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Combining Total Variation and Nonlocal Means Regularization
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Abstract

We propose a new edge preserving image deconvolution model by combining total variation and nonlo-
cal means regularization. Natural images exhibit an high degree of redundancy. Using this redundancy, the
nonlocal means regularization strategy is a good technique for detail preserving image restoration. In order
to further improve the visual quality of the nonlocal means based algorithm, total variation is introduced to
the model to better preserve edges. Then an efficient alternating minimization procedure is used to solve the
model. Numerical experiments illustrate the effectiveness of the proposed algorithm.
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1 Introduction

One of the important tasks in signal/image processing is to recover signals/images from noisy and blurry ob-
servations. Image deconvolution can be formulated as an inverse problem. Many linear inverse problems are
ill-posed, i.e., either the linear operator does not admit inverse or it is near singular, yielding highly noise
sensitive solutions.

The object is to find the unknown true image u € £ C R? from an observed image f €  defined by

f=Au+n (1

where 7) is a white Gaussian noise with variance 02, A is a linear operator, typically a convolution operator. One
of the techniques to avoid this problem is the regularization framework which solves the following minimization
problem:

u* = argmin {J(u) + %F( f, Au)} @

where F'(f, Au) is the fidelity term which measures the difference between f and Au, J(u) is the regularization
term which characterizes some features of the desired solution v and A > 0 is a regularization parameter tuning
the weight between the regularization term and the fidelity term. A well-known regularized inverse problems
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is the Tikhonov regularization model [1], which can be formulated as a one-step filter via Fourier transform for
image deconvolution. An alternative regularization [2] uses H 1 semi-norm of u as the regularization term called
Wiener filter. These linear methods are very simple and fast to implement. However, in order to compensate
for the noise, a large regularization parameter is necessary, which tends to smear out the edges.

A successful edge preserving image restoration regularization model is the well-known ROF model [3], the
total variation (TV) functional with Jpy (u) = |u|py is used as the regularization term because images are
assumed to have bounded variation, which has the following form:

. - A
u :argmuln{|qu+2HfAu||%2}. 3)

Due to its virtue of preserving edges, it is widely used in many applications of image processing, such as image
deconvolution [4, 5, 6], inpainting [7] and super resolution [8]. There are many methods to minimize the TV
regularization models, such as FTVd method [6], dual method [9, 10], iterative Bregman algorithm [11], etc.

In order to better respect small details and structures in images, Buades et al. introduced in [12] an efficient
denoising model called nonlocal means (NL-means) which is a generalization of the Yaroslavsky filter [13].
This model consists in denoising a pixel value by averaging the nearby pixel values with similar structures,
which is defined by the simple formula:

NL)@) = i [ wrte vty @

where x € Q and C(x) is a normalizing constant with

)

x| flx+-) — )2
C(z) :/wa(a:,y)dy, wr(z,y) = exp (—(Ga PGS )h2 Sy +)l )(O)>.

(G, is a Gaussian kernel with a the standard deviation of the Gaussian kernel and h acts as a filtering parameter.
In the variational point of view, Gilboa and Osher in [14] defined a framework based on nonlocal operators
which are inspired by the graph Laplacian [15]. Then this framework is successfully applied to nonlocal total
variation functionals [16, 17]. Under the Bayesian framework, a nonlocal regularization strategy was proposed
in [18] for image deconvolution. However, experimental results show that there visually exist edge oscillations
along sharp edges.

In this paper, we combine total variation regularization and nonlocal means strategy for edge preserving
image deconvolution. Total variation regularization can suppress the edge oscillations which are caused by
the nonlocal means strategy. Comparisons with other classical image deconvolution algorithms are given to
illustrate that the proposed algorithm is an effective algorithm for edge preserving image deconvolution.

2 Proposed Edge Preserving Image Deconvolution

In [18], the NL-means is used to derive an efficient image prior distribution, which expresses that the re-
constructed images are similar to the solutions exhibiting similar neighborhood configurations. Finally, the
regularization term is denoted as

Inp(u) = [lu = NLg(u)l; (6)

where p > 1 is a shape factor. For p=2, the regularization term in Eq.(6) has already been proposed by Buades
et al [19]. The regularization term (6) is interpreted as nonlocal since pixels belonging to the whole image are
used for the estimation of each new pixel. Because natural images have enough redundancy to be restored by
NL-means, the small details are well preserved.

In (6), for the computation of nonlocal means step, the nonlocal weight wy is computed from the observed
image f and the nonlocal averaging is over the reconstructed result. This notation simplifies the solution
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of the functional (6) when the steepest descent procedure is used. However, there exists a certain deviation
along sharp edges for the experimental results. In order to suppress the edge oscillations, the total variation
functional is incorporated into the regularization term, and the proposed edge preserving regularization term
has the following form

Te(w) = Olulpy + lu — NL;(w)|F. ™)

0 is a parameter that tunes the weight between the total variation and nonlocal regularization strategy. For the
image deconvolution problem, we solve the following minimization functional:

X . A
u = argmin 4 Olulpy + |u— NLp(w)[}+35 ||If — Aullzz o - ®)

Jg(uw)=0Jrv (u)+JNL(u) F(f,Au)

The regularization term Jg(u) composes of the edge-preserving total variation functional and the detail-
preserving nonlocal regularization strategy term. The value of the parameter 6 tunes the weight between the
total variation regularization term and the nonlocal regularization strategy term which should not be too large.
For the large value of 0, the total variation term plays an important role so that the restored images are piecewise
constant with small blurred details.

For the minimization functional (8), two regularization terms are adopted: one is the TV regularization term
Jrv, another is the NL-regularization strategy term J 1. However, the nonlocal operators for image recovery
introduced in [16, 17] should be the framework called nonlocal framework based on the nonlocal gradient
Vou: Q2 — QxQ

(Vou)(z,y) = (u(y) — u(z))/w(z,y) )

and nonlocal divergence div, 7 : Q x Q — Q

(di0,P)(a) i= [ (v(ay) = v(y 7))yl v)dy. (10)

Based on the nonlocal operators, the NL/TV regularization functional is designed as follows:

Ineyry = [ 1Vaul = [ (@) = uly) (e, y)dyda. an

which is different from the Eq.(8). In [16], the gradient descent of the nonlocal total variation (NLTV) is used
to minimize the above functional, and the Bregmanized operator splitting technique is adopted to improve the
minimization algorithm of the NLTV in [17].

For numerical implementations, inspired from [6], we use alternating minimization algorithms for solving
the above image restoration problems (8). First, a new auxiliary variable v is introduced, and the minimization
problem can be rewritten as the following constrained minimization problem:

. A 2
min Ofoly + u— Ng(w)lls+ 51 - Aul:
s.t.  u=w. (12)

We consider the L? norm square penalty formulation
minlolpy + u— NLp@) + 51 = Aullz + 5 lu = ol32. (13)

In order to solve the unconstrained problem (13), an alternating minimization algorithm is proposed [6]. We

need to solve two types of subproblems which solve the v problem with u fixed and vice versa. We initialize
0 0

u’ =v’ = f.



B. Hao and J. Zhu / Electronic Letters on Computer Vision and Image Analysis 10(1):42-53, 2011

Step 1. u is fixed to solve the v-subproblem:
n+1 : A n 2
0" = argmin 9|V7)|Bv+§”u —vll72¢- (14)

This step corresponds to the ROF denoising algorithm [3].
Step 2. v is fixed to solve the u-subproblem:

A
u#1 = angmin { = MLy 13-+ 317 — Aul + Do - 713} (15)

We use the steepest descent procedure similar as the approach proposed in [18] to search the solution of the
minimization problem (15)

u"tt = N (AF(f — Au™)
—OyJInr(u") — B(u" — U"+1)). (16)

The superscript denotes the iteration number, o™ is the gradient step size changing adaptively [18] according
to the following:

lg"|? .
n = with ¢" = A*(f — Au™) (17)
| Ag™(|?
and 0, Jyr (u™) has the following expressions:
1 . n n n n -
O nr(u™) = p- (1 - c) sign(u — NLp(u™)|[u" — NL;(u™)|P". (18)

C is the normalizing constant computed from NL-means filter. For C' > 1, we therefore simplify the above
equation as:
OuInp(u™) ~ p - sign(u™ — NLp(u™))|[u™ — NLg(u™)|P~. (19)

3 Numerical Experiments

We now present numerical experimental results and comparisons to illustrate the valid performance of the
proposed algorithm. For all the algorithms based on the NL-means, the size of the search window is set to
11 x 11, the decaying parameter h is set to h = 100 where o is the standard deviation of the Gaussian white
noise, the parameter A and § are manually set to A = 0.3, 3 = 1 respectively. The selection of the optimal
value of the parameters is not in the scope of this work. As in [18], the shape factor is p = 1.5. We use ”lena”
and “cameraman” image of size N = 256 * 256 and use the “rectangular” image of size N = 128 x 128 to
illustrate the effectiveness of our proposed algorithm, respectively.

Example 1. Figure 1 shows the original clean ”lena” image and the corrupted blurry and noisy version.
We set the blurring window size equal to 7 and the standard deviation equal to 2 with Gaussian white noise

BSNR=40 (BSNR = 10log (Uar(blwred Z'mage))). Figure 2 presents the evolution of ISNR with different

var(noise)
parameter 6 (ISNR = PSNR|| f — u||?/(N x 255%)).

The value of 6 plays an important role, large 6 yields a piecewise constant image with small blurred details
and a small € corresponds to the method similar to the nonlocal regularization strategy. From Figure 2, we can
choose ¢ = 0.02 for the proposed method. Figure 3 displays the results with FTVd method [6], nonlocal total
variation method (NLTV) [17], nonlocal regularization strategy (NL-Re) [18] and the proposed edge preserving
method. We can see that the proposed algorithm can suppress edge oscillations and can preserve small details
of the image with a higher ISNR.

Example 2. Figure 4 shows the original clean “cameraman” image and its corrupted version. The corrupted
”cameraman” image is obtained by the same method as the corrupted “’lena” shown in the left of figure 1. The
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Figure 1: original clean "lena” and the blurry noisy version
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Figure 2: evolution of ISNR along iterations for different parameter 6
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Figure 3: deconvolution results with different methods. Up left, FTVd [6] ISNR=3.2999, up right, NLTV [17]
ISNR=4.0980, down left, NL-Re [18] ISNR=4.0635 and down right, the proposed algorithm ISNR=4.8987.

Figure 4: original clean "cameraman” and the blurry noisy version
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Figure 5: deconvolution results with different methods. Up left, FTVd [6] ISNR=2.4282, up right, NLTV [17]
ISNR=4.3318, down left, NL-Re [18] ISNR=3.8777 and down right, the proposed algorithm ISNR=4.5260.
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methods used and the value of § we choose are the same as those used in example 1. The deconvolution results
are shown in figure 5. This is another example to illustrate the effectiveness of the proposed algorithm.

Example 3. Figure 6 shows the original “rectangular” image and the corresponding blurry noisy image
with Gaussian blurry and Gaussian white noise. The blurry window size equals to 7 and its standard deviation
equals to 2, the Gaussian white noise BSNR=40. It is easily to see from Figure 7 that the proposed method can
preserve sharp edges with little edge oscillations.

Figure 6: original clean “rectangular” and the blurry noisy version

Figure 7: deconvolution results with different methods. From left to right: FTVd [6], NLTV [17], NL-Re [18] and the
proposed algorithm.

Example 4. Figure 8 shows the deconvolution results with different methods for a slice of “cameraman”
image. From left to right, the original motion blurry (the angle is set to 30 and the distance 10) noisy (the
Gaussian white noise BSNR=40) image, FTVd [6], NL-Re [18] and the proposed algorithm. Figure 9 shows
the results for a slice of average blurry (average size equals to 7) noisy (BSNR=40) “cameraman” image with
the same methods as the ones used in figure 8. It is easily to see that the proposed method can preserve sharp
edges with little edge oscillations. From Figure 10, we can see that with our proposed method the root mean
square error (RMSE = |ture image — estimated image||2) is smaller than the one obtained with the NL-

Re[18].

Figure 8: deconvolution results with different methods. From left to right, the original motion blurry noisy image, FTVd
[6], NL-Re [18] and the proposed algorithm

Table 1 shows the ISNR comparison with different methods used in example 1. We test three types of
blurring effects: Gauss, averaging and motion blur. We use the functions “fspecial” and “imfilter” from the
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Figure 9: deconvolution results with different methods. From left to right, the original average blurry noisy image, FTVd
[6], NL-Re [18] and the proposed algorithm
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Figure 10: evolution of rmse along iterations for a slice of motion blurry noisy “cameraman” image with different
methods.

99 99

Matlab Image Processing Toolbox with the types "Gauss”,”ave” and “motion”. For the Gaussian blurring we
set the blurring window size equal to 7 and the standard deviation equal to 2, for the average blurring we set
the size to 5, and for the motion blurring we set the angle to 30 and the distance to 10. For all the experiments,
we add Gaussian white noise with BSNR=40. Compared to the existing algorithms, the obtained ISNRs with
different methods and different BSNRs for the Gauss blurring are shown in table 2. From the comparison of
the two tables, we can see that the proposed algorithm performs effectively with higher ISNRs.

4 Conclusion

We have proposed an image deconvolution model by combining total variation (TV) and nonlocal (NL) regu-
larization to preserve edges and small details. The NL regularization strategy is used as a regularization term to
preserve small details, and the total variation functional is incorporated into the NL regularization term. There-
fore, incorporating the TV into the NL regularization strategy, edge preserving restored images are obtained
while simultaneously the restored images are detail preserved well for the NL regularization. Numerical results
have shown that the proposed algorithm is quite effective.
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Table 1: ISNR comparison with different methods for ”lena” and cameraman”

lena cameraman
methods FTVd NLTV NL-Re Proposed FTvd NLTV NL-Re Proposed
Gauss 3.2999 4.0980 4.0635  4.8987 24282 43318 3.8777 4.5260

uniform 5.3847 6.4648 6.7106 7.6724 54368 7.3876 7.5395  8.3985
motion 7.5675 9.8172 9.6025 11.0688 6.6289 10.2992 9.6401 10.7413

Table 2: ISNR comparison with different methods for Gauss blurring

lena cameraman
BSNRs FTVvd NLTV NL-Re Proposed FTVd NLTV NL-Re Proposed
40 3.2999 4.0980 4.0635  4.8987 2.4282 4.3318 3.8777  4.5260
30 29148 3.3969 3.2174  3.4080 2.4697 2.5570 27247  2.8181
25 2.9034 3.1334 3.0635 3.1768 22406 2.2472 2.2943  2.3158
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