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Abstract 
This paper proposes an automatic ship detection method based on gray-level gathering characteristics of 

synthetic aperture radar (SAR) imagery. The method does not require any prior knowledge about ships and 
background observation. It uses a novel local gray-level gathering degree (LGGD) to characterize the spatial 
intensity distribution of SAR image, and then an adaptive-like LGGD thresholding and filtering scheme to detect 
ship targets. Experiments on real SAR images with varying sea clutter backgrounds and multiple targets situation 
have been conducted. The performance analysis confirms that the proposed method works well in various 
circumstances with high detection rate, fast detection speed and perfect shape preservation. 
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1 Introduction 

With the increasing volume of image data that are collected from air- and space-borne SAR systems, it is 
becoming increasingly desirable to develop the automatic ocean targets detection technique for the 
expanding requirements of intelligence, surveillance and reconnaissance [1-3]. A task which is of particular 
importance for this is to detect ship targets in background clutters. Owing to the corner reflection from ship 
structures, ships are usually bright in SAR images. When ocean surface is relatively quiet, the reflection of 
ocean surface to radar wave is specular reflection and the echo signal is very faint. It is easy to detect these 
ship targets. Whereas, when the wind is fierce, large waves will be stirred. Here, the backscattering echo of 
ocean background will be very strong and the whole SAR image will be rather bright. Ships will be mixed 
with speckle noise and clutter noise, so it becomes very difficult to detect ships, especially, small ones 

Many methods have been developed for detecting ships in SAR images during the last two decades, 
including direct ones and indirect ones [4-9]. The distributed Constant False Alarm Rate (CFAR) framework 
is the most widely accepted conceptual model in the direct methods [10-14]. CFAR-like detectors, as the 
widely used ship detection approach on which several current operational systems rely [15], involve the 
parameter estimations of ships and local clutters and the setting of a threshold for decision so that a constant 
false alarm probability is guaranteed for all values of unknown clutter parameters. The strong dependence of 
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CFAR schemes on prior knowledge about ships and background observation limits their application in 
automatic detection. Besides, due to differences in environmental conditions such as changes in clutter edge, 
multiple targets or jamming, the target detection is often corrupted. Another alternative technique, which 
firstly detects ship wakes and then seeks ships around wakes, is the indirect methods [7-9]. Generally, if ship 
wakes are long and evident, the ships are easier to be detected with the wakes detection methods. However, 
if ship wakes are not evident or absent, such as the anchorage situations, the ships can not be detected. 
Currently, some improved models and methods are still under development [16-19], and the related basic 
researches and practical problems, for automatic detection goal, still need further investigation. 

Aiming to develop a simple and effective ship detection method, a "Local Gray-Level Gathering Degree 
(LGGD)" algorithm, motivated by the spatial distribution characteristics of cells as observed in any SAR 
images, is developed and then an automatic ship detector is proposed. The new detector constituted by the 
LGGD algorithm and a postpositive filtering scheme, is named LGGD detector. The merit of a postpositive 
filtering scheme rather than a prepositive one (which is generally adopted by most detectors) is: the latter 
always reduces target information during noise suppressing. The performance of the proposed detector has 
been tested on various backgrounds SAR images. The results demonstrate that the LGGD detector works 
well not only in the different background circumstances with high detection rate and perfect shape 
preservation but also in the presence of multiple scale ships and interfering targets with robust performance. 

2 Descriptions of algorithm and detector 

2.1   LGGD algorithm 
The intensity of each resolution cell in SAR imagery denotes the radar scattering characteristics of a 

random ground object. Cells with different intensities and intensity distributions represent the various ground 
objects. Suppose that a cell C1 (i, j) with intensity I has the same observed intensity with another cell C2 (i+Δi, 
j+Δj), they are coherent and therefore the ground objects represented by the two cells should be the 
correlative objects. Accordingly, a gathering relationship of the cell pair (C1, C2) at position (i, j) can be 
expressed by 
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Where, Δi and Δj represent the spatial intervals of the cells in two directions (range and azimuth), 

respectively. For all cell pairs in relation to the cell C1 (i, j), a gray-level gathering relationship of the 
intensity I at (i, j), namely gray-level gathering degree, can be computed as 
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where M and N represent the spatial dimensions of the SAR image known as azimuth and range, respectively.  

The GI describes the spatial distributions of cells and intensities, and hence it is able to highlight the 
changes of the spatial information. Unfortunately, its computational cost is increased with the image 
dimensions. To decrease computational cost, a local gray-level gathering degree is adopted by limiting a 
calculation range. It is obvious that the LGGD algorithm is related not only with the number of matched cells, 
but also with their spatial distributions. If the cells with gray-level I come from the same surface of a ship 
target, they are gathering and hence GI is large, while if they come from the ocean clutter noise, they are 
discrete and then GI is small. Thus, ships should be detected if an appropriate threshold Gth is chosen. 
2.2 LGGD detector 

As described above, the LGGD algorithm does not require any knowledge about the operational ship and 
background observation after an initial calculation range (window) setting. The algorithm is sensitive to the 
intensity difference and is also fast enough in calculation, which is vital to build an efficient SAR detector. 
With these advantages, a new ship detector has been developed. 

The block diagram of the proposed detector is shown in Fig.1. A square sliding window of (2N+1) × 
(2N+1) pixels centred at the test cell is designed. Due to lack of ability for distinguishing bright cells from 
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dark cells, the LGGD algorithm can not distinguish ships from false alarms corresponding to speckle noises, 
sea clutters and even dark areas (such as low-wind areas, oil spills or rain cells). As a countermeasure, a 
complementary filtering scheme is designed to reject false alarms. The whole detection process can be 
divided into three steps. Firstly, a sliding detection is executed by computing the LGGD value of each cell 
with its surrounding cells. When the window scans the entire image, LGGD calculation is achieved and a 
LGGD map is obtained. Owing to the higher intensities of ship cells, there are often no matched cells in the 
sliding window, that is, a zero value of GI is universal for ship cells. Therefore, potential target cells 
corresponding to the zero value of GI are presented at first. To reserve these cells for further discrimination, a 
zero-value substitution for improving their values to pass the subsequent LGGD thresholding is assigned. For 
example, the zero-value substitution is executed on the LDDG map by setting all the zero values to 6 (Since 
the value of 6 is set higher than the subsequent threshold, after the LGGD thresholding, those potential target 
cells can be reserved for the further discrimination). Secondly, the LGGD map is passed through a 
thresholding step and a binary map containing the potential targets is presented. Since any fixed threshold 
can not be satisfied for various situations, an adaptive-like LGGD thresholding is essential. Finally, a 
postpositive filtering processing is performed and false alarms in the thresholded binary map are eliminated. 

 

 
Fig.1 Block diagram of the LGGD ship detection method. 

 
2.2.1 Sliding window size 

As can be seen from equation (2), the calculated LGGD map depends strongly on the window size used. 
Too large size is disadvantageous to calculation efficiency, while too small size is not enough to calculation 
stability. In order to obtain a reasonable window for automatic detection, we have investigated the 
relationship of LGGD distribution with the increased window size by statistical analysis method. Fig.2a) 
shows a statistical result derived from several SAR images under different background noises (The reason 
for the statistical result is: although the LGGD distributions for each image are slightly different, the 
distribution trends are similar to each other). As can be seen, the LGGD distribution curves are steadier and 
all curves are close to each other when the window size is larger than 31 pixels. In addition, a theoretical 
LGGD calculation result is also given in Fig.2b). A series of theoretical maximum LGGD values for the 
increased window sizes are calculated on the assumption that their internal cells are all coherent, and then the 
curve is obtained by fitting these values. The curve also tends to be smooth when the window size is over 30 
pixels. Thus, the size range of 30~40 pixels is suggested in our scheme. 
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2.2.2 LGGD thresholding rule 
A threshold level could be fixed to discriminate ships from their background after LGGD calculation. 

Theoretically, due to the different LGGD distribution scopes between ships and the clutter noise, ships 
should be detected if an appropriate threshold Gth is assigned. Practically, since a threshold assigned suitable 
in one case can not be considered for all cases, we need to find an adaptive-like scheme of this threshold for 
the sake of automatic detection, which is suitable in most SAR images.  

 

 
Fig.3 Relationship of the LGGD distributions with the background roughness (different LGGD values 
represent different background clutters). 
 

Fig.3 shows the investigated LGGD distributions of different SAR images under different background 
clutters (reflected by different average LGGDs). One can see that: despite the broadened and right-shift 
distribution trend with the increased average LGGD, all curves tend to be smooth and near the horizontal 
axis around LGGD=4, which means it is an appropriate range for threshold selection to distinguish targets 
from false alarms. In virtue of experimental analysis, an adaptive-like threshold rule based on the clutter 
level (reflected by the average LGGD value G) of SAR image is assigned for ships:  
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Considering the heterogeneous characteristics in some large images, a sub-region processing by dividing 

the image into several parts is necessary for them. Then, direct to each sub-region, different thresholds based 
on equation (3) should be adopted since each sub-region has different G value. 
2.2.3 LGGD filtering scheme 

  
(a) (b) 

Fig.2 Dependence of LGGD on sliding window size. (a) LGGD distributions of SAR image; (b) 
LGGD curve of the maximum value in sliding window. 
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Despite its sensitivity to intensity difference, the LGGD algorithm can not distinguish between bright 
cells and dark cells. As reflected in the thresholded binary map (Fig.4b)), there are still lots of discrete dots 
(corresponding to speckle noises and sea clutters) and spots (corresponding to some dark areas, e.g., low-
wind areas, oil spills or rain cells) [20], which can not be eliminated by the LGGD thresholding. 

 

  
(a) (b) 

Fig.4 Characteristics of the LGGD thresholded binary map. (a) Original SAR image; (b) LGGD 
thresholded binary map. 
 
In order to remove them, we have adopted a simple and effective complementary filter, which is 

constituted by a scale-based filter (for discrete dots) and a cell-based gray-level discrimination rule (for dark 
cells). The filter adopts two alternative windows, 3 × 3 pixels and 5 × 5 pixels, to handle two types of binary 
maps derived from weak and strong noise background SAR images respectively. For the former, if the 
number of adjacent bright cells in the window is greater than or equal to 3, they will be retained for further 
discrimination; for the latter, the number is 5. Complementarily, an empirical gray-level discrimination 
threshold Ith based on the average intensity Ia of the inputted image to identify ship cells: 
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3 Experimental results and analysis 

The proposed detector has been applied on a series of real SAR images, considering three crucial 
situations, for evaluating its performances: 1) strong noise background situation; 2) heterogeneous 
background situation; and 3) multiple targets situation (including multiple-scale targets situation and closely 
separated targets situation). Since the corresponding ground truth data were not available, a precise cross-
check could not be performed. The validation of the detection results was based on the visual inspection. For 
comparison, the two-parameter CFAR method[14], as the widely used ship detection algorithm on which 
several current operational systems rely, is used, and the corresponding results at a false alarm rate of 0.05% 
are presented. 
3.1 Strong noise background situation 

Under weak noise background, most detectors, such as CFAR-like detectors, can achieve high detection 
rate and low false alarm rate. However, things are different in strong noise cases. Ships will be mixed with 
the ocean clutters due to strong backscattering echo of them, which bring many difficulties for the detection 
of them.   

To test this situation, an ALOS HH polarized L-band SAR image (280 × 400 pixels, 10m pixel size) 
quoted from the literature [21], as shown in Fig. 5a), is adopted in this paper. To compare the results, we also 
quoted its CFAR detection result (0.05% false alarm rate, Fig. 5b)). Fig. 5c) shows the LGGD detection 
result. As can be seen, the hidden ships can be detected perfectly by our method without producing any false 
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alarm. Whereas, the conventional CFAR method would cause lots of false alarms even though it works at a 
very low false alarm rate. 

 

 
(a) (b) (c) 

Fig.5 Detection results for strong speckle situation. (a) Original SAR image; (b) Two-parameter CFAR
result; (c) LGGD result (31×31 pixels window). 

 
3.2 Heterogeneous background situation 

Performance under heterogeneous background condition is a very important evaluation criterion to any 
target detector. Generally, ships are brighter than background clutters in marine SAR images, since the 
scattering of ship targets can last longer than sea clutters in azimuth. This is helpful to detect ship targets. But 
when the size of a ship is small or the scattering of a ship is faint, it is rather difficult to separate the ship 
target from the non-homogeneous background clutters.  

Fig. 6a) gives a typical ERS C-band SAR image (500 × 500 pixels, 12.5m pixel size) near the coast of 
Singapore containing 5 ships in heterogeneous regions, and Fig. 6b) and c) present the detection results by 
the CFAR method and the LGGD method respectively. Although there are some sea clutters within the 
heavily heterogeneous regions mistaken to be ships, the detection result by our LGGD method, compared 
with that of the CFAR method, is acceptable. In fact, a perfect LGGD detection result, as shown in Fig. 6d), 
can be achieved without regard to the auto-detection goal when the sliding window is widened from 31 
pixels to 101 pixels. However, as has been mentioned above, the larger window will lower the calculation 
efficiency. The computational cost is 0.688s for 31 pixels window (and 1.828s for CFAR method), while it 
reaches 5.352s when the window size is widened to 101 pixels. The experiment validates the detection 
ability of the LGGD method for the heterogeneous background situations.  

 

  
(a) (b) 
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(c) (d) 

Fig.6 Detection results for non-homogeneous background situation. (a) Original SAR image; (b) CFAR
result; (c) LGGD result (31×31 pixels window); (d) LGGD result (101×101 pixels window). 

 
3.3 Multiple targets situation 

The multiple targets tasks, including situations for multiple-scale targets and closely separated targets, are 
always a challenge for most detectors, especially for CFAR-like detectors, since their performances are 
strong dependent on the sizes of the detection windows [22]. The various ship scales often make it difficult 
to determine an appropriate window to satisfy all expected target sizes in such situation. The case can be 
seen in Fig. 7. Fig. 7a) shows a C-band ERS SAR image of a busy port (400 × 344 pixels, 12.5m pixel size) 
within heterogeneous regions in which 50 ships are present. It should be a difficult task since different scales 
of ships are included in the image, including some small ships, faint scattering ships and hidden ships. Fig. 
7b) and c) presents the detection results by the CFAR detector and the LGGD detector, respectively. As can 
be seen, excepting for the only one false alarm as encircled by white circle in Fig. 7c), the LGGD detector 
highlights all ships and detects them perfectly either in shapes or in sizes, which is vital to the further 
estimations of the ship parameters, including length, width and orientation [23]. In contrast, the CFAR 
detector not only causes many false alarms but also misses two faint ships labeled as 1 and 2 in Fig. 7a). 
Furthermore, the bad shape preservation, as the worst detection representative of ship with the signature of 3 
in Fig. 7a), also reveals its insufficiency to such situations in comparison with our method. 

 

 
(a) (b) (c) 

Fig.7 Detection results for multiple scale targets situation. (a) Original SAR image; (b) CFAR result; (c)
LGGD result (31×31 pixels window). 
 
Some closely separated targets or jamming lead to another detection problem for CFAR-like detectors 

due to one or more interfering targets occupy some of the reference window cells [10], which results in a 
recurring detection loss in ship gathering regions. To illustrate the situation, an ERS-2 SAR image of Suez 
Bay in north of the Red Sea (Fig. 8a), 240 × 244 pixels, 12.5m pixel size) within white box in which 5 ships 
jammed is adopted. The corresponding detection results by the CFAR method and the LGGD method are 
shown in Fig. 8b) and c). As can be seen, the CFAR method misses one ship in the jamming area, while the 
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LGGD method finds all five ships successfully, which means that the LGGD method has an adequate level 
of immunity to interference. 

 

 
(a) (b) (c) 

Fig.8 Detection results for closely separated targets situation. (a) Original SAR image; (b) CFAR result;
(c) LGGD result (31×31 pixels window). 

4  Conclusions 

A LGGD algorithm for ship detection from SAR imagery is proposed in this paper, the algorithm uses the 
local gray-level gathering characteristics of SAR imagery to characterize its spatial intensity distribution, 
independent of any prior knowledge about ships and background observation, hence is able to execute 
automatic detection. Based on this, a simple and effective detector for ship targets, LGGD for short, has been 
developed. The method provides a great benefit to the faint target detection under the higher sea state 
conditions. 

Compared with the CFAR-like methods, the merits of the LGGD method can be concluded as: 1) the 
method does not require any prior knowledge therefore is able to perform automatic detection; 2) the method 
has an adequate level of immunity to interference, which is more suitable for applying in the multiple targets 
detection; and 3) the method has strong differentiation ability for the target edge due to its sensitiveness to 
the intensity difference hence can achieve perfect shape preservation. In fact, the LGGD method, in virtue of 
some primary tests, is nearly always effective to the gray images due to its gray-level dependence, including 
Panchromatic (PAN) images of optical images. However, the validity of the LGGD method still need to be 
further verified in terrestrial SAR images and optical images for its wider applicability, although it was 
developed for addressing the clutter interferences in ship detection and only marine SAR images with low 
background complexity were tested.  
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