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Abstract 

This study introduces an interactive image segmentation algorithm for extraction of ill-defined edges 

(faint, blurred or partially broken) often observed at small-scale imaging. It is based on a simplified 

deformable elastic model evolution paradigm. Segmentation is achieved as a two-step region-growing, 

shrinking and merging simulation constrained by an exclusion band built around the edges of the regions 

of interest, defined from a variation image. The simulation starts from a set of unlabeled markers and the 

respective elastic models. During the first step, model evolution occurs entirely outside the exclusion 

band, driven by alternate action-reaction movements. Forward and backward movements are performed 

by constrained binary morphological dilations and erosions. Constraints allow controlling how far models 

can move through narrow gaps. At the end of the first step, models remaining from merging operations 

receive unique and exclusive labels. On the second and final step, models expansion occurs entirely 

inside the exclusion band, now driven only by binary unconstrained morphological dilations. A point 

where two labeled models get into contact defines an edge point. The simulation goes on until the 

concurrent expansion of all models comes to a complete stop. At this point, the edges of the regions-of-

interest have been extracted. Interactivity introduces the possibility to correct small imperfections in the 

edge positioning by changing a parameter controlling action-reaction or by changing marker’s size, 

position and shape. Slightly inspired by traditional approaches as PDE Level-Set based curve evolution 

and Immersion Simulation, the algorithm presents a solution to the problem of “synchronizing the 

concurrent evolution of a large number of models” and an “automatic stopping criterion” for the front 

propagation. Integer arithmetic implementation assures linear execution time. The results obtained for 

real applications show that even ill-defined edges can be located with the desired accuracy, thanks to 

algorithm features and to the interactivity exerted by the user during the segmentation procedure. 
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1. Introduction 

Some materials, when observed at microscopic or nanoscopic scale reveal a structure compound of 

a periodic network of nearly polygonal regions separated by thin edges, as shown in the examples 

presented in Figure 1. Important structural properties as, for example, 2D or 3D particle size
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 distribution can be determined from these small-scale images. To yield reliable statistical 

information a robust image segmentation algorithm is required to extract with sufficient accuracy the 
edges of a large number of regions-of-interest (ROIs). In this context, accuracy means the algorithm 

ability to extract the edges of the ROIs with relative fidelity, i.e., the edges must be closed, thin (~1 

pixel wide) and located as close as possible to the real object’s boundaries, even if the boundaries of 

the objects are ill-defined (faint, blurred or partially broken). 

Limitations related to material formation, sample preparation and image acquisition processes defy 

automated image segmentation at small-scale. The 15 sample images shown in Figure 1 illustrate 

some of these limitations. All these images present regions delimited by ill-defined edges of variable 

degree of complexity.  Figures 1a, 1b and 1c show, respectively, layers of cells of corneal endothelial 

tissue of a bovine, a human and a yacare eye. The cells in these micrographs show non-homogeneous 

illumination, noise and partially broken boundaries. Micrographs 1d, 1e and 1f reveal the 

microstructure of leaves organized in a hierarchy of small, medium and large domains of different 

thicknesses containing a mix of complete and incomplete structures with blurred edges. Micrograph 1g 

shows a pollen grain containing regions separated by spaces whose thicknesses vary a lot. The clearly 

perceptible non-homogeneous illumination results from the curvature of the grain surface. Micrograph 

1h shows corrosion pitches and noise in a sheet of stainless steel. When computing size distributions 

for a large number of pitches, a careful noise removal strategy is required to avoid changing pitch’s 

surface areas. In 1i a nanograph of a thin magnetic film shows blurred transversal tracks which may 

lead to incorrect edge extraction. The samples of ceramic material shown in 1j, 1k and 1l contain 

grains (homogeneous surface), pores (small dots) and twins (thin straight lines crossing from one side 

to the other). Pores may appear inside grains and over the edges, making edge detection harder. If the 

segmentation algorithm is not robust enough, twins may be taken by edges. The same is true for 

patterns of light and dark regions, resulting from internal stress, shown in micrograph 1l. Samples of 

stainless steel shown in 1m, 1n and 1o, contain respectively, twins inside grains, partially blurred 

edges of variable thickness and individual grains reflecting light in different directions as a result of 

uneven leveling, making grains to appear in different false colors.  

 

   

(a)   (b)   (c) 
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(d)   (e)   (f) 

   

(g)   (h)   (i) 

   

(j)   (k)   (l) 

   

(m)   (n)   (o) 

Figure 1. Examples of nano and microstructures with polygonal shapes separated by thin edges. 
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A careful observation of these images shows that the above mentioned issues clearly require careful 

denoising and segmentation strategies to yield reliable results. 

The image segmentation literature encompasses a large variety of approaches, ranging from 

artificial intelligence as Genetic and Evolutionary Computing [16], Fuzzy Clustering and Neural 

Discrimination [18], [22] to classical region-growing based methods as, for instance, Seeded Region 

Growing [14], Watershed Transformation [01, 02], Level-Set Method [03,04,05].  

Applications of particular interest here are the segmentation at nanoscopic scale imaging [21], grain 

edge extraction [20], and corneal endothelial cells [15].   

Broadly classified into two distinct categories, edge extraction methods can try direct edge 

detection or to extract edges indirectly by a region-growing process. For direct edge detection 

approach, refer to the compilation recently prepared by Papari and Petrov [06]. 

Despite the large variety of methods available in the literature, here we are particularly interested in 

region-growing based methods, in especial non-linear ones, because they allow fine control over the 

processes involved the region formation, expansion, shrinking and merging. Some important non-

linear region-growing methods are based on simulation of physical phenomena as Immersion 

Simulation [01, 02] and Deformable Models Driven by Action-Reaction Forces [03, 04, 05].  

An ideal edge detector should have the ability to extract the edges of the ROIs even in presence of 

faint, blurred or partially broken boundaries and to yield completely closed edges, having preferably 1 

pixel width, located as close as possible to the “real” boundaries of the objects. These requirements are 

necessary to allow assessment of geometric parameters as surface areas, perimeters, form factor, etc. 

The approach presented in this paper, Interactive Deformable Model Segmentation Algorithm for 

Small Scale Imaging - IDMSA is an attempt to mitigate the above mentioned problems. 

  

2. The Interactive Deformable Model Segmentation Algorithm for Small 

Scale Imaging - IDMSA. 

 

The original motivation behind this approach was to develop a set of algorithms to extract the 

edges of corneal endothelial cells for veterinary applications [13] (see fig. 1a to 1c) and the edges of 

ceramic oxide grains for applications in nuclear industry (see fig. 1j to 1l). Despite being of very 

different nature these materials share many features related to the segmentation problem. In both 

cases, cells and grains fill most of the image field and are separated by tiny boundaries. A closer look 

to these images reveals that the most important pixels, from the segmentation point of view, are 

situated exactly inside a narrow band (a few pixels wide) containing the edges of the ROIs, from now 

on, called the “exclusion band” or EB.  

IDMSA algorithm can be viewed as a non-linear region-growing simulating the concurrent 

expansion, contraction and merging of a set of deformable elastic models which, at the end of the 

process, envelop the boundaries of the ROIs. The simulation is a two-step process driven by binary 

morphological dilations and erosions constrained by set of displacement rules. During the first step, 

models grow, shrink and merge exclusively outside the EB. The EB synchronizes the progression of 

models, retaining the fast marching models close to its boundaries, giving time to slower ones to 

arrive. The initial expansion continues until all elastic models completely stop, converging to the 

boundaries of the EB. During this step, action-reaction parameters control the model’s ability to 

penetrate into narrow gaps. All topological changes required to merge non-significant regions occurs 

spontaneously as models get into contact. A second and final expansion occurs exclusively inside the 



M. Carneiro Andrade / Electronic Letters on Computer Vision and Image Analysis 11(1)):77-98; 2012    81 

 

 

EB, at this time driven only by unconstrained morphological dilations, until they finally stop close to 

the edges of the ROIs.  

To assure fast execution and linear run time the segmentation algorithm resorts only to integer 

arithmetic. Interactivity allows improving the final location of the extracted edges within the expected 

accuracy. The algorithm has been tested with success for different real applications as shown in 

Section 3. 

2.1 IDMSA steps 

IDMSA algorithm is executed in the following consecutive steps:  

1. Denoising the original image. 

2. Computation of a local variation image from the original image. 

3. Definition of an “exclusion band” around the edges of the ROIs in the variation image. 

4. Insertion of one or more marker per ROI by hand and/or by an automated process.  

5. First propagation of the elastic deformable models outside the EB.  

6. Labeling makers with consecutive and positive integer labels. 

7. Second and final propagation of the labeled deformable elastic models inside the EB.  

8. Edge extraction from the labeled image. 

 

Before the first expansion starts (step 5) all image pixels outside the EB are marked as “non-

processed”. During the first propagation, all “non-processed” points and their immediate 

neighborhood are visited at least once. Despite local contractions, the net model’s movement is always 

expanding away from markers. After some iteration, all models converge to the edges of the EB. In 

step 7, the evolution occurs inside the EB in an ever-expanding movement (no contraction). Again, 

each unlabelled pixel and its neighbourhood are visited at least once, assuring the convergence of the 

whole process.  

2.1.1 Image Denoising for Markers Extraction 

Before discussing and illustrating the strengths of denoising for markers extraction, it should be 

anticipated that there is no general-purpose denoising strategy applicable to all kind of image. Usually 

a given class of image can be denoised by a pre-defined sequence of filters, which once defined can be 

applied to the whole class. Moreover, each particular application will require a specialized strategy to 

extract markers. The reason is that non-linear filtering responds quite differently and is strongly 

dependent on parameters. For example, the effect of Alternated Sequential Filters (ASF) and Geodesic 

Erosion and Dilation, two powerful morphological filters, depend on the structuring element size, 

shape, number of iterations and of the image features.  

In the current approach, denoising serves mainly to reduce the number of local minima to be used 

as markers for each region-of-interest (ROI). 

The following examples show a sequence of denoising operations performed by a fully automated 

procedure for a sample of corneal endothelial cells [13]. Figure 2a shows an original micrograph (left) 

of in vitro corneal endothelial cells of yacare eye with no filtering and the corresponding local minima 

(right). Notice the large number of local minima (small dots) regularly distributed along the image 

field. In the sequence, it is shown how different denoising strategies of increasing complexity and 

performance, applied to the image shown in Figure 2a, can change the number, shape, size and spatial 
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of local minima, viz: mean filter (b), mean filter followed by median filter (c), mean filter followed by 

geodesic erosion [07] filter (d) and mean filter followed by alternated sequential [08] filter (e).  

IDMSA does not require a single marker per ROI, since multiple models evolving from the 

respective markers, inside a ROI, will lately be merged into a single model representing that ROI. 

Indeed the more the number of markers the faster models will converge. 

 

 

Figure 2a. Original micrograph of corneal endothelial cells and its local minima. 

 

Figure 2b. Effect of a 7x7 mean filter and its local minima. 
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Figure 2c. Effect of mean and median filters and its local minima. 

 

Figure 2d. Effect of mean and geodesic erosion filters and its local minima. 

 

Figure 2e. Effect of mean and ASF and its local minima. 

 

A continuous improvement is clearly perceptible by comparing the filtering sequences (b) to (e). It 

becomes evident that a careful denoising strategy must be defined to get a suitable set of markers.  
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2.1.2 Defining a set of markers and the corresponding elastic models 

 

Sometimes a large number of markers is required to segment an image. In these cases, it may be 

virtually impossible to extract hundreds or even thousands of markers by hand. Therefore, a fully 

automated markers extraction is usually followed by a manual edition, in which, minor corrections are 

introduced in the set of markers. As previously shown in Section 2.1.1, automated sequences of 

specialized filters are the method of choice in IDMSA to extract markers. However, a parameterized 

grid may be a useful alternative to get the set of initial field of markers. A parameterized grid does not 

depend on local extrema (maxima or minima) and may yield much denser field of markers. Figure 3 

illustrates how a set of markers can be defined for a layer of corneal endothelial cells using a 

parameterized grid in a fully automated process. The points of the grid are set on and off depending on 

pairs of experimental thresholds, set for background (th1 = 5.0, th2 = 100.0) and foreground (th1 = 

0.05, th2 = 1.0). These values hold for any image of this class. The average local intensity m for each 

grid point p, the corresponding standard deviation s, and the variation coefficient cvar = s/m, are 

computed on a square neighborhood N(p) of size k around p. A grid point is set “on” if th1 <= cvar <= 

th2, otherwise it is set “off”. Figure 3a shows a grid of square markers for grid pitch (point density) = 

6 pixels and marker size = 3 pixels superimposed on a gray scale image of corneal endothelial cells. 

Figure 3b shows a grid of markers defined for pitch = 12 and size = 5.  

 

  

(a)     (b)  

Figure 3. Marker set by a parameterized grid and threshold. 

An especial “frame marker” shown in pink in Figure 4a was used to discard incomplete features 

(background) located on the boundaries of the image field. In Figure 4b green dots represent regions-

of-interest (foreground) and the pink dots represent non-significant regions (background). 
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(a)     (b) 

Figure 4. (a) Frame marker around the image field, (b) markers for relevant and irrelevant cells. 

Before the second model expansion (step 7) starts all models are labeled with exclusive integer 

numbers. Connected component labeling is a straightforward operation and will not be discussed here. 

Refer to a linear time connected component labeling algorithm introduced by Chang [11] and a much 

simpler but non-linear time algorithm described in Gonzalez et al. [12].  

 

2.1.3 Computation of a Total Variation (TV) image.  

 

Local variation images present strong intensity changes near the edges of the objects, a feature 

explored by IDMSA. Figure 5 shows alternative instances of local variation images: the negative 

image (b), the gradient image (c), the morphological gradient image (d), the local curvature image (e) 

[09] and the Total Variation image (TV) (f) [10]. Choosing a particular variation image may depend 

on the features involved but, in general, the TV image shows edges with relatively better definition 

and is preferable in IDMSA. 

 

   

    (a)   (b)    (c) 
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(d)   (e)   (f) 

Figure 5. Instances of local variation images for the original image shown in (a): (b) negative, (c) 

gradient by Sobel, (d) total variation (TV), (e) morphological gradient, (f) local curvature. 

2.1.4 Definition of an exclusion band (EB) around the TV image. 

 

Figure 6 shows EBs computed from TV images for real and synthetic images. A user-selected 

threshold Th sets the thickness of EB. A point p pertains to the EB if abs ( I(p) – mp ) ) > Th. 

Where:  I(p) is the image intensity at point p. 

N(p) is an arbitrary neighborhood of size k x k around point p. 

mp is the average image intensity in N(p).  

   
(a) real   (b) TV   (c) EB 

   
(d) synthetic   (e) TV   (f) EB 

Figure 6. TV and EB images for a real ceramic sample and a synthetic blob images. 
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The frames shown in Figure 7 illustrate how an intensity threshold Th, applied to a synthetic gray 

level image of blobs, affects the EB thickness. Clearly, thresholds like Th = 5 or Th = 45 are more 

restrictive to model displacement and yield thicker bands; conversely less restrictive thresholds would 

lead to comparatively narrower EBs. In this example, thresholds above 80 are useless since several 

contact points appear between the inner and outer edges of the EB, compromising it as a stopping 

barrier for the evolving elastic models. Thicker EBs may lead to less precise edge location, which by 

its turn may require further changes in the set of markers.  

 

   

Th=5   Th=45   Th=75 

   

Th=80   Th=83   Th=84 

Figure 7. EB thickness as a function of increasing thresholds applied on the TV image. 

2.1.5 Model growing, shrinking and merging. 

2.1.2.1 Growing and Shrinking 

Model growing and shrinking were implemented as action and reaction pairs of consecutive and 

competing movements driven by binary dilation and erosion operators. Action represents model 

growing while reaction may represent both growing and shrinking, depending on the set of rules 

defined below: 

 

Action as a conditional binary dilation:        

if (p ∉  Eb)  ʌ   (p > 0)  ʌ  (Ǝ p+)  ʌ  (Ǝ p-) set p to -1.  

Reaction as conditional binary erosion:    

if (p ∈ Eb)   ʌ  (p < 0)  ʌ  (Sp >= 0)  set p to +1;  
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Reaction as a conditional binary dilation:    

if (p ∈ Eb)   ʌ  (p > 0)  ʌ  (Sp <   0)  set p to -1. 

 

Where, 

 

p-  point of negative polarity in N(p) , i.e., a pixel belonging to a marker; 

p+  point of positive polarity in N(p) , i.e., a pixel not yet processed; 

Sp  the sum of all labeled points (positive and negative) around p, except p itself;  

EB   exclusion band around the edges, i.e., EB = {  p ∈ Iv | (Iv(p) - Iav(p)) > Th };  

Th  an intensity threshold;  

Iv  a local variation image;  

Iv(p)  variation image intensity at point p;  

Iav  variation image average intensity in N(p).  

N(p)            neighborhood of size 3 around p. 

 

2.1.5.2 Merging 

 

Merging results from the collapse of two or more unlabeled models into a unique model. It occurs 

during the first expansion step exclusively outside the EB and responds for changes in the topology of 

the evolving models.  

 

Two binary buffers i1 and i2 were used to implement the models evolution. Markers and 

background received initially the following signal assignment:  

 a negative polarity (-) to all points belonging to markers.  

 a positive polarity (+) to all other image points.  

 

Changes in polarity may occur as models evolve. After the initial marker assignment, action is 

performed in buffer i1, which is then copied to buffer i2, then reaction is computed into buffer i2, 

which is copied back to buffer i1. This sequence is repeated, forcing models to move outward, until 

idempotence is achieved, i.e., there is no difference between the two buffers.  

In Figure 8, a schematic diagram represents windows at arbitrary time t and t+1, containing 16x16 

points, cut from the binary buffers i1 and i2 and used to perform the segmentation. Individual markers 

are represented by gray closed regions containing positive (-) signed point, delimited elastic models 

shown as thin blue lines. Unprocessed points are represented by negative (-) signed points. Bold face 

type (red) indicates a change of polarity for action-reaction pair for two consecutive instants of time t 

and t+1. 
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 (a) buffer i1 at time t   (b) buffer i2 at time t+1 

Figure 8. Red signs indicate change of polarity for two consecutive instants of time. 

Figure 9 illustrates how action-reaction parameters are used to exert fine control over the models 

displacement. Figure 10a shows a synthetic image containing ROIs represented by bars (white) 

separated by thin edges (gray) whose thicknesses vary from 1 to a few pixels wide. The EB (orange) 

and a set of arbitrary makers (pink) are also shown. Figures 9b and 9c illustrate the elastic model 

ability to get into narrow gaps under the effect of action alone and action plus reaction, respectively. 

The elastic models (thin red closed lines) locations are represented as a function of time t, at the initial 

(ti) after a few interactions (tk) and final time (tf). 

As illustrated, the EB acts as a barrier blocking the displacement of the elastic models beyond its 

boundaries. An additional restriction to the elastic model displacement is exerted by reaction, which 

during the first front propagation step, blocks the movement parallel to and also over narrow edges. 

Compare the shape and the corresponding model penetration ability of the models into narrow gaps for 

situations (action alone) and (action plus reaction) respectively in Figures 9b and 9c. 

 

Figure 9a. Synthetic thin edges of increasing thickness (gray), the corresponding EB (orange) and 

an arbitrary set of markers (pink). 
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ti    tk   tf 

Figure 9b. Model ability to get into narrow gaps as a function of action. 

 

  ti                   tk                     tf 

Figure 9c. Model ability to get into narrow gaps as a function of action and reaction. 

 

Action performs a conditional binary dilation by a k x k structuring element by expanding the 

model at most 1 pixel per iteration. Reaction performs a conditional binary erosion and/or dilation by a 

k x k structuring element. A forward movement of the deformable model inside thin narrow gaps (a 

few pixels wide) may be completely undone by a backward movement. These alternate growing and 

shrinking movements have a final effect of blocking the model progression and, therefore, prevent 

leaking through thin gaps. The EB by its turn blocks movement perpendicular to broken or faint edges. 

Arrows in Figure 10 show an elastic model expanding in directions parallel and over the edges of a 

cell (b) or leaking through a broken edge (c); situations that can be minored or completely avoided in 

IDMSA by tuning the EB thickness and turning reaction on.  
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(a) original        (b) parallel                       (c)  broken 

Figure 10. Model growing parallel and over the edge and leaking through broken edges. 

2.1.6 Model evolution at different stages of IDMSA 

 

The snapshots shown in Figure 11 illustrate the evolution of the elastic models for 16 consecutive 

segmentation steps. The original image of a ceramic material containing grains and pores is shown in 

frame 00. Frame 01, 02 and 03 show respectively the total variation image computed from the original 

image, the EB image computed from the TV image and a set of markers for grains, pores (foreground) 

and incomplete grains (background). A thin square marker shown at snapshot 03 was used to discard 

incomplete cells on the borders of the image field. Frames 4 to 12 represent snapshots of the first stage 

in the evolution of the elastic models. At frame 12 all models have achieved idempotence for the first 

time, i.e., there is no more difference between two successive instants in the evolution. At this instant 

each model receives a unique integer label. Frames 13 to 15 represent snapshots of the second 

evolution stage without merging and/or contraction. From instant 13 on, only growing of labeled 

models is allowed. It stops where two or more models get into contact, therefore defining an edge 

point. Snapshot 15 shows the final segmentation result. Animations of the models in evolution can be 

downloaded from the ELCVIA site. 

 

   

00    01    02 
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03    04    05 

   

06    07    08 

   

09    10    11 
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12   13   14 

 

15 

Figure 11. Models in evolution at different stages of IDMSA segmentation. 

 

3. Applications 

All images presented in this section were obtained from real applications. The material samples 

shown in Figures 12a to 12d have different nature and structure, but surprisingly share many 

similarities regarding the problems faced during the segmentation task. These images reveal a 

structure compound of nearly polygonal objects separated by thin, blurred, broken or incomplete 

boundaries, which must be correctly extracted to allow the assessment of geometrical and statistical 

parameters without bias. For example, a reliable assessment of the histogram of area distribution 

depends on the accurate extraction of closed contour for each object.  

Figure 12a shows an optical micrograph of a ceramic material containing grains (polygons) 

separated by thin boundaries (dark lines) and pores (dark spots). Very few pores are present inside 

each individual grain. Figure 12b show a similar material having many inner pores, which should not 

be taken into account by the segmentation algorithm. Figure 13c shows an optical micrograph of a 

biological sample containing a very thin layer of corneal endothelial cells of a yacare eye. The 

assessment of the cells size distribution may serve as a clue to corneal endothelial transplant. Finally, 

the nanograph presented in Figure 12d shows parallel magnetic tracks on a thin film whose edges are 

to be extracted to allow the assessment of their relative surface density in the image field. As shown in 

these images, the final position of the elastic models (thin red contours) is very close to the real 

boundaries of the objects, thanks to the IDMSA evolution strategy. A combination of a mechanism to 

synchronize the evolving models and another to stop front propagation is responsible for the results 
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achieved. Minor correction in the final position of models may be done by slightly changing the set of 

markers. 

 

  

(a)                                                   (b) 

 

  

(c)        (d) 

 

Figure 12. Examples of IDMSA segmentation for micro and nano structured materials. 
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4. Discussion 

 

Before discussing pros and cons of the IDMSA approach it is worth to present some important features 

of closely related segmentation methods. Immersion simulation is a non-linear region-growing 

technique, in which a large number of models grow in parallel starting from local or regional minima 

towards the edges of the objects. Non-linearity stems from the topographic information, which dictates 

the order of processing. This feature provides an intrinsic and automated mechanism to synchronize all 

regions growing in parallel. Immersion Simulation is highly sensitive to minor variation in the local 

topography. During an immersion simulation all local minima are detected and gives rise to an 

associated catchment basin. Of course, a suitable set of markers must be defined to avoid the well 

known over-segmentation problem, illustrated in Figure 13a.  

   
(a) Over-segmentation        (b) leaking in watershed     

  
(c) PDE Level-Sets              (d) IDMSA 

 

Figure 13. Problems found in segmentation of thin, faint, blurred and broken-edges. 
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This same sensitivity to the local topography, provides the  immersion simulation with an excellent 

ability to stop the region growing evolution over faint or blurred edges but, unfortunately, cannot 

avoid leaking through partially broken boundaries, as shown by arrows in Figure 13b.  

A gap on the edge is sufficient to let models “leak”. Leaking occurs because a broken boundary 

introduces a topographic change, which ultimately modifies the order of processing, i.e. the hierarchy 

of processing. 

On the other hand, methods based on Deformable Models Driven by PDEs as the Level-Sets 

Method can stop the evolution of a few deformable models over the edges of the ROIs, thanks to 

action-reaction forces, even in presence of broken edges. However, they face another problem; the 

inability to “synchronize the evolution of a large number of concurrent models”. “Leaking” in this 

case occurs because the elastic models face different resistance along the path and arrive at the edges 

of the ROIs out of synchronism, as shown by arrows in Figure 13c. A problem that becomes worse 

when the number of expanding elastic models tends to increase. 

The design of IDMSA took into account all the above-mentioned problems. From the perspective 

of “edge extraction by region-growing” the most important points of an image are precisely those 

located inside a narrow band (few pixels wide), around the “real” boundaries of the ROIs.  By “real” 

we mean the set of candidate points that may represent in the image, the boundaries of the real objects. 

However, the “external” points also play a role in IDMSA. They serve as the arena for freely evolving 

models to fit themselves to the boundaries of this band. By letting unlabeled elastic model to grow and 

merge freely, before they reach the band, IDMSA introduces a powerful automatic merging 

mechanism for all non-significant (and not yet labeled) models, irrespective of the number of markers 

per ROI. This mechanism also avoids that local non-significant obstacles, as may occur in the Level-

Set, Watershed or Seeded Region Growing paradigms, trap the elastic models. In addition, simple 

rules embedded into the growing and shrinking movements allow fine adjustment of the elastic models 

to the boundaries of the band, therefore reducing the possibility of leaking through ill-defined edges or 

growing parallel to them. Once inside the band, the labeled models follow an ever-growing movement, 

until they come to full stop close to edges of the regions, therefore assuring an automated stop 

criterion. To assure the convergence of models until they reach the idempotence condition, each image 

point and its immediate neighborhood are visited at least once during the evolution.  

As IDMSA does not take into account the topographic information to guide the expanding process, 

the final location of the elastic model may not coincide exactly with the expected boundary of the 

object, as shown in Figure 13c. Nevertheless, to improve the final position of the edges, within the 

desired accuracy, IDMSA resorts to interactivity, which gives the user the possibility to insert 

information of higher semantic content into the processes. Interactivity allows changing the set of 

markers, including their number, size and shape, the EB thickness and the parameters controlling 

action and reaction movements.  

Integer arithmetic implementation assures IDMSA fast execution times, a significant improvement 

when compared to Level-Sets, which require the computation of a large number of differentials in 

floating-point. In addition, IDMSA does not resort to the sophisticated set of wait queues required by 

immersion simulation methods. IDMSA execution time depends on the density, size and position of 

markers. Lower densities imply longer execution time since the models will take more iterations to 

converge. If a linear labeling algorithm is used [11] the overall algorithm time complexity will be 

linear, i.e., O (N), since morphological erosion, dilation as well as edge detection by scanning a 

labeled image are all linear time algorithms. 

 

 



M. Carneiro Andrade / Electronic Letters on Computer Vision and Image Analysis 11(1)):77-98; 2012    97 

 

 

5. Conclusions and Outlook 

 

Designed and implemented to fulfill the requirements of a typical material characterization 

procedure, IDMSA focus particularities of images grabbed at microscopic and nanoscopic scale under 

unfavorable conditions, as a large number of small objects in a single image field, delimited by ill-

defined boundaries.   

Although designed to explore interactivity, IDMSA may allow fully automated execution, in batch 

mode, for a large number of similar images of a given class, if a denoising sequence could extract the 

required set of markers for that class of image. Extension of the IDMSA algorithm to 3D images is 

straightforward since all operations and algorithms involved are promptly convertible from 2D to 3D 

realm.  

The several examples of real applications presented in the text show that IDMSA is a viable 

alternative to small-scale image segmentation. 
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