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Abstract 
Fractal image compression is time consuming due to the search of the matching between range and domain 

blocks. In order to improve this compression method, we propose firstly, a fast method for reducing the 

computational complexity of fractal encoding by reducing the size of the domain pool. This reduction is based 

on the lowest horizontal and vertical DCT coefficients of domain blocks. The experimental results on the test 

images show that the proposed method reduces the time computation and reaches a high speedup factor without 

decreasing the image quality. Secondly, we combine our method to the AP2D approach which uses two domain 

pools in two steps of encoding. A more reduction of encoding time is obtained without decreasing the image 

quality. 

  

Key Words: Fractal image compression, Complexity reduction,  DCT, SSIM index. 

 

1 Introduction 

Fractal image compression (FIC) was introduced by Barnsley and Jacquin [1-2] and it is one of the recent 

methods of compression. It has generated much interest due to its promise of high compression ratios and for 

being a simple and a very fast decompression method. Another advantage of FIC is its multi-resolution 

property. This method, which is based on the collage theorem [1], shows that it is possible to encode fractal 

images by means of some contractive transformations defining an Iterated Function System (IFS). As natural 

signals do not often possess global self transformability, Jacquin [2] proposed to look for local or partial 

transformability what led to the first algorithm of compression by Local or Partitioned Iterated Function 

Systems (PIFS).  

In FIC based on PIFS, a partitioning of the image is made where every elementary part (range block) is 

put in corresponding transformation with another part of different scale (domain block) looked for in the 

image. The classical encoding method, the full search, is time consuming because for every range block the 

corresponding block is looked for among all the domain blocks, i.e. the domain pool. Several methods are 

proposed to reduce the encoding time and the most common approach is the classification scheme [3-8]. In 

this scheme, the domain and the range blocks are grouped in a number of classes according to their common 

characteristics.  For each range block, comparison is made only for the domain blocks falling into its class. 

Fisher’s classification method [3] constructed 72 classes for the image blocks according to their variances 
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and intensities. In Wang et al. [8], four types of range blocks are defined based on the edge of the image. 

Jacobs et al. [9] uses skipping adjacent domain blocks whereas Monro and Dudbridge localizes the domain 

pool relative to a given range block based on the assumption that domain blocks close to this range block are 

well suited to match the given range block [10]. Methods based on reduction of the domain pool are also 

developed. Saupe’s lean domain pool method discards a fraction of domain blocks with the smallest variance 

[11] and Hassaballah et al.’s method removes the domain blocks with high entropies from the domain pool 

[12]. Other approaches produce improvements of FIC by tree structure search methods [13, 14], parallel 

search methods [15, 16] or by using two domain pools in two steps of FIC (AP2D) [17]. Also, the spatial 

correlation in both the domain pool and the range pool is added to improve FIC as developed by Truong et 

al. [18]. In these methods, high speedup factors are often associated with some loss of reconstructed image 

quality. In the present work, a new method to reduce the encoding time of FIC using the lowest horizontal 

and vertical DCT coefficients of domain blocks is proposed. This method speed up the encoding time by 

discarding the domain blocks having a low activity. The activity of the blocks is determined by the lowest 

horizontal and vertical DCT coefficients. The advantage of the proposed method is that it reaches a high 

speedup factor without decreasing the image quality. For more improvement, the proposed method is 

combined to the AP2D approach which uses two domain pools. In this combined method, the blocks having 

a low activity are discarded from the two domain pools. 

2 Reduction of the encoding time based on DCT 

2.1 DCT 

By using DCT transformation, an image block can be transferred from the spatial domain to the frequency 

domain, in which the DCT coefficients located in the upper-left represent the low frequency information of 

the image block and reflect the rough contour of the image block. In contrast, the DCT coefficients located in 

the lower-right represent the high frequency information of the image block and reflect the fine texture of the 

image block.  

Let D be a given image block of size N×N. The DCT of D, denoted by DCTD, is computed from the 

formula [19]: 

j=N-1i=N-1

D x y
i=0 j=0

2 (2i+1)mπ (2j+1)nπ
DCT (m,n)= C C D(i, j)cos( )xcos( )

N 2N 2N
∑ ∑   (1) 

 Where m, n= 0, 1, …, N-1, and  

1/ 2 , if m 0

m
1, else

C
=

= 


 

The magnitude of DCTD(1,0) reflects the intensity variation between the left half and the right half of 

image block D. Similarly, the magnitude of DCTD(0,1) reflects the intensity variation between the upper half 

and the lower half of D. Then if both |DCTD(1,0)| and |DCTD(0,1)| are small, then the block D tends to have 

less edge structure. When a block has a high degree of edge structure, either |DCTD(1,0)| or |DCTD(0,1)| will 

be large. If |DCTD(1,0)| is larger, D will have horizontal edge properties. On the other hand, if |DCTD(0,1)| is 

larger, then D will have vertical edge properties. Finally, those blocks with high magnitudes of |DCTD(1,0)| 

and/or |DCTD(0,1)| are designed as high activity blocks and those with small magnitudes of |DCTD(1,0)| and 

|DCTD(0,1)| are designed as low activity blocks. The activity of each block D is determined as follows: 

 

If |DCTD(1,0)| < TDCT and |DCTD(0,1)| < TDCT  

          then D is a low activity block 

else D is a high activity block 

(2) 
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Where |.| denotes the absolute value of its variable and TDCT is a threshold.  

Thus, an image block D can be determined as belonging to high activity or low activity type only by 

using its lowest vertical coefficient DCTD(1,0) and its lowest horizontal coefficient DCTD(0,1). 

2.2 The proposed method 

The most computationally intensive part of FIC process is the search step. The way to reduce the 

encoding time consists in decreasing the number of comparisons between each range block and the blocks in 

the domain pool. The proposed method reduces the encoding time by reducing the cardinal of the domain 

pool. The idea of this reduction scheme is based on the observations that only a fraction of the domain pool 

is used in the fractal encoding and that the set of used domain blocks is localized along edges and in the 

regions of high contrast of the image (designed as high activity blocks) as shown in figure 1. Consequently, 

there is a very large set of domain blocks with a low activity which is not used in the fractal code. The 

experimental results illustrated in figure 2 show that a large fraction of the domain pool has small lowest 

horizontal and vertical DCT coefficients while there is no tendency in the distribution of the used domain 

blocks. Therefore, it is possible to reduce the search time by discarding a large fraction of low activity 

blocks. In the proposed method, each range block is compared only with the domain blocks having a high 

activity. This method of reduction of the domain pool is simple since only few computations are required to 

calculate the lowest DCT coefficients |DCTD(1,0)| and |DCTD(0,1)| of a domain block D. 

 

 

 

Fig. (1) Domain blocks of size 8x8 that are used for fractal encoding of  Lena image are shown in black. 
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(a) 

 

   
(b) 

 

  
(c) 

Fig. (2) Distribution of the lowest DCT coefficients |DCT(0,1)| and |DCT(1,0)| of all domain blocks of size 

8x8 versus that of used domains in quadtree partitionning for Lena (a), Peppers (b) and Baboun (c). 

2.3 Adaptive fractal encoding 

The proposed method based on reduction of the cardinal of the domain pool given in section 2.2 is now 

applied to speed up the fractal image encoding. In the first stage of the proposed method, the domain pool is 

constructed and the domain blocks with a low activity are discarded. 

The threshold TDCT indicated in (2) can be fixed or chosen in an adaptive way. Determining TDCT 

adaptively allow us to choose the speedup ratio. The main idea is to set the thresholds such that a fraction α 

of the domain pool can be discarded. Due to the fact that the encoding time depends on the number of 

comparisons between range and domain blocks, the speedup ratio can be estimated. 

The determination of the threshold TDCT, which depends on the fraction α of the domain pool to be 

eliminated, is summarised as follows:  

1. For each domain block D, calculate the lowest DCT coefficients DCTD(1,0) and DCTD(0,1).         

Set S = max (|DCTD(0,1)|, |DCTD(1,0)|). 

2. Sort all the values of S in increasing order. 

3. Find S* corresponding to the value of α. Set the threshold TDCT =S*. 
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Due to the fact that we apply our method in the case of a quadtree partitioning, we choose different 

thresholds for every size of the domain blocks. 

The first steps of the proposed method are as follows: 

• Choose a value of α. 

• Construct the domain pool D. 

• Compute the two lowest DCT coefficients DCTD(1,0) and DCTD(0,1) for each domain block. 

• Determine the threshold TDCT for each size domain block. 

• Remove the domain blocks which have a low activity from D. 

3 Experimental results 

The different tests are performed on three images, Lena, Peppers and Baboun (figure 3) with 8 bpp and 

the software simulation is done using C++ on a Windows XP, Intel Pentium Dual 2.16 Ghz platform. The 

quadtree partition [3] is adopted. The image quality is measured by the peak signal to noise ratio (PSNR) and 

the structural similarity Measure (SSIM) index [20]. 

The PSNR of the original image X and the distorted image Y of sizes N, is defined as follows: 

10

2255
PSNR 10x log

MSE

 
 
 
 

=       (3) 

where  

N
2

i i

i 1
N

1
MSE (x y )

=

= −∑ ,      (4) 

xi and yi are the gray levels of pixel of  X and Y respectively. 

 

The SSIM index is a method for measuring the similarity between two images X and Y defined by Wang 

[20] as follows: 

X Y XY 2
1

2 2 2 2
X Y 1 X Y 2

(2 C )(2 C )
SSIM(X,Y)

( C )( C )+

µ µ + σ +
=

µ + µ + σ σ +
     (5) 

    

where  X i
1

x
N

µ = ∑ , Y i
1

y
N

µ = ∑ , 
1

2 2
1

X i XN 1
( (x ) )

−
σ = − µ∑ , 

1
2 2

1
Y i YN 1

( (y ) )
−

σ = − µ∑ , 1
XY i X i YN 1

(x )(y ))
−

σ = − µ − µ∑ . 

C1 and C2 are positive constants chosen to prevent unstable measurement when 2 2
X Y( )µ + µ or 2 2

)X Y( +σ σ is 

close to zero. They are defined in [20] as: 

C1= (K1L)
2
 , C2= (K2L)

2
     (6) 

where L is the dynamic range of pixel values (L= 255 for 8-bit gray scale images). K1 and K2 are the same as 

in [20]: K1= 0.01 and K2= 0.03.   

In the present work, we use an average SSIM (MSSIM) index to evaluate the overall image quality: 

M

i i

i 1

1
MSSIM(X,Y) SSIM(x ,y )

M
=

= ∑     (7) 
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where X and Y are the original and the distorted images respectively; xi and yi are the image contents at the 

i
th
 local window and M is the number of local windows of the image. 

 The rate of compression is represented by the compression ratio (CR), i.e. the size of the original image 

divided by the size of the compressed image. The speedup factor (SF) of a particular method can be defined 

as the ratio of the time taken in full search to that of the said method, i.e., 

 

Time taken in full search
SF

 Time taken in a particular method
=     (8) 

 

 

 

     

                            (a)            (b)      (c)  

Fig. (3): Images of size 256x256 : Lena (a), Peppers (b) and Baboun (c). 

 

Table 1 gives the encoding time, CR, PSNR and MSSIM measured on the three test images for different 

values of (1-α).  The FS occurs when α=1 and there is no time reduction because no domain block is 

eliminated. As illustrated in figure 4, the encoding time scales linearly with α. When two thirds of the 

domain pool are discarded, the proposed method reach a SF larger than 3 with a slight increase of PSNR of 

0.04 dB for Lena and 0.12 dB for Baboun and a drop of PSNR of 0.02 dB for Peppers. It also decreases the 

CR slightly for the three test images. 

When α ≥0.1, there is a slight decrease of PSNR, CR and MSSIM while the SF reaches a value more than 

8. For comparison, the FS reaches a PSNR of 30.92 dB and a MSSIM of 0.8909 with a required time of 

18.85 seconds for Lena. In the proposed method, the encoding time of Lena is 2.24 seconds while PSNR is 

30.41 dB and MSSIM is 0.8872 when α=0.1. The SF attains 8.42 with a drop of 0.52 dB, 0.0037 and 1.24 of 

PSNR, MSSIM and CR respectively.  When α≤0.04, a high time reduction is obtained but with a decrease of 

CR of 1.79, 2.07 and 1.15 for Lena, Peppers and Baboun respectively. This could be explained by the fact 

that some large range blocks could be covered well by some domain blocks which were excluded from the 

domain pool by our method. Therefore, these large range blocks are subdivided in four quadrants resulting in 

a decrease of CR. For a SF of 16, the quality of the test images is still preserved as shown in figure 5, 6 and 

7.  
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Table 1. Encoding time, CR, PSNR and MSSIM when a fraction (1-α) of domain pool is discarded. 

Lena Peppers Baboun 
αααα 

Time CR PSNR MSSIM SF Time CR PSNR MSSIM SF Time CR PSNR MSSIM SF 

1 18.85 10.46 30.92 0.8909 1.00 18.50 10.98 31.91 0.8931 1.00 24.59 7.46 32.55 0.8802 1.00 

0.9 16.99 10.41 30.94 0.8916 1.11 16.56 10.98 31.91 0.8931 1.12 22.00 7.45 32.56 0.8805 1.12 

0.8 15.07 10.37 30.96 0.8924 1.25 14.91 10.94 31.92 0.8935 1.24 19.63 7.41 32.58 0.8812 1.25 

0.7 13.18 10.30 31.00 0.8935 1.43 12.91 10.92 31.92 0.8938 1.43 17.16 7.39 32.58 0.8815 1.43 

0.6 11.45 10.19 31.03 0.8941 1.65 11.10 10.85 31.93 0.8936 1.67 14.79 7.34 32.60 0.8824 1.66 

0.5 9.61 10.11 31.04 0.8948 1.96 9.35 10.70 31.96 0.8954 1.98 12.44 7.30 32.63 0.9834 1.98 

0.4 7.73 9.99 31.03 0.8950 2.44 7.59 10.51 32.01 0.8963 2.44 10.01 7.26 32.64 0.8828 2.46 

0.3 6.03 9.71 30.96 0.8939 3.13 5.72 10.47 31.89 0.8946 3.23 7.53 7.21 32.67 0.8832 3.27 

0.2 4.12 9.51 30.82 0.8929 4.58 3.94 10.28 31.76 0.8923 4.70 5.15 7.15 32.63 0.8820 4.77 

0.1 2.24 9.22 30.41 0.8872 8.42 2.15 9.91 31.47 0.8877 8.60 2.74 6.98 32.53 0.8801 8.97 

0.08 1.87 9.20 30.23 0.8837 10.08 1.80 9.83 31.27 0.8859 10.28 2.27 6.91 32.47 0.8785 10.83 

0.06 1.51 9.10 30.16 0.8836 12.48 1.44 9.67 31.13 0.8842 12.85 1.80 6.80 32.43 0.8774 13.66 

0.04 1.12 8.98 29.88 0.8807 16.83 1.08 9.48 30.90 0.8813 17.13 1.38 6.64 32.22 0.8737 17.82 

0.02 0.74 8.80 29.66 0.8757 25.47 0.72 9.13 30.58 0.8764 25.69 0.91 6.49 31.93 0.8692 27.02 

0.008 0.52 8.75 29.28 0.8683 36.25 0.54 9.02 29.99 0.8708 34.26 0.67 6.32 31.66 0.8628 36.70 

0.006 0.51 8.67 29.17 0.8661 36.96 0.52 8.94 29.92 0.8692 35.58 0.64 6.31 31.25 0.8535 38.42 

 

 

 

 

 

Fig. (4): Effect of parameter α on the encoding time for the test images. 
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                (a) SF = 1         (b) SF = 12.48       (c) SF = 16.83 

Fig. (5): Reconstructed image Lena by full search (a): PSNR = 30.92 dB, MSSIM = 0.8909 and by  the 

proposed method (b): PSNR = 30.16 dB, MSSIM = 0.8836 and (c): PSNR = 29.88 dB, MSSIM = 0.8807. 

 

       

                 (a) SF = 1    (b) SF =12.85          (c) SF =17.13 

Fig. (6): Reconstructed image Peppers by full search (a): PSNR=31.91, MSSIM= 0.8931 and by the 

proposed method (b): PSNR= 31.13 dB, MSSIM = 0.8842 and (c): PSNR=30.90 dB, MSSIM=0.8813. 

       

                  (a) SF = 1    (b) SF = 13.66         (c) SF = 17.82 

Fig. (7): Reconstructed image Baboun by full search (a): PSNR = 32.55 dB, MSSIM = 0.8802 and by the 

proposed method (b): PSNR= 32.43 dB, MSSIM=0.8774 (c): PSNR= 32.22 dB, MSSIM=0.8737. 
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As shown in figure 8, PSNR and MSSIM vary in the same way according to the parameter α for the test 

images. 

 

 

 

(a) 

 

 

 

(b) 
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(c) 

Fig. (8): Effect of parameter α on PSNR and MSSIM for Lena (a), Peppers (b) and Baboun (c). 

 

To compare our approach with Hassaballah et al.' method (HM), we compute CR in addition to PSNR 

and MSSIM. We find that our method preserves well the image quality and marks a slight decrease of CR for 

a high SF than HM. For Lena, a SF of 10.08 is reached with a drop of PSNR of 0.69 dB and a decrease of 

CR of 1.26 while HM cause a drop of 3.69 dB of PSNR and a drop of CR of 3.28 for a SF of 9.74. For the 

same SF, the drop of MSSIM is of 0.0072 by our method and 0.0668 by HM. Furthermore, the results of 

encoding are still better than HM when the SF achieve a high value for the three test images.  

We also compare our method to Saupe’s method (SM) and observe an improvement of the encoding time. 

For example, with Lena, a SF of 25.45 results in a PSNR of 29.66 dB, a CR of 8.80 and a MSSIM of 0.8757, 

while by SM a SF of 21.81 generate a PSNR of 29.30 dB, a CR of 8.51 and a MSSIM of 0.8654.  

The comparison with AP2D-ENT [21] shows that our proposed method preserves the image quality and 

gives better results than those obtained by AP2D-ENT, precisely when SF is greater than 19. Indeed for 

Lena, the highest SF reaches 36 which generates a PSNR of 29.17 dB, a CR of 8.67 and a MSSIM of 0.8661. 

While the highest SF obtained by AP2D-ENT is 24 which generates a PSNR of 28.63 dB, a CR of 8.84 and a 

MSSIM of 0.8507. Similar improvements are observed for Peppers and Baboun. 

For more improvement, we combine the proposed method to AP2D. In this combination, we use two 

domain pools instead of one and encode an image in two steps as in [17]. The blocks having a low activity 

are eliminated from the two domain pools. Table 2 shows the results obtained by this combination. The main 

result consists in an improvement of SF precisely when α ≥ 0.06. For α < 0.06, no change in the results is 

observed because the cardinal of the domain pool becomes too small. For α≥ 0.3, SF increase twofold (fig. 

9) with a maximum drop of PSNR of 0.09 dB for Lena, 0.9 dB for Peppers and 0.04 dB for Baboun. For 

MSSIM, a maximum drop of 0.0032 is observed for Peppers whereas a maximum increase of 0.0007 and 

0.0016 is observed for Lena and Baboun respectively. Furthermore, this combined method preserves well the 

image quality as shown in figure 10. 
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Table 2. Encoding time, CR, PSNR and MSSIM for the proposed method combined to AP2D. 

Lena Peppers Baboun 
αααα 

Time CR PSNR MSSIM SF Time CR PSNR MSSIM SF Time CR PSNR MSSIM SF 

1 8.02 9.95 30.90 0.8916 2.35 7.25 10.36 31.85 0.8907 2.55 7.97 6.96 32.58 0.8818 3.09 

0.9 7.29 9.95 30.90 0.8917 2.59 6.41 10.36 31.85 0.8908 2.89 7.28 6.96 32.59 0.8818 3.38 

0.8 6.19 9.92 30.91 0.8921 3.05 5.91 10.33 31.84 0.8909 3.13 6.64 6.95 32.60 0.8819 3.70 

0.7 5.52 9.86 30.92 0.8925 3.41 5.14 10.28 31.84 0.8911 3.60 5.84 6.94 32.61 0.8823 4.21 

0.6 4.98 9.78 30.94 0.8925 3.79 4.51 10.18 31.89 0.8920 4.10 5.15 6.91 32.63 0.8828 4.77 

0.5 4.23 9.68 30.97 0.8946 4.46 3.93 10.13 31.91 0.8929 4.71 4.42 6.88 32.66 0.8834 5.56 

0.4 3.56 9.58 30.94 0.8949 5.29 3.30 10.01 31.92 0.8931 5.61 3.68 6.86 32.64 0.8825 6.68 

0.3 2.95 9.36 30.87 0.8926 6.39 2.70 9.97 31.83 0.8917 6.85 2.94 6.79 32.63 0.8821 8.36 

0.2 2.31 9.07 30.74 0.8915 8.16 2.09 9.75 31.68 0.8898 8.85 2.29 6.73 32.60 0.8819 10.74 

0.1 1.61 8.92  30.28 0.8841 11.71 1.56 9.60 31.37 0.8855 11.86 1.62 6.62 32.43 0.8771 15.18 

0.08 1.48 8.88 30.13 0.8815 12.74 1.42 9.60 31.17 0.8830 13.03 1.52 6.59 32.35 0.8750 16.18 

0.06 1.36 8.84 30.05 0.8805 13.86 1.31 9.34 31.04 0.8819 14.12 1.42 6.57 32.30 0.8748 17.32 

 

 

 

 

(a) 

 

(b) 

Fig. (9): Encoding time versus PSNR (a) and MSSIM (b) for Lena.   
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(a) PSNR=30.05 dB,  

MSSIM= 0.8805, SF = 13.86. 

(b) PSNR=31.04 dB,  

MSSIM= 0.8819, SF = 14.12. 

(c) PSNR=32.30 dB,  

MSSIM= 0.8748, SF = 17.32. 

Fig. (10): Reconstructed image Lena (a), Peppers (b) and Baboun (c) when using AP2D and discarding 

the domain blocks having low activity. 

In order to compare our combined method to Xing-yuan’method (X-YM) [22] which is based on spatial 

correlation and genetic algorithm, we apply our method in the case of a square partition with range block size 

4x4 (Table 3). The comparison shows that our combined method reaches higher SFs than X-YM with less 

drops of PSNR. It generates the following SF values 109.49, 110.65 and 45.45 that are associated to drops of 

PSNR of 1.89, 2.15 and 1.16 for Lena, Peppers and Baboun respectively. Whereas by X-YM, the following 

SF values 72.68, 60.76 and 35.26 are associated to drops of PSNR of 2.05, 3.04 and 1.18 for Lena, Peppers 

and Baboun respectively. 

Table 3. The results of the combined method in the case of square partition with range block size 4x4 and 

when a fraction (1-α) of the two domain pools is discarded. The last line corresponds to the full search (FS).  

Lena  Peppers Baboun  
αααα 

Time CR PSNR MSSIM SF Time CR PSNR MSSIM SF Time CR PSNR MSSIM SF 

1 30.73 4.41 32.72 0.9510 14.07 25.97 4.41 33.95 0.9578 16.02 22.38 4.41 34.86 0.9487 19.21 

0.9 26.68 4.41 32.73 0.9511 16.21 23.26 4.41 33.94 0.9576 17.89 19.86 4.41 34.85 0.9486 21.65 

0.8 23.42 4.41 32.73 0.9510 18.47 20.50 4.41 33.94 0.9575 20.30 18.07 4.41 34.84 0.9484 23.80 

0.7 20.27 4.41 32.71 0.9506 21.34 18.16 4.41 33.90 0.9566 22.91 15.52 4.41 34.82 0.9480 27.71 

0.6 17.18 4.41 32.70 0.9503 25.17 16.18 4.41 33.90 0.9566 25.71 13.32 4.41 34.79 0.9474 32.28 

0.5 14.31 4.41 32.67 0.9496 30.22 12.83 4.41 33.87 0.9559 32.43 11.19 4.41 34.74 0.9465 38.43 

0.4 11.90 4.41 32.61 0.9482 36.34 10.41 4.41 33.81 0.9545 39.97 9.46 4.41 34.67 0.9451 45.45 

0.3 8.94 4.41 32.45 0.9456 48.38 8.20 4.42 33.65 0.9526 50.74 7.28 4.41 34.60 0.9438 59.06 

0.2 6.49 4.43 32.18 0.9417 66.64 6.03 4.42 33.42 0.9496 69.00 5.30 4.42 34.52 0.9419 81.13 

0.1 3.95 4.57 31.50 0.9316 109.49 3.76 4.51 32.85 0.9427 110.65 3.32 4.42 34.06 0.9345 129.52 

0.08 3.48 4.63 31.27 0.9279 124.28 3.32 4.54 32.81 0.9412 125.32 3.00 4.42 33.96 0.9325 143.33 

0.06 3.01 4.69 31.13 0.9259 143.68 2.89 4.61 32.35 0.9369 143.96 2.61 4.43 33.86 0.9303 164.75 

0.04 2.50 4.75 30.89 0.9221 173.00 2.36 4.73 32.00 0.9322 176.29 2.27 4.44 33.39 0.9229 189.42 

0.02 2.00 4.86 30.53 0.9165 216.25 1.91 4.87 31.49 0.9253 217.83 1.82 4.45 33.02 0.9156 236.26 

0.008 1.65 5.05 29.98 0.9062 262.12 1.65 5.09 30.86 0.9157 252.15 1.64 4.50 32.57 0.9062 262.19 

0.006 1.63 5.11 29.85 0.9035 265.33 1.59 5.20 30.60 0.9110 261.67 1.58 4.51 32.47 0.9047 272.15 

FS 432.49 4.13 33.39 0.9590 1.00 416.05 4.13 35.00 0.9958 1.00 429.99 4.13 35.83 0.9588 1.00 
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The proposed method is also compared with the conventional method JPEG [23]. In this comparison, the 

encoding time is not considered as a factor. PSNR and MSSIM versus compression ratio are presented in 

figures 11. The results show that: 

•  at a high CR, the proposed method is better than JPEG. With Lena for example, a CR of 65 

generates a PSNR of 24.13 dB and a MSSIM of 0.6909 whereas by JPEG algorithm, a CR of 52.48 

generates  a PSNR of 17.13 dB and a MSSIM of 0.4513. Similar results are obtained for Peppers and 

Baboun. 

• at low CR, JPEG is better than the proposed method. The maximal drops of PSNR for Lena, Peppers 

and Baboun are 3.63 dB, 2 dB and 1.40 respectiveley. The maximal drops of MSSIM for Lena, 

Peppers and Baboun are 0.0118, 0.0072 and 0.046 respectively. 

 

 

 

 

(a) 
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(c) 

Fig. (11): Compression ratio versus PSNR and MSSIM for Lena (a), Peppers (b) and Baboun (c). 
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4 Conclusion 

In this study, we propose firstly to reduce the time of fractal image encoding by using a new method 

based on the DCT coefficients. In this method, the domain blocks with a low activity are discarded from the 

domain pool. The activity of blocks is based on the lowest horizontal and vertical DCT coefficients. 

Experimental results show that the proposed method reaches a high speedup factor with a very little effect on 

the image quality and CR. Secondly, we propose to combine our proposed method to the AP2D approach to 

more improve the encoding time. The results obtained show an improvement of the speedup factor and no 

deterioration of the image quality. 
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