph starting from the early work of Zahn [24ptigh the works of Urquhart [25] and
Felzenszwalb et al. [26]. Felzenszwalb et al. [17] furtteredloped the minimum spanning tree based
approach into the well acknowledged Efficient Graph-basgphintation (EGS) technique. The EGS
technique was proved to be computationally efficient. Aggilons and extensions of the method
can be found in the literature including the most recent dnebluang et al. ([27]) to ultrasound
imaging and Bajger et al. ([6]) to CT segmentation. For the eéadonvenience we briefly outline
the algorithm for the efficient graph-based segmentatiaedan the Kruskal's method of finding
minimum spanning trees in graphs ([26], [17]).

The process begins with an undirected weighted g@ps (V, E) such thatl” (the set of ver-
tices) is the set of pixels in the image aldis the set of edges that connect pixels to imme-
diate neighbors (4-connectivity is commonly used). Thegheiv is defined for each edge as:
w ((vs,v5)) = [I(v;) — I(vy)], for (v;,v;) € E, wherel (v;) is the image intensity value af (the
value of the pixel gray scale). The algorithm creates a neplgin such a way that the connected
components of the new graph correspond to the desired ségtmoanof the image. Initially each
vertex (image pixel) constitutes a single component. Thigyes fromE are traversed (in ascending
order based on weights) and considered for inclusion in #ve graph according to the following
merging predicate.

Two componentg’; andCs, are merged if

d(Cy, Cy) < min (Int(Cy) + 7(Cy), Int(Cy) + 7(Cy)) . (3)
The threshold functiorr is given by 7(C) = %, where |C| stands for the number of pixels in

component’, k is a constant/nt(C) is defined as the largest weight in the minimum spanning tree
for C'andd(C, C,) is defined as the minimum weight edge connectihgndC.
It can be observed that the edges causing merging of comfmasnthe same as the edges the
Kruskal's algorithm would select when constructing the imim spanning tree for each component.
It is remarkable that there is only one parameter involvethenpredicate, the constakt which
makes the method fairly adjustable to an application at h&heé parametek controls the degree of
similarity between the components and hence the final nu(aberaverage size) of segmented areas.

3 Proposed 3D Extension of SRM and EGS Techniques

We extend the SRM and EGS techniques to a 3D setting by comggderstack of CT slices as an
input. In graph-based setting it means that we build a tdmeensional graph model where each
image pixel becomes a vertex in the graph and is connectedaicesby an edge to 6 immediate
neighbours: four from the slice it belongs to, one from thecpeding slice - spacially positioned
directly above it - and one from the following slice - spalsiddcated directly below, except for those
vertices coming from the very first and very last slice. Eadfpechas a positive weight assigned as an
absolute value of the intensity difference in the corresioog pixels.

Observe that this way each vertex of the new weighted grapbsmonds to the possible location of
boundary points along the length of the elongated regiomresponding to a tissue. By construction,
all stack slices are connected with each other and will gigete effectively in the segmentation
process. Thus, if there is a problem with 2D segmentatiortiséae in a single slice it might likely be
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fixed when itis embedded in stack of slices and then 3D segdeRigure 1 shows an example when
the spinal cord is hard to 2D segment since it leaks’ throtlgghsurrounding bone tissue. However,
the two neighbouring slices do not suffer from this issuee-ghinal cord is entirely enclosed by the
bone. Thus, when embedded in 3D stack and segmented by #relext3D method, the spinal cord
can be well outlined (Figure 1(f)).

3D extension allows for tracking of components acrossiaksl This is alsoillustrated in Figure 1.
The bone surrounding the spinal cord in slice 68 is segmantedwo different components by 2D
segmentation (shown by different colours used for bothgser Figure 1 (d)), while the same bone
considered as 3D object became one component (Figure 1{8)wsegmented by our 3D method.

Itis a straightforward observation that the underlyinghpiples of both SRM and EGS, outlined in
Section 2, can readily be applied to our 3D graph setting amghmposed algorithm, for both SRM
and EGS technique, can be summarized as follows.

1. Construct the weighted gragh= (V, E) from the stack of CT images.

2. Sort the edges into a sequeritan ascending order of their weigths.

3. Initialize the list of components (each vertex constisLd single component).
repeat

3. Take an edgefrom S and apply the merging predicate (1) (or (3)) to the compaemmnected
by s. Update the list of components if merging occured.
until S is exhausted

When all edges had been traversed, in case of EGS, each comp®meeated as a minimum
spanning tree, while for SRM components are true statistegabns, retrieved by the algorithm.

4 Experiment

4.1 Data Set and Ground Truth

A dataset of the torso CT scan of a 14-year-old female (ADELRA[D]) was used in this study. The
dataset contains a total of 55 CT slice images. The CT scan held affiview of radius 145mm from
the scanner’s isocentre. This resulted in the truncatiosoafe of the anatomy at the shoulders and
hips. The images have a pixel size2o$3 x 2.53mm and slice separation of 10mm. The dataset was
annotated by one of the authors (MC) who is an expert in humatoary. Each of the organ/tissue-
of interest in this study was manually delineated by the gxpEhese includes heart, liver, spleen,
stomach, kidneys, lungs, spinal cord, bones and others.

4.2 Segmentation Evaluation Methodologies

A patrticular tissue/organ, when segmented, consists ofadl smmber of adjacent regions of pixels
(ie components) that are assigned a different colour (sgeexample, the body of the vertebra in
Figure 1(f)). When these adjacent regions are merged, agpresentation of the shape of the tissue
in that slice should be achieved. As the goal of this study explore the full potential of the proposed
3D-SRM and 3D-EGS techniques, a suitable criterion for m@gthe quality of the segmentation
is to determine (when the relevant component are merged)dhosely the union of all relevant
components resembles the shape of the tissue as deterrygiaeceRpert. By a relevant component it
is meant a component with at least half of its area residinigiwthe region annotated by the expert.
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Thus, for a given annotated regi@h A component” is considered relevant jC' N T| > |C\ T,
where| A| indicates the number of pixels in the compondnt

The segmentation results are evaluated using three differeasures. Each measure is employed
to assess a different attribute of the segmentation resuitprinciple, evaluations should be per-
formed on 3D segmented object as the segmentation techisi@ebased. This means, when con-
sidering, for instance, the commonly used Dice index dbedrbelow, that the overlapped volume
rather than overlapped area should be measured. Howeestg the anisotropic nature in the dataset
to avoid big interpolation errors, the 3D segmentationsaamsessed on slice-by-slice basis (as 2D
projections of segmented volumes).

Accuracy of segmentation is often measured by quantifyiregagreement of two sets with one
representing the segmentation result and the other stfalithe ground truth or the reference. A
number of indices can be used to quantify that measure wéltbibe index being one of the most
widely accepted. Letl and B be the two sets to be assessed, the Dice index is defined as

2|AN B|
D(A, B) AT 1B
The index ranges betweénand1. A value of1 indicates that the two sets agreed perfectly and a
value of( indicates that no agreement was found between the two sets.
Another common measure used in evaluating segmentatiaingudarly of medical images, is the
Hausdorff distance (see e.g. [28]). Létand B be two sets wherel = {a;,ay, ...,a,,} andB =
{b1, ba, ..., b, } with m andn number of elements, the Hausdorff distance is defined as

H(A, B) = max(h(A, B),h(B,A)),

where
h(A, B) = maz,c amingeg||la — b|

and|| - || is some underlying norm on the points of A and B. In essenceHtnesdorff distance
provides indication of the worst deviation (largest dise@nbetween the segmented results and the
ground truth.

Specific to the evaluation of segmentation of medical imag#®e uncertainty in the ground truth.
In the area of medical image segmentation, ground truthsypieally obtained involving manual
delineation of boundaries within images by human experts. ifArinsic issue with that is inter-
and intra-observer variability. The above indices takegramind truth as an absolute ground truth
with no room for human errors. This does not address the taingr in the ground truth. Théf,
metric ([29], [30]), on the other hand, addresses the uairgytin the ground truth and measures the
border accuracy with tolerence. La&t, and N denote the number of pixels in boundary A and B,
respectively. Then thé/; is given as

1 (Ns Npg,

where the parameteiis an interval of tolerance, anl,, and N, are the number of pixels in bound-
ary A and B correctly identified with a toleranteThe H; metric increases monotonically withand
converges to 1. For two borders that are exactly the samé{ tieequal to unity witht set to zero.
Briefly, the H; metric is the sum of equally weighted fractions of border Al &order B correctly
identified within a certain tolerance.
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Table 1. Evaluation segmentation of eight tissue/orgasedh@n 3D-SRM and 3D-EGS methods.
The Dice index, thelf; measure and the Hausdorff Distance measure are shown. diatbies are
(mean= standard deviation) over the relevant CT slices for the $ipd@sue/organH, and H, are
the H; measure with the tolerance parametset to 1 and 2 (pixels), respectively.

Tissue Method Dice Index H, Hausdorff Distance (mm)
H, Hy
Lungs 3D-SRM 0.95: 0.06 0.96+ 0.03 0.98+ 0.02 8.65+ 7.19
3D-EGS 0.96+ 0.05 0.97+0.04 0.98+ 0.03 7.95+ 7.34
Heart 3D-SRM 0.93t 0.06 0.86+0.09 0.93f 0.07 10.61+ 5.65
3D-EGS 0.93t 0.06 0.85+0.11 0.92+ 0.09 11.74+ 7.88
Liver 3D-SRM 0.92+ 0.05 0.80+0.15 0.87+0.13 18.30+ 16.36
3D-EGS 0.8+ 0.09 0.70+0.18 0.79+ 0.15 28.49+ 32.18
Kidneys 3D-SRM 0.93t 0.04 0.88+0.12 0.95+ 0.07 10.45+ 8.06
3D-EGS 0.88t 0.06 0.77+0.14 0.86+ 0.10 16.02+ 9.24
Spleen 3D-SRM 0.8#4 0.10 0.79+0.14 0.88+ 0.10 18.02+ 13.80
3D-EGS 0.76+0.23 0.72+0.14 0.83+0.10 21.83+ 19.90
Stomach 3D-SRM 0.720.20 0.74+0.05 0.82+ 0.06 17.20+ 6.85
3D-EGS 0.69+ 0.21 0.74+0.07 0.83+ 0.06 19.32+ 10.81
Spinal Cord 3D-SRM 0.83% 0.09 0.95+0.06 1.00+ 0.02 3.67+1.20
3D-EGS 0.79+ 0.13 0.914+0.09 0.98+ 0.06 3.65+ 1.21
Bones 3D-SRM 0.89-0.04 0.98+0.02 0.99+ 0.01 12.93+ 15.91
3D-EGS 0.88+ 0.05 0.96+0.02 0.98+ 0.02 17.90+ 16.48

Other than measuring the fidelity of the segmentation resoltersegmentation or undersegmenta-
tion is another criterion in judging a segmentation aldwirt Ideally, the whole organ is segmented as
one single region/component. But this is seldom achieveterQeither undersegmentation results,
that is, a segmented region covers more than one true orgaeegmentation happens, when a true
organ is is segmented into multiple components. The formeflected in the Dice index, while the
latter is explicitly measured by reporting the number ofrsegted regions required to approximate
the coverage of the segmentation result in this paper.

5 Experimental Results

Using the proposed 3D-SRM and 3D-EGS methods, eight represdissue/organs in CT images
were segmented. The eight tissue/organs were lungs, tieart kidneys, spleen, stomach, spinal
cord and bones (including all bones). According to theitistiaal complexities and sizes, these eight
tissue/organs can be largely grouped into two groups wihldihgs, heart, liver, kidneys and the
spinal cord in one group, and spleen, stomach and bones wotlike This is reflected in the choice
of the values of the paramenter in both methods. For the SR3deébmethod, thé) value was set to
128 for the first group (except for the spinal cord where dugnall size it was set to 2000 to avoid
undersegmentation) and 512 for the other group. For the BE&38d method, the value was set to
3000 for lungs, heart, liver and the spinal cord, 2000 fonkigs, and 1000 for spleen and bones.
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Figure 2: H, plots for eight tissue/organs segmented using 3D-SRM @@eit) 3D-EGS (right) meth-
ods. The tolerance parametenf the H, metric ranges from to 8 (pixels). The 1st and 2nd markers
of eachH, profile are theH; and H, reported in Table 1.

Table 1 shows the evaluations of segmentation using 3D-SRM38REGS methods. The Dice
index, H; measure and Hausdoff distance for each of the eight tisgae were depicted. These
indices were computed by taking the average over all rete®arslices that a particular tissue/organ
was considered. For example, the lungs span over 22 CT slibessay, 3D-SRM based, segmented
lungs in each CT slice were evaluated and resulted in indalitice values. The average (and the
standard deviation) of these 22 Dice values is the first anttite column labelled 'Dice Index’ in
Table 1. For lungs, heart, liver, kidneys and bones, the rnse@ indices are close @90 and over
(0.89 to0 0.95) for 3D-SRM and ranges from just beldwd0 to 0.96 (0.87 to 0.96) for 3D-EGS. This
shows that the performance of the segmentations based @RBDand 3D-EGS for this group of
organsf/tissues is high. For spleen and stomach, the Diaemdre).87 and(.72 using the 3D-SRM
method and.76 and0.69 using the 3D-EGS method. The performance for this groups@latively
high but slightly lower than that in the previous group, asep and stomach are typically difficult
to distinguish from the neighbouring soft tissues in theabithal area (even to the human expert’'s
eyes). For the spinal cord, the Dice index)i83 and0.79 for 3D-SRM and 3D-EGS, respectively.
The performance for this group is also relatively high bighdly lower than that in the first group.
This is because the spinal cord is represented by only a feelspand the Dice index is an area
measurement. The inclusion or exclusion of one extra piXéhave a large impact in the percentage
change. Overall, the segmentation results for 3D-SRM inralligs are higher than that for 3D-EGS.

For the H, measure, only?; and H, with tolerance ofl and2 pixels, respectively, were shown in
Table 1. Taken into consideration the uncertainty in theigdaruth (produced by manual delineation
of the borders), allowing a 2 pixels tolerance in the agregrbetween the segmentation and the
ground truth is practical. Table 1 shows that the segmemtgierformance measured by border
accuracy using thél, index is high for both 3D-SRM and 3D-EGS in group 1 organsigss around
0.95 or above for 3D-SRM and ranges frdng6 to above).95 in group1 except for liver. For spleen
and stomach, thél, index is also relatively high with.88 and0.82 for 3D-SRM and0.83 and0.83
for 3D-EGS. TheH, values for spinal cord based on both segmentation methedsesay close to 1.
This is because for a reasonably accurate segmentatioe sfrihll size spinal cord, a tolerance of 2
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Figure 3: Hausdorff distance (in milimiters) for each slioe all eight organs/tissues. Bars indicate
values for 3D-SRM while (red) crosses are used to indicatecones for 3D-EGS technique.

pixels almost certainly will capture the ground truth. Qalerthe H; index for 3D-SRM in all groups
is higher than that for 3D-EGS. Thé, measures with the tolerance parameter vatuasging from
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Figure 4: Efficiency of the 3D-SRM and 3D-EGS segmentationhoas. For each of the seven
tissue/organs shown, using only the largest 2 to 8 relevi@m lue bars) or EGS (red cross) regions
can well approximate the coverage achieved by all relevantponents as indicated by the Dice
ubdex).

1 to 8 (pixels) for all eight tissue/organs segmented usiotiy) BD-SRM and 3D-EGS methods are
shown in Figure 2. It can be observed that fiieindex increases rapidly with stabilising att over

2 for lungs, heart and spinal cord andtaiver8 for the other organs/tissues. Overall, tHe index
for 3D-SRM in all groups is higher than that for 3D-EGS.

The mean Hausdorff distances for all organs/tissues aiietddpn the last column in Table 1. The
variation of the Hausdorff distance in each organ/tisseensgo be large as indicated by the standard
deviation. Figure 3 depicts the Hausdorff distance for edide of each organ/tissue. It can been
observed that the large variation in each organ/tissuepisdlly due to extreme results in one or two
slices.

Coverage of the 3D-SRM and 3D-EGS segmentation results isrshioigure 4. Using the 3D-
SRM or 3D-EGS methods, the segmentation result of a partitistse/organ is, typically, represented
by the union of a number of 3D-SRM regions or 3D-EGS regions fitmmber of the (3D-SRM or
3D-EGS) regions in the union set is significally smaller thia@ number of pixels (voxels) in that
tissue/organ. Figure 4 shows the coverage (of the regico(apared to the ground truth) using only
the largest 2 to 8 and all eligible regions for 3D-SRM (blueshand 3D-EGS (red cross) for each of
seven tissue/organs. It is visible from these graphs thagumly the larges? to 8 eligible regions
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can well approximate the performance achieved by all degilomponents as indicated by the Dice
index (in both methods). Only seven tissue/organs were shddones are not included as bones
comprise a large number of entities. Naturally, bones nasgklnumber of eligible components to
approximate the final coverage. This does not provide anfulisesight about the efficiency of the
3D-SRM and 3D-EGS methods, thus, is not shown.

6 Discussion

The results show that both SRM and EGS extensions to 3D sdtting a great potential for CT
segmentation.It is transparent that overall 3D-SRM outpers 3D-EGS in all aspects; accuracy -
measured by the Dice index and the Hausdorff distance (Tgbland also the granularity of seg-
mentation - measured by accuracy vs number of componentispae/organ (Figure 4) are better
(for some organs, like spleen, liver or kidneys, signifibabetter) for 3D-SRM than for 3D-EGS.
This can be attributed to the well-known fact that the EG®égque is significantly more sensitive
to noise than the SRM method ([16]) and spleen, liver and kisliodten have large portions of their
boundaries blurried and fuzzy.

In literature, multi-organ segmentation is hardly addeesso far. This is partly because of high
computational complexity of the task and also difficulty iatlgering data. Most published results
in the area focus on segmentation of the abdominal regio@] rgported segmentation results of
kidneys, spleen and liver in contrast-enhanced two phdsésnainal CT scan. The results for the
Dice index were).93, 0.91 and0.95, respectively. Another study [7] reported segmentatiosiof
tissue/organs (heart, liver, spleen, lungs, kidneys ahds)én CT scans. The results were evaluated
using Dice index and Haursdorff distance but were given ialspiot profiles and difficult to read
accurately. Dice indices for the 6 tissue/organs were l@zst out a$).7, 0.8, 0.6, 0.9, 0.5 and0.6,
respectively, and that of Hausdorff distance as 12, 14, 1896and 15 mm, respectively. Both our
3D-SRM and 3D-EGS results are very comparable to these sesult

7 Conclusion

In this paper, we have shown that the novel 3D segmentatidmigues introduced in [6] based
on Statistical Region Merging and the Efficient Graph-basegh&ntation have a great potential to
become methods of choice for full body CT segmentations ®ptrpose of CT dose estimation. In
particular, we have addressed the issue of over- and uedenentation which is intrinsic for medical
image segmentation. Both methods achieve very high accuratlye outcome with negligeable
oversegmentation and also compare very favourably witktdoinquantitative relevant results found
in the literature.

It is worth pointing out that although 3D-EGS technique proed slightly worse results it is likely
to be improved when a pre-processing is incorporated irgdrimework. Image smoothing is likely
to improve the 3D-EGS outcome since the method is known todigersensitive. Furthermore,
contour smoothing, using for example, active contour modehlso likely to improve further both
results. In this study, to keep the outcome as generic asop@sae did not apply any image noise
reduction techniques or contour smoothing, which are depeddant.
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